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Abstract

We extend the Structural Correspondence Learning (SCL) domain adaptation al-
gorithm of Blitzer et al. [4] to the realm of continuous signals. Given a set of
labeled examples belonging to a “source” domain, we select a set of unlabeled
examples in a related “target” domain that play similar roles in both domains.
We define a mapping into a common feature space using the pivot sample, which
allows us to adapt a classifier trained on source examples to classify target exam-
ples. We show that when between-class distances are relatively preserved across
domains, we can automatically select target pivots to bring the domains into cor-
respondence, allowing us to adapt a classifier trained on source data, to classify
target data.

1 Structural Correspondence Learning for Continuous Spaces

We extend the Structural Correspondence Learning (SCL) algorithm of Blitzer et al. [4] to the realm
of continuous signals. SCL is a domain adaptation technique which creates a mapping between a
“source” domain consisting of labeled examples, and an unlabeled “target” domain using a set of
“pivot features” common to both domains. In text classification scenarios, these consist of terms
(words) that serve similar roles in both domains, so that the role of other features can be inferred
by correlation with these features. We extend this concept to continuous domains where the objects
to be classified are continuous-valued functions, making it applicable to data such as time series or
electromagnetic spectral signatures.

Recent work by Balcan et al. [1] provides an elegant method to define a correspondence mapping in
continuous spaces. They illustrated that desiging a good feature space is similar to designing a good
kernel function, and under certain conditions, a kernel which approximately preserves the margin of
a max-margin separator can be constructed using a set of unlabeled samples. By projecting samples
into a space defined by (distances to) the unlabeled samples, one can potentially harness the power of
a high-dimensional kernel mapping in this lower-dimensional feature space. In this vein, we define
our correspondence mapping with pivot samples, rather than pivot features. As with pivot features,
pivot samples are samples which serve similar roles in both domains, and are diverse enough to
characterize the nuances of the classification task.

Determining a mapping between domains is closely related to the topic of manifold alignment.
Most manifold alignment algorithms assume some knowledge of the target domain in the form of
paired (source to target) correspondences [?], [?] or a small number of labeled target examples [?],
to define a transformation that reconciles the feature spaces, but recent work (e.g., [?]) determines
the correspondence mapping automatically by matching local geometric properties across feature
spaces.

In this work, we present Multiclass Continuous Correspondence Learning (MCCL): a domain adap-
tation technique for high-dimensional continuous data. We leverage structured relationships between
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a set of known source classes to automatically select a set of pivot samples to translate between
source and target domains.

2 Domain Adaptation and Classification with MCCL

2.1 Approach Overview

We assume we have N labeled examples (XS
, Y

S) drawn from a “source” distribution DS to train
a predictor to classify M unlabeled examples XT drawn from a “target” distribution DT (assumed
available at training time). We assume the two distributions share a set of classes with labels Y =
{1, . . . ,K}, and examples x in both domains are F -dimensional vectors, where F is the number
of features. We use the following transformation function to map a sample x to the feature space
defined by pivots pi ∈ P (we hereafter refer to this feature space as the “R-space”).

R(x, P ) =

�
d(x,p1)�Q
�=1 d(x,p�)

, . . . ,
d(x,pQ)�Q
�=1 d(x,p�)

�
(1)

Algorithm 1 describes the Multiclass Continuous Correspondence Learning Algorithm (MCCL).
Given source pivots PS , we select target pivots PT which best preserve the (relative) relationships
between source pivots (Step 1). Then, we train a multiclass predictor using the transformed source
samples (Step 2) to classify the transformed target samples (Step 3).

Algorithm 1 Multiclass Continuous Correspondence Learning (MCCL)

Input: source training data (XS
, Y

S), target data X
T , source pivots PS .

Output: predicted target labels Y T

1: Build target pivot set PT from X
T by selecting best matching target pivot, pT

i = xT
� , for each

source pivot pS
i ∈ P

S according to � = argmin
i

�R(pS
i , P

S)−R(xT
i , P

S)�, i ∈ {1, . . . ,M}

2: Train a multiclass predictor in the R-space p : R(x, P ) → Y using R
S = (R(xS

i , P
S))Ni=1.

3: return Prediction vector Y T = (p(R(xT
i , P

T )))Mi=1, x
T
i ∈ X

T .

We use a technique inspired by the H-divergence [3] to measure the quality of the pivots (PS
, P

T ).
The (empirical) H-divergence measures the difference between two distributions by finding a clas-
sifier which separates samples drawn from one distribution from samples drawn from the other. As
low H-divergence scores indicate we cannot distinguish between domains, we seek a set of pivots
with small average per-class H-divergence. We describe the Pivot Divergence (Pdiv) function below.

Algorithm 2 Pivot Divergence (Pdiv)

Input: pivot sets (PS
, P

T ), length Q =
�K

k=1 Qk

Output: divergence score H .
1: for k = 1 to K do
2: Define label vector y = ((−1)Qk

i=1, (1)
Qk
i=1) for pivot samples belonging to class k.

3: Train binary predictor h : R(p, P ) → {−1, 1}.
4: Calculate divergence between class k source and target pivots

Hk = 1
2Qk

��Qk

i=1 I(h(pi, P
S) = yi) +

�2Qk

i=Qk+1 I(h(pi, P
T ) = yi)

�

5: return H = 1
K

�K
i=1 Hk

2.2 Evaluation Methodology

We consider several classification contexts to evaluate the performance of the MCCL algorithm.
First, we calculate the baseline “within-domain” source (S) and target (T) classification accuracies.
The maximum of these provides an approximate upper bound on the best achievable accuracy with
domain adaptation (ST), while the minimum of these gives a lower bound we expect to improve
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by reconciling the source and target spaces. Next, we calculate the classification accuracy in the
R-space defined by Qk pivots per class sampled from labeled source and target data (R-S, R-T,
and R-ST, respectively), which measures the change in accuracy induced by the R-transform when
labels are available in both domains. Last, we calculate the accuracy using Algorithm 1 (R∗-ST)
to select target pivots using only labeled source data. In the R-space cases, we select the set of Qk

samples nearest to each class mean as the source pivots PS . We classify samples using the multiclass
(one-vs-one) Support Vector Machine implemented in the LIBSVM package [5], with 5 fold cross-
validation. We estimate the slack parameter C via grid search over values {10−2

, . . . , 102}.

2.3 Synthetic Data Example

We first provide an illustrative example on a simple synthetic dataset, shown in Figure 1 (left two
plots), along with classification accuracies for the cases defined in section 2.2. Each class consists
of 500 samples drawn from one of four 2D Gaussians. The mean of each target Gaussian (bottom
plot) is a randomly perturbed version of its corresponding source mean (top plot). Diamond markers
indicate the Qk = 50 selected source/target pivots. On the right we have the source (top, offset
for clarity) and target (bottom) class means µ

S
i , µT

i in the R-space R(µi, P ), where P is the set
of pivots in the corresponding space (ordered by class membership). Visually, the means in the R-

XS

R(µi,P) (P ordered by class)

XT
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Figure 1: Left: 4 class synthetic source (top) and tartet (bottom) data. Right: means of the source pivots (top,
offset for clarity) and the selected target pivots (bottom) in the R-space R(µi, P )

space appear better reconciled than in the original feature space, though not perfectly so due to the
non-linear transformation between the two domains (particularly classes 2 (cyan) and 3 (yellow)).
Despite this, we see a significant improvement in accuracy in the R-space cases (R-ST and R∗-
ST) over the baseline (ST) accuracy, as the transformed samples better capture the structured class
relationships in each domain.

2.4 Domain Adaptation for Hyperspectral Imagery

We next evaluate our algorithm on a domain adaptation problem in the hyperspectral imaging do-
main. Here, our goal is to classify a set of mineralogical samplestaken from one image, using
training data from another image which was captured under different conditions. Our data consists
of five mineralogical classes manually labeled by an expert geologist from two hyperspectral images
of the Cuprite mining district in Cuprite, NV. The first image (hereafter referred to as “Av97”) was
captured in June 19, 1997 by the AVIRIS instrument, consists of 512×614 samples (“pixels”), and
was studied in detail in [6]. The second image (hereafter referred to as “Hyp11”) was captured on
Feb. 06, 2011 by the Hyperion instrument onboard the EO-1 satellite, and contains 1798×779 pix-
els. Each pixel is a 29-dimensional vector of image radiance values measured at wavelengths in the
range 2.1029-2.3249µm – an expert-defined range which captures relevant mineralogical character-
istics for the selected classes. Preprocessing steps for each image include: atmospheric calibration
(i.e., conversion from spectral radiance to surface reflectance) and illumination normalization (i.e.,
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scaling each pixel by its L2 norm). Also, because the smallest image consists of over 300,000 pixels,
we segment each image using the technique described in [7]. The means of the resulting segments
form the set of target pixels we use to build the target pivot set PT .

Due to differences in sensor types, environmental conditions, capture dates, and atmospheric cali-
bration techniques, identical classes are represented differently in each image. Scaling each sample
by its L2 norm accounts for scale differences to some degree, but can be further reconciled by ap-
plying whitening filters to each image. Figure 2 shows the whitened class means in each image.
However, as we show in subsequent sections, these steps generally do not allow for robust class
knowledge transfer between images.

2.1029 2.1685 2.2341 2.2996 2.3652
−1

−0.5

0

0.5

1

AV
97

d=0, AV97=0.984, Hyp11=0.865
AV97−>Hyp11=0.810, Hyp11−>AV97=0.957

2.1029 2.1685 2.2341 2.2996 2.3652
−1

−0.5

0

0.5

1

H
yp

11

2.1029 2.1685 2.2341 2.2996 2.3652
−1

−0.5

0

0.5

1

AV
97

d=0, AV97=0.984, Hyp11=0.865
AV97−>Hyp11=0.810, Hyp11−>AV97=0.957

2.1029 2.1685 2.2341 2.2996 2.3652
−1

−0.5

0

0.5

1

H
yp

11

2.1029 2.1685 2.2341 2.2996 2.3652

0.16

0.18

0.2

0.22

0.24

Sr
c

Class means d=0, S=0.98, T=0.86, ST=0.57, TS=0.18

 

 
Calcite
 Jarosite + Alunite
Alunite
 Kaolinite
Muscovite

2.1029 2.1685 2.2341 2.2996 2.3652
0.12

0.14

0.16

0.18

0.2

0.22

0.24

Tg
t

 

 
Calcite
 Jarosite + Alunite
Alunite
 Kaolinite
Muscovite

W
hi

te
ne

d 
Re

fle
ct

an
ce Av97 Hyp11

Wavelength (μm) Wavelength (μm)

Figure 2: Whitened class means for Av97 (left) and Hyp11 (right) images.

We consider two domain adaptation scenarios: in the first, we train a classifier using the Av97 image
as the source data and test the classifier using the Hyp11 image as the target data. We refer to this
scenario as “Av97⇒Hyp11.” In the second scenario we use the Hyp11 data as the source, with
Av97 as the target data. We refer to this scenario as “Hyp11⇒Av97.” Figure 3 gives classification
accuracies and Pdiv scores with respect to the number of pivots per class Qk. In both scenarios, we
see significant improvements in accuracy in the domain adaptation cases (R-ST and R∗-ST) over the
baseline (ST). We also observe that selecting pivots using Algorithm 1 (R∗-ST) yields comparable
results to using labeled pivots (R-ST) for domain adaptation. However, in the Av97⇒Hyp11 sce-
naro, we see worse domain adaptation performance than in the Hyp11⇒Av97 scenario, along with
a larger gap between the R-ST and R∗-ST results. Because the mapping between domains is defined
by the source pivots, if the classes are more separated in the target domain, then in the source (which
is the case in the Hyp11⇒Av97 scenario), the mapping performs well, even if the source classes
aren’t well-separated. However, if the target data is less separable than the source (which occurs
in the Av97⇒Hyp11 scenario), then the source pivots may not capture enough info to resolve the
ambiguous target classes.
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Figure 3: Classification accuracies for contexts described in Section 2.2 (left two plots) and Pdiv scores vs.
pivots/class Qk (right two plots) for Av97⇒Hyp11 and Hyp11⇒Av97 scenarios. Black diamonds indicate the
best Pdiv score for the R∗-ST context, with accuracy shown in the right two plots.

For the Av97⇒Hyp11 scenario, Qk = 10 attains the minimum Pdiv value, where we observe the
maximum R∗-ST classification accuracy. Also, Pdiv increases with Qk while accuracy remains
relatively constant, indicating that additional pivots determined by well-separated Av97 data do not
improve domain adaptation. In the Hyp11⇒Av97 scenario, while we see a gradual decrease in
Pdiv for increasing Qk – with slight improvements in accuracy, the Av97 classes are well separated
for mid-range Qk values ∈ {10, . . . , 50}. For small Qk, we observed low accuracy in all of R-S,
R-T and R-ST cases, indicating the pivot set is inadequate to describe the classificatin task. We
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can filter such degenerate cases by ensuring that the R-space accuracy on the source data (R-S)
is approximately the same as in the original feature space (S) (an approach also described in [2]).
This allows us to define a lower limit on the number of pivots necessary to define a feature space
expressive enough for domain adaptation. We note that the accuracy on the within-domain cases
(S, T) are approximately equivalent to their corresponding R-space cases (R-S, R-T) when Qk is
sufficiently large.
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