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Abstract

We take a new look at parameter estimation for Gaussian Mixture Model (GMMs).
Specifically, we advance Riemannian manifold optimization (on the manifold of
positive definite matrices) as a potential replacement for Expectation Maximiza-
tion (EM), which has been the de facto standard for decades. An out-of-the-box
invocation of Riemannian optimization, however, fails spectacularly: it obtains
the same solution as EM, but vastly slower. Building on intuition from geometric
convexity, we propose a simple reformulation that has remarkable consequences:
it makes Riemannian optimization not only match EM (a nontrivial result on its
own, given the poor record nonlinear programming has had against EM), but also
outperforms it in many settings. To bring our ideas to fruition, we develop a well-
tuned Riemannian LBFGS method that proves superior to known competing meth-
ods (e.g., Riemannian conjugate gradient). We hope that our results encourage a
wider consideration of manifold optimization in machine learning and statistics.

1 Introduction
Gaussian Mixture Models (GMMs) are a mainstay in a variety of areas, including machine learning
and signal processing [4, 10, 16, 19, 21]. A quick literature search reveals that for estimating pa-
rameters of a GMM, the Expectation Maximization (EM) algorithm [9] is still the de facto choice.
Over the decades, other numerical approaches have also been considered [24], but methods such as
conjugate gradients, quasi-Newton, Newton, have been noted to be usually inferior to EM [34].

The key difficulty of applying standard nonlinear programming methods to GMMs is the positive
definiteness (PD) constraint on covariances. Although an open subset of Euclidean space, this con-
straint can be difficult to impose, especially in higher-dimensions. When approaching the boundary
of the constraint set, convergence speed of iterative methods can also get adversely affected. A par-
tial remedy is to remove the PD constraint by using Cholesky decompositions, e.g., as exploited in
semidefinite programming [7]. It is believed [30] that in general, the nonconvexity of this decom-
position adds more stationary points and possibly spurious local minima.1 Another possibility is
to formulate the PD constraint via a set of smooth convex inequalities [30] and apply interior-point
methods. But such sophisticated methods can be extremely slower (on several statistical problems)
than simpler EM-like iterations, especially for higher dimensions [27].

Since the key difficulty arises from the PD constraint, an appealing idea is to note that PD matrices
form a Riemannian manifold [3, Ch.6] and to invoke Riemannian manifold optimization [1, 6].
Indeed, if we operate on the manifold2, we implicitly satisfy the PD constraint, and may have a
better chance at focusing on likelihood maximization. While attractive, this line of thinking also
fails: an out-of-the-box invocation of manifold optimization is also vastly inferior to EM. Thus, we
need a new approach to challenge the hegemony of EM; we outline one such new approach below.

1Remarkably, using Cholesky with the reformulation in §2.2 does not add spurious local minima to GMMs.
2Equivalently, on the interior of the constraint set, as is done by interior point methods (their nonconvex

versions); though these turn out to be slow too as they are second order methods.
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Key idea. Intuitively, the mismatch is in the geometry. For GMMs, the M-step of EM is a Euclidean
convex optimization problem, whereas the GMM log-likelihood is not manifold convex3 even for a
single Gaussian. If we could reformulate the likelihood so that the single component maximization
task (which is the analog of the M-step of EM for GMMs) becomes manifold convex, it might have a
substantial empirical impact. This intuition supplies the missing link, and finally makes Riemannian
manifold optimization not only match EM but often also greatly outperform it.

To summarize, the key contributions of our paper are the following:
– Introduction of Riemannian manifold optimization for GMM parameter estimation, for which we

show how a reformulation based on geodesic convexity is crucial to empirical success.
– Development of a Riemannian LBFGS solver; here, our main contribution is the implementation

of a powerful line-search procedure, which ensures convergence and makes LBFGS outperform
both EM and manifold conjugate gradients. This solver may be of independent interest.

We provide substantive experimental evidence on both synthetic and real-data. We compare man-
ifold optimization, EM, and unconstrained Euclidean optimization that reformulates the problem
using Cholesky factorization of inverse covariance matrices. Our results show that manifold opti-
mization performs well across a wide range of parameter values and problem sizes. It is much less
sensitive to overlapping data than EM, and displays much less variability in running times.

These results are very encouraging, and we believe that manifold optimization could open new
algorithmic avenues for mixture models, and perhaps for other statistical estimation problems.

Note. To aid reproducibility of our results, MATLAB implementations of our methods are available
as a part of the MIXEST toolbox developed by our group [12]. The manifold CG method that we use
is directly based on the excellent toolkit MANOPT [6].

Related work. Summarizing published work on EM is clearly impossible. So, let us briefly men-
tion a few lines of related work. Xu and Jordan [34] examine several aspects of EM for GMMs and
counter the claims of Redner and Walker [24], who claim EM to be inferior to generic second-order
nonlinear programming techniques. However, it is now well-known (e.g., [34]) that EM can attain
good likelihood values rapidly, and scale to much larger problems than amenable to second-order
methods. Local convergence analysis of EM is available in [34], with more refined results in [18],
who show that for data with low overlap EM can converge locally superlinearly. Our paper develops
Riemannian LBFGS, which can also achieve local superlinear convergence.

For GMMs some innovative gradient-based methods have also been suggested [22, 26], where the
PD constraint is handled via a Cholesky decomposition of covariance matrices. However, these
works report results only for low-dimensional problems and (near) spherical covariances.

Our idea of using manifold optimization for GMMs is new, though manifold optimization by itself is
a well-developed subject. A classic reference is [29]; a more recent work is [1]; and even a MATLAB
toolbox exists [6]. In machine learning, manifold optimization has witnessed increasing interest4,
e.g., for low-rank optimization [15, 31], or optimization based on geodesic convexity [27, 33].

2 Background and problem setup
The key object in this paper is the Gaussian Mixture Model (GMM), whose probability density is

p(x) :=
∑K

j=1
αjpN (x;µj ,Σj), x ∈ Rd,

and where pN is a (multivariate) Gaussian with mean µ ∈ Rd and covariance Σ � 0. That is,

pN (x;µ,Σ) := det(Σ)−1/2(2π)−d/2 exp
(
− 1

2 (x− µ)TΣ−1(x− µ)
)
.

Given i.i.d. samples {x1, . . . ,xn}, we wish to estimate {µ̂j ∈ Rd, Σ̂j � 0}Kj=1 and weights α̂ ∈
∆K , the K-dimensional probability simplex. This leads to the GMM optimization problem

max
α∈∆K ,{µj ,Σj�0}Kj=1

n∑
i=1

log
(∑K

j=1
αjpN (xi;µj ,Σj)

)
. (2.1)

3That is, convex along geodesics on the PD manifold.
4Manifold optimization should not be confused with “manifold learning” a separate problem altogether.
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Solving Problem (2.1) can in general require exponential time [20].5 However, our focus is more
pragmatic: similar to EM, we also seek to efficiently compute local solutions. Our methods are set
in the framework of manifold optimization [1, 29]; so let us now recall some material on manifolds.

2.1 Manifolds and geodesic convexity
A smooth manifold is a non-Euclidean space that locally resembles Euclidean space [17]. For opti-
mization, it is more convenient to consider Riemannian manifolds (smooth manifolds equipped with
an inner product on the tangent space at each point). These manifolds possess structure that allows
one to extend the usual nonlinear optimization algorithms [1, 29] to them.

Algorithms on manifolds often rely on geodesics, i.e., curves that join points along shortest paths.
Geodesics help generalize Euclidean convexity to geodesic convexity. In particular, say M is a
Riemmanian manifold, and x, y ∈M; also let γ be a geodesic joining x to y, such that

γxy : [0, 1]→M, γxy(0) = x, γxy(1) = y.

Then, a set A ⊆ M is geodesically convex if for all x, y ∈ A there is a geodesic γxy contained
within A. Further, a function f : A → R is geodesically convex if for all x, y ∈ A, the composition
f ◦ γxy : [0, 1]→ R is convex in the usual sense.

The manifold of interest to us is Pd, the set of d × d symmetric positive definite matrices. At any
point Σ ∈ Pd, the tangent space is isomorphic to the set of symmetric matrices; and the Riemannian
metric at Σ is given by tr(Σ−1dΣΣ−1dΣ). This metric induces the geodesic [3, Ch. 6]

γΣ1,Σ2
(t) := Σ

1/2
1 (Σ

−1/2
1 Σ2Σ

−1/2
1 )tΣ

1/2
1 , 0 ≤ t ≤ 1.

Thus, a function f : Pd → R is geodesically convex on a set A if it satisfies

f(γΣ1,Σ2(t)) ≤ (1− t)f(Σ1) + tf(Σ2), t ∈ [0, 1], Σ1,Σ2 ∈ A.
Such functions can be nonconvex in the Euclidean sense, but are globally optimizable due to
geodesic convexity. This property has been important in some matrix theoretic applications [3, 28],
and has gained more extensive coverage in several recent works [25, 27, 33].

We emphasize that even though the mixture cost (2.1) is not geodesically convex, for GMM opti-
mization geodesic convexity seems to play a crucial role, and it has a huge impact on convergence
speed. This behavior is partially expected and analogous to EM, where a convex M-Step makes the
overall method much more practical. This intuition guides us to elicit geodesic convexity below.

2.2 Problem reformulation
We begin with parameter estimation for a single Gaussian: although this has a closed-form solution
(which ultimately benefits EM), it requires more subtle handling when using manifold optimization.
Consider the following maximum likelihood parameter estimation for a single Gaussian:

max
µ,Σ�0

L(µ,Σ) :=
∑n

i=1
log pN (xi;µ,Σ). (2.2)

Although (2.2) is a Euclidean convex problem, it is not geodesically convex on its domain Rd × Pd,
which makes it geometrically handicapped when applying manifold optimization. To overcome this
problem, we invoke a simple reparametrization6 that has far-reaching impact. More precisely, we
augment the sample vectors xi to instead consider yTi = [xTi 1]. Therewith, (2.2) turns into

max
S�0

L̂(S) :=
∑n

i=1
log qN (yi;S), (2.3)

where qN (yi;S) :=
√

2π exp( 1
2 )pN (yi; 0,S). Proposition 1 states the key property of (2.3).

Proposition 1. The map φ(S) ≡ −L̂(S), where L̂(S) is as in (2.3), is geodesically convex.

We omit the proof due to space limits; see [13] for details. Alternatively, see [28] for more general
results on geodesic convexity.

Theorem 2.1 shows that the solution to (2.3) yields the solution to the original problem (2.2) too.
5Though under very strong assumptions, it has polynomial smoothed complexity [11].
6This reparametrization in itself is probably folklore; its role in GMM optimization is what is crucial here.
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Figure 1: The effect of reformulation in convergence speed of manifold CG and manifold LBFGS methods
(d = 35); note that the x-axis (time) is on a logarithmic scale.

Theorem 2.1. If µ∗,Σ∗ maximize (2.2), and if S∗ maximizes (2.3), then L̂(S∗) = L(µ∗,Σ∗) for

S∗ =

(
Σ∗ + µ∗µ∗T µ∗

µ∗T 1

)
.

Proof. We express S by new variablesU , t and s by writing S =

(
U + sttT st
stT s

)
. The objective

function L̂(S) in terms of the new parameters becomes

L̂(U , t, s) = n
2 −

d
2 log(2π)− n

2 log s− n
2 log det(U)−

∑n

i=1

1
2 (xi − t)TU−1(xi − t)− n

2s .

Optimizing L̂ over s > 0 we see that s∗ = 1 must hold. Hence, the objective reduces to a d-
dimensional Gaussian log-likelihood, for which clearly U∗ = Σ∗ and t∗ = µ∗.

Theorem 2.1 shows that reformulation (2.3) is “faithful,” as it leaves the optimum unchanged. The-
orem 2.2 proves a local version of this result for GMMs.
Theorem 2.2. A local maximum of the reparameterized GMM log-likelihood

L̂({Sj}Kj=1) :=
∑n

i=1
log
(∑K

j=1
αjqN (yi;Sj)

)
is a local maximum of the original log-likelihood

L({µj ,Σj}Kj=1) :=
∑n

i=1
log
(∑K

j=1
αjpN (xi|µj ,Σj)

)
.

The proof can be found in [13].

Theorem 2.2 shows that we can replace problem (2.1) by one whose local maxima agree with those
of (2.1), and whose individual components are geodesically convex. Figure 1 shows the true import
of our reformulation: the dramatic impact on the empirical performance of Riemmanian Conjugate-
Gradient (CG) and Riemannian LBFGS for GMMs is unmistakable.

The final technical piece is to replace the simplex constraint α ∈ ∆K to make the problem un-
constrained. We do this via a commonly used change of variables [14]: ηk = log

(
αk

αK

)
for

k = 1, . . . ,K − 1. Assuming ηK = 0 is a constant, the final GMM optimization problem is:

max
{Sj�0}Kj=1,{ηj}

K−1
j=1

L̂({Sj}Kj=1, {ηj}K−1
j=1 ) :=

n∑
i=1

log
( K∑
j=1

exp(ηj)∑K
k=1 exp(ηk)

qN (yi;Sj)
)

(2.4)

We view (2.4) as a manifold optimization problem; specifically, it is an optimization problem on the
product manifold

(∏K
j=1 Pd

)
× RK−1. The next section presents a method for solving it.
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3 Manifold Optimization
In unconstrained Euclidean optimization, typically one iteratively (i) finds a descent direction; and
(ii) performs a line-search to obtain sufficient decrease and ensure convergence. On a Riemannian
manifold, the descent direction is computed on the tangent space (this space varies (smoothly) as
one moves along the manifold). At a point X , the tangent space TX is the approximating vector
space (see Fig. 2). Given a descent direction ξX ∈ TX , line-search is performed along a smooth
curve on the manifold (red curve in Fig. 2). The derivative of this curve at X equals the descent
direction ξX . We refer the reader to [1, 29] for an in depth introduction to manifold optimization.

Sd
+

X

TX

⇠X

Figure 2: Visualization of line-search on a
manifold: X is a point on the manifold, TX

is the tangent space at the point X , ξX is a
descent direction at X; the red curve is the
curve along which line-search is performed.

Successful large-scale Euclidean methods such as
conjugate-gradient and LBFGS combine gradients at the
current point with gradients and descent directions from
previous points to obtain a new descent direction. To adapt
such algorithms to manifolds, in addition to defining gra-
dients on manifolds, we also need to define how to trans-
port vectors in a tangent space at one point to vectors in a
different tangent space at another point.

On Riemannian manifolds, the gradient is simply a direc-
tion on the tangent space, where the inner-product of the
gradient with another direction in the tangent space gives
the directional derivative of the function. Formally, if gX
defines the inner product in the tangent space TX , then

Df(X)ξ = gX(gradf(X), ξ), for ξ ∈ TX .
Given a descent direction in the tangent space, the curve
along which we perform line-search can be a geodesic. A
map that takes the direction and a step length to obtain a corresponding point on the geodesic is
called an exponential map. Riemannian manifolds are also equipped with a natural way of trans-
porting vectors on geodesics, which is called parallel transport. Intuitively, a parallel transport is
a differential map with zero derivative along the geodesics. Using the above ideas, Algorithm 1
sketches a generic manifold optimization algorithm.

Algorithm 1: Sketch of an optimization algorithm (CG, LBFGS) to minimize f(X) on a manifold

Given: Riemannian manifold M with Riemannian metric g; parallel transport T on M; exponential map
R; initial value X0; a smooth function f
for k = 0, 1, . . . do

Obtain a descent direction based on stored information and gradf(Xk) using metric g and transport T
Use line-search to find α such that it satisfies appropriate (descent) conditions
Calculate the retraction / update Xk+1 = RXk (αξk)
Based on the memory and need of algorithm store Xk, gradf(Xk) and αξk

end for
return estimated minimum Xk

Note that Cartesian products of Riemannian manifolds are again Riemannian, with the exponential
map, gradient and parallel transport defined as the Cartesian product of individual expressions; the
inner product is defined as the sum of inner product of the components in their respective manifolds.
Different variants of Riemannian LBFGS can be obtained depending where to perform the vector

Definition Expression for PSD matrices
Tangent space Space of symmetric matrices

Metric between two tangent vectors ξ, η at Σ gΣ(ξ, η) = tr(Σ−1ξΣ−1η)
Gradient at Σ if Euclidean gradient is ∇f(Σ) gradf(Σ) = 1

2
Σ(∇f(X) + ∇f(X)T )Σ

Exponential map at point Σ in direction ξ RΣ(ξ) = Σ exp(Σ−1ξ)

Parallel transport of tangent vector ξ from Σ1 to Σ2 TΣ1,Σ2(ξ) = EξET , E = (Σ2Σ−1
1 )1/2

Table 1: Summary of key Riemannian objects for the PD matrix manifold.

transport. We found that the version developed in [28] gives the best performance, once we combine
it with a line-search algorithm satisfying Wolfe conditions. We present the crucial details below.
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3.1 Line-search algorithm satisfying Wolfe conditions
To ensure Riemannian LBFGS always produces a descent direction, it is necessary to ensure that the
line-search algorithm satisfies Wolfe conditions [25]. These conditions are given by:

f(RXk
(αξk)) ≤ f(Xk) + c1αDf(Xk)ξk, (3.1)

Df(RXk
(αξk))TXk,RXk

(αξk)(ξk) ≥ c2Df(Xk)ξk, (3.2)

where 0 < c1 < c2 < 1. Note that Df(Xk)ξk = gXk
(gradf(Xk), ξk), i.e., the derivative of f(Xk)

in the direction ξk is the inner product of descent direction and gradient of the function. Practical
line-search algorithms implement a stronger (Wolfe) version of (3.2) that enforces

|Df(RXk
(αξk))TXk,RXk

(αξk)(ξk)| ≤ c2Df(Xk)ξk.

Similar to the Euclidean case, our line-search algorithm is also divided into two phases: bracketing
and zooming [23]. During bracketing, we compute an interval such that a point satisfying Wolfe con-
ditions can be found in this interval. In the zooming phase, we obtain such a point in the determined
interval. The one-dimensional function and its gradient used by the line-search are

φ(α) = f(RXk
(αξk)), φ′(α) = Df(RXk

(αξk))TXk,RXk
(αξk)(ξk).

The algorithm is essentially the same as the line-search in the Euclidean space; the reader can also
see its manifold incarnation in [13]. Theory behind how this algorithm is guaranteed to find a step-
length satisfying (strong) Wolfe conditions can be found in [23].

A good choice of initial step-length α1 can greatly speed up the line-search. We propose the follow-
ing choice that turns out to be quite effective in our experiments:

α1 = 2
f(Xk)− f(Xk−1)

Df(Xk)ξk
. (3.3)

Equation (3.3) is obtained by finding α∗ that minimizes a quadratic approximation of the function
along the geodesic through the previous point (based on f(Xk−1), f(Xk) and Df(Xk−1)ξk−1):

α∗ = 2
f(Xk)− f(Xk−1)

Df(Xk−1)ξk−1
. (3.4)

Then assuming that first-order change will be the same as in the previous step, we write

α∗Df(Xk−1)ξk−1 ≈ α1Df(Xk)ξk. (3.5)

Combining (3.4) and (3.5), we obtain our estimate α1 expressed in (3.3). Nocedal and Wright [23]
suggest using either α∗ of (3.4) for the initial step-length α1, or using (3.5) where α∗ is set to be
the step-length obtained in the line-search in the previous point. We observed that if one instead
uses (3.3) instead, one obtains substantially better performance than the other two approaches.

4 Experimental Results

We have performed numerous experiments to examine effectiveness of our method. Below we re-
port performance comparisons on both real and simulated data. In all experiments, we initialize the
mixture parameters for all methods using k-means++ [2]. All methods also use the same termina-
tion criteria: they stop either when the difference of average log-likelihood (i.e., 1

n log-likelihood)
between consecutive iterations falls below 10−6, or when the number of iterations exceeds 1500.
More extensive empirical results can be found in the longer version of this paper [13].

Simulated Data
EM’s performance is well-known to depend on the degree of separation of the mixture compo-
nents [18, 34]. To assess the impact of this separation on our methods, we generate data as proposed
in [8, 32]. The distributions are chosen so their means satisfy the following inequality:

∀i 6=j : ‖mi −mj‖ ≥ cmax
i,j
{tr(Σi), tr(Σj)},

where c models the degree of separation. Since mixtures with high eccentricity (i.e., the ratio of
the largest eigenvalue of the covariance matrix to its smallest eigenvalue) have smaller overlap, in
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EM Original LBFGS Reformulated CG Reformulated CG Original
Time (s) ALL Time (s) ALL Time (s) ALL Time (s) ALL

c = 0.2 K = 2 1.1± 0.4 -10.7 5.6± 2.7 -10.7 3.7± 1.5 -10.8 23.8± 23.7 -10.7
K = 5 30.0± 45.5 -12.7 49.2± 35.0 -12.7 47.8± 40.4 -12.7 206.0± 94.2 -12.8

c = 1 K = 2 0.5± 0.2 -10.4 3.1± 0.8 -10.4 2.6± 0.6 -10.4 25.6± 13.6 -10.4
K = 5 104.1± 113.8 -13.4 79.9± 62.8 -13.3 45.8± 30.4 -13.3 144.3± 48.1 -13.3

c = 5 K = 2 0.2± 0.2 -11.0 3.4± 1.4 -11.0 2.8± 1.2 -11.0 43.2± 38.8 -11.0
K = 5 38.8± 65.8 -12.8 41.0± 45.7 -12.8 29.2± 36.3 -12.8 197.6± 118.2 -12.8

Table 2: Speed and average log-likelihood (ALL) comparisons for d = 20, e = 10 (each row reports values
averaged over 20 runs over different datasets, so the ALL values are not comparable to each other).

EM Original LBFGS Reformulated CG Reformulated CG Original
Time (s) ALL Time (s) ALL Time (s) ALL Time (s) ALL

c = 0.2 K = 2 65.7± 33.1 17.6 39.4± 19.3 17.6 46.4± 29.9 17.6 64.0± 50.4 17.6
K = 5 365.6± 138.8 17.5 160.9± 65.9 17.5 207.6± 46.9 17.5 279.8± 169.3 17.5

c = 1 K = 2 6.0± 7.1 17.0 12.9± 13.0 17.0 15.7± 17.5 17.0 42.5± 21.9 17.0
K = 5 40.5± 61.1 16.2 51.6± 39.5 16.2 63.7± 45.8 16.2 203.1± 96.3 16.2

c = 5 K = 2 0.2± 0.1 17.1 3.0± 0.5 17.1 2.8± 0.7 17.1 19.6± 8.2 17.1
K = 5 17.5± 45.6 16.1 20.6± 22.5 16.1 20.3± 24.1 16.1 93.9± 42.4 16.1

Table 3: Speed and ALL comparisons for d = 20, e = 1.

CG Cholesky Original CG Cholesky Reformulated
e = 1 e = 10 e = 1 e = 10

Time (s) ALL Time (s) ALL Time (s) ALL Time (s) ALL
c = 0.2 K = 2 101.5± 34.1 17.6 113.9± 48.1 -10.7 36.7± 9.8 17.6 23.5± 11.9 -10.7

K = 5 627.1± 247.3 17.5 521.9± 186.9 -12.7 156.7± 81.1 17.5 106.7± 39.7 -12.6

c = 1 K = 2 135.2± 65.4 16.9 110.9± 51.8 -10.4 38.0± 14.5 16.9 49.0± 17.8 -10.4
K = 5 1016.9± 299.8 16.2 358.0± 155.5 -13.3 266.7± 140.5 16.2 279.8± 111.0 -13.4

c = 5 K = 2 55.2± 27.9 17.1 86.7± 47.2 -11.0 60.2± 20.8 17.1 177.6± 147.6 -11.0
K = 5 371.7± 281.4 16.1 337.7± 178.4 -12.8 270.2± 106.5 16.1 562.1± 242.7 -12.9

Table 4: Speed and ALL for applying CG on Cholesky-factorized problems with d = 20.

addition to high eccentricity e = 10, we also test the spherical case where e = 1. We test three levels
of separation c = 0.2 (low), c = 1 (medium), and c = 5 (high). We test two different numbers of
mixture components K = 2 and K = 5; we consider experiments with larger values of K in our
experiments on real data. For e = 10, the results for data with dimensionality d = 20 are given in
Table 2. The results are obtained after running with 20 different random choices of parameters for
each configuration. It is apparent that the performance of EM and Riemannian optimization with our
reformulation is very similar. The variance of computation time shown by Riemmanian optimization
is, however, notably smaller. Manifold optimization on the non-reformulated problem (last column)
performs the worst.

In another set of simulated data experiments, we apply different algorithms to spherical data (e = 1);
the results are shown in Table 3. The interesting instance here is the case of low separation c = 0.2,
where the condition number of the Hessian becomes large. As predicted by theory, the EM converges
very slowly in such a case; Table 3 confirms this claim. It is known that in this case, the performance
of powerful optimization approaches like CG and LBFGS also degrades [23]. But both CG and
LBFGS suffer less than EM, while LBFGS performs noticeably better than CG.

Cholesky decomposition is a commonly suggested idea for dealing with PD constraint. So, we also
compare against unconstrained optimization (using Euclidean CG), where the inverse covariance
matrices are Cholesky factorized. The results for the same data as in Tables 2 and 3 are reported in
Table 4. Although the Cholesky-factorized problem proves to be much inferior to both EM and the
manifold methods, our reformulation seems to also help it in several problem instances.

Real Data
We now present performance evaluation on a natural image dataset, where mixtures of Gaussians
were reported to be a good fit to the data [35]. We extracted 200,000 image patches of size 6×6 from
images and subtracted the DC component, leaving us with 35-dimensional vectors. Performance of
different algorithms are reported in Table 5. Similar to the simulated results, performance of EM and
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EM Algorithm LBFGS Reformulated CG Reformulated CG Original CG Cholesky Reformulated
Time (s) ALL Time (s) ALL Time (s) ALL Time (s) ALL Time (s) ALL

K = 2 16.61 29.28 14.23 29.28 17.52 29.28 947.35 29.28 476.77 29.28
K = 3 90.54 30.95 38.29 30.95 54.37 30.95 3051.89 30.95 1046.61 30.95
K = 4 165.77 31.65 106.53 31.65 153.94 31.65 6380.01 31.64 2673.21 31.65
K = 5 202.36 32.07 117.14 32.07 140.21 32.07 5262.27 32.07 3865.30 32.07
K = 6 228.80 32.36 245.74 32.35 281.32 32.35 10566.76 32.33 4771.36 32.35
K = 7 365.28 32.63 192.44 32.63 318.95 32.63 10844.52 32.63 6819.42 32.63
K = 8 596.01 32.81 332.85 32.81 536.94 32.81 14282.80 32.58 9306.33 32.81
K = 9 900.88 32.94 657.24 32.94 1449.52 32.95 15774.88 32.77 9383.98 32.94
K = 10 2159.47 33.05 658.34 33.06 1048.00 33.06 17711.87 33.03 7463.72 33.05

Table 5: Speed and ALL comparisons for natural image data d = 35.
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Figure 3: Best ALL minus current ALL values with number of function and gradient evaluations. Left: ‘magic
telescope’ (K = 5, d = 10). Middle: ‘year predict’ (K = 6, d = 90). Right: natural images (K = 8, d = 35).

manifold CG on the reformulated parameter space is similar. Manifold LBFGS converges notably
faster (except for K = 6) than both EM and CG. Without our reformulation, performance of the
manifold methods degrades substantially. Note that for K = 8 and K = 9, CG without reformu-
lation stops prematurely because it hits the bound of a maximum 1500 iterations, and therefore its
ALL is smaller than the other two methods. The table also shows results of the Cholesky-factorized
(and reformulated) problem. It is more than 10 times slower than manifold optimization. Optimiz-
ing the Cholesky-factorized (non-reformulated) problem is the slowest (not shown) and it always
reaches the maximum number of iterations before finding the local minimum.

Fig. 3 depicts the typical behavior of our manifold optimization methods versus EM. The X-axis
is the number of log-likelihood and gradient evaluations (or the number of E- and M-steps in EM).
Fig. 3(a) and Fig. 3(b) are the results of fitting GMMs to the ‘magic telescope’ and ‘year prediction’
datasets7. Fig. 3(c) is the result for the natural image data of Table 5. Apparently in the initial few
iterations EM is faster, but manifold optimization methods match EM in a few iterations. This is
remarkable, given that manifold optimization methods need to perform line-search.

5 Conclusions and future work
We introduced Riemannian manifold optimization as an alternative to EM for fitting Gaussian mix-
ture models. We demonstrated that for making manifold optimization succeed, to either match or
outperform EM, it is necessary to represent the parameters in a different space and reformulate
the cost function accordingly. Extensive experimentation with both experimental and real datasets
yielded quite encouraging results, suggesting that manifold optimization could have the potential to
open new algorithmic avenues for mixture modeling.

Several strands of practical importance are immediate (and are a part of our ongoing work): (i)
extension to large-scale GMMs through stochastic optimization [5]; (ii) use of richer classes of
priors with GMMs than the usual inverse Wishart priors (which are typically also used as they make
the M-step convenient), which is actually just one instance of a geodesically convex prior that our
methods can handle; (iii) incorporation of penalties for avoiding tiny clusters, an idea that fits easily
in our framework but not so easily in the EM framework. Finally, beyond GMMs, extension to other
mixture models will be fruitful.

Acknowledgments. SS was partially supported by NSF grant IIS-1409802.

7Available at UCI machine learning dataset repository via https://archive.ics.uci.edu/ml/datasets
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