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ABSTRACT

hresholds were measured for detecting spatial luminance modulation in regular lattices

c

of visually discrete dots. Thresholds for modulation of a lattice are generally higher than the

orresponding threshold for modulation of a continuous field, and the size of the threshold

g

u

elevation, which depends on the spacing of the lattice elements, can be as large as a one lo

nit. The largest threshold elevations are seen when the sample spacing is 12 minutes of arc

,

2

or greater. These results are similar to those observed by Burr et al. (1985) [ Vision Res.

5, 717-727], who proposed an explanation based on a compressive point non-linearity.

e

Although their explanation is not consistent with the present data, the results may be

xplained in terms of nonlinear saturation of a spatially opponent stage early in the visual

pathway.

Theories based on response compression cannot explain the further observation that the

e

g

threshold elevations due to spatial sampling are also dependent on modulation frequency: th

reatest elevations occur with higher modulation frequencies. The idea that this is due to

-

s

masking of the modulation frequency by the spatial frequencies in the sampling lattice is con

idered.
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1. INTRODUCTION

It has been suggested that the early stages of the visual system act like a set of filters,

l

each tuned to a particular band of spatial frequencies (Campbell and Robson, 1968), and a

arge body of evidence has accumulated supporting this view (for a review see Olzak and

-

n

Thomas, 1986). Many of the studies supporting this view have employed sinusoidal lumi

ance gratings as stimuli. The mathematical properties of gratings make them useful for

v

investigating linear aspects of the visual system, but there are a number of easily observed

isual phenomena which display clearly nonlinear properties. Filter-bank type models of the

p

visual system, such as those of Wilson and Bergen (1979), have usually been designed to

redict threshold data; they must be embellished in order to predict the appearance of

-

l

suprathreshold aspects of objects, such as brightness or apparent contrast (Georgeson and Sul

ivan, 1975).

The Craik-Cornsweet illusion (Cornsweet, 1970, p. 273) is an example of how a small,

t

local feature (a high-pass filtered edge) can exert an effect on the subjective brightness of dis-

ant areas although there are no low-frequency Fourier components in the pattern. Land’s

o

retinex model of color appearance (Land and McCann, 1971) similarly stresses the importance

f sharp edges and allows them to act over arbitrarily large distances. Sharp edges also seem

to play an important role in the "filling in" of retinally stabilized images.

In our earlier work, we reported how the density of texture elements could produce

t

i

illusory changes in the brightnesses of the elements (Mulligan and MacLeod, 1988), and tha

n certain regimes observers could not distinguish luminance modulation from density modula-

f

tion at threshold. In this paper we look in more detail at the luminance modulation thresholds

or arrays of visually discrete elements, and compare the findings with existing models of con-

2

trast threshold and masking.

. PROCEDURE

Stimuli consisted of one-dimensional sinusoidal luminance gratings. The gratings could
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e presented in two distinct modes: continuous (the usual stimuli for measuring contrast sensi-

t

tivity) and sampled. The sampled case may be likened to viewing a continuous grating

hrough an opaque screen perforated with a regular array of small apertures. Thus sampling

o

t

has the effect of reducing the overall space-average luminance (by a factor corresponding t

he fraction of the total area occupied by the samples) and of restricting the information con-

a

cerning the stimulus grating to the samples. The experiments described here used a sample

rray which consisted of small squares located on a regular two-dimensional grid.

.

S

Continuous gratings are characterized by their spatial frequency, orientation, and contrast

ampled gratings require additional parameters to describe the nature of the sampling array:

i

the sample size and shape, and the sample spacing. The meaning of these terms is illustrated

n figure 1; sample spacing refers to the center-to-center distance between nearest neighbors in

s

s

the lattice, while the sample size is the linear dimension of a single square element. It i

ometimes convenient to talk about the sample frequency, which is just the reciprocal of the

-

q

sample spacing. The sample frequency should be at least twice the grating or modulation fre

uency, in order to avoid spatial aliasing, which would cause the grating to appear at a much

-

e

lower frequency. A sampling frequency of exactly twice the modulation frequency is gen

rally known as the Nyquist rate (Oppenheim and Schafer, 1975). When sampling at the

f

t

Nyquist rate, the relative phase of the modulation and sample pattern becomes important: i

he samples fall at the zero-crossings of the grating, no modulation will be transmitted. The

w

stimuli in these experiments were always sampled at the peak and trough of the modulation

aveform (in the Nyquist limit), and also at other points in the case of higher sample frequen-

cies.

-------------------------------------------

-

INSERT FIG. 1 ABOUT HERE

------------------------------------------

The duty cycle of a sample array will be defined to be the ratio of the sample size to the

tcenter-to-center sample spacing. In the experiments to be described, the duty cycle was kep
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d

b

fixed at 1/3. Although this procedure confounded sample size and sample spacing, it allowe

oth the local sample luminance and the space-average luminance to be held constant at all

p

sample spacings. The procedure thus allowed the separation of the spatial effects of the sam-

ling operation from local effects dependent upon absolute luminance.

g

a

One important way in which the sampled stimulus differed from the analogy of viewin

grating through holes was that each sample was spatially uniform. The luminance for each

r

o

sample was the same as the luminance of the continuous grating at the location of the cente

f the sample. This characteristic of the display produced a significant deviation from the

-

s

continuous grating profile only for the larger sample sizes. Figure 2a shows the typical inten

ity profiles of rows of modulated samples for a variety of sample spacings. To illustrate the

fi

difference between the case of uniform samples (as used in these experiments, and shown in

gure 2a) and a grating windowed, or viewed through holes, the latter case is also shown in

figure 2b.

-------------------------------------------

E

-

INSERT FIGURES 2a AND 2b ABOUT HER

------------------------------------------

Stimuli were produced on a color monitor, (Tektronix model 690SR), which received

s

i

video signals from a graphics terminal, (Advanced Electronic Devices model 767), which wa

n turn controlled by computer (Digital Equipment Corp. PDP 11/23). The display was

.

D

viewed at a distance of 3 meters, from which distance it subtended 4 degrees of visual angle

igital quantization errors in the rendering of the luminance profile were limited by the video

,

t

digital-to-analog converter resolution (8 bits per phosphor). In order to decrease these errors

he display was viewed through a red filter (Kodak Wratten #26), which had the effect of

t

selectively attenuating the light from the green phosphor. The smallest test modulations could

herefore be produced by varying the output of the green phosphor, with a high contrast back-

q

ground modulation provided by light from the red phosphor. This technique for reducing

uantization errors has been discussed by Mulligan (1986).
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he continuous gratings and samples had a mean luminance of 20 candelas per meter

d

squared. The area surrounding the sample dots was dark. To see whether observed

ifferences between the sampled and continuous cases were due to the overall luminance

fi

difference, the continuous sensitivities were remeasured using a 1 log unit neutral density

lter to reduce their space-average luminance to a level comparable to that of the sampled

gratings.

Thresholds were determined by having subjects discriminate between vertical and hor-

.

O

izontal modulations. The orientation of the modulation was chosen at random for each trial

n each trial, the subject was presented with a grating whose orientation was selected at ran-

-

b

dom; the subject’s task was to correctly report the actual orientation. Each stimulus was visi

le for one second; the onset of the stimulus was preceded by a fixation cross which appeared

d

v

in the middle of the (dark) screen one second before the stimulus appeared, and remaine

isible during the test interval. The square region containing the fixation target was kept free

a

s

of sample dots. Modulation levels for successive trials were determined in accordance with

taircase procedure. The contrast was reduced after two consecutive correct responses, and

g

%

increased after a single incorrect response, concentrating the trials near the contrast yieldin

71 correct. Two staircases were randomly interleaved for each condition to minimize the

t

amount of a priori information available to the subjects about the presentation on any given

rial. A normal ogive anchored to 50% at 0 contrast was fit to the observed probabilities

a

using a weighted least squares regression, the complete details of which are given in Mulligan

nd MacLeod (1988). The weights were chosen to correct for the fact that the numbers of tri-

o

als were not the same at each contrast, as well as the fact that the expected variability in the

bservations depended on the true underlying probability. Since these probabilities could not

c

be known, we adopted an iterative procedure, wherein the observed probabilities were used to

alculate the weights for the first iteration. The resulting psychometric function was then used

-

v

to generate the weights for the second iteration. This was repeated until the estimates con

erged. Thresholds were taken to be the contrast for which the final fitted curve assumed a
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Different modulation frequencies and sample spacings were run in different blocks of tri-

a

als. The blocks for the different conditions were randomly interleaved, and each subject ran

t least three blocks for every condition. The proportions of correct judgements at different

a

modulation levels were fit with a cumulative normal function constrained to pass through 50%

t zero modulation, and threshold modulation was defined as the 75% point of the best-fitting

3

function.

. RESULTS

Typical data showing sensitivity for two different modulation frequencies as a function

-

l

of sample spacing is shown in figure 3. The point labeled ‘C’ shows the sensitivity for modu

ation of a continuous field. The data show that sensitivity is unchanged, relative to continu-

-

t

ous, for the smallest sample spacing; coarser sampling produces progressive losses of sensi

ivity. It is important to note that at the smallest sample spacing (3 minutes of arc) the sam-

c

ple elements are still seen distinctly; thus the effects seen at coarser spacings cannot be due to

hanges introduced by sampling per se, such as the reduction in mean luminance or the intro-

i

duction of black regions. For both frequencies shown, a sample spacing of 12 minutes of arc

s sufficient to produce the maximum sensitivity loss.

I

-------------------------------------------

NSERT FIGURE 3 ABOUT HERE

-------------------------------------------

Sensitivity, as plotted in figure 3, is defined as the reciprocal of the threshold contrast.

t

For the sampled gratings, the contrast was defined as the peak-to-trough amplitude divided by

he mean sample luminance. Defined this way, a sampled grating always has the same con-

r

trast as the continuous grating behind the "holes." A discrepancy arises, however, if we

edefine contrast based on the amplitude of the Fourier component at the modulation fre-

f

s

quency. Figure 4 shows a plot of the amplitude of the Fourier fundamental as a function o

ample frequency. We see that this is almost independent of sample frequency except at the
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yquist limit, where it has approximately doubled. This is due to the fact that for Nyquist

c

rate sampling, the aliases introduced by sampling have the same frequency as the signal, and

an interfere either constructively or destructively depending on the relative phases of the

t

t

sampling array and the modulation. The signal is maximized when the samples are placed a

he peak and the trough (as in our stimulus). Note that if the samples are placed at the zero

crossings of the grating, then there is complete destructive interference.

If we redefine sensitivity based on the reciprocal of the amplitude of the Fourier funda-

w

mental, the data shown in figure 3 would appear as shown in figure 5. Plotting the data this

ay eliminates the non-monotonicity seen with the 0.625 cycle per degree grating at sample

spacings greater than 0.2 degrees. The graph is otherwise unaffected.

-------------------------------------------

E

-

INSERT FIGURES 4 AND 5 ABOUT HER

------------------------------------------

Figure 6a shows sensitivity for sampled modulation (at 12 minute sample spacing) and

t

t

for continuous sinusoidal gratings plotted against modulation frequency. The data show tha

he sensitivity loss caused by sampling increases with increasing spatial frequency, becoming

-

c

almost one log unit at 2.5 cycles per degree. The sensitivities for the sampled case were cal

ulated on the basis of peak-to-peak amplitude, as in figure 3. The data may be replotted

y

e

(figure 6b) using the sensitivity based on the amplitude of the Fourier fundamental; The onl

ffect is to increase the sensitivity loss measured at 2.5 cycles per degree from 1.02 to 1.30

log units.

-------------------------------------------

E

-

INSERT FIGURES 6a AND 6b ABOUT HER

------------------------------------------

Reducing the mean luminance of the continuous gratings by a factor of ten (with an opti-

-

s

cal filter) caused only a small loss of sensitivity for the spatial frequencies of interest, con

istent with the results of Van Nes and Bouman (1967) for the range of mean luminances
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ested. For subject JBM, sensitivity was reduced by 0.23 log units (standard error of the

l

mean = 0.021, between sessions) at a spatial frequency of 2.5 cycles per degree, and 0.046

og units (standard error = 0.015) at 0.625 cycles per degree.

a

s

Data for two additional subjects is shown in figure 7. These data were collected using

lightly different methodology, which is described in complete detail elsewhere (Mulligan, in

t

r

preparation). A different technique was used to control quantization errors, which did no

equire the use of a red filter. This allowed a higher luminances to be used: the samples had

d

t

a mean luminance of 120 candelas per meter squared; the continuous gratings were viewe

hrough a 1 log unit neutral density filter to equate space-average mean luminances. Subjects

e

used the method of adjustment to set thresholds. Six settings per point were made during

ach session, which were randomly interleaved with a number of additional conditions which

h

s

are not discussed here. Each subject completed 3 sessions; a mean was computed for eac

ession. The mean across sessions is plotted in figure 7, with the error bars showing plus and

4

minus two standard errors of the mean computed between sessions.

. DISCUSSION

4.1. Elevation of threshold with coarse sampling

h

i

One of the major findings of this study is the elevation of contrast thresholds seen wit

ncreasing sample spacing. This result is not predictable on the basis of the physical limits on

-

t

the information content in the stimulus; it can be shown that if detection were limited by pho

on noise statistics, we would expect to observe a constant threshold for the amplitude of the

.

T

Fourier fundamental in the sampled stimulus regardless of the sample spacing (see appendix)

o explain the result, we can appeal to a mechanism suggested by data on increment thres-

;

B

hold for a small test flash as a function of size of the background field (Westheimer, 1967

uss, Hayhoe and Stromeyer, 1982). Increment threshold data are often displayed using a

e

i

threshold-versus-intensity (TVI) curve, where the flash threshold is plotted as a function of th

ntensity of the background field. For large backgrounds, the curve has an asymptotic slope
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lose to 1 on a log-log plot, showing that the threshold increment is proportional to the back-

e

ground level, a "Weber’s law" relationship. This type of relation may be interpreted in terms

ither of a gain-control mechanism or of an approximately logarithmic nonlinearity, followed

-

n

by a source of constant noise, with the threshold being met by exceeding a critical signal-to

oise ratio.

When such an experiment is done against a tiny (say, 5-10 minutes of arc in diameter)

a

adapting background, however, quite a different result is observed. The tiny background has

much greater desensitizing effect than a larger background having the same luminance, even

e

e

though fewer total quanta strike the retina. Not only is the smaller background mor

ffective, but at some (moderate) luminance level the threshold against the tiny background

e

t

becomes infinite; the background seems to "saturate" the unit responsible for detection of th

est. Results like this have been taken to be psychophysical consequences of the spatially

y

z

opponent organization physiologically observed in retinal ganglion cells; a centrally excitator

one ringed by an inhibitory annulus produces a unit whose response is relatively invariant

under changes in absolute illumination level for spatially uniform stimulation.

Similar considerations of spatial opponency in early visual processing can help to explain

a

s

the loss of sensitivity for coarsely sampled modulation. When the sample spacing is small,

patially opponent unit will have some samples falling on its excitatory center, and others fal-

d

ling on its inhibitory surround. This results in a balanced state of excitation with adequate

ynamic range to signal small changes in the amount of excitation or inhibition. Sample

a

s

spacings which are large in relation to the dimensions of the receptive field will produce

tate of affairs where most units will have only a single sample falling on their receptive field.

e

If this sample falls entirely in an excitatory or inhibitory zone, the unit will be driven to an

xtreme of its response range, where it has poor differential sensitivity. If, on the other hand,

w

the sample falls on the border between the excitatory and inhibitory zones, the unit’s response

ill be maintained in the middle of its operating range; small modulations of the sample’s

luminance, however, will now not modulate the unit’s output, since the modulations are seen
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g

o

both by the center and the surround, with cancelling effects. In either case, the samplin

peration should lead to reduced sensitivity.

Thus we see that center surround antagonism can qualitatively account for some of the

e

W

results we have observed, if we assume that the small concentric units responsible for th

estheimer effect are involved in the detection. This idea can be tested more rigorously by

-

m

estimating the receptive field dimensions implied by our results, and comparing them to esti

ates obtained using other experimental paradigms. Westheimer’s results (1967) suggest a

(

surround diameter of 10 minutes of arc in the central fovea. Ransom-Hogg and Spillmann

1980) performed similar experiments at various eccentricities; their data obtained at 5 degrees

s

w

temporal eccentricity suggests a surround diameter of about 1 degree. Since our experiment

ere performed using a centrally-fixated 4 degree field, we expect that the relevant receptive

s

(

field size should have an intermediate value, in the range of 20 to 30 minutes. Our result

see figure 5) show no impairment of sensitivity at a sample spacing of 3 minutes of arc, with

t

o

progressive degradation up to 12 minutes. Assuming that maximal desensitization canno

ccur until flanking dots are clear of the surround, the results shown in figure 5 suggest an

s

o

upper bound on the surround radius of 0.2 degrees, in good agreement with the result

btained with Westheimer’s paradigm. The data from the other subjects, shown in figure 7,

suggest the same surround size to the extent that this crude estimate permits.

Burr et al. (1985) have reported sensitivity losses when a sinusoidal grating is discretely

f

t

sampled by concentrating the light flux from the grating into thin lines parallel to the bars o

he grating. They explained their results in terms of a local gain-control mechanism. One

o

potential problem with their study, avoided in the present experiments, was the confounding

f sample spacing with sample luminance. Since the results described here show strong

t

a

effects of sample spacing even when local luminance is constant, the conclusions of Burr e

l. concerning their own data must be reconsidered. Burr et al. plotted their results as a

p

function of samples per cycle of modulation, which, because of their procedure, was inversely

roportional to sample luminance. This obscures the effects of absolute sample spacing.



H

- 11 -

owever, when curves are drawn through their data linking points having the same absolute

p

sample spacing, their results are similar to those shown in figure 6. Local gain-control may

lay a role in determining modulation sensitivity for sampled displays, but any mechanism

e

s

that does not have a spatial component cannot produce a dependence of sensitivity on sampl

pacing or on modulation frequency; effects of both parameters are seen in the present study.

f

t

We have relied upon saturation of a spatially opponent unit to explain the elevation o

hreshold due to sampling. Another possible explanation, however, is that the frequency com-

.

M

ponents introduced by the sampling lattice act as a mask and thereby elevate the threshold

any effects of this type have previously been observed: measurements of the critical band

t

a

suggest a channel bandwidth of one to two octaves (Stromeyer and Julesz, 1972; Henning e

l., 1981). Although this could account for the increase in threshold for the highest modula-

r

m

tion frequency, the sampling frequency is well outside of the critical band for the lowe

odulation frequencies. The masking model of Wilson et al. (1983) similarly predicts little

-

t

masking of a 2 cpd test by a 10 cpd mask, whereas we observe a 0.5 log unit loss of sensi

ivity for a sampled 2.5 cpd grating with a 6 minute sample spacing (10 samples per degree).

d

Thus we are forced to conclude that this type of masking alone cannot account for all of our

ata. One feature of the model of Wilson et al. is a parallel bank of spatial filters, tuned to

d

b

different spatial frequency bands. We propose that this split into spatial channels is precede

y a concentric spatially opponent layer (perhaps in the retina) which is responsible for the

s

i

threshold elevations which we see which cannot be explained by critical band masking. It i

nteresting to note that Henning et al. (1982) proposed a similar two-stage model to account

for masking by amplitude modulated gratings.

Another piece of evidence consistent with the saturation hypothesis comes from similar

t

experiments of Mulligan and MacLeod (1988), where a modulation could either be applied to

he samples (as in the present experiments) or to the background (which, unlike the present

t

s

experiments, had some small non-zero luminance). Under conditions which caused the larges

ensitivity reductions (coarse sampling, high modulation frequency), the threshold elevations
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ere from 2 to 4 times greater when the modulation was applied to the samples than when it

a

was applied to the background. Since the modulations were at threshold, the mask was

pproximately the same in either case, and the results cannot therefore be explained in terms

s

c

of simple masking. The fact that observers are less sensitive to modulation of the samples i

onsistent with saturation of the units conveying the samples’ luminances, while the units

4

responding to the background remain relatively sensitive.

.2. Dependence of threshold elevation upon modulation frequency

n

b

Although saturation of spatially opponent neurons can explain the observed relatio

etween threshold elevation and sample spacing, it does not predict the dependence of the

f

t

elevation on modulation frequency shown in figure 6. One explanation for the dependence o

hreshold elevation on modulation frequency is that masking effect seen at low modulation

-

m

frequencies (which we have assumed to be due to a saturating spatially opponent unit) is aug

ented at higher modulation frequencies by traditional critical band masking of the modula-

f

tion signal by the spatial frequency components introduced by the sampling operation. The

undamental component of these added frequencies has a period equal to the sample spacing;

f

this is always higher than the modulation frequency, but is closest for the highest modulation

requency. Because the masking effects normally increase with proximity in frequency the

present observed dependence on modulation frequency is to be expected, at least qualitatively.

We can make a slightly more quantitative prediction using the model predictions of Wil-

2

son et al. (1983). Their model predicts a sensitivity loss of approximately a factor of 4 for a

cpd test on a 4 cpd oblique mask of 40% contrast. This mask is not probably somewhat

s

weaker than that used in our experiments, where the sampling array had components at the

ame orientation of the test, the effective contrast of which was closer to 50%. Therefore it

l

might be reasonable to assume that critical band masking is responsible for most of the 0.75

og units of additional threshold elevation that is seen on under coarsely sampled conditions

when the modulation frequency is is raised from 1.25 to 2.5 cycles per degree (figure 6b).
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Some evidence that sensitivity losses due to sampling are not simple masking effects

d

comes from the previously mentioned study done by Burr et al. (1985). Using a slightly

ifferent stimulus, they also observed sensitivity losses in the presence of sampling. To rule

-

t

out the possibility of masking, they created a second stimulus having the same power spec

rum as the original, but with scrambled phase relationships between individual frequency

e

a

components. The large threshold elevations vanished under these conditions. It might b

rgued that a scrambled phase masker should have a weaker effect than a particularly chosen

-

b

mask of the same power spectrum, since the scrambled phase mask will have its energy distri

uted over most of the units making up the tuned channel, while the signal information will

,

h

be carried by a subset of the units whose phase sensitivity matches the signal. In this case

owever, we would still expect to see some residual masking effect of the scrambled-phase

l

i

masker, since some of the mask energy would still be carried by the units carrying the signa

nformation. The data of Burr et al., however, show that there is little threshold elevation due

-

d

to the scrambled phase mask; what effects remain are identical even when the one

imensional mask is rotated 90 degrees! Additional results demonstrating the phase sensi-

a

tivity of masking have been demonstrated by stimuli Henning et al. (1975), but the effects

re smaller than those observed by Burr et al. Similar differences in masking efficacy

n

d

between masks which are either correlated or uncorrelated with the target pattern have bee

emonstrated by Rentschler et al. (1986).

4.3. General Discussion

We have seen that the results presented in this paper cannot be accommodated by a sin-

e

gle tuned filter which mediates detection, although critical band masking may be part of the

xplanation for the dependence of threshold elevation upon modulation frequency. Similar

i

conclusions have been reached by Henning et al. (1975). Henning et al. investigated the

nteractions between an amplitude modulated grating having a moderately high carrier fre-

s

quency and a low frequency grating at the modulation frequency. (The amplitude modulated

timulus is in some ways analogous to what we have called a "sampled grating;" the Fourier
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omponents in the sampling lattice function as the carrier.) They observed substantial mask-

m

ing effects between frequency bands that appear to be independent when probed with noise

asks such as those used by Stromeyer and Julesz (1973) and Henning et al. (1981). One

,

w

model proposed by Henning et al. (1975) to explain their results consisted of two stages

here units in the second stage having large, spatially opponent receptive fields received both

-

t

a direct input and an input from units in the first stage having small, spatially opponent recep

ive fields. Thus, the second stage units responded both to low-frequency modulation and to

contrast modulation of a high-frequency pattern capable of exciting the first stage units.

Spatial frequency analysis was also rejected by Nyman and Laurinen (1982) to explain

d

d

their results concerning the perception of sparsely sampled waveforms. They investigate

iscrimination of sampled square and sine waves, and found that performance was better than

n

t

would have been expected on the basis of the detectability of the extra frequencies present i

he square-wave stimulus. They attributed their findings to local feature analyzers. One point

v

they mention in passing, but do not discuss, is that the discrimination becomes easier if the

iewing distance is increased. Increasing the viewing distance increases both the grating fre-

f

t

quency and sampling frequencies proportionately. This observation is interesting in light o

he results presented in this paper, where we have seen that increasing sample frequency

improves the visibility of sampled gratings.

In tuned filter models of modulation sensitivity the stimulus is assumed to be detected

-

i

when some individual detector in the array reaches a threshold signal level. Another possibil

ty, particularly plausible for the sampled case, is that detection is mediated by a spatial com-

t

b

parison of the outputs of filters at different locations. Detection of the sampled grating migh

e mediated by a spatial comparison of the brightnesses of various elements in the sample lat-

f

w

tice (based on signals representing the local contrast or luminance of individual elements). I

e assume that threshold in the continuous case is not mediated by the same type of bright-

t

ness discrimination mechanism, then the difference in the spatial frequency dependence of the

hreshold in the sampled case may be explained by assuming that signals contributing to
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rightness undergo different spatial processing. Experiments involving density modulation of

i

dot arrays have indicated that changes in local dot density are sometimes perceived as changes

n dot brightness (Mulligan and MacLeod, 1988). The results of these studies indicate a large

e

e

summation area for brightness, roughly 1 degree in diameter. Such a mechanism would b

xpected to increase threshold for sampled modulation at high modulation frequencies assum-

t

ing that a brightness discrimination is involved in detecting the sampled modulation but not in

he detection of continuous gratings. This assumption seems reasonable since an edge-

a

detecting mechanism with good spatial resolution would not see any difference in the sample

rrays when the modulation is applied, but could easily signal the presence of light and dark

grating bars in a continuous field.

In conclusion, sampling has been seen to degrade contrast sensitivity when the sample

r

m

spacing is greater than or equal to 12 minutes of arc. The largest effects are seen with highe

odulation frequencies, where they can be as large as one log unit. Response saturation of

s

spatially opponent units can explain the dependence of the threshold elevation on sample

pacing, and the results of this study are in good quantitative agreement with the results of

b

previous studies. The dependence upon modulation frequency, however, cannot be explained

y this mechanism, but might be explained by an additional critical band masking effect.

e

f
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l

o

6. APPENDIX: A proof that detectability is unaffected by sampling rate for an idea

bserver.

Definition of Terms:

T Total number of quanta in one grating cycle

N Number of samples per grating cycle

Mean number of quanta in the th sample when signal not present ( = )ni ii n
N
Thhh

A Amplitude of sampled modulation as a fraction of the mean (relative amplitude)

esi Expected or ensemble average signed increment in the number of quanta at th sampli

hhhh )
i2π

N
s =An cos(ii )

N

due to signal modulation when present (

oise at th sample on the th presentation, deviation from expected number of quantaεit i t

σ ε σ = n )ε Expected root-mean-square value of ( , by assumptions (1) and (2) belowit ε i√dd

-i Number of quanta observed at th sample on the th presentation ( when sigt it i i ito i t o =n +s +ε

o =n +ε tn it i ial present, otherwise)

Our analysis is patterned after the approach of Green and Swets (1966) to the ideal

a

detector for the case when the signal is known exactly. The proof depends on the following

ssumptions: 1) that the mean number of quanta per sample is large enough that we mayni

-

t

approximate the noise due to Poisson variability as a random variable having a Gaussian dis

ribution about a mean of zero with a variance of . (For the conditions of the experiments,ni

e

s

assuming a 3 millimeter natural pupil, the total number of quanta absorbed during a singl

timulus presentation is on the order of 6 million.) 2) That the noise at a given sample isε t

i i si

i

ndependent of (and therefore uncorrelated with the signal and with the noise at any other
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ample ). 3) that for the near-threshold conditions of interest; this assumption allowsε s <<njt i i

εu σs to neglect the effect of the signal on . With these assumptions, we can show that the

d

detectability of the signal does not depend on N, the number of samples, for values of N

ivisible by 4 (that is, for all the conditions of the experiments except the Nyquist case).

r

t

An ideal observer will report the presence of the signal if the likelihood ratio is greate

han one. The likelihood ratio is the ratio of two conditional probabilities: the probability of

o

making the observation in the presence of the signal and the probability of making the same

bservation in the absence of the signal.

To find the probability of making a particular set of observations { } in the case of ao t

p si

i

articular signal { }, we assume that the signal was present, and therefore any deviations

.between the observed values and the signal must be due to quantum fluctuations ( )o =n +s +ε t

T oit

it i i i

he probability of making the observation { } in the presence of the signal is just the pro-

bability of quantum fluctuations producing the set of deviations { }.ε t

B εit

i

ecause we have assumed that the noise has a Gaussian distribution, we can write the

probability of a particular value for asε t

i

i

t
ε ε

2

it

√

2

ddd
(1)hhhh ).

ε−
σ

hhhhhhexp(
2

1
σ

P( ε ) =
2π

εitThe probability for a given Ntuple { } is simply the product of N such terms. We can

f

m

transform this product to a sum by taking the natural logarithm; the log of the probability o

aking the observation { } in the presence of the signal, which we shall refer to as , iso Lit S

therefore

(2)S Σ0 1
i =1

N

it i i
2L = K − K (o −(n +s )) ,

hhhh1hhhhhh ) K =
2σ

1
σ

K = N ln(
2π0

ε
1

ε
2

w
√ddd

here , and .

We can similarly express the log of the probability that the same set of observations

{ } would be made in the absence of the signal:oit

0 0 1
i =1

N

it i
2Σ (3)L = K − K (o −n ) .
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Now, the ideal observer bases his decision on the ratio of the conditional probabilities,

o

which is equivalent to taking the difference of the logs of the probabilities; therefore, the ideal

bserver will report seeing the signal if . The proof will consist in showing that the(L −L )>0S 0

sign of this difference does not depend on N:

Σ Σ 2
N

it i
1

N

it i i
2

i =1

LS 0 1
i =

−L = −K
R
J
Q

(o −n −s ) − (o −n )
H
J
P
.

By expanding the squared quantities, cancelling terms (taking out the leading minus sign in

the process), this may be expressed as

(4)S Σ Σ0 1
i =1

N

i it i
i =1

N

i
2L −L = K

R
J
Q
2 s (o −n ) − s

H
J
P
.

The second sum depends only on the signal; the first sum represents the correlation

t

c

between the observed numbers of quanta and those expected if there is a signal. Let us firs

onsider the value of the second sum. For cosine phase sinusoidal modulation

i . By the symmetry of the sine function, ; therefore,i i
i +

2
hNhh

hhhh ) s = −s
i2π

N
s = An cos(

s = 2A n cos (
N

2πihhhh ). (5)
i
Σ Σ
=1

N

i
2 2

i
2

i =1

hN
2
hh

2

Since we have assumed that N is divisible by four, we may break this sum into two halves:

2 Σ Σi
2

i =1

hN
4
hh

2

i =1+
4
hNhh

hN
2
hh

2 ,hhhh )

H
J
J
J
P

i2π
N

hhhh ) + cos (
i2π

N

=

= 2A n

R
J
J
J
Q

cos (

2A n

R
J
J
Q
cos (

N
2πihhhh ) + cos (

N

2π(i +
4
hNhh )

hhhhhhhhh )

H
J
J
P
,

hhh

2 2

N
4

1

2
i
2

i =
Σ

Σ2
i
2

i =1

hN
4
hh

2 2 ,hhhh )
H
J
P

i2π
N

hhhh ) + sin (
i2π

N

=

= 2A n
R
J
Q
cos (

2A n
4
hNhh .

ni

2
i
2

=
N
ThhhSince by definition, we may simplify the result to



- 22 -

(6)hhhhh .
TA
Ni

Σ s =
2=1

N

i
2

2 2

In the case of modulation at the Nyquist frequency, the sum in equation (5) has only a single

,term which has a value of 1 for the cosine phase modulation we are considering. In this case

has a value of .hhhhhTA
2i

Σ s
=1

N

i
2

2 2

is d

t

Now the first sum in equation (4) is two times the covariance between the signal an

he deviations of the observed values from the no-signal mean, . Let us refer to this(o −n )iit

t

N

i i
1

t it i it t
i =
Σ εc C o =n +ε C = sovariance as . When no signal is present (so that ), ; since we have

fassumed that the noise is independent of the signal, this quantity has an expected value oεit

it i i it t
i =1

N

i it
i =1

N

i
2Σ Σ sz o =n +s +ε C = s ε +ero. When the signal is present (so that ), ; in addition to the

a

v

first term (which has an expected value of zero), there is a second constant term, which has

alue of from equation (6). The variance is the same whether or not the signal ishhhhh C
TA
N2

2 2

t

N

i it
1i =

Σ s ε f

t

present, and is just the variance of the term . This variance in turn is just the sum o

he variances of the individual terms . We may therefore writes ε t

N

i
2

ε
2

i i

1
C
2

i =
Σσ = s σ ,

,= σ sε
2

i =1

N

i
2Σ

2

= i

2

n
2N

A Thhhhh ,

σ n =
N
Thhhu ε ising the definition of and the result of equation (6). Remembering again that , the

result may be expressed as

(7)
2 3

2
σC

2 =
2N

A Thhhhh .

Thus we see that

S 0 1 t

2 2

,hhhhh )
TA
N

L −L = K (2C −
2

−K (
2N

A Thhhhh )1

2 2

which has an expected value of when no signal is present and and expected value
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f in the presence of the signal. The variance of the quantity does nothhhhh ) (L −L )
TA
N

K (
21

2 2

S 0

1
2

C
2σK e

s

depend on the presence of the signal and is equal to 4 times . Since the presence of th

ignal affects only the sign of the expected value of , the signal-to-noise ratio does not(L −L )0

depend on the presence of the signal and is:

S

1 C

1
2 2 −1

,hhhhhhhhhhhhhNK 0.5A T

σ
SNR =

2K

σC swhich by substitution of the value of from equation (7) become

√ddd

1
1

2 2 −

1
=

1
−K A TN 2T

K 0.5A T Nhhhhhhhhhhhhh

hhhhh .
TA
2

=
2√dd

√dd

Since this does not depend on N, the proof is complete.

-

t

The only part of our proof which depended on N being a multiple of 4 was the calcula

ion of which resulted in equation (6). It was noted above that this quantity has a value
i
Σ
=1

N

i
2

A
2

s

Thhhhh
2 2

of for the case of Nyquist sampling. Note that this a factor of 2 larger than what would

e

e

be obtained by simply substituting N=2 into equation (6). Because this quantity is also th

xpected value of , the log of the likelihood ratio, , is proportional to it. In addition,C (L −L )t S 0

N

i
2

1
C

i =
Σσ sthe variance is proportional to . By recomputing the signal-to-noise ratio using these

revised values, it is easy to show that it has a value higher than for the non-Nyquist case.√dd2
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igure 1: Diagram of a portion of a sampling array defining the terms sample spacing

h

o

(center-to-center distance between nearest neighbors) and sample size (linear height and widt

f a single square element).

Figure 2a: Intensity profiles for sampled gratings having the same modulation frequency,

l

but different sample frequencies. At top is shown a continuous sinusoidal grating; the dotted

ine indicates the zero luminance baseline. Since the lowest point (trough) of the curve is

.

I

halfway between the mean level and the baseline, this grating has a modulation of 50%

mmediately below is shown a sampled grating having the same modulation frequency and

r

s

modulation depth, but sampled with 8 samples per cycle. Also shown are four cycles pe

ample and two cycles per sample (the Nyquist limit). Note that each sample has a constant

t

level (intensity) at each point within its interior. Also note that the sample width is propor-

ional to sample spacing (constant duty cycle). These examples depict the duty cycle of 0.33

used in the experiments.

Figure 2b: Same as in figure 2a, but the samples depicted here are not uniform, but vary

s

s

within their interiors in accordance with the corresponding patch of continuous gratings. Thi

timulus was not used in the experiments in this chapter, but is presented here to clarify the

s

w

difference between the actual stimulus and the colloquial description: this is the stimulu

hich actually corresponds to viewing a grating through holes.

f

s

Figure 3: Log sensitivity (reciprocal of threshold contrast) is shown as a function o

ample spacing, subject JBM. Data points connects by solid lines are for a modulation fre-

.

T

quency of 0.625 cycles per degree; dotted lines connect data points for 2.5 cycles per degree

he point on the abscissa labeled ’C’ is for continuous gratings having a mean luminance

-

n

equal to the mean sample luminance of the sampled gratings. Reduction of the mean lumi

ance of the continuous stimuli to equal the space-average mean luminance of the sampled

s

b

gratings produces only small changes in the continuous sensitivities (see text). Sensitivity i

ased on amplitude of sampled waveform, (which differs from the amplitude of the Fourier

component at the modulation frequency when sampling at the Nyquist rate). Error bars
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.represent plus and minus two standard errors of the mean, computed between sessions

Figure 4: Amplitude of the Fourier component at the fundamental modulation frequency

a

c

as a function of the number of samples per cycle. Amplitudes are normalized relative to

ontinuous grating having the same mean luminance and contrast. The graph shows that sam-

r

s

pling only affects the amplitude of the Fourier fundamental when sampling at two cycles pe

ample, where the amplitude of the fundamental roughly doubles. The solid curve is for uni-

p

form samples (as in figure 2a, the stimuli for these experiments), while the dotted lines link

oints for a windowed grating (as in figure 2b).

Figure 5: The data from figure 3 are replotted with sensitivity redefined in terms of the

-

m

amplitude of the Fourier component at the fundamental modulation frequency. Only the right

ost points of each curve are affected. This correction eliminates the non-monotonicity seen

in figure 3 for the 0.625 cycle per degree curve.

Figure 6: a) Log sensitivity for a single observer is plotted as a function of modulation

f

1

frequency for continuous gratings (solid lines) and gratings sampled with a sample spacing o

2 minutes (dotted lines). Sensitivity is lower for the sampled gratings, and the loss increases

e

with increasing modulation frequency. Error bars represent plus and minus two standard

rrors of the mean, computed between sessions. b) The same data as in figure 6a is plotted

l

m

with sensitivity defined in terms of the amplitude of the Fourier component at the fundamenta

odulation frequency. Only the rightmost point on the sampled curve is affected.

o

a

Figure 7: Log threshold elevation as a function of sample spacing is shown for tw

dditional subjects. The modulation frequency was 2.5 cycles per degree. Thresholds were

s

obtained using method of adjustment, each subject completed 3 sessions, each consisting of 6

ettings per point. The error bars represent plus and minus two standard errors of the between

sessions mean.


