
Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 

April 2016 



Navigation and Ancillary Information Facility 

N IF Agenda 

•  Overview 
•  Kernel architecture 
•  Producing kernels 
•  Using kernels 

Introduction to Kernels 2 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 3 

What is a SPICE “Kernel” 

“Kernel” means file 
 

“Kernel” means a file containing ancillary data 
 

“Kernel” means a file containing "low level" ancillary data that may be used, 
along with other data and SPICE Toolkit software, to determine higher level 

observation geometry parameters of use to scientists and engineers in planning 
and carrying out space missions, and analyzing data returned from missions. 

 
 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 4 

SPICE Kernels Family 

•  SPK 
–  Spacecraft and Planet Ephemeris 

•  PCK 
–  Planetary Constants, for natural bodies 

»  Orientation 
»  Size and shape 

•  IK 
–  Instrument 

•  CK 
–  Pointing  (“C-matrix”) 

•  EK 
–  Events, up to three distinct components 

»  ESP: science plan 
»  ESQ: sequence 
»  ENB: experimenter’s notebook 

•  FK 
–  Reference frame specifications 

•  SCLK 
–  Spacecraft clock correlation data 

•  LSK 
–  Leapseconds 

•  MK 
–  Meta-Kernel (a.k.a. “FURNSH kernel”) 
–  Mechanism for aggregating and easily 

loading a collection of kernel files 

•  DSK 
–  Digital shape kernel 

»  Tesselated plate model 
»  Digital elevation model 

•  DBK 
–  Database mechanism 

»  Primarily used to support the ESQ 
EK is rarely used 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 5 

Text and Binary Kernels 

SPICE text kernels are: 
–  text PCK (the most common 

type of PCK) 
–  IK 
–  FK 
–  LSK 
–  SCLK 
–  MK 

SPICE binary kernels are: 
–  SPK 
–  binary PCK (has been used only 

for Earth, moon and Eros) 
–  CK 
–  DSK 

 
–  ESQ (part of the E-kernel) 
–  DBK (database kernel) 
 

Rarely 
used 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 6 

•  Binary form: SPK, binary PCK, CK, EK/ESQ1, DSK  
–  A file mostly containing data encoded in binary form 
–  Binary kernels are not human-readable; they require the use of Toolkit 

software to examine the data contents 

•  Text form: text PCK, IK, FK, LSK, SCLK, MK 
–  Plain text files containing only printing characters (ASCII values 32-126), 

i.e. human-readable text. 

•  “Transfer” form of a binary kernel 
–  This is an ASCII representation of a binary kernel 
–  Was used for porting the file between computers with incompatible 

binary representations (e.g. PC and UNIX) 
–  Use of the transfer format is no longer needed for porting due to the run-

time translation capability added to SPICE long ago 
»  But it is one way to convert a non-native binary kernel into native 

format, needed for modifying the kernel or improving read efficiency 

SPICE Kernel Forms 

[1]  The ESP and ENB components of the EK might be binary, 
or text, or html, depending on specific implementation.  



Navigation and Ancillary Information Facility 

N IF 

Kernel Architecture 
 
  - Text kernels 
  - Binary kernels 
  - Comments in kernels 

Introduction to Kernels 7 



Navigation and Ancillary Information Facility 

N IF Text Kernel Contents 

•  A text kernel is a plain text file of ASCII data 

•  It contains assignments of the form: 

variable_name = value(s) 
  

•  A text kernel should also contain descriptive 
comments that describe the assignments 

–  Comments are sometimes referred to as “meta-data” 
»  Don’t confuse this usage with the “meta-kernel” described 

later in this tutorial 

Introduction to Kernels 8 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 9 

 
   KPL/<kernel type> 
    \begindata 

 
NAME            = 'Sample text value' 
NaMe            = 'Keywords are case sensitive' 
 
NUMBERS         = ( 10.123, +151.241, -1D14 ) 
NUMBERS        += ( 1.0,    1,        -10   ) 
NUMBERS        += ( 1.542E-12, 1.123125412  ) 
 
START           = @2011-JAN-1 
 
\begintext 
    
   < some comments about the data > 
 
\begindata 
    
   < more data in keyword = value syntax > 
 
\begintext 
      < etc., etc. > 

 

•  The next several pages describe what you see above 
•  See the “Kernel Required Reading” document for details 

Example Text Kernel 

A data block 

Another data block 

A “comments” block 

Another “comments” block 



Navigation and Ancillary Information Facility 

N IF Text Kernel Formatting 

•  KPL/<kernel type>  
-  Appears on the first line 
-  Tells SPICE software what kind of kernel it is 
-  Examples of kernel type are FK, IK, PCK, SCLK 

•  \begindata and \begintext  
-  Markers, on lines by themselves, which set off the beginning of 

data and the beginning of meta-data blocks respectively 

•  <LF> for Unix/Linux/Mac  or  <CR><LF> for Windows 
-  End of line marker (usually not visible when you display a text 

kernel) 
-  Must be present on EVERY line in the text kernel 

•  Max line length, including any white space 
–  132 characters 

Introduction to Kernels 10 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 11 

Text Kernel Operators 

•  An assignment using the “=” operator associates one or 
more values with a variable name. 

•  An assignment using the “+=” operator associates additional 
values with an existing variable name.  

•  An assignment using the “@” symbol associates a calendar 
date with a variable name.  

–  The string will be parsed and converted to an internal double precision 
representation of that epoch as seconds past J2000 

»  There is no time system implied 
»  This conversion does not need a leap seconds kernel 



Navigation and Ancillary Information Facility 

N IF Variable Names and Values 

•  Variable names 
–  Max of 32 characters 
–  Are case sensitive (recommendation: use only upper case) 
–  Cannot include space, period, comma, parenthesis, equals sign or tab 
–  Recommendation: don’t use the “+” sign as the last character 

•  Values 
–  Numeric:  integer, fixed point and scientific notation are allowed 
–  String:  

»  enclosed in single quotes 
»  maximum length of 80 characters on a given line 

•  SPICE has means to concatenate multiple string values to allow for values exceeding 80 
characters 

»  string values may contain any printing ASCII character, including blank 
–  Time:  identified by the “@” character 
–  Any of these three types can be provided as an n-dimensional vector of values 

»  Components are separated by commas or white space (but not TABs) 
»  Parentheses enclose the vector 
»  Each string value in a vector is contained in single quotes 
»  Values in a vector must all be of the same type (numeric, string or time) 

•  See “Kernel Required Reading” for more information 
Introduction to Kernels 12 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 13 

Example Binary Kernel 

A binary kernel contains lots 
of non-printing 
(unintelligible) data, usually 
interspersed with occasional 
occurrences of ASCII 
characters. 
 
Includes a “comment area” 
where descriptive meta-data 
should be placed.  
 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 14 

Comments In SPICE Kernels 

•  All SPICE kernels should contain comments–
descriptive information about the data contained 
in the file. 

–  “Comments” are also known as “meta-data” 

•  See the tutorial on comments for more 
information. 



Navigation and Ancillary Information Facility 

N IF 

Producing Kernels 

Introduction to Kernels 15 



Navigation and Ancillary Information Facility 

N IF Making a Text Kernel 

•  Text kernels may be produced using any available 
text editor 

–  Remember, text kernels must contain only printing characters 
(ASCII values 32-126), i.e. human-readable text 

»  TAB characters are allowed but HIGHLY DISCOURAGED 
–  Text kernels must have each line terminated with the end-of-

line indicator appropriate for the operating system you are 
using 

»  For Unix, PC/Linux, Mac OSX:   <LF> 
»  For PC/Windows:                        <CR><LF> 
»  Don’t forget to insert the end-of-line indicator on the very 

last line of the kernel! 
–  Toolkit software will detect and warn you if trying to read a 

non-native text kernel 
»  Caution: this warning doesn’t work for a file smaller than 

132 bytes 
–  See the BACKUP for information on converting text kernels 

between these two line termination techniques 
Introduction to Kernels 16 



Navigation and Ancillary Information Facility 

N IF Making a Binary Kernel 

•  Binary kernels are made using Toolkit utility 
programs, or by using Toolkit APIs built into your 
own application program 

•  See “How Kernels are Made and Used” in the 
BACKUP section for a bit more information 

•  See the “Making an SPK” and “Making a CK” 
tutorials 

Introduction to Kernels 17 



Navigation and Ancillary Information Facility 

N IF 

Using Kernels 

Introduction to Kernels 18 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 19 

•  To make kernels available to a program you “load” them 

•  When you load a text kernel: 
–  the file is opened 
–  the kernel contents are read into memory 

»  variable names and associated values are stored in a data structure 
called the “kernel pool” 

–  the file is closed  

•  When you load a binary kernel: 
–  the file is opened 
–  for SPK, CK, and binary PCK files, no data are read until a read request is 

made by Toolkit software 
–  for ESQ files, the schema description is read, checked, and stored in memory 

at load time, but no data are read until a query/fetch is made 
–  for all practical purposes the binary file remains open unless specifically 

unloaded by you 

Loading Kernels - 1 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 20 

•  Use the FURNSH routine to load all kernels–text and binary 
–  CALL FURNSH ( ‘name.ext’ )        (Fortran) 
–  furnsh_c ( “name.ext” );          (C) 
–  cspice_furnsh, ‘name.ext’         (IDL) 
–  cspice_furnsh ( ‘name.ext’ )      (MATLAB) 

•  Best practice: don’t hard code filenames–list these in a 
“meta-kernel” and load the meta-kernel using FURNSH  
–  CALL FURNSH (‘meta-kernel_name’)   (Fortran example) 
–  See the next page for more information on meta-kernels 

•  Caution: “Transfer format” versions of binary kernels can 
not be loaded;  they must first be converted to binary with 
the Toolkit utility program tobin or spacit 

Loading Kernels - 2 



Navigation and Ancillary Information Facility 

N IF Run-time Translation 

•  Binary kernels, whether or not in native binary 
format, may be read by any of the toolkits  

–  Accomplished by run-time translation built into Toolkit code 
–  Run-time translation does NOT apply to writing to an existing 

binary kernel 

•  Text kernels may be read by any of the C, IDL and 
Matlab Toolkits 

–  For these, run-time translation is accomplished by Toolkit code 
–  Run-time translation does NOT work for Fortran Toolkits: these 

Toolkits read text kernels only in native format 

Introduction to Kernels 21 



Navigation and Ancillary Information Facility 

N IF 

Meta-Kernels 

Introduction to Kernels 22 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 23 

What is a “Meta-Kernel” 

•  A meta-kernel is a file that lists names (and locations) of a 
collection of SPICE kernels that are to be used together in a 
SPICE-based application 

–  You can simply load the meta-kernel, causing all of the kernels listed in 
it to be loaded 

•  Using a meta-kernel makes it easy to manage which SPICE 
files are loaded into your program 

 
•  A meta-kernel is implemented using the SPICE text kernel 

standards 
–  Refer to the Kernel Required Reading technical reference for details  

•  The terms “meta-kernel” and “FURNSH kernel” are used 
synonymously 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 24 

 
 
 
KPL/MK 
\begindata 

KERNELS_TO_LOAD = ( 
         '/home/mydir/kernels/lowest_priority.bsp', 
         '/home/mydir/kernels/next_priority.bsp', 
         '/home/mydir/kernels/highest_priority.bsp', 
         '/home/mydir/kernels/leapseconds.tls', 
         '/home/mydir/kernels/sclk.tsc', 
         '/home/mydir/kernels/c-kernel.bc', 
         '/home/mydir/kernels+’, 
         '/custom/kernel_data/p_constants.tpc’, 
                  ) 

 
•  The last file listed in this example (p_constants.tpc) demonstrates how 
to use the continuation character ‘+’ to work around the 80 character 
limitation imposed on string sizes by the text kernel standards. 

•  See the next two pages for some important details! 

Sample Meta-Kernel 

The commas 
are optional 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 25 

•  This meta-kernel uses the PATH_VALUES and PATH_SYMBOLS 
keywords to specify the directory where the kernels are located. 
 
KPL/MK 
\begindata 
   PATH_VALUES     = ( '/home/mydir/kernels’ )  
   PATH_SYMBOLS    = ( 'KERNELS'             ) 
   KERNELS_TO_LOAD = ( 

     '$KERNELS/lowest_priority.bsp', 
     '$KERNELS/next_priority.bsp', 
     '$KERNELS/highest_priority.bsp', 
     '$KERNELS/leapseconds.tls', 
     '$KERNELS/sclk.tsc', 
     '$KERNELS/c-kernel.bc', 
     '$KERNELS/custom/kernel_data/p_constants.tpc’ 
                  ) 

•  Although the OS environment variable notation $<name> is used to refer to the 
symbols specified using the PATH_VALUES and PATH_SYMBOLS keywords, 
these symbols are NOT operating system environment variables and are set and 
used for substitution by SPICE only in the context of this particular meta-kernel. 
•  The ‘+’ continuation character described on the previous page may be used to 
handle path strings that exceed 80 characters.  

Unix/Mac 
Sample Meta-Kernel 

UNIX/MAC style path 
notation 
(forward slashes) 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 26 

•  This meta-kernel uses the PATH_VALUES and PATH_SYMBOLS 
keywords to specify the directory where the kernels are located. 
 
KPL/MK 
\begindata 
   PATH_VALUES     = ( ‘\home\mydir\kernels’ )  
   PATH_SYMBOLS    = ( 'KERNELS'             ) 
   KERNELS_TO_LOAD = ( 

     '$KERNELS\lowest_priority.bsp', 
     '$KERNELS\next_priority.bsp', 
     '$KERNELS\highest_priority.bsp', 
     '$KERNELS\leapseconds.tls', 
     '$KERNELS\sclk.tsc', 
     '$KERNELS\c-kernel.bc', 
     '$KERNELS\custom\kernel_data\p_constants.tpc’ 
                  ) 

•  Although the OS environment variable notation $<name> is used to refer to the 
symbols specified using the PATH_VALUES and PATH_SYMBOLS keywords, 
these symbols are NOT operating system environment variables and are set and 
used for substitution by SPICE only in the context of this particular meta-kernel. 
•  The ‘+’ continuation character described previously may be used to handle path 
strings that exceed 80 characters.  

Windows 
Sample Meta-Kernel 

Windows style path 
notation 
(backwards slashes) 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 27 

•  The number of binary kernels that may be loaded at 
any time is large, but limited. 

–  For SPK, CK, and binary PCK files: 
»  Loaded SPKs + Loaded CKs + Loaded binary PCKs <= 5000 

–  For ESQ files: 
»  Loaded ESQs <= 20 

–  For all kernels: 
»  Loaded kernels <= 5000 

•  Assumes each has been loaded only once, and not unloaded. 

•  There are also limits on the number of keywords 
and values for all loaded text kernels: 

–  Maximum number of keywords is 26,003 
–  Maximum number of numeric data items is 400,000 
–  Maximum number of character data items is 15,000 

Limits on Loaded Kernels (N65) 

Some increases will be made in the N66 Toolkits soon to be released. 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 28 

•  The order in which SPICE kernels are loaded at 
run-time determines their priority when requests 
for data are made 

–  For binary kernels, data from a higher priority file will be used 
in the case when two or more files contain data overlapping in 
time for a given object. 

»  For SPKs, CKs and binary PCKs the file loaded last takes 
precedence (has higher priority). 
»  Priority doesn’t apply to ESQ files – all data from all loaded 
files are available. 

–  If two (or more) text kernels assign value(s) to a single keyword 
using the “=” operator, the data value(s) associated with the last 
loaded occurrence of the keyword are used–all earlier values 
have been replaced with the last loaded value(s). 
–  Orientation data from a binary PCK always supersedes 
orientation data (for the same object) obtained from a text PCK, 
no matter the order in which the kernels are loaded. 

Kernel Precedence Rule 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 29 

•  The unloading of a kernel is infrequently needed for  
FORTRAN or CSPICE applications but is essential for Icy 
and Mice scripts 

–  Because of the way IDL and MATLAB interact with external shared 
object libraries any kernels loaded during an IDL or MATLAB session 
will stay loaded until the end of the session unless they are specifically 
unloaded 

•  The routines KCLEAR and UNLOAD may be used to unload 
kernels containing data you wish to be no longer available 
to your program. 

–  KCLEAR unloads all kernels and clears the kernel pool 
–  UNLOAD unloads specified kernels 
–  KCLEAR and UNLOAD are only capable of unloading kernels that have 

been loaded with the routine FURNSH. They will not unload any files 
that have been loaded with older load routines such as SPKLEF (those 
used prior to availability of FURNSH). 

•  Caution: unloading text kernels with UNLOAD will also 
remove any kernel pool data provided through the kernel 
pool APIs (PCPOOL, PDPOOL, PIPOOL) 

Unloading Kernels 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 30 

Backup 

•  How kernels are made and used 

•  Why and how kernels are modified 

•  SPICE data structures hierarchy 

•  Problems making text kernels 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 31 

SPK 

PCK 

IK 

CK 

FK 

ESP 

ESQ 

ENB 

LSK 

SCLK 

Meta-kernel 
(FURNSH) 

How Kernels are Made and Used at JPL 

NAV and NAIF 

NAIF 

NAIF or other 

SBP* SBP* 

SBP* 

SBP* 

SBP* 

SBP* 

Text editor 
for text versions 

SBP* 
for binary versions 

Text editor 

Text editor 

SBP* 

SBP* 

SBP* 

Text editor 

Text editor 

Browser or 
e-mail 

Text editor or 
existing file, input 
via ESQ or ENB 

Web browser or 
SBP*, depending 
on implementation 

SBP* 

SBP* 

SBP* 

SBP* 

SBP* 

How Made? How Made? How Used? How Used? 

Who usually makes the kernels at JPL? 

This represents current practice for 
most JPL missions, but is by no means a 
requirement. Anyone can make SPICE files. 

*SBP = SPICE-based program that uses modules from the 
SPICE Toolkit. In some cases the Toolkit contains such a 
program already built. In some cases NAIF may have such a 
ready-built program that is not in the SPICE Toolkit. 

The EK family 
1 

2 

2 

2 

2 

2 

2 

1 

2 

3 

3 

3 

3 

3 DSK SBP* SBP* 

2 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 32 

SPK 

PCK 
Text version 

IK 

CK 

FK 

Why & How Kernels are “Modified” - 1 

File Type Why Modified How Modified 
- To add comments    - COMMNT, SPACIT or SPICELIB module 
-To merge files or subset a file   - SPKMERGE 
-To correct/revise an object ID   - BSPIDMOD  

- To revise data values    - Text editor 
- To add additional data items and values  - Text editor 

- To revise data values    - Text editor 
- To add additional data items and values  - Text editor 

- To add comments    - COMMNT, SPACIT, or SPICELIB module 
- To merge files    - DAFCAT, CKSMRG 
- To revise the interpolation interval  - CKSPANIT, CKSMRG 
- To subset  a file    - CKSLICER 

- To revise data values    - Text editor 
- To add additional data items and values  - Text editor 

DSK - To add comments    - COMMNT, SPACIT or SPICELIB module 
-To merge files or subset a file   - DSKMERGE 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 33 

ESP 

ESQ 

ENB 

LSK 

SCLK 

Meta-kernel 
(FURNSH) 

Why & How Kernels are “Modified” - 2 

Why Modified How Modified 

The EK family 

File Type 

- To add, revise or delete “data”   - (Depends on implementation) 
- To add comments    - (Depends on implementation)  

- To add additional data   - Toolkit modules 
- To revise data    - Toolkit modules 
- To delete data    - Toolkit modules 
- To add comments    - COMMNT, SPACIT or SPICELIB module 
- To merge files    - (under development) 

- To change entry status (public <--> private)  - WWW 
- To delete an entry    - WWW 

- To add a new leapsecond   - Text editor 

- To add comments    - Text editor 

- To revise contents in any way   - Text editor 



Navigation and Ancillary Information Facility 

N IF 

Introduction to Kernels 34 

SPICE Data Structures Hierarchy 

OR AND 

SPK CK 
OR 

PCK IK FK LSK SCLK ENB ESP ESQ 

DBK 

MIME 
including 
plain text DAS TEXT DAF 

EK Family 

Binary Binary Text 

DAF = Double Precision Array File       DSK = Digital Shape Kernel (under development)        
DBK = Data Base Kernel                        DLA = DAS Linked Array (under development) 
DAS = Direct Access, Segregated 
Excepting MIME, each of these data structures is built entirely of SPICE components. 
PCK files are usually text-based, but binary versions exist for the earth and moon.  The ESP has been 
implemented using both the ENB and ESQ mechanisms.  The DBK is a SQL-like, homebrew database. 

Low 
Level 

Mid 
Level 

High 
Level 

Meta-kernel 
(FURNSH) DSK 

DLA 



Navigation and Ancillary Information Facility 

N IF Problems Making Text Kernels 

•  Cutting/pasting complete, or pieces of, data 
assignments or \begindata or \begintext 
markers into a text kernel can cause a problem 

–  It may result in insertion of non-printing characters or incorrect 
end-of-line terminations 

–  This is not a problem for comments, but it is probably best to 
treat all portions of a text kernel the same 

•  If creating a text kernel by editing an existing one: 
–  first save a backup copy 
–  be sure you are starting with a file in native format for the 

computer you are using: either Unix/Linux/Mac or Windows  
–  be sure to insert a final end-of-line marker at the end of your 

last line of data or text 
»  Press “return” 

Introduction to Kernels 35 



Navigation and Ancillary Information Facility 

N IF Some Useful Tools - 1 

•  For a Unix or Linux (including Mac) environment 
–  To display all non-printing characters, display tab characters 

as “^l”, and place a “$” character at the end of each line 
»  cat -et <file name> 
»  How do end-of-line markers appear when displayed in a 

text file using the cat -et command? 
•  Unix/Linux/Mac:  $  (line feed) 
•  Windows:        ^M$  (carriage return followed by line feed) 

–  Display the file type, language used, and end of line marker 
»  file <file name> 
»  Examples using Unix and Windows (“PC”) versions of the 

SPICE leapseconds kernel: 
•  file naif0010.tls 

naif0010.tls: ASCII English text 

•  file naif0010.tls.pc 
naif0010.tls.pc: ASCII English text, with CRLF line terminators 

 

Introduction to Kernels 36 



Navigation and Ancillary Information Facility 

N IF Some Useful Tools - 2 

•  For a Unix or Linux (including Mac) environment 
–  To convert a Unix/Linux/Mac text kernel to Windows (“DOS”) 

style: 
»  unix2dos <filename> 

–  To convert a Windows (“DOS”) style text kernel to Unix/Linux/Mac 
style: 

»  dos2unix <filename> 
–  For converting either style text kernel to the other style, use the SPICE 

“bingo” executable 
»  The bingo program and User Guide are available only from the 

NAIF/Toolkit/Utilities web page: 
•  http://naif.jpl.nasa.gov/naif/utilities.html 

•  More information 
In Wikipedia, search on “newline” or “unix2dos” 

Introduction to Kernels 37 


