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ABSTRACT

Image quality models usually include a mechanism whereby artifacts are masked by the image acting as a background.
Scientific study of visual masking has followed two traditions: contrast masking and noise masking, depending primarily on
whether the mask is deterministic or random. In the former tradition, masking is explained by a decrease in the effective gain
of the early visual system. In the latter tradition, masking is explained by an increased variance in some internal decision
variable. The masking process in image quality models is usually of the gain-control variety, derived from the contrast
masking tradition. In this paper we describe a third type of masking, which I call entropy masking, that arises when the mask
is deterministic but unfamiliar. Some properties and implication of entropy masking are discussed. we argue that image
quality models should incorporate entropy masking, as well as contrast masking.

Keywords: noise, contrast gain control, normalization, pattern recognition, signal detection theory, spatial vision,
background, entropy masking, image compression, DCTune

1.  IMAGE QUALITY

Over the past three decades, in concert with the growth in digital imaging technology, there have been many attempts to
develop models or metrics for image quality that incorporate elements of human visual sensitivity. Many of these efforts have
been concisely reviewed by Ahumada1, and many of the general issues are reviewed in Watson2. While details vary, most of
the models incorporate the modules or processes indicated in Figure 1.
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Figure 1. Components of image quality models.

The luminance image is first subjected to a light adaptation process, which typically involves a conversion to contrast,
and possibly further adjustments. The spatial filter will incorporate the contrast sensitivity function, and may also include
spatial channels tuned for narrow bands of spatial frequency and orientation. At the masking stage, the filter responses are
altered in some way to reflect the reduced visibility of signals presented on a contrasty background. At the final stage, some
computation is performed to express the error of the test image relative to a reference image, and these errors are combined in
some way to yield a scalar quality metric.

2.  AN EXAMPLE: DCTUNE

As a concrete example of this general outline, I briefly describe the DCTune quality metric. To achieve practical
efficiencies in the optimization of DCT-based image compression, this metric uses the blocked Discrete Cosine Transform
(DCT) as the filter bank. The image error is computed as the arithmetic difference between DCTs of test and reference images.
The error DCT coefficients are weighted by their absolute visibility, as a function of DCT frequency, the given display mean
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luminance and display visual resolution, so that they may be expressed in jnd units. Light adaptation is achieved by using the
DC coefficient from each block (the average graylevel in the block) to adjust the visibilities in each block appropriately.

The errors are further adjusted by a contrast masking process, in which each error is attenuated by a power function of
the corresponding coefficient in the reference image, also converted to jnds. The resulting masked jnds are then pooled over
frequency and over space using a Minkowski metric, to yield a total perceptual error. The inverse of this error is the DCTune
Quality Metric. The metric is so calibrated that a value of 1 indicates a visually lossless image.

To illustrate the success of this metric, Figure 2 shows the results from an experiment in which two observers judged
whether briefly presented images appeared to be compressed3. Five different images, and five bit-rates (0.25, 0.5, 0.75, 1.0,
and 8.0 bits/pixel) were used. By fitting a psychometric function to the proportion of Ònot compressedÓ judgments, we were
able to estimate the approximate bit-rate at which the image first appeared uncompressed. This bit-rate was then converted to a
DCTune Quality for that image.
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Figure 2. Thresholds for perceptually lossless compression, in units of DCTune Quality, for five images.

The main point of this figure is that, with a few exceptions, the values are close to 1, as the model predicts. The ability
of image quality metrics to predict absolute quality levels is extremely important in many applications, from graphic arts, to
electronic broadcast media, to medical imaging; consequently the success of this metric is heartening.

However, the images in this experiment were small, the observers were experienced, and the images quite familiar. In
more recent experiments there are suggestions that for unfamiliar, larger images, or less experienced observers, the metric may
overestimate the ability of observers to detect artifacts. In other words, the metric underestimates the quality of images. There
are many possible reasons for this systematic shortfall; here we consider whether the model of masking incorporated in this
metric, and most existing metrics, fully captures the essence of masking by complex patterned backgrounds.

3.  MASKING

In the DCTune metric, as in most image quality metrics, masking occurs due to adjustment of gain by the background
contrast. If we consider the scientific literature on visual masking, we can identify two distinct, nearly non-communicating
traditions, which I will loosely call contrast masking and noise masking. Consider the four masks in Figure 3.
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Figure 3. A Gabor target (a) added to four different backgrounds (b-e). Background contrasts are approximately
those used in the experiment; the target contrast is 0.5.
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 In (d) is a uniform white noise background. Although it cannot be pictured, we may consider an additional case when
this noise is dynamic in time. Traditionally, the threshold elevation produced by either the static or dynamic white noise has
been interpreted as a form of noise masking. In this tradition the mask exerts its effect by increasing the variance of the
decision variable, which might be the response of a single neuron or the result of cross-correlation with a particular template.
In the case of the cosine background (b), the traditional explanation is a change in the differential gain of the relevant visual
mechanisms, either because of a saturating transducer function or because of a contrast gain control process.

These two masks differ in two respects. The first is that one is random, and the other deterministic. As we shall show
later, this difference may be less important than it seems. The second difference is that these two masks lie at either ends of a
continuum in which the bandwidth of the mask is progressively narrowed. The puzzle is this: with which tradition shall we
interpret the masking effect produced by the bandpass noise? Certainly current models of contrast gain control would predict
that  the bandpass noise should raise threshold, but should there not also be a contribution from ÒnoiseÓ masking? And what
about the background in (e)? With which tradition, or combination of traditions, should we interpret its threshold elevating
effect?

4.  EXPERIMENTS

To clarify some of these issues we conducted a small series of experiments. They resemble in various respects
experiments undertaken by others4, 5, but were designed to focus in on a few key issues. All experiments consisted of
measurement of contrast thresholds for a target added to a mask, using a two-interval forced choice procedure. Additional
methodological details are provided in an appendix.

4. 1.  Target and Masks

The test stimulus in all cases is a Gabor function with a spatial frequency of 4 cycles/degree, an orientation of 0, and a
frequency bandwidth at half height of 1 octave (Figure 3a). The experimental series employed five backgrounds, as illustrated
in Figure 3. From left to right they are: a uniform field (no mask); a vertical cosine grating of 4 cycles/degree, contrast 0.172,
and zero phase (a bright bar is centered on fixation); a sample of isotropic bandpass filtered noise with center frequency of 4
cycles/deg, one octave bandwidth, and contrast of 0.5; a sample of uniformly distributed white noise with a contrast of 0.595;
and a natural image with a contrast of 0.309.

One goal of this series of experiments is to disentangle the effects of ÒnoiseÓ masking and contrast gain control. While
details of contrast gain control models differ, most adjust the gain by a quantity that is close to the contrast energy of the
mask. Thus equating contrast energy of various masks is a rough way of equating their effects upon the gain control system.
To this end, contrasts for the cosine, bandpass noise, and image masks were selected (0.172, 0.5, and 0.309) that would equate
their contrast energies (5,546 10-6 deg2 seconds). For the white noise, a contrast that would yield the same contrast energy
would not produce sufficient masking, so a contrast of 0.595 was used, which yields a contrast energy of 8 x 5,546 = 44,368
10-6 deg2 seconds.

At this point we digress to introduce a new unit that we believe will prove useful in vision science. This unit, the
Barlow, is the contrast energy of a visual target, in units of degree2 seconds, multiplied by 106. Discussion of the many
virtues of this unit is beyond the scope of this paper, but we note that it is a unit that incorporates all the dimensions of a
contrast target (unlike contrast), and it has the attractive feature that the threshold for Òwhat the eye sees bestÓ is about 1
Barlow6. The Barlow has a decibel equivalent, dBB = 10 Log10(Barlow), where ÒbestÓ threshold is 0 dBB. Another useful
attribute of dBB is that for a given target, it differs from dB by an additive constant. With the aid of these units, we can now
describe our masks as having contrast energies of 37.44 dBB (cosine, bandpass, and image) or 46.47 dBB (white).

4. 2.  Masking Conditions

The experiments contained eight conditions, each characterized by a particular type of mask and presentation. The
conditions and associated mnemonics were as follows.

None: The threshold contrast for the target was measured with no mask.

Cosine: The cosine mask was presented in both intervals of the forced-choice trial.

Random: A new sample of bandpass noise was used in each interval of each trial.



SPIE Proceedings, vol. 3016, paper  1 (1997).

Watson - Entropy Masking 4 3/7/97 11:33 AM

Twin: A new sample of bandpass noise was used on each trial, but the same sample was used for the two
intervals.

Fixed: The same sample of noise was used in each interval of every trial.

White: A random sample of uniform white noise was used in each interval of every trial.

FixedWhite: A fixed sample of uniform white noise was used in each interval of every trial.

Image: The fixed ÒnaturalÓ image was used in each interval of every trial.

Where new samples of noise (bandpass or white) were used, they were obtained by random circular shifting of a single
sample in horizontal and vertical dimensions. Because the bandpass noise was constructed by filtering in the discrete Fourier
transform domain, it is periodic and circular shifts reveal no discontinuities.

4. 3.  Results

Mean thresholds for the three observers in the eight conditions, as well as group means, are shown in Figure 4 and
Table 1. The results for each masking condition are considered in the following sections.
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Mask

-30

-25

-20

-15

-10

dB

mean

abw

rb

mt

Figure 4. Contrast thresholds for detection of a Gabor target in the presence of eight different backgrounds. Data for
three observers and their mean are shown.

Condition

none cos random twin fixed white fixedwhite image

threshold (dB) -27.59 -24.92 -14.08 -12.80 -19.34 -18.71 -16.82 -24.89

elevation (dB) 0. 2.67 13.51 14.79 8.24 8.88 10.77 2.70

 Table 1. Mean thresholds and threshold elevations for the eight experimental conditions. Elevations are relative to
the no mask (ÒnoneÓ) condition.
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4. 3. 1.   None

The threshold (mean = -27.59 dB, 7.07 dBB) is comparable to similar measurements in the literature7. The three
observers are in good agreement.

4. 3. 2.  Cosine

The cosine mask elevates threshold for two observers by about 6 dB, while for the third observer a surprising reduction
in threshold was observed. The elevation is about that expected from prior studies of masking of a Gabor by a cosine7. As
discussed above, the theoretical consensus is that this elevation is due to a contrast gain control process 7, 8, 9.

4. 3. 3.  Random

Despite being equated for their gain control effect, the random noise yields a much larger threshold elevation (13.51 dB).
This is of course not surprising. The randomness of the mask, quite apart from its contrast gain effects, would be expected to
elevate threshold.

4. 3. 4.  Twin

In the ideal observer model, a template matched to the signal, and adjusted for the spectral characteristics of the noise, is
cross-correlated with the image in both intervals. That interval yielding the largest response is selected. Many other sub-
optimal models share this template idea.

If the template model were correct, then adding the same sample of noise to both intervals would have no effect. It
would merely add a constant to the response in both intervals. Yet the threshold elevation is essentially identical to that
produced by a completely random noise. Similar results have been produced by other authors4, 5, 10. A tentative conclusion
is that the masking in this case is due at least in part (possibly entirely) to what we will for the moment call ÒnoiseÓ
masking. It cannot be due entirely to contrast gain control, because a) it is matched for gain control effect with the cosine
background, which produces much less masking, and b) because whatever gain control effect it does induce, it should be the
same as that induced by the random mask, which must in addition exhibit a noise masking effect.

In the context of modeling the observerÕs detection strategy, the presumption must be that the same strategy is used in
both random and twin conditions. This excludes any model in which the observer subtracts the images in the two intervals, or
cross-correlates with a template that is matched to the signal.

4. 3. 5.  Fixed

Some further insight is provided by the fixed noise condition. Here performance is considerably (5.9 dB) better than in
the random or twin conditions. However, this performance is only obtained after some experience with the fixed noise sample.
Figure 5 shows how threshold is gradually reduced (with some reversals) as the observers gradually learn what to look for.
Evidently, over the course of many trials with the same background, observers are able to reduce their threshold almost to the
level of the no-mask condition, or at least to the level of the cosine mask of the same contrast energy. It appears that the
learning process has ameliorated whatever masking capacity the fixed bandpass noise had, above its contrast gain control
effect.



SPIE Proceedings, vol. 3016, paper  1 (1997).

Watson - Entropy Masking 6 3/7/97 11:33 AM

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Block Number

-30

-25

-20

-15

-10
dB

rb mt abw
random

none
cos

Figure 5. Contrast threshold in the fixed condition as a function of block number for three observers. The gray data
points and horizontal lines are the means for the three observers for the none, random,  and cos conditions.

4. 3. 6.  White

Recall that the white noise mask had a contrast energy eight times that of the cosine or bandpass masks, in order to
produce a substantial masking effect. The larger energy is presumably required because much of it is squandered in spectral
regions not considered by the observers detection strategy. But consequently absolute comparisons between white and
bandpass noises are not made here. Rather, we compare this threshold with that for the fixedwhite condition considered next.

4. 3. 7.   FixedWhite

As shown in Figure 4 and Table 1, thresholds for white and fixedwhite conditions are essentially the same. Freezing the
white noise does not appear to reduce its masking effect, unlike the case for the bandpass noise. Figure 6 shows the
progression in performance over the course of seven blocks for two observers. There is no evidence of learning, though we
cannot discount the possibility that further training might help. Others have found some learning of white noise after lengthy
training4. We can at least conclude that learning of this mask is considerably more difficult than for the fixed bandpass noise.
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Figure 6. Contrast threshold as a function of block number for two observers. The gray data points and horizontal
lines are the mean thresholds for the three observers for the none and random conditions.
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4. 3. 8.   Image

The final mask we used was a ÒnaturalÓ image, whose contrast energy was matched to the cosine and bandpass noises.
The mean threshold here is not significantly different from the cos or none conditions. But here again, it is instructive to look
at the trend over blocks. Starting from a threshold comparable to that for the random condition, thresholds decline rapidly,
asymptoting in the region of the cos or none conditions. Here it appears that learning again obliterates the masking effect, and
does so with great rapidity. We venture the observation that images differ in some property, akin to simplicity, that
determines the ease with which they are learned, and with which this form of masking is obliterated.
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Figure 7. Contrast threshold for a Gabor target with an image mask, as a function of block number for two
observers. The gray data points and horizontal lines are the mean thresholds for three observers for the none, cos,
and random conditions.

5.  DISCUSSION

5. 1.  Not Just Gain Control

The first observation is that fixed backgrounds do not elevate threshold exclusively through a gain-control process.
Otherwise the cosine mask would produce as much masking as the bandpass noise. Likewise, if only a passive, deterministic
gain control were at work, there would be no learning; but there is.

5. 2.  Not Just Randomness

If it is not gain control, by what process does the bandpass noise elevate threshold? A second observation is that it is
not the randomness per se that is effective. The random, twin, and initial blocks of the fixed  and image conditions all yield
similar thresholds, though only the first would have an effect in conventional models of noise masking, that is, would
increase the variance in the response of a template model.

5. 3.  No Discounting the Background

If it is neither traditional Ònoise masking nor gain control, what is the source of the threshold elevations for twin, fixed,
and image conditions? The twin condition in particular suggests that the observer cannot Òdiscount the background,Ó as
supposed by traditional models of noise masking. In these models, the observer cross-correlates a template with the image in
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the two intervals, subtracts the first from the second, and chooses the second interval if the result is greater than zero. The
subtraction has the effect of discounting any fixed noise in the two intervals.

If the observer is not behaving in this way, what are they doing? A precise theory is beyond the scope of this paper, but
we can suggest some vague outlines. One is that as the observer learns a sample of fixed noise, they are developing
something like a new template. But it is not a template matched to the signal; rather it is a template matched to the signal +
noise. To emphasize, the observer cannot discount the background, so they must integrate the background into their template.

5. 4.  Learnability = Simplicity

The trends in threshold versus block number reveal the following: 1) the cosine shows no learning, and the elevation it
produces is consistent with gain control; 2) the image is learned very rapidly; 3) the fixed bandpass noise is learned, but
slowly, 4) the fixed white noise is either not learned, or learned very slowly. These results suggests a further principle: that
the learnability and speed of learning of the background is a function of its simplicity. This would be a more powerful
assertion if we had ready methods for computing the simplicity or complexity of an image. In the present case, we may point
to the degrees of freedom of the image, as reflected in the number of significant Fourier coefficients, which is 2 for the cosine,
about 99 for the image, about 476 for the bandpass noise, and 16384 for  the fixed white noise.

5. 5.  Entropy Masking

Since we have seen that many backgrounds reduce visibility through a process distinct from noise masking or contrast
masking, it may be useful to adopt a new term to describe this process. I propose the term Òentropy maskingÓ, to reflect the
notion that the masking is a function of the degree to which the mask is unknown. Entropy is a measure of the information
in a signal. Information is by definition that which we do not know. While formal measures of entropy may or may not
prove useful in this context, the term seems to capture rather well the phenomenon at issue. As the observer learns a mask,
its entropy declines, as does the amount of entropy masking. For the curious, the zero order entropies of the masks are: cos
3.125 bits; bandpass 7.02 bits; image 7.3 bits; white 7.97 bits. Of course, these do not take into account the higher order
correlations in the image, or the knowledge of the observer.

It should be understood that we do not propose Òentropy maskingÓ as a mechanism, any more than Ònoise maskingÓ is a
mechanism. Rather it is intended to describe a property of the mask that, in concert with particular detection mechanisms and
strategies, results in threshold elevation. These mechanisms and strategies remain to be described in detail, though we have
already suggested that a key concept is the inability of the observer to discount the background.

It is possible that the concept of entropy masking should be generalized to incorporate the entropy of the signal as well
as the background. In its parametric form, this traditionally goes by the name of signal uncertainty. If an observer is to
develop a template, or more generally an algorithm, for discriminating target+background from mask alone, then ignorance of
the target is as critical as ignorance of the background.

5. 6.  Similarity Model

To this point we have not directly addressed the question of what strategy the observer employs to identify the target
interval in a forced-choice trial. From the twin condition we have concluded that it cannot be the ideal strategy of subtracting
the template cross-correlations from each interval. We also concluded that the observer employs the same strategy for both
random and twin conditions. What is this strategy?

We propose a similarity model as a candidate for further investigation. In this scheme, the observer computes a measure
of similarity between a template or model and the stimulus received in each interval. The interval with the larger similarity is
selected. Although this model shares some properties with the ideal, it predicts rather different behavior, especially in the twin
condition. This is illustrated in Figure 8. In the present context, the critical feature of the similarity model is that, like human
observers, it does not discount the background. And furthermore, if the mask is fixed and feedback is provided, we may
suppose that the observers template migrates from s to x1, that is, a new template is learned that incorporates both signal and
mask. We hope to study the further implications of this model, and how it accommodates learning phenomena, in future
work.
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Figure 8. Illustration of behavior of the similarity model in the twin condition. The stimuli received in the two
intervals are x1 and x2, which in turn consist of the signal (s) and null (n) plus the noise sample (equivalent to
x2). Here the template is assumed to be equal to the signal s, and similarity is represented by Euclidean distance in
a two-feature space. On this trial, the distance d2 is smaller than d1, so the observer selects the wrong interval. The
ideal observer would compute the quantity (x1 - x2) × s, which would discount the twin noise sample.

5. 7.  An Ecological  and a Historical Explanation

To conclude this portion of the discussion, we allow ourselves a brief speculation concerning why the observer cannot
discount the background. Cross-correlation and subtraction are not complicated operations, and would seem to be well within
the capacity of known neural mechanisms. One possible explanation is that, in the ÒnaturalÓ visual world, backgrounds are
rarely combined additively with the target. More often, the combination rule is occlusion11. Under such circumstances, use of
the similarity strategy may be most effective. The cross-correlation model for the ideal observer, which depends upon and
assumption of additive noise, no doubt gained its dominance because in the realm of audition, in which signal detection
theory made its first conquests, signals and noise are combined additively.

5. 8.  Implications for Image Quality

One impetus for this work was the desire to improve our models of image quality through an improved understanding of
spatial masking. What are the implications of entropy masking for the design of image quality metrics? Should these metrics
incorporate entropy masking, and if so, how should the masking effect be computed? It appears that the apparent quality of an
image, in the sense of the invisibility of any artifacts, will be a function of the observers internal model of what the image
should look like, which in turn will depend upon such things as their previous experience with the same or similar images.
For applications where this internal model is faint, entropy masking should be incorporated. Where the model is highly
developed, entropy masking should have little effect. On the second question, further research is clearly required, but simple
measures such as the zero order entropy of the image provide a starting point.
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At a minimum, however, those involved in the design of image quality metrics should be aware of the phenomenon of
entropy masking. If a model is calibrated with simple, low entropy masks such as cosines, and then applied to complex high
entropy masks such as a novel ÒnaturalÓ image, a  failure of prediction can be expected to result.

6.  APPENDIX: RELATION TO PREVIOUS WORK

Swift and Smith5 measured thresholds for a vertical sinusoid in the presence of a fixed background consisting of the sum
of eight vertical sinusoids, and found considerable learning effects. At the learning asymptote, they found that the function
relating threshold to mask contrast had a slope (around 0.65) consistent with what we have called a gain-control process. This
agrees with our notion that the entropy masking is removed by learning, leaving only the gain-control effect. They also
conclude that the masking effect is due to ignorance of the background, though they do not acknowledge that this ignorance
would pose no problem for the ideal observer.

Daly has considered the effect of learning on masking with reference to the results of Swift and Smith12. In the design
of his image quality model, his solution has been to alter the exponent of the within-channel masking power function: 1 for
no learning and 0.65 for highly learned patterns. He fixes this exponent at different values for different frequency bands. This
solution clearly cannot take into account the image-specific knowledge that the observer may have, including learning of a
specific mask.

7.  APPENDIX: GENERAL METHODS

All experiments consisted of measuring contrast threshold for a target superimposed upon a background. A two-interval
forced-choice procedure was used: the background appeared in both intervals; the target in only a random one; and the observer
selected the interval that appeared to contain the target. Within a block of trials, the contrast of the background was fixed.
From trial to trial the contrast of the target was varied using the QUEST staircase procedure13. The experiment was conducted
using the Psychophysica software package14. Each experiment was divided into blocks of 32 trials, and a single threshold was
estimated from each block by fitting a Weibull psychometric function14, 15.

The target was always a Gabor function with a spatial frequency of 4 cycles/degree, an orientation of 0, and a bandwidth
of one octave, corresponding to a scale of 0.352  degrees or 1.41 cycles. The background was either a zero contrast uniform
field, a cosine with a frequency of 4 cycles/degree and an orientation of 0, a sample of isotropic bandpass filtered noise, a
sample of uniformly distributed white noise, or a digital photographic image. The bandpass noise was created by filtering, in
the DFT domain, a sample of uniform noise and a filter consisting of the convolution of a Gaussian and a ring impulse. In
the random and twin conditions, the noise was shifted (with wrap-around) by random number of pixels horizontally and
vertically. Because the noise was filtered in the DFT domain, it has a toroidal boundary and hence circular shifting does not
reveal any discontinuities.

Stimuli were displayed using the Cinematica software16, on an Apple Monochrome monitor. The display was
linearized. The mean luminance was 24 cd m-2 A fixation point was present at all times except during the stimulus
presentation. Stimuli were viewed binocularly with natural pupils from a distance of 118 cm, yielding a display visual
resolution of 64 pixels/degree. Apart from the display, the room was dark. The contrast of both target and background varied
over time as a Gaussian function with a scale of 8 frames and a total duration of 16 frames. The display frame rate was 60 Hz.

The three observers were abw, mt, and rb, all males with respective ages of  45, 18, and 29 years. All three were
corrected myopes.
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