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Abstract�—The Vehicle Cabin Atmosphere Monitor 
(VCAM) instrument is designed to autonomously detect and 
identify trace organic species in the International Space 
Station (ISS) cabin air and monitor changes in species 
concentrations over time after chemical events.  The 
physical instrument is comprised of two subsystems.  The 
first subsystem is a preconcentrator gas chromatograph 
(PCGC) which separates chemical analytes in time, based 
on compound specific properties such as molecular weight.  
The second subsystem is a Mass Spectrometer (MS) which 
measures the abundance of ionized analytes, separated in 
the GC phase, at specific mass-to-charge ratios.  The 
VCAM PCGC/MS produces a time-series of mass 
fractionation patterns, indicative of the chemical compounds 
present, which is used for subsequent compound detection, 
identification, and quantification. 

In order to autonomously identify and quantify chemical 
species from the PGGC/MS data, VCAM employs a variant 
of the de-facto industry standard Automated Mass Spectral 
Deconvolution and Identification System (AMDIS) 
algorithm developed by the National Institute of Standards 
and Technology (NIST).  AMDIS was chosen first for its 
superior performance, when compared to a neural network 
classifier developed in-house and a proprietary, third-party, 
commercial algorithm, and second for its reputation within 
the mass spectrometry community.  In this paper we provide 
an overview of AMDIS, including GC peak identification 
and spectral matching, as well our variations and additions 
to the core algorithm for performing mass calibration 
beforehand and species quantification afterward.  We also 
discuss some of the challenges faced creating an 
independent implementation of AMDIS for delivery to 
VCAM flight software.  Testing our algorithm, both 
individual components and in its entirety, was a particularly 
challenging, as the VCAM instrument was still in 
development and only periodically able to produce 
validation datasets12. 
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1. INTRODUCTION 

The Vehicle Cabin Atmosphere Monitor (VCAM) 
instrument is designed to autonomously detect and identify 
trace organic species in the International Space Station 
(ISS) cabin air and monitor changes in species 
concentrations over time after chemical events [3].  The 
physical instrument is comprised of two subsystems.  The 
first subsystem is a preconcentrator gas chromatograph 
(PCGC) which separates chemical analytes in time, based 
on compound specific properties such as molecular weight.  
The second subsystem is a Mass Spectrometer (MS) which 
measures the abundance of ionized analytes, separated in 
the GC phase, at specific mass-to-charge ratios [1].  The 
VCAM PCGC/MS produces a time-series of mass 
fractionation patterns, indicative of the chemical compounds 
present, which is used for subsequent compound detection, 
identification, and quantification. 

2. SYSTEM OVERVIEW 

The VCAM Data Analysis Software (DASW) transforms a 
series of raw ion counts from a GC/MS instrument run into 
a list of chemical compound identifications and 
quantifications.  At a high-level, the data analysis software 
has four major components: mass calibration, GC peak 
finding, compound identification, and compound 
quantification (Figure 1).  
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Figure 1: A block diagram illustrating the four major components of the VCAM DASW and information flow among 
them.

3. MASS CALIBRATION 

The mass calibration routine maps raw instrument channel 
numbers to corresponding atomic mass units for later use in 
GC peak finding and MS spectral matching (compound 
identification).  The algorithm aligns ion counts integrated 
over time with the two earliest high-intensity channels with 
the expected mass positions of major constituents nitrogen 
(N2 at 28 AMU) and oxygen (O2 at 32 AMU), and later 
peaks with calibration gases acetone (CH3COCH3) and 
fluorobenzene (C6H5F) (when available) and performs a 
mass-channel least squares fit.  As a sanity check, an 
approximate mass-channel mapping is derived from the 
Mathieu equation [4] by using parameter values obtained 
from the VCAM RF ramp hardware registers.  A detailed 
description of this procedure is follows. 

We compute a total ion chromatogram (TIC) from the mass 
spectra by summing ion counts over mass channels for each 
scan time: 

TIC(scan) = I(scan,channel)
channel

  

Then we smooth the TIC by averaging over adjacent 
neighbor scans using a window of size three: 

J(scan) = I(scan −1)+ I(scan)+ I(scan +1)
3

 

From the smoothed TIC, we calculate the overall noise 
factor (Nf) of the data.  The noise factor is identical to that 
performed by NIST AMDIS [7].  Scans are divided into 12 
channel segments and the mean of each segment is 
computed.  Within each segment, the number of times the 
data, taken in pairs, �“cross�” the mean is counted.  If the 
number of crossings is larger than six, the segment is 
marked as nominal background. The median of the 
difference between a segment�’s ion counts and the average 
ion count present in the nominal background segments is 
taken. Call the median of the difference md(segment). The 

median of md(segment) is the noise factor of the total ion 
chromatogram. 

If a noise factor cannot be computed, the whole total ion 
chromatogram is treated as a single elution peak. Once the 
noise factor is found, elution peaks are located using J(scan) 
and Nf. 

Candidate mass peaks above background are chosen such 
that their width is at least seven channels and the 
preliminary peak height is greater than the threshold given 
by the noise factor [2, 7]. 

S > N ,

where

S = J( peak)− J(background)

N = 5Nf J( peak)

 

If no elution peaks are found, the entire total ion 
chromatogram is treated as a single elution peak. 

When only one elution peak is present (including the case 
that the total chromatogram is treated as one elution peak), 
the peak is assumed to be air.  When multiple elution peaks 
are found, the first peak is treated as an air peak and the 
remaining peaks are treated as potential acetone peaks. 

Next we find channel peaks of each TIC elution peak. 
Channel peaks are found as follows. First compute the mass 
spectrum of one elution peak. 

I(channel ) = I(scan ,channel )
scan=left limit of thepeak

scan=right limit of thepeak

  

Second, find the width of the largest channel peak. The 
largest channel peak�’s width is defined as the channel range 
within which the ion count keeps descending as it goes 
away from the largest peak. Half of the largest channel peak 
width is used as the threshold of the peak width to find 
other channel peaks. If an ion count of a given channel is 
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the largest within the threshold range (channel �– 
threshold_width, channel + threshold_width), the channel is 
considered a channel peak. 

For the air (N2 and O2) elution peak, we then identify the 
two largest channel peaks (channel A and channel B) and 
assign them masses 28 and 32. The smaller channel number 
is assigned mass 28 and the larger channel number is 
assigned mass 32. Using the two channel-mass pairs 
(channel A, 28) and (channel B, 32), we find the linear 
equation for the relationship between channel number and 
mass charge (m/z). 

We refine this initial fit by applying the mass-channel linear 
equation to other channel peaks. In particular we find the 
channel peaks (channel C and channel D) that are the 
closest to atmosphere major constituent calibration masses 
for argon (40 AMU) and CO2 (44 AMU).  The four 
channel-mass pairs (channel A, 28), (channel B, 32), 
(channel C, 40), (channel D, 44) are fit to a linear equation 
for the relationship between channel number and mass 
charge (m/z): 

mass = a × channel + b  

With a four-point channel-mass calibration, we search for 
acetone.  For each of the potential acetone elution peaks the 
two largest channels are identified (channel E, channel F) 
and assigned calibration mass 43 and 58. We record two 
channel-mass pairs: (channel E, 43) and (channel F, 58).  
By combining the two channel-mass pairs from the acetone 
peak with the four channel-mass pairs from the air peak we 
obtain a six channel-mass pair linear fit.   Finally, we asses 
the quality of the fit. 

If only an air peak was found, we use the linear equation 
from the air elution peak to estimate the error of each 
calibration mass (28, 32, 40, and 44).  If both an air peak 
and a potential elution peak are used in the mass calibration, 
use the linear equation from the two elution peaks to 
estimate the error of each calibration mass (28, 32, 40, 43, 
44, 58). 

Error (m) = m − (a × channel + b ) 

If the maximum error is smaller than 0.5 AMU, the mass 
calibration is considered successful.  For compound 
identification, masses are binned to a resolution of 1 AMU 
to allow matching of mass fractionation patterns to those in 
the NIST Spectral Library [6, 10]. A mass calibration error 
greater than 0.5 AMU results in incorrect mass patterns and 
results poor identification performance. 

4. GC PEAK FINDING 

Gas Chromatograph (GC) peak finding is performed 
according to the NIST Automated Mass Spectral 
Deconvolution and Identification System (AMDIS) 
algorithm [2, 7]. 

The VCAM GC/MS unit produces data as a 2D grid of ion 
counts with axes representing discretized elution time vs. 
mass to charge ratio in units of AMU per fundamental 
electron charge (Figure 2). 

 

Figure 2: An overhead view of a VCAM GC/MS image, 
color-coded according to ion count.  Notice the 
persistent nitrogen and oxygen mass lines present 
throughout the GC/MS run. 

It is customary to refer to the m/z ratio simply as �“mass�” 
and assume units of AMU despite this not being precisely 
correct if multiple ionizations are possible. Multiple 
ionizations permit apparent fractional �“masses�” to appear, 
and the scanning resolution the VCAM MS sensor 
effectively detects sub-AMU accuracy. However, as the 
identification library we intend to use [6, 10] has only been 
recorded to integer AMU/z accuracy, our first step is to sum 
all bins such that our resolution along the mass axis only 
measures integer values of AMU/z. In our case, this results 
in mass channels ranging from 20 to 400. We have 
considered, as a means of increasing identification 
accuracy, using the full mass/charge resolution of the 
device; however, this would entail the manual creation of a 
compound identification library either in very controlled, 
reliable conditions using highly standard equipment.  In our 
case, the labor required for such an approach was beyond 
the scope of our project, and thus we instead sacrificed sub-
integer mass accuracy. With our data in this format, the 
AMDIS identification method [7, 5, 6] is then broken into 
four main algorithms: noise analysis, time peak 
identification, processing identified peaks into potential 
compound spectra, and finally matching these potential 
compounds against the library standards. In the coming 
description, we will be working individually with mass 
channel data as well as TIC, which is merely the summation 
of all ion counts across all channels (Figure 3). 

Channel Number 

Tim
e (sec) 
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Figure 3: Ion counts vs. time summed over all mass 
channels (TIC) with time sample # on the horizontal.  
This plot can be viewed as a vertical slice of Figure 2. 

Where TIC may pick up weak elution events present across 
many channels but relatively weak in each, it may miss 
activity in only one or two channels that would be quite 
apparent in a channel-by-channel approach. Thus, both 380 
individual mass channels and the TIC signal are used in all 
analysis below. The original AMDIS method includes 
details to estimate a �“lowest sensitivity�” for GC./MS 
instruments, such as anything less than five ion counts will 
be truncated to zero; however, the VCAM MS sensor 
accurately measures even single ion counts, and thus no 
such logic was required for our AMDIS adaptation. 

Noise Analysis 

AMDIS depends crucially on the concept of accurate 
recognition of peaks of ion counts in time.  Determination 
of a peak's veracity, however, depends critically on the 
relative size of the potential peak versus the ambient noise 
in the measured signal.  Thus we require an estimate of this 
noise in some meaningful unit.  We define a �“noise factor�” 
(Nf) as the mean fluctuation of a �“calm�” (no elution event) 
region of our grid divided by the square root of the mean 
signal. To calculate this value, we break each channel's 
signal (including TIC as one such channel) into segments of 
12 time samples.  Each segment is then examined to count 
the number of times its signal crosses its mean value.  If that 
number is less than 4, the segment is rejected as likely 
having an elution event or instrument instability occurring. 
For each accepted segment, we then compute: 

mean(| signal − mean(signal) |)

mean(signal)
 

This yields a distribution of candidate noise estimates.  The 
median of these noise estimates is then calculated, yielding 
our final noise factor (Nf).  We are now ready to define the 
significance of any particular peak relative to this noise 
estimate.  This procedure must be done once per dataset and 
may fail if there are no regions of sufficiently �“flat�” signal 

such as if there is insufficient lead or lag time surrounding 
elution events. 

Temporal Peak Identification 

For each channel, we now scan for any significant peaks.  
For each local maxima, we begin expanding a surrounding 
local window.  This expansion occurs to the left (earlier 
time) and right (later time) independently.  A maximum size 
of 12 time samples is permitted in either direction.  Our 
estimate for the noise of this particular window is Nf x 
sqrt(smallest_signal), where the smallest signal is for this 
window only.  We then begin to expand, sample by sample, 
our window about the central peak.  If the signal rises five 
times the previous noise estimate above the lowest signal 
thus seen within the expanding window, we determine we 
have left the influence of the current peak and stop 
expansion.  If the difference between the current signal and 
the peak signal has become more than 95% of the peak's 
height relative to the window's lowest signal, we determine 
we have captured the entire peak and stop expansion.  
Finally, if we encounter two sequential zero signal samples, 
we conclude the elution event must be over and stop 
expansion.  Thus, utilizing these three conditions, we now 
have a window bracketing the current local signal maxima. 
Note that these windows can and usually do overlap one 
another in noisy samples. Typical GC/MS time profiles 
have sharper onset rise and a smoother, longer decay tail, 
and thus these windows are usually asymmetric about the 
central peak. 

Within this window, we now calculate three basic peak 
parameters: the relative peak height, a precision estimate of 
the true peak height in time, and the maximum sharpness of 
the peak.  Relative peak height is a somewhat ornate 
calculation wherein we first fit a line to the lowest sample 
left and right of the peak in the window and subtract this out 
as our first initial guess at bias and instrument drift.  We 
then fit a second line through all of the lowest half points 
within the window.  The relative height is then determined 
by the absolute peak height minus this second baseline plus 
the mean relative height of the two samples to the 
immediate left and right of the main peak, divided by the 
noise estimate of the peak given simply as Nf x 
sqrt(peak_absolute_signal).  The second peak parameter of 
precise location in time is determined by performing a 
parabolic fit to the peak maxima and its two nearest 
neighbors.  Finally, the maximum sharpness is the 
maximum of the following quantity calculated for all t 
within the window of interest: 

sharpness[ t] =
signal[ tpeak ]− signal[ t]

(t − tpeak )( N f signal[ tpeak ])
 

This sharpness maxima is found independently for the left 
and right windows relative to the central peak, and the final 
reported sharpness is the sum of both.  Armed with these 

Time (sec) 

Total Ion C
ount 
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three parameters, we may now judge the peak to be of 
interest or not.  If the relative peak sharpness is not at least 
two for the TIC or three for individual channels, the peak is 
rejected as too broad.  Likewise, the peak is rejected if the 
relative height fails the following where min_height is 12 
for TIC and three for individual channels: 

relative _ peak _ height > total _ peak _ width + 4.0
total _ window _ size ⋅ min_height

 
This process generates hundreds to thousands of validated 
peaks for a typical dataset. We are now faced with 
packaging these peaks into coherent groupings of candidate 
compounds for comparison using their elution times and 
peak shapes as guides. 

Compound Packaging 

The problem of identifying a group of peaks as part of a 
single candidate compound is twofold: first we must 
determine which peaks go together, and second whether two 
extremely close potential compounds are in fact two 
overlapping coelutions or a single noisy elution.  To do this, 
we define a grid ten times as dense in time as our sample 
data. Running through all peaks previously validated from 
individual channels or the TIC, we add to each of these bins 
any peak's sharpness whose precise maximizing time 
(estimated by the parabolic fit above) falls within said bin.  
We also keep track of the �“dominant�” peak within each bin, 
namely that peak which possesses the greatest sharpness.  
Once this dense grid is formed with sums of sharpness 
within, we walk the grid until we find a bin with nonzero 
value.  If this bin's value is not larger than bins within two 
to the left and right, the bin is rejected as a potential 
compound elution as not being robust enough compared to 
nearby potential elutions.  Next we form the nearby_sum of 
all bins within two to the left and right.  From this value, we 
calculate an estimated width over which this bin must be the 
dominant event to be considered a compound elution.  This 
time width (in bin number) is given by the max(2, 
int(150/nearby_sum)). If this bin's value is greater than any 
other bin within this time width to the left and right, it is 
accepted as a compound elution at the precise time 
represented by this bin. 

For each compound elution time accepted above, we walk 
the entire list of peaks found in the peakfinding step. Any 
peak which a) is within the time width window given above 
of the current elution time, and b) has an area normalized 
height at least 75% of the dominant peak for this bin, we 
add as belonging to this elution event. Once our list of 
peaks is complete for each compound elution, we add 
together the original signals of every contributing peak 
within the window of this elution event to obtain a 
representative �“model�” of this particular elution. This 
model, baseline removed, will be then used to determine the 

mass spectrum actually reported to the identification step. 
This is done by performing a least squares fit of the form: 

mass_channel_ signal= b+ m⋅ 1,2,3,4,5,... + c ⋅ model  

where b is an overall ignored signal bias, m is an ignored 
linear trend attributed to device drift within a single elution 
time, and c is the actual contribution of this mass channel to 
the elution event (the value of interest). Finally, various 
flags can be added to this particular mass channel's 
contributing peak indicating it has a small signal/noise ratio 
(background peak), more than two zero counts are present 
within the signal window (could be spurious noise spike), or 
the fit error using the compound model is too large (badly 
modeled peak may not actually be part of this elution). 
These flags penalize individual peaks in the last step, that of 
compound identification. 

5. COMPOUND IDENTIFICATION 

Compound identification (MS spectral matching) is 
performed according to the NIST AMDIS algorithm [7, 5, 
6]. 

We now have a list of potentially dozens of elution times (to 
one tenth sample time accuracy) with associated of mass 
channel peaks and relative amplitudes, in addition to flags 
describing hazardous characteristics. To identify an 
extracted elution, each elution must be matched against 
entries of known compounds within a pre-existing library. 
The �“match factor�” that describes how well a candidate 
compound matches a library compound is formed via the 
summation of the dot product of mass spectra peaks in the 
candidate compound with the library entry to which it is 
being compared, weighted by the square of the mass at each 
channel, and penalized by any associated flags. 

match_ factorlibrary= peakunknown,m
m

mass_ channels

 ⋅ peaklibrary,m ⋅ flagm ⋅m2 

Heavier masses are more significant as they represent larger 
(and hence more unique) molecular fragments thus bearing 
greater identification potential. Unfortunately, the VCAM 
instrument�’s current sensitivity decreases with larger mass, 
which makes the precise weighting a matter of debate and 
research. For each elution time event we now have a list of 
match factors (approximate likelihood) for each entry 
within the spectral library. The library compound with the 
highest match factor is reported as the best possible match, 
and its match factor is provided so the user may have some 
estimate of trustworthiness. 
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6. COMPOUND QUANTIFICATION 

Compound quantification analysis reports the concentration 
(in parts-per-million) of compounds that have been 
identified by the NIST AMDIS spectral matching algorithm. 
 VCAM project scientists Ara Chutjian, Murray Darrah, and 
John MacAskill provided the compound quantification 
method.  To quantify compound concentration, first the total 
ion count under an elution peak (signal) is found.  Second, 
this ion count is compared against a concentration curve 
(one for each compound to be quantified), to arrive at the 
total compound concentration. Concentration curves are 
determined empirically, on the ground, with the VCAM 
development and protoflight units.  The family of 
concentration curves is parameterized by two constants (  
and ) as follows: 

signal = α(concentration)β  
Transforming the concentration curve to log-log space 
yields constants a and b and the total concentration: 

log( concentration ) = a log( signal )+ b  

7. INITIAL RESULTS 

A major challenge in verifying the VCAM DASW 
identification and quantification algorithms has centered on 
the dearth of data currently available for testing.  The 
VCAM instrument is still under active development and 
detailed and dedicated compound testing has only recently 
become the scientist and instrument team�’s highest priority. 
 Table 1 presents a snapshot of all data analysis 
identification results on all readily available compounds 
circa March 2006, the last time compounds for run through 
the instrument for hardware detection and software 
identification testing.  In come cases, the data analysis 
algorithms performed well and in others, greater accuracy is 
certainly desired.  With the exception of acetone however, 
none of compounds were present in large enough numbers 
to provide meaningful accuracy statistics.  At the time of 
this paper, the VCAM team has successfully uncovered and 
recovered from several instrument contaminations events 
that were hindering compound detection by the hardware 
and also confounding data analysis software.  Compound 
testing has begun in earnest and we fully expect the data 
analysis software will meet VCAM mission accuracy 
requirements. 

10055toluene

10033pentane

6732heptane

6732benzene

301032-propanol

83651-butanol

4052methanol

42198ethanol

7543dichloromethane

908072acetone

10011acetaldehyde

Accuracy
(%)

Total
SamplesCorrectSample

 

Table 1: A snapshot of data analysis and identification 
rate results on all readily available compounds circa 
March 2006. 

8. CONCLUSION 

We presented our variant of the de-facto industry standard 
Automated Mass Spectral Deconvolution and Identification 
System (AMDIS) algorithm developed by the National 
Institute of Standards and Technology (NIST). VCAM 
employs AMDIS to autonomously identify and quantify 
chemical species from PCGC/MS data.  In addition to stock 
AMDIS peak-finding and spectral matching, we augmented 
the AMDIS method with mass calibration on the front-end 
and compound quantification on the back-end.   Analysis 
results on initial laboratory datasets are promising, but more 
testing is required. 
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