U.S. Naval Observatory VLBI Analysis Center

Alan Fey, Nicole Geiger, Christopher Dieck

Abstract This report summarizes the activities of the VLBI Analysis Center at the United States Naval Observatory for 2014. Over the course of the year, Analysis Center personnel continued analysis and timely submission of IVS-R4 databases for distribution to the IVS. During the 2014 calendar year, the USNO VLBI Analysis Center continued to use the VLBI global solution designated usn2014a. Earth orientation parameters (EOP) based on this solution and updated by the latest diurnal (IVS-R1 and IVS-R4) experiments, were routinely submitted to the IVS. Sinex format files based upon the bi-weekly 24-hour experiments were also submitted to the IVS. During the 2014 calendar year, Analysis Center personnel continued a program to use the Very Long Baseline Array (VLBA) operated by the NRAO for the purpose of measuring UT1-UTC. Routine daily one-hour duration Intensive observations continued using the VLBA antennas at Pie Town, NM and Mauna Kea, HI.

1 Introduction

The USNO VLBI Analysis Center is supported and operated by the United States Naval Observatory (USNO) in Washington, DC. The primary services provided by the Analysis Center are the analysis of diurnal experiments and the production of periodic VLBI global solutions for estimation of the Terrestrial

IVS 2014 Annual Report

Reference Frame (TRF), the Celestial Reference Frame (CRF), and Earth Orientation Parameters (EOP). The Analysis Center continued the submission to the IVS of Intensive (EOP-I) and session-based (EOP-S) Earth orientation parameters based on USNO VLBI global solutions. Analysis Center personnel maintain the necessary software required to continue these services to the IVS including periodic updates of the GSFC CALC/SOLVE software package. In addition to operational VLBI analysis, Analysis Center personnel are actively engaged in research related to future reference frames, the electronic transfer of VLBI data, and software correlation.

2 Current Analysis Center Activities

2.1 IVS Experiment Analysis and Database Submission

During the 2014 calendar year, personnel at the USNO VLBI Analysis Center continued to be responsible for the timely analysis of the IVS-R4 experiments, with the resulting databases submitted within 24 hours of correlation for dissemination by the IVS. Analysis Center personnel continue to be responsible for the analysis and database submission for the periodic IVS-CRF experiments. Analysis Center personnel also continued analyzing IVS Intensive experiments for use in the USN-EOPI time series and continued a new series of Intensive sessions using the VLBA antennas at Pie Town, NM and Mauna Kea, HI.

U.S. Naval Observatory

USNO Analysis Center

2.2 Global VLBI Solutions, EOP and Sinex Submission

USNO VLBI Analysis Center personnel continued to use the periodic global TRF/CRF/EOP solution usn2014a over the course of the 2014 calendar year. Analysis Center personnel continued to submit the USN-EOPS series, which is based upon the current global solution and updated with new IVS-R1/R4 experiments. The updated EOPS series is submitted to the IVS twice weekly within 24 hours of experiment correlation and is included in the IERS Bulletin A. Analysis Center personnel also continued routine submission of Sinex format files based upon the 24-hour VLBI sessions. In addition to EOPS and Sinex series, USNO VLBI Analysis Center personnel continued to produce and submit an EOPI series based upon the IVS Intensive experiments.

2.3 ITRF2014 Submission

The USNO VLBI Analysis Center generated and submitted Sinex format files based on its usn2014a global VLBI solution for use in the IVS combined VLBI solution that will be used for ITRF2014.

2.4 Software Correlator

Over the course of the 2014 calendar year, Analysis Center personnel continued the implementation, testing and evaluation of the DiFX software correlator. Phase I of the software correlator has two management nodes and 33 compute nodes (with each node having a 2.9 GHz dual-core processor with eight cores per processor for a total of 528 processing cores) and reached operational capability in October.

Hardware for Phase II of the software correlator was delivered in the second quarter of 2014 and will double the processing power of the Phase I correlator but has not yet been implemented. Post-correlation calibration and analysis of software correlated data is now routinely performed using the standard geodetic data reduction path including the use of the Haystack Observatory Post-processing System (HOPS) for data calibration and the GSFC CALC/SOLVE package for data analysis.

2.5 VLBA Intensive Experiments

During the 2014 calendar year, Analysis Center personnel continued a program to use the Very Long Baseline Array (VLBA) operated by the NRAO for the purpose of measuring UT1–UTC. Routine daily 1-hour duration Intensive observations continued using the VLBA antennas at Pie Town, NM and Mauna Kea, HI. High-speed network connections to these two antennas are now routinely used for electronic transfer of VLBI data over the Internet to a USNO point of presence. Once fully operational, it is anticipated that these VLBA Intensive sessions will be scheduled as IVS-INT4 and that the data will be released to the IVS for community-wide distribution.

3 Staff

The staff of the VLBI Analysis Center is drawn from individuals in the Astrometry department at the U.S. Naval Observatory. The staff and their responsibilities are as follows:

Name	Responsibilities
Alan Fey	Periodic global CRF/TRF/EOP solutions
	and comparisons; CRF densification re-
	search; software correlator implementa-
	tion; VLBI data analysis.
Nicole Geiger	software correlator implementation;
	VLBI data analysis; EOP, database, and
	Sinex submission.
Christopher Dieck	software correlator implementation;
	VLBI data analysis; EOP, database, and
	Sinex submission.

4 Future Activities

The following activities for 2015 are planned:

Continue analysis and submission of IVS-R4 experiments for dissemination by the IVS.

- Transition to use of vSolve for interactive VLBI analysis.
- Continue the production of periodic global TRF/CRF/EOP solutions and the submission of EOP-S estimates to the IVS updated by the IVS-R1/R4 experiments.
- Continue submission of Sinex format files based on the 24-hour experiments.
- Continue the analysis of IVS Intensive experiments and submission of EOP-I estimates to the IVS.
- Continue the scheduling, analysis and database submission for IVS-CRF and IVS-CRDS experiments.
- Continue post-processing and analysis of VLBI Intensive data from the MK and PT VLBA stations.