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ABSTRACT

The JPEG baseline standard for image compression
employs a block Discrete Cosine Transform (DCT)
and uniform quantization. For a monochrome image,
a single quantization matrix is allowed, while for a
color image, distinct matrices are allowed for each
color channel.. Here we describe a method, called
DCTune, for design of color quantization matrices
that is based on a model of the visibility of
quantization artifacts. The model describes artifact
visibility as a function of DCT frequency, color
channel, and display resolution and brightness. The
model also describes summation of artifacts over
space and frequency, and masking of artifacts by the
image itself. The DCTune matrices are different
from the de facto JPEG matrices, and appear to
provide superior visual quality at equal bit-rates.

1. INTRODUCTION

Many image compression schemes employ a block
Discrete Cosine Transform (DCT) followed by
uniform quantization. Acceptable rate/distortion
performance depends upon proper design of the
quantization matrix. In previous work, we showed
how to use a model of the visibility of DCT basis
functions to design quantization matrices for
arbitrary display resolutions and color spaces [1, 2,
3]. In recent research we elaborated this model to
incorporate the effects of display resolution [4],
frequency summation [5], spatial summation [6], and
contrast masking [7]. Subsequently, I showed how to
optimize greyscale quantization matrices for
individual images, for optimal rate/perceptual
distortion performance [8]. I dubbed this technique
"DCTune." Here I describe extensions of the
DCTune algorithm to color images.

2. DESCRIPTION OF THE ALGORITHM

2.1. Quantization Error

The theoretical basis for this algorithm is provided
in [8]. Consider an image defined in a particular
color space. We identify the space and index the
three color channels by the symbol θ. We will call θ
the quantization color space, because it is the space
in which the quantization is performed. As an
example, many current applications use YCbCr as a
quantization color space [9]. We write the blocked
DCT of this image as u,v,b,θc  , where u,v are the
indices of the DCT frequency, which each range
from 0 to 7, and b is the block index.  Quantization
is done by division of the blocked coefficients by
the corresponding quantization matrix qu,v,θ . The
quantized DCT coefficients are therefore given by

ku,v,b,θ = Round u,v,b,θc u,v,θq[ ]   . (1)

The quantization error is then

u,v,b,θe = u,v,b,θc − u,v,b,θk qu,v,θ    . (2)

2.2. Visibility Model

The model by which we compute the visibility of
quantization error is described in [2]. That model
contains a function that returns the visibility
threshold for DCT basis functions as a function of
frequency, mean luminance, and perceptual color
channel. The three perceptual color channels
employed are called Y (luminance), O (opponent,
or red-green), and Z (blue). We identify and index
this space by the symbol φ. The threshold function
can be written symbolically as

tu,v,φ = V u,v,φ ,Y, px , py ,...[ ]  . (3)

In the present algorithm, the value of Y (luminance)
is set to the mean luminance of the display, and px,
py  are set to the horizontal and vertical dimensions
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of a single pixel in degrees of visual angle. Values
are computed for the 8x8 frequencies in the three
color channels.

2.3. Transforming the DCT coefficients into the
perceptual space.

The DCT coefficients in the quantization color
space θ  can be transformed into the perceptual
color space φ  by an appropriate transformation. If
the color spaces are linearly related, this
transformation is multiplication by a 3x3 matrix. The
transformed DCT coefficients are written cu,v,b,φ  .

2.4. Luminance Masking

Human visual sensitivity to luminance patterns is
reduced as the mean local adapting luminance is
increased. To implement this effect, the thresholds
are adjusted by a power function of the DC
coefficient of each block in the luminance channel
( c0,0,b,Y ) relative to the DC coefficient
corresponding to the display mean luminance ( c0,0,Y
= 1024 for 8 bit images)

au,v,b,φ = tu,v,φ c0,0,b,Y c0,0,Y( ) Ta
  , (4)

where aT is a parameter. Note that all three
perceptual color channels are adjusted by the
luminance channel coefficients. This treatment of
the two color channels (O and Z) is somewhat
speculative.

2.5. Contrast Masking

Next the thresholds are adjusted for contrast
masking. The adjustment factor is a power function,
of the ratio of the coefficient magnitude to the
luminance-adjusted threshold

mu,v,b,φ =  au,v,b,φ Max 1 ,
wu,v,φcu,v,b,φ

au,v,b,φ
 











    .(5)

This factor has a floor of 1, so that only
suprathreshold contrasts produce any masking. The
exponent wu,v,φ  is allowed to vary with frequency
and perceptual color channel, but we have typically
used a constant value of 0.7.

This masking model is derived from classical results
on masking of sinusoidal luminance gratings[10, 11].
We have recently provided psychophysical evidence
that it is also a reasonable model for masking of
DCT luminance basis functions[7].. The limited
information on masking within the chromatic
channels [12]. suggests essentially similar behavior.

This model of masking explicitly assumes that
masking occurs only within a single block,
frequency, and color channel. This assumption is
undoubtedly wrong on all three counts [7].[12] , but
the errors thereby introduced were thought to be
small and worth the computational simplification. A
possible exception is the rather substantial masking
of luminance signals by chromatic masks[12] which
may be worth incorporating into a future version of
the masking model.

2.6. Transforming Quantization Error into the
Perceptual Color Space

The quantization errors in the quantization color
space θ  can be transformed into the perceptual
color space φ  by an appropriate transformation. If
the color spaces are linearly related, this
transformation is multiplication by a 3x3 matrix
consisting of partial derivatives relating the two
spaces. An example of such a matrix, from YCbCr
to the particular perceptual color space YOZ, is
given in [2]. The transformed quantization errors are
written eu,v,b,φ  .

2.7. Just-Noticeable-Differences

The quantization errors, in the perceptual color
space, are then divided by the luminance and
contrast adjusted thresholds to yield just-noticeable-
differences (jnd's):

ju,v,b,φ = eu,v,b,φ / mu,v,b,φ  . (6)

These jnd's are then pooled over blocks, to yield a
perceptual error matrix for each frequency and
perceptual color channel. The pooling employs a
Minkowski summation with an exponent of βs :

u,v,φp =
1 βs

β
s

u,v,b,φj
b
∑



   . (7)

The perceptual error matrices are then pooled over
frequency, with an exponent of βf , to yield a total
perceptual error for each perceptual color channel:

Pφ =

1 β f

β
f

u,v,φp
u,v
∑





   . (8)

Finally, these perceptual errors are pooled over
color channel, with exponent βc, to yield a total
perceptual error:
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P =

1 βc

β
cφP

φ
∑





    . (9)

3. OPTIMIZATION

It can be shown that when βf   and βc  are infinite,
the minimum perceptual error for any particular bit-
rate is obtained when

u,v,φp = ψ   . (10)

While we believe that  βf   and βc  are probably
equal to βs, and around 4, we believe that the
algorithmic simplification afforded by this
assumption greatly outweighs the possible errors
introduced.

A direct strategy is therefore to set ψ to some value,
and for each frequency u,v, to vary the three
numbers u,v,θq  until u,v,φp = ψ  for all three indices
of φ  (Y,O, and Z). Since the quantization matrix
entries are integers between 1 and 255 for 8-bit
images, the search space contains 2553 locations.
Standard gradient techniques cannot be used
because the error functions are not always
monotonic.

3.1. Hierarchical Direct Search

We have experimented with a hierarchical direct
search algorithm in which the 3-space of u,v,θq  is
first sampled very coarsely (three samples in each
dimension) and then progressively refined through
bisection of the sampling intervals in the vicinity of
the local optimum. We first define a new scalar
error function that describes the proximity of the
perceptual error matrix entries in each color channel
to the target value:

Eu,v =

1 βE

u,v,φp − ψ
βE

φ
∑



   . (11)

In some cases, even the maximum quantization
( u,v,θq = {255,255,255}) yields a value u,v,φp  that is
less than the target, in which case we substitute this
maximum for the target. This search procedure is
practical, but still requires considerable
computation.

3.2. Optimization in Quantization Color Space

Since it is unlikely that most applications will
expend the considerable computation required by
the preceding method, we have also considered an

alternative approach in which the existing
quantization channels (eg YCbCr) are taken as
approximations to the perceptual channels. In effect,
we set φ = θ . This means that the transformation of
quantization errors from quantization color space to
perceptual color space described in section 2.5
becomes an identity transformation. This in turn
means that variation of a particular quantization
matrix entry affects only the perceptual error in the
corresponding frequency and quantization color
channel. Thus the 3x64=192 quantization matrix
entries may each be optimized independently, in
separate one-dimensional optimizations. This is the
approach we have pursued most extensively.

4. DOWN-SAMPLING OF CHROMATIC
CHANNELS

The JPEG standard permits the chromatic channels
to be down-sampled horizontally and/or vertically
before compression. This greatly complicates the
optimization in perceptual color space, since the
transformation of quantization errors from
quantization to color spaces involves spatial as well
as color transformations, and we have not attempted
this approach. When the optimization is conducted
in the quantization color space, each color channel
is optimized separately and down-sampling
introduces no great complexities. It is only
necessary to correctly compute the pixel sizes for
the down-sampled chromatic channels in Eq. (3).
This simplicity provides an additional  argument for
optimization in the quantization color space.

5. RESULTS

Figure 1 shows a grayscale miniature of an image
for which we designed an optimized matrix. The
image was acquired from a Kodak PhotoCD
demonstration disc at a resolution of 512x796 pixels.
It was converted  to RGB (24 bits/pixel) in Abobe
Photoshop

.

Figure 1. Grayscale version of color image
used to design the matrices shown in Fig. 2.

Figure 2 shows color quantization matrices
optimized in YCbCr space for a bit rate of 0.25
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bits/pixel. The target display resolution and
luminance were set to 64 pixels/deg and 33.45
cd/m2. The image was transformed to YCbCr, and
the two color channels Cb and Cr were down-
sampled by two in both dimensions before

compression. With this matrix, the reconstructed
image was nearly perceptually lossless at the
specified visual resolution. In this printed paper we
cannot achieve the necessary color or resolution to
show the reconstructed image.
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Figure 2. YCbCr Color quantization matrices produced by the DCTune method (top) and by scalar
multiplication of the de facto JPEG quantization matrices (bottom).

The JPEG standards documents provide an example
set of quantization matrices [9].. While not part of
the standard, they have become almost universally
used, and for this reason I call them the "de facto"
matrices. Variations in bit-rate and quality are
typically obtained by scalar multiplication of these
matrices.

Figure 2 also shows for comparison the matrices that
result from the scalar multiplication of the "de
facto" JPEG quantization matrices that yields 0.25
bits/pixel for the same image. Several differences
between the two sets of matrices should be noted.
First, in the luminance (Y) matrices (leftmost
column of Fig. 2) the DCTune matrix, viewed as a
surface, is narrower but deeper. This means that high
spatial frequencies are more severely compressed,
but that low frequencies, and especially the DC

coefficient, are less severely quantized. In
particular, the DC quantization coefficient is 31 for
DCTune, and 70 for de facto JPEG.

A second difference is that the DCTune chromatic
matrices (Cb and Cr) are both shallower and
narrower than the comparable JPEG de facto
matrices. DCTune compresses the color more
severely. A third difference is that while there is
only a single de facto matrix for color (Cb and Cr
use the same matrix), DCTune creates different
matrices for the two chromatic channels. The Cb
channel is narrower and shallower than Cr. This is a
consequence of the color model, in which the "blue"
perceptual channel (Z) is lower resolution than the
opponent channel (O).

It should be noted that the matrix design of Fig. 2
was undertaken for a particular display resolution of
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64 pixels/deg. This corresponds to 72 pixels/inch
(typical of desktop computer displays) viewed at 51
inches. This is a higher resolution (longer viewing
distance) than that typically encountered in desktop
environments, but is much less than some high-end
printing resolutions. A virtue of our technique is that
it automatically adapts to the specified resolution,
while the JPEG de facto matrices are invariant with
display resolution.

We have recently completed psychophysical tests
on grayscale images which showed that for a set of
10 test images, compression with JPEG de facto
matrices required on average 39% more bits to
achieve perceptual losslessness than did DCTune
optimized matrices [13]. We are now conducting
similar tests for color images.

6. CONCLUSIONS

I have described an algorithm for design of color
quantization matrices for DCT-based image
compression such the JPEG compression standard.
The method attempts to discover the matrix that
yields a minimum perceptual error for a specified
bit-rate, or minimum bit-rate for a specified
perceptual error. Perceptual error is computed from a
model of visual sensitivity to DCT basis functions.
Initial results indicate that DCTune matrices are
superior to de facto JPEG matrices.
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