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Abstract

We have proved, with machine-checked proofs, that the output produced by
HMAC-DRBG is indistinguishable from random by a computationally bounded
adversary. We proved this about a high-level specification of a simplified version
of HMAC-DRBG written in the probabilistic language provided by the Foun-
dational Cryptography Framework (FCF), which is embedded in the Coq proof
assistant. We have also proven on paper that HMAC-DRBG is backtracking-
resistant. Our work comprises the first formal verification of a real-world PRG.
Our functional specification can be then linked to a proof of functional correctness
of mbedTLS’s C implementation of HMAC-DRBG, allowing our proofs of cryp-
tographic security properties to transfer to this implementation. Thus, this will
create the first fully verified real-world DRBG.
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Chapter 1

Introduction

Most modern cryptosystems rely on random numbers, which they use to generate
secrets that need to be known to users and unknown and unpredictable to attack-
ers. Reducing the entropy of a cryptosystem’s pseudorandom number generator is
an easy way to break the entire cryptosystem.1 A weak DRBG will generate output
predictable to an attacker, allowing her to guess private keys, yet most statistical
tests will not be able to detect the regularities in the output. Worse, the rest of the
cryptosystem will function normally, since DRBGs tend to be single self-contained
components. These two factors make DRBGs very attractive targets to attackers.

The attack has indeed happened in practice (through due to a programming
error and not malice), and with devastating consequences. Luciano Bello discov-
ered that the random number generator in Debian OpenSSL, a widely used cryp-
tographic library, was predictable, allowing attackers to easily guess keys [19]. De-
bian advised all users to regenerate keys, though some high-profile users did not.
Compromised SSH keys were used to access Spotify, Yandex, and gov.uk’s public
repositories on GitHub [15].

Despite the importance of DRBGs, surprisingly little work exists on proving
them secure, either by proving on paper that certain widely used DRBGs are se-
cure, or by verifying with computer-checked proofs that implementations of these
DRBGs satisfy their specifications.

We present the first machine-checked proof of a crucial cryptographic security
property of a pseudorandom number generator. That is, we have written a precise
specification of HMAC-DRBG’s main functions in Coq, then we have proved that
the probability that a nonadaptive probabilistic polynomial time adversary can
distinguish HMAC-DRBG’s output from uniformly sampled random bits is negli-
gible. We have also proved a concrete bound on the probability that the adversary
can distinguish the two.

There exist only two prior proofs of security of HMAC-DRBG. The first, by
Campagna (2006), is not peer-reviewed, and does proofs in the random oracle
model. The second, by Hirose (2008), was peer-reviewed, but they do not prove

1In this paper, we refer to cryptographic constructions of pseudorandom generators as PRGs,
which implies that they are secure, and their real-world counterparts as DRBGs, which does not
imply that they are secure.
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security of HMAC-DRBG for multiple calls of the Generate function, nor do they
include the state updating in their Generate function. (Nevertheless, we arrive at
almost the same bound for one call to Generate, which is a vote of confidence for
both.) Neither paper’s proofs has been machine-checked or linked to an imple-
mentation of HMAC-DRBG.

We have also proven on paper that HMAC-DRBG is backtracking-resistant. No
paper proofs exist for this. We plan to modify our computer-checked pseudoran-
domness proof to hold for this property.

Additionally, we plan to connect our proof of security with an existing proof
of correctness to create an end-to-end machine-checked proof chain of functional
correctness and security of HMAC-DRBG, which is novel work.

1.1 Related work

Andrew Appel’s group has done the most similar work in the area. Appel (2015)
presents a “full formal machine-checked verification of a C program: the OpenSSL
implementation of SHA-256.” Beringer et al. (2015) build on this work to do the
same for HMAC, adding a proof of security that relies on the security of SHA. We
plan to use the same approach for fully verifying HMAC-DRBG.

In addition, there exist paper proofs of the security of CTR-DRBG and HMAC-
DRBG (Campagna (2006), Hirose (2008)), though (as mentioned earlier) the former
hasn’t appeared in a peer-reviewed venue and does proofs in the random oracle
model, and the latter does not prove security over multiple calls to Generate or
account for state updating.

In the area of checking game-based proofs of cryptographic security within a
proof assistant, there are two main tools. Two long-established tools are EasyCrypt
and its cousin CertiCrypt (Barthe (2011)), only the latter of which is foundational,
but it is no longer maintained. A newer tool, is the Foundational Cryptography
Framework (Petcher (2015)). The EasyCrypt tutorial (Barthe (2014)) proves the
pseudorandomness of a simple stateful PRG. The PRG is very similar to the core
loop construction discussed in Section 3.2, and the bound is also very similar (it is
essentially the same one described in Hirose (2008)). The tutorial’s concrete bound
is quantified over “For all PRG-distinguishers D that make at most qn queries to
its next oracle,” so their PRG doesn’t involve updating the PRF’s key and then
making more queries.

In the general area of formalizing DRBGs, several crypto papers analyze the se-
curity of DRBGs and propose new security properties. Dodis et al. (2013) propose
the “robustness” property and show that the built-in Linux DRBG, /dev/random,
is not robust.

There’s not much prior work on formal verification of DRBGs in our style.
Dörre and Klebanov (2015) attempt to verify that a DRBG uses all its entropy. They
perform this logic-based information flow verification using the KeY system for
Java, which uses symbolic execution. This only defends against one particular at-
tack, that of “squandering entropy,” and does not guarantee functional correctness
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or other security properties we may care about, such as indistinguishability from
randomness2 and backtracking resistance.

Affeldt (2009) prove that their assembly implementation of the Blum-Blum-
Shub DRBG satisfies “unpredictability” (equivalent to pseudorandomness) in the
game-playing style in Coq. They do so directly on an assembly implementation
of the DRBG, not on a high-level functional specification. They also verified their
own assembly implementation, not a widely used existing one. However, this ap-
proach avoids mismatches between the functional specification of the C code and
the functional specification used for cryptographic proofs.

Our approach is unique because it provides an end-to-end and foundational
verification that guarantees both correctness and security. Our stack consists of
Coq, the Foundational Cryptography Framework, the Verified Software Toolchain
(using separation logic), and CompCert (a verified C compiler). In addition, we
verify an existing widely used PRG implementation in C, making our approach
more useful in practice.

2We will use “indistinguishability from randomness” and “pseudorandomness” interchange-
ably.
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Chapter 2

Background

2.1 Summary of HMAC-DRBG

A pseudorandom number generator is used to stretch a small amount of random-
ness into a large amount of pseudorandomness, often for use in cryptosystems.
HMAC-DRBG, formalized in NIST SP 800-90A, is one such pseudorandom num-
ber generator. It generates output by iterating HMAC, a keyed-hash message au-
thentication function widely believed to be difficult to invert and that is proven to
be a pseudorandom function (PRF) given that HMAC’s internal hash function is a
PRF.

The following section summarizes HMAC-DRBG’s description in NIST SP 800-
90A.

HMAC-DRBG possesses an internal state consisting of two pieces of adminis-
trative information, which are constant across calls, and two pieces of secret infor-
mation, which are updated across calls.

The internal state consists of:

• Administrative information.

– The security strength of the PRG’s instantiation. The Instantiate function
obtains the appropriate amount of entropy for that security strength.

– A prediction resistance flag that indicates whether this instantiation re-
quires prediction resistance. Prediction resistance is explained in the
next section.

• The working state, which we often refer to as (k , v).

– The secret key k of length c for the internal PRF, which is HMAC. It is
updated at least once each time the PRG generates pseudorandom bits
by calling the Generate function.

– An internal value v of length c , which is updated each time the PRG
generates another block of pseudorandom bits of length c .

4



HMAC-DRBG consists of four functions, Update, Instantiate, Reseed , and
Generate, and another function we don’t model called getEntropy . For simplicity,
we omit the additional input and personalization string parameters from Instantiate.
Our proof of security does not include them. Refer to NIST SP 800-90A for the full
pseudocode.

Let f denote HMAC and fk denote HMAC partially applied with the key k . Let
|| denote concatenation. Here we will not use mutable variables as NIST does, but
write our code in a more functional style, which will make it more readable.

Update refreshes (k , v), optionally using some data, which can be fresh entropy
for prediction resistance.

Update(data, k , v) :=
k1 ← fk(v ||0x00||data)
v1 ← fk1(v)
if (data = nil), ret(k1, v1)
k2 ← fk1(v1||0x01||data)
v2 ← fk2(v1)
ret (k2, v2)

Instantiate initializes (k , v) and reseed counter .

Instantiate(entropy , nonce) :=
seed ← entropy ||nonce
k ← 0x00 ... 00
v ← 0x01 ... 01
(k1, v1)← Update(seed , k , v)
reseed counter ← 1
ret (k1, v1, reseed counter)

Reseed could be called for two reasons. First, reseed counter could have ex-
ceeded reseed interval . This is rare, since reseed interval is set to high values in
practice; its maximum value is 248, meaning it would naturally reseed once every
couple of million years. (Indeed, in practice, one does not want a PRG to reseed
often. This would give an attacker more opportunities to compromise the entropy
source.) More commonly, Reseed is called when a PRG’s state could have be
compromised, and requires fresh entropy to be mixed in. We acknowledge this is
a conflict in goals for a DRBG.

Reseed(k , v , entropy) :=
(k1, v1)← Update(seed , k , v)
reseed counter ← 1
ret (k , v , reseed counter)
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Generate generates n pseudorandom bits.

Generate(k, v, n) :=
if reseed counter > reseed interval ,

ret “reseed required”
temp0 ← nil
v0 ← v
while len(tempi ) < n

vi+1 ← fk(vi )
tempi+1 ← tempi ||vi+1

(say the loop above ran j times)
returned bits ← leftmost n of tempj

(k1, vj+1)← Update(k , vj )
reseed counter1 ← reseed counter + 1
ret (bits, k1, vj+1, reseed counter1)

From the user’s point of view, only the Instantiate and Generate functions are
visible. The state is, of course, hidden. Typical usage would be a call to Instantiate,
followed by any number of calls to Generate some number of pseudorandom bits.
Generate automatically calls Update every time it is called, and Generate may force
a call to Reseed .

We discuss our proof of security for a simplified PRG, consisting of only one
call to the internal loop in Generate, in Section 3.2. We discuss our proof of security
for a simplified version of HMAC-DRBG in Section 3.3.

2.1.1 Security properties

The most important property for a PRG is that its output is indistinguishable from
ideal randomness. This definition will be formally stated in the proof in Section 3.3.
A good PRG ought to also possess backtracking resistance and prediction resistance.

If a PRG is backtracking resistant, then if the working state of the PRG is com-
promised at some time, any of its (previously unseen) output from before that time
remains indistinguishable from ideal randomness. This definition will be formally
stated in Section 3.4.

Prediction resistance is the complementary property. If a PRG is prediction re-
sistant, then if the working state of the PRG is compromised at some time, after
a certain recovery or reseeding interval, it is again indistinguishable from ideal
randomness for any time afterward. We do not prove that HMAC-DRBG is pre-
diction resistant. This is because the definition is slippery, and because it is difficult
to prove. See Section 3.5 for more details.
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2.2 Overview of the Foundational Cryptography
Framework

We give a brief overview of FCF. For more details, a tutorial, and the theory behind
it, see Petcher (2015).

As Petcher (2015) summarizes: “FCF provides an environment for developing
and checking proofs of security of cryptographic schemes in Coq. ... Proofs may
provide concrete bounds as well as asymptotic conclusions. FCF provides a lan-
guage for probabilistic programs, a theory that is used to reason about programs,
and a library of tactics and definitions that are useful in proofs about cryptogra-
phy.”

A cryptographic game may be viewed as an imperative, probabilistic program
(Bellare (2004)). FCF defines the syntax of probabilistic programs as the type
Comp A, the type of a probabilistic program that returns a value of type A. The
most notable operation is Rnd , which produces n uniformly random bits. The
other operations are sequencing statements in an imperative manner, repeating a
statement, and returning a value.

In FCF, the standard nonuniform probabilistic polynomial time (PPT) adver-
sary is modeled as a parameter A : I → Comp bool . This denotes that the adver-
sary A could be any function that takes as input something of type I and returns
a boolean guess. Comp bool denotes that the adversary may flip coins internally
while trying to come up with its guess. In the concrete setting, the complexity of A
is not restricted, but we informally assume that it runs in probabilistic polynomial
time. Since such a proof holds for any A, it also holds for PPT A. If any adversaries
are constructed from A, they should be inspected to verify that they are PPT as
well. This can be done either informally or formally: to accomplish the latter, one
can prove a statement like “Assuming the adversary against the PRG runs in time
t, then the constructed adversary against the PRF runs in time k · t + c (for some
constants k and c).”12

Cryptographic security definitions often involve giving the adversary some or-
acle that it can query, where the oracle must maintain some hidden state across
multiple interactions with the adversary. Thus, FCF extends the Comp type, where
Comp A is a probabilistic program returning a value of type A, to the OracleComp
type, where OracleComp A B C is a probabilistic program that returns a value of
type C and has access to an oracle that takes a value of type A and returns a value
of type B . (The type of the oracle itself includes a state as input and a new state
as output.) Oracle computations may use the standard returning and binding op-

1One can also do a proof in the asymptotic setting. This proof does not provide a concrete
bound, but allows one to prove things like “the adversary against the PRG is PPT, so the constructed
adversary against the PRF is PPT.” One can only do this in the asymptotic setting because PPT is
an asymptotic property.

2All of our proofs in this paper are in the concrete setting. We make the informal assumption
that the PRG adversaries are PPT. Our constructed adversaries are informally PPT upon inspection,
assuming the PRG adversaries are PPT.

7



erations, as well as an oracle query operations and an operation that can run a
program using a different oracle that can access the current oracle.

Refer to Petcher (2015) for examples of simple games written in FCF and a walk-
through of proving security of a simple encryption scheme. A game typically has
type Comp bool , because it is a probabilistic computation that usually returns an
adversary’s guess.

In game-playing proofs, we commonly do two things. First, we might make a
slight change to a game then prove the former game equivalent to the latter, where
“equivalent” can be taken in two senses. Either they are equivalent programs that
return the same outputs, or they have computationally indistinguishable output
distributions. Or, we might seek to bound the distance between two games by
some negligible functions, where “distance” refers to the probability that some
computationally-bounded adversary in both games can distinguish between two
different distributions.

To aid with this kind of reasoning, FCF provides a program logic called Prob-
abilistic Relational Postcondition Logic (PRPL). PRPL behaves like a Hoare logic,
except there are no preconditions, and we write a specification relating pairs of
probabilistic programs instead of a specification on a single deterministic program.

2.2.1 A simple example of reasoning about programs in PRPL

As a short example demonstrating PRPL, take the following proof goal in Coq.

Theorem PRPL_demo : forall (n m : nat),

comp_spec (fun a b => a = fst b)

(x <-$ {0,1}^n;

ret x)

(c <-$ {0,1}^n;

d <-$ {0,1}^m;

ret (c,d)).

Proof.

intros.

comp_spec denotes a PRPL specification, or postcondition, that we want to
prove about the two probabilistic programs that follow. Here, we want to prove
that the output of the first program has the same distribution as the first output
of the second program. x <-$ {0,1]^n denotes sampling a bitvector of n bits
uniformly at random.

To continue the proof, we note that the first lines of each program yield the
same output if both programs are given the same “coins” to flip, so we may “skip”
them, and the relation that holds on the remaining programs will remain the same.
(This is the intuitive description. A more rigorous and detailed description of ev-
ery tactic may be found in the Tactics.v file in the FCF repository, linked in the
appendix.)

fcf_skip.

This is the new proof state. Note the two remaining programs.
8



n : nat

m : nat

b : Bvector n

H0 : In b (getSupport ({ 0 , 1 }^n))

H : In b (getSupport ({ 0 , 1 }^n))

============================

comp_spec (fun (a : Bvector n)

(b0 : Bvector n * Bvector m)

=> a = fst b0)

(ret b)

(d <-$ { 0 , 1 }^m; ret (b, d))

The first line of the second program is irrelevant because our specification on
the outputs does not mention it. Therefore, we can eliminate that line with the
following tactic.

fcf_irr_r.

This is the remaining proof state. Note that b is the the same between both
programs, which is what we wanted to prove.

n : nat

m : nat

b : Bvector n

H0 : In b (getSupport ({ 0 , 1 }^n))

H : In b (getSupport ({ 0 , 1 }^n))

b0 : Bvector m

H1 : In b0 (getSupport ({ 0 , 1 }^m))

============================

comp_spec (fun (a : Bvector n)

(b1 : Bvector n * Bvector m)

=> a = fst b1)

(ret b) (ret (b, b0))

When we have whittled down both programs such that they both only return
values, we can use the following tactic to apply the specification to the return val-
ues and prove that it holds.

fcf_spec_ret.

In this case, FCF is smart enough to figure out that the specification holds, so it
discharges the goal. We have proven that the given specification relates these two
probabilistic programs.

Qed.
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Chapter 3

Proofs

3.1 Paper proofs vs. machine-checked proofs

In this section we will write proofs as a conventional cryptographer would. We
prove three things: pseudorandomness for a simple PRG constructed from a PRF,
pseudorandomness for a real-world PRG constructed from a PRF, and backtrack-
ing resistance for the same PRG.

If, after seeing the paper definitions of the main games and functions, you wish
to compare them with the corresponding definitions in the Coq development, they
may be found in Appendix B. We will also annotate some theorems inline with
their names in the Coq development. In Chapter 4, we give a brief outline of the
structure of the Coq development, comment on mechanization-specific problems,
and give examples of the benefits of mechanization. In Appendix C, we give a
detailed explanation of each lemma, as well as walkthroughs of Coq proofs for
two lemmas.

A comment on notation: for any game G that returns a boolean, let Pr[G ] denote
the probability that G returns true.

3.2 Pseudorandomness proof for one call

Petcher, a collaborator, proved the security of the core loop construction in HMAC-
DRBG’s Generate function. We summarize his proofs here.

First, take any family of PRFs

Fc = {fk : {0, 1}c → {0, 1}c}k∈{0,1}c .

Construct a PRG

H : (n : N)→ (k : {0, 1}c)→ (v : {0, 1}c)→ (bits : {0, 1}cn)

It takes an input seed and applies the PRF to it, then uses the output as one
block of pseudorandom bits and as the next input seed to the PRG. n is the number

10



of blocks desired, k is the key for the PRF, and c (the input/output size of the PRF)
is the security parameter.

H(n, k , v) :=
if n = 0 then return nil (the empty list)
else return fk(v)||H(n− 1, k , fk(v)).

For example, H(0, k , v0) = nil , and

H(3, k , v0) = fk(v0)||fk(fk(v0))||fk(fk(fk(v0))).

The user (or adversary) can request any number of blocks n polynomial in the
security parameter c , and the length of the seed is c . Thus, the stretch of H is

l(n, c) = cn. When we use H , we pass in k
R←− {0, 1}c .

We want to prove that the bits generated by H are pseudorandom.

Definition 1. Pseudorandomness. H is a PRG if for all nonuniform, nonadaptive prob-
abilistic polynomial time distinguishers D and number of blocks n that is polynomial in c ,
there exists a negligible function such that

|Pr[D(H(n, k ,Uc) = 1]− Pr[D(Ucn) = 1]| ≤ neg(c , n),

where Uc
R←− {0, 1}c (Uc is sampled uniformly at random from {0, 1}c ), Ucn

R←−
{0, 1}cn, and k

R←− {0, 1}c (k is the key for the PRF).

The probability that the distinguisher returns 1 when given the PRG’s output,
Pr[D(H(n, k ,Uc) = 1], is the same as the probability that the result of this real-
world game is 1.

G real :=
n← D (the distinguisher picks a number of blocks)

k
R←− {0, 1}c

v
R←− {0, 1}c

bits ← H(n, k , v)
ret D(bits)

That is, Pr[D(H(n, k ,Uc) = 1)] = Pr[G real ].
The probability that the distinguisher returns 1 when given a uniformly ran-

domly sampled bitstring of length cn is the same as the probability that the result
of this ideal-world game is 1. Let generate bitvectors n generate a list of n uniformly
randomly sampled bitvectors of length c each.

11



G ideal :=
n← D (the distinguisher picks a number of blocks)
bits ← generate bitvectors n
ret D(bits)

That is, Pr[D(Unx ) = 1)] = Pr[G ideal ].
So, to bound the probability of distinguishing

|Pr[D(H(x ,Un) = 1]− Pr[D(Unx ) = 1]|,

we bound the distance between the two games,

|Pr[G real ]− Pr[G ideal ]|.

To bound this distance, we introduce an intermediate game, G intermediate.
First, in the PRG, we replace the PRF with a random function

Rc = {r : {0, 1}∗ → {0, 1}c}.

H rf (n, v) :=
if n = 0 then return nil
else return r(v)||H rf (n− 1, r(v)).

Note there is no key in the PRG.
Next, we define G intermediate with the same structure as G real , but using

H rf (the PRG using the random function) instead of H .

G intermediate :=
n← D (the distinguisher picks a number of blocks)

v
R←− {0, 1}c

bits ← H rf (n, v)
ret D(bits)

Then we calculate the overall bound using this intermediate game. We first
bound the difference between the real and the intermediate game, then between
the intermediate and the ideal game.

Theorem 2.

|Pr[G real ]− Pr[G ideal ]| ≤
|Pr[G real ]− Pr[G intermediate]|

+|Pr[G intermediate]− Pr[G ideal ]|.

Proof. By the triangle inequality.

Now we bound the first term in the sum.
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Theorem 3.

|Pr[G real ]− Pr[G intermediate]| ≤ PRF Advantage.

Proof. We are not really doing math here; this follows by definition.
PRF Advantage is the maximum probability that any nonuniform probabilistic

polynomial-time distinguisher Dp can distinguish between a PRF (with input/out-
put length c) and a random function (abbreviated RF from now on). It is given
oracle access to one of them, which it can query a number of times polynomial in
the security parameter c , and must output a guess.

|Pr[D fk (·)
p (1c) = 1]− Pr[D

r(·)
p (1c) = 1]| ≤ PRF Advantage.

We can define it equivalently in terms of the distance between games, as dis-
cussed above.

|Pr[G Adv PRF ]− Pr[G Adv RF ]| ≤ PRF Advantage

where the games are as follows:

G Adv PRF :=
k

R←− {0, 1}c

b ← D
fk (·)
p

ret b

G Adv RF :=
b ← D

r(·)
p

ret b

Since we are doing proofs of concrete security, we must use this definition of
the difference between a PRF and a RF. If we were proving asymptotic security,
we would reduce the security of the PRG to the security of the PRF (which we
do here) by showing that given a nonuniform PPT adversary against the PRG, we
could construct a nonuniform PPT adversary against the PRF. But this does not
yield a concrete bound.

Then we rewrite our existing games to fit the form of some adversary being
given a particular oracle.

G real 2 :=
k

R←− {0, 1}c

b ← PRF Afk (·)

ret b

13



G intermediate 2 :=
b ← PRF Ar(·)

ret b

where PRF A, given either the PRF oracle or the RF oracle, simply generates
the pseudorandom bits using the oracle and calls the existing PRG adversary on
them. Note that PRF A no longer samples the key for the PRF.

PRF A o :=
n← D
v

R←− {0, 1}c

bits ← H oc(o, n, v)
ret D(bits)

and H oc is a modified version of the PRG that takes an oracle and queries it,
in place of using the PRF.

H oc(o, n, v) :=
if n = 0 then return nil
else return o.query(v)||H oc(o, n− 1, o.query(v)).

Lemma 3.1.

|Pr[G real 2]− Pr[G intermediate 2]| ≤ PRF Advantage.

Proof. By the definition of PRF Advantage, with Dp := PRF A.

And our two rewrites don’t change the probability that the adversary returns 1
in a particular game.

Lemma 3.2. Pr[G real ] = Pr[G real 2].

Proof. By substitution and program equivalence.

Lemma 3.3. Pr[G intermediate] = Pr[G intermediate 2].

Proof. By substitution and program equivalence.

Thus, the theorem follows:

|Pr[G real ]− Pr[G intermediate]| ≤ PRF Advantage.

Next, we bound the difference between the intermediate and the ideal-world
game. This requires making a combinatorial argument.

14



Theorem 4. |Pr[G intermediate]− Pr[G ideal ]| ≤ n2

2c .

Proof. We use Bellare’s fundamental lemma of game-playing to bound the distance
between these two games.

If two games are identical until bad, they are “syntactically identical except for
statements that follow the setting of a flag bad to true” (Bellare (2004)).

Lemma 4.1. (Fundamental lemma of game-playing) Let G and H be identical-until-bad
games and let A be an adversary. Then

|Pr[G A = 1]− Pr[HA] = 1]| ≤ Pr [HA sets bad ].

Proof. See Bellare (2004).

Intuitively, the “bad event” in both G intermediate and G ideal is that there are
duplicates in the inputs to the random function used in the former game. If there
are no duplicates, then the random function behaves exactly like uniformly sam-
pling random bits. If there are duplicates, then the random function becomes de-
terministic and starts to cyclically repeat outputs. Thus, we manipulate both games
to expose this bad event.

Instead of using G intermediate, we modify G intermediate 2, which we had
proven equivalent (via program equivalence) to G intermediate in Lemma 3.3. We
replace the random function oracle with a random function oracle rf that keeps
track of all (input, output) pairs, including duplicate inputs.

G intermediate 3 :=
b ← PRF Arf (·)

ret b.

Then we expose the bad event as the second element of the output. PRF A now
outputs the state of the oracle after many calls, though PRF A itself does not have
access to the state.

G intermediate 4 :=
(b, state)← PRF Arf (·)

ret (b, hasDups(inputsOf (state))).

In each of the three games, the probability that the adversary returns a guess of
true is the same.

Since some games will now return 2-tuples of booleans instead of single
booleans, for such games G , we define Pr1[G ] to be the probability that the first
value of the tuple is true and Pr2[G ] analogously.
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Lemma 4.2.

Pr[G intermediate 2] = Pr[G intermediate 3]

= Pr
1
[G intermediate 4].

Proof. Adding state and duplicate tracking to the oracle does not change its out-
puts. Outputting whether the bad event happened does not change the adver-
sary’s guess.

We similarly rewrite G ideal in the form of G intermediate 2. We create an
oracle rb that, on any input, returns a uniformly sampled bitvector, and records
the (input, output) pair in its state. Then we rephrase G ideal in terms of PRF A
using rb.

G ideal 2 :=
b ← PRF Arb(·)

ret b

Then we similarly expose the bad event.

G ideal 3 :=
(b, state)← PRF Arb(·)

ret (b, hasDups(inputsOf (state)))

In each of the three games, the probability that the adversary returns a guess of
true is the same.

Lemma 4.3.
Pr[G ideal ] = Pr[G ideal 2] = Pr

1
[G ideal 3].

Proof. By unfolding the definition of PRF A and program equivalence. (In both
G ideal and G ideal 2, we generate a list of pseudorandom bits by uniformly ran-
domly sampling a bitvector n times.) Also, adding state and duplicate tracking
to the oracle does not change its outputs, and outputting whether the bad event
happened does not change the adversary’s guess.

The two games, with the same bad event exposed, are identical until bad. Bel-
lare’s “syntactically identical except for the bad event” definition is too vague to
use, so we assert that these games are identical until bad by a definition formalized
by Petcher (2015):

1. The probability of the bad event is the same in both games.

2. If the bad event does not happen, the distribution of the outputs is the same.
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Lemma 4.4. G intermediate 4 and G ideal 3 are identical until bad.

Proof. The random function behaves like uniformly sampling a bitvector, until one
of its outputs happens to be one of its previous inputs.

Thus, we can apply the fundamental lemma of game-playing, which implies

|Pr
1
[G intermediate 4]− Pr

1
[G ideal 3]| ≤

Pr[G ideal 3 sets bad ] = Pr
2
[G ideal 3].

This is convenient, because now we can just work with a single game, which
allows us to apply our game-equivalence techniques. Now we only need to bound
Pr2[G ideal 3]. Since we only care about its second return value, we can discard
the adversary’s guess.

G ideal 3B :=
(b, state)← PRF Arb(·)

ret hasDups(inputsOf (state))

Lemma 4.5. Pr2[G ideal 3] = Pr[G ideal 3B ].

Proof. The first return value is irrelevant.

G ideal 3B is unnecessarily complicated. We wrote it in the form of PRF A
in order to get it in the same form as G intermediate 4 and prove that they were
identical until bad. Now we return to the simpler form, which is essentially the
original G ideal .

G ideal 4 :=
n← D
bits ← generate bitvectors n
ret (hasDups(bits))

Lemma 4.6. Pr[G ideal 3B ] = Pr[G ideal 4].

Proof. By inlining PRF A, it becomes clear that the probability of G ideal 3B is the
same as generating a list of n uniformly-sampled bitvectors of length c and re-
turning whether there is a duplicate in that list. We can ignore the guess of the
distinguisher D .

To be more precise, inputsOf (state) in G ideal 3B is a list of n− 1 such bitvectors
(inputs) with a randomly-sampled seed v at the beginning, which is the first input.

Thus, we need only upper-bound the probability that there is a duplicate in a
list of n uniformly-sampled bitvectors of length c . This is the probability that the
bad event happens.
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Lemma 4.7.

Pr[G ideal 4] ≤ n2

2c

Proof. There are (n
2) =

n(n−1)
2 pairs of bitvectors in the list, and the probability that

there is a collision in a pair is 1
2c . By the union bound, the probability that there is

no collision is n(n−1)
2 · 1

2c ≤
n2

2c .

This completes our bound on the difference between G intermediate and G ideal .

This bound on the probability of the bad event yields our final result:

Theorem 5. The distance between the two games is

|Pr[G real ]− Pr[G ideal ]| ≤ PRF Advantage +
n2

2c
.

Proof. By the triangle inequality, combined with theorems 3 and 4.

Thus, H is a secure PRG. Moreover, since we did our proof in the concrete
security model, we have a better idea of how secure it is (modulo the black box
of PRF Advantage) than if we had proven its asymptotic security. See Hirose (2008)
for a bound for real-world usage.

3.3 Pseudorandomness proof for a simplified HMAC-
DRBG

3.3.1 Definitions

To prove pseudorandomness for HMAC-DRBG, we must extend the proof for H to
apply for multiple calls of H , with (k , v) being updated after each call. As summa-
rized in Section 2.1, the HMAC-DRBG functions are Instantiate, Generate, Update,
and Reseed . The state is (k , v).

In addition to the simplifications we made when first describing HMAC-
DRBG, we make two main simplifications to HMAC-DRBG. First, we do not
model reseeding the PRG, because we are not proving that it possesses prediction
resistance. Second, we do not model non-ideal randomness in the form of general
entropy input. As a corollary, we assume that Instantiate initializes k and v with
ideal randomness, which makes the proof much easier. Lastly, for convenience, we
only output lists of pseudorandom bits whose lengths are multiples of the block
size c . A block refers to a list of such bits of length c .
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Instantiate :=
k

R←− {0, 1}c

v
R←− {0, 1}c

For the remaining two functions, Generate and Update, we note that Generate
always calls Update at the end. Thus, we inline Update to produce one function
called GenUpdate original . (It is labeled original because we replace it with a differ-
ent version in our proof, which we cover in Lemma 7.3.)

GenUpdate original((k , v), n) :=
(bits, v1)← Gen loop(k , v , n)
k1 ← fk(v1||00 ... 00)
v2 ← fk1(v1)
ret (bits, (k1, v2))

In GenUpdate original , Gen loop behaves like H (the core loop from Generate)
but also separately returns the last block it generates. It does this because the last
block becomes the new v in the (k , v) state.

Gen loop(k , v , n) :=
if n = 0 then ret (nil , v)
else

vi ← fk(v)
(bits, vfinal )← Gen loop(k , vi , n− 1)
ret (vi ||bits, vfinal )

Similarly to H :

Gen loop(k , v0, 0) = (nil , v0)
Gen loop(k , v0, 1) = (fk(v0), fk(v0))
Gen loop(k , v0, 2) = (fk(v0)||fk(fk(v0)), fk(fk((v0))))

In our simplified model of HMAC-DRBG, which we will call HMAC-DRBG′,
a typical run would look like Instantiate followed by some number of calls to
GenUpdate, each call requesting an some number of pseudorandom blocks.

This suggests the definition of security (pseudorandomness) for HMAC-
DRBG′. A nonuniform PPT adversary can make a number of calls to GenUpdate
(polynomial in c), requesting a number of blocks (polynomial in c) each time.
It receives the list of blocks, which are the bitvectors it requested. Then it must
output a guess as to whether the bits are ideally random or pseudorandom.

We need to now consider whether the adversary is adaptive or nonadaptive.
That is, should the adversary be allowed to make choices (e.g. numbers of blocks
to query) based on previous results (e.g. pseudorandom bits returned so far)? This
is a new concern. Previously, when proving the security of H , the adversary could
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only make one call to H . So it couldn’t make any decision after picking n (the
number of blocks).

Here, we choose to prove security against a nonadaptive adversary. Proving
security against an adaptive adversary, and formalizing that proof, would be sub-
stantially harder. We discuss this decision in more detail in Section 4.3.

That said, here is the formal statement of what we want to prove.

Definition 6 (Pseudorandomness for HMAC-DRBG’). For all nonuniform, nonadap-
tive PPT distinguishers D , for all lists of natural numbers l of length polynomial in c (the
list of numbers of blocks requested) that it outputs, let T be the total number of blocks
requested. (T := ∑|l |i li )

Then there exists a function negligible in c and T such that

|Pr[G real ]− Pr[G ideal ]| ≤ neg(c ,T ).

The real-world game models the real-world usage we discussed earlier, again with a
nonadaptive adversary.

G real :=
l ← A
(k , v)← Instantiate
bits ← oracleMap(GenUpdate original , (k , v), l)
ret A(bits)

Given an input state, the function oracleMap repeatedly applies the provided oracle f
on a list of inputs l , and returns its final state and a list of outputs. An oracle is a function
that takes a state and an input and outputs a new state and an output. 1

In the ideal-world game, GenRand takes the list l outputted by the adversary and
generates ∑|l |−10 li blocks of ideal randomness.

G ideal :=
l ← A
bits ← genRandForEach(l)
ret A(bits)

3.3.2 Proof outline

Again, we must extend the proof for the security of H to the security of multiple
calls of H with (k , v) being updated after each call. The former problem often
arises when proving the security of PRGs, and it is solved by using a powerful
technique called the hybrid argument. We will briefly summarize the use of the
hybrid argument in the setting of concrete security.

1For brevity, we will elide the code of most function definitions in this proof. Some definitions
are given in Appendix B, and all of them are defined in the Coq development. This function is
named oracleMap in the Coq development.
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We want to bound the probability that some distribution D1 can be distin-
guished from another distribution D2. Thus, we define t intermediate, or hybrid,
distributions Hi , with H0 := D1 and Ht := D2. (t must be polynomial in the security
parameter.)

Define the probability of A distinguishing between two distributions Di ,Dj to
be

AdvDi ,Dj
(A) := | Pr

x
R←−Di

[A(x) = 1]− Pr
x

R←−Dj

[A(x) = 1]|.

Then by the triangle inequality, the probability that a nonuniform PPT adver-
sary A can distinguish D1 and D2 is bounded by the sum of the probabilities of
distinguishing between adjacent hybrids. (In the previous section we referred to
the distinguisher as D . To avoid confusion with distributions, here will will refer
to it as A.)

AdvD1,D2
(A) ≤

t−1
∑
0

AdvHi ,Hi+1
(A)

The above discussion summarized hybrid arguments in general. Now we spe-
cialize it to our proof.

Let n be the number of calls the adversary makes to GenUpdate (so n := len(l))
and li be the number of blocks of pseudorandom output that the adversary re-
quests on that call (li is the i th element of the list). Calls are numbered from 1 to
n.

We take the first hybrid H0 to be the distribution of the bits generated by using
the PRG normally; that is, using the PRF to generate pseudorandom bits. Sub-
sequently, we define one new hybrid for each call to the PRG, so t = n + 1. H1

replaces the PRF used in the first call with ideal randomness, and Hi replaces the
PRFs used in calls 1 through i (inclusive) with ideal randomness. The last hybrid,
Hn replaces all PRFs with ideal randomness.

Thus, Pr[G real ] equals Pr
x

R←−H0

[A(x) = 1].

Similarly, Pr[G ideal ] equals Pr
x

R←−Hn

[A(x) = 1].

Thus, the endpoint hybrids correspond correctly to the quantity defined in The-
orem 6:

|Pr [G real ]− Pr[G ideal ]| = AdvH0,Hn(A).

Example 6.1. Let’s define a notation for the ith hybrid and write out all the hybrids for
some n. Take n = 3 (so the adversary makes 3 calls to GenUpdate with some number of
blocks requested). Then there are four hybrids.

In H1, the first call to GenUpdate generates bits in Gen loop by uniformly sampling
from {0, 1}c instead of calling fk . Denote this as RB (ideally random bits). Subsequent
calls use the normal Gen loop construction, which calls fk . Hence we denote H1 as
RB PRF PRF.

The notation hides the fact that state being kept between calls and updated in calls.
(k , v) is instantiated, then passed into call 1 of GenUpdate, updated there and passed into
call 2 of GenUpdate, and so on for the rest of the calls.
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call 1 2 3
H0 PRF PRF PRF
H1 RB PRF PRF
H2 RB RB PRF
H3 RB RB RB

Table 3.1: Oracles used in each call of a hybrid, for each hybrid.

Intuitively, we replace PRFs with RBs from left to right. The order matters. In H0,
(k , v) are passed in from Instantiate, which uniformly randomly samples them. In Hi ,
(k , v) are passed in to the call i + 1 (the first call using the PRF) from call i (the last call
using RB), which uniformly randomly samples k and v when they are updated. That makes
it easier to reason about subsequent PRF-using calls, which we will have to do later.

Again, we are trying to bound

AdvD1,D2
(A) ≤

t−1
∑
0

AdvHi ,Hi+1
(A).

Now we bound the quantity being summed, which is the distance between
adjacent hybrids. Intuitively, we have just reduced it to our earlier proof about the
security of H , and the bound is almost the same.

Theorem 7 (Distance between adjacent hybrids.). Let li be the number of blocks that
the adversary requests on the ith call. Then for all i ∈ [0, n− 1],

AdvHi ,Hi+1
(A) ≤ PRF Advantage Max +

(li + 1)2

2c
.

Proof. In place of the PRF, Hi uses ideal randomness for calls ≤ i . (Not just the bits
are ideally random; the state is also updated with ideal randomness.) So its output
is ideally random for calls ≤ i . Afterward, it uses the PRF.

In place of the PRF, Hi+1 uses ideal randomness for calls ≤ i + 1. So its output
is ideally random for calls ≤ i + 1. Afterward, it uses the PRF.

We phrase AdvHi ,Hi+1
(A) in terms of games. Game i replaces the PRF with ideal

randomness for calls ≤ i and uses the PRF for calls > i .

G hybrid(i) :=
l ← A
(k , v)← Instantiate
bits ← oracleMap(oracle i(i), (0, (k , v)), l)
ret A(bits)

oracle i(i) uses GenUpdate rb (a version of GenUpdate that uniformly samples
bits instead of using the PRF) as the oracle for calls≤ i and GenUpdate as the oracle
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for calls > i . (This function may be found in the Coq development as Oi prg . From
now on, we will denote Coq names with an asterisk, e.g. ∗Oi prg .)

Lemma 7.1. For all i ,

AdvHi ,Hi+1
(A) = |Pr[G hybrid(i)]− Pr[G hybrid(i + 1)]|.

Proof. The bits generated in G hybrid(i) are sampled from the distribution Hi .
Those bits are then passed to the adversary A, which returns a guess.

Between Hi and Hi+1, we introduce an intermediate hybrid H ′i . Intuitively, it
acts like Hi , but with the PRF on call i + 1 replaced by a random function. More
specifically, for calls ≤ i , just like Hi , H ′i uses ideal randomness in place of the PRF.
On call i , H ′i uses a random function in place of the PRF. For calls > i , H ′i uses the
PRF normally.

Now we phrase H ′i in terms of a game.
First we define a more general game much the same as above, but replacing

the PRF on call i + 1 with a provided oracle o.

G hybrid useO(o, i) :=
l ← A
(k , v)← Instantiate
bits ← oracleMap(oracle i useO(o, i), (0, (k , v)), l)
ret A(bits)

oracle i useO (∗Oi oc ′) replaces the oracle used in call i + 1 with the provided or-
acle, and behaves like oracle i otherwise (it replaces the PRF with ideal randomness
for calls ≤ i , and uses the PRF normally for calls > i + 1). To do this replacement,
we replace GenUpdate in oracle i useO with GenUpdate oc , which uses the provided
oracle in place of the PRF.

Now we provide a random function as the oracle for G hybrid useO . Therefore,
the bits G hybrid useO(randomFunc , i) generates are sampled from H ′i . This serves
as our intermediate game between G hybrid(i) and G hybrid(i + 1). We will nick-
name it G hybrid rf (i).

To get all the games in a uniform format, we will take G hybrid ′(i) :=
(G hybrid useO(f oracle, i)) and G hybrid ′(i + 1) := (G hybrid useO(rb oracle, i)).
f oracle is the PRF oracle and rb oracle is an oracle that uniformly samples random
blocks on each query. Both store their input/output state. These two rewrites
can be proven equal, and we will use the game and its oracle-rewritten form
interchangeable. (The proof is omitted for brevity.)

As in Section 3.2, we bound the distance between G hybrid(i) and G hybrid(i +
1) via the triangle inequality. The proof is also very similar to our proof in 3.2.
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Lemma 7.2.

|Pr[G hybrid(i)− Pr[G hybrid(i + 1)]| ≤
|Pr[G hybrid(i)− Pr[G hybrid rf (i)|

+|Pr[G hybrid rf (i)− G hybrid(i + 1)|.

Proof. By the triangle inequality.

Here is a visual explanation of this proof for a small example.

Example 7.1. We continue our hybrid example from earlier (Example 6.1). Again n = 3.
Reproducing the table from earlier, here are all four hybrids.

call 1 2 3
H0 PRF PRF PRF
H1 RB PRF PRF
H2 RB RB PRF
H3 RB RB RB

Table 3.2: Oracles used in each call of a hybrid, for each hybrid.

Take i = 1. Here are H1, H ′1 (the intermediate hybrid), and H2. RF denotes the random
function oracle.

call 1 2 3
H1 RB PRF PRF
H ′1 RB RF PRF
H2 RB RB PRF

Table 3.3: Intermediate hybrid H ′i , using RF on call i + 1, between hybrids.

Intuitively, the difference between H1 and H ′1 is upper-bounded by PRF Advantage
because each can be written as a game distinguishing the PRF from the RF. The difference
between H ′1 and H2 is exactly the probability of collisions in the inputs of the random
function.

For completeness, here is every hybrid and every intermediate hybrid. There are four
hybrids and three intermediates. Note that the last hybrid has no intermediate, because
there are no PRFs left to replace with RFs.

Now we tackle each part of the bound separately in Lemma 7.2 separately.
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call 1 2 3
H0 PRF PRF PRF
H ′0 RF PRF PRF
H1 RB PRF PRF
H ′1 RB RF PRF
H2 RB RB PRF
H ′2 RB RB RF
H3 RB RB RB

Table 3.4: Every hybrid and every intermediate hybrid.

Lemma 7.3.

|Pr[G hybrid(i)]− Pr[G hybrid rf (i)]| ≤ PRF Advantage i i

≤ max
i

PRF Advantage i i .

Proof. This proof is not as easy as the proof-by-definition in Lemma 3.1. There are
two added complexities. Because the (k , v) is updated at an inconvenient place,
in order to rewrite the two games above in the form of a PRF Adversary , we must
move one of the lines of update code. Additionally, there is one PRF Adversary for
each i , so there are multiple PRF Advantages .

Here we work with G hybrid ′(i) instead of G hybrid(i) because it is in the same
form as G hybrid rf .

First, we deal with the (k , v)-updating. We reproduce the code of GenUpdate original
here.

GenUpdate original((k , v), n) :=
(bits, v1)← Gen loop((k , v), n)
k1 ← fk(v1||00 ... 00)
v2 ← fk1(v1)
ret (bits, (k1, v2))

Note that the PRF is re-keyed on the second line. Then, on the next line, the
function queries the new PRF. Therefore, if we were to replace fk with a PRF oracle,
it would have to span the last line of GenUpdate original and the first two lines of
the next GenUpdate original call, but not include the second call’s v -update. This
would be messy and difficult to reason about. It is cleaner to move each v -update
to the beginning of the next call of GenUpdate original , then prove that the outputs
are still identically distributed. Then, after the PRF is re-keyed, we do not further
query it in this call of GenUpdate. This is much neater than before.

We accomplish this by splitting GenUpdate original into two versions. The first
version, GenUpdate noV , omits the last line, which updates v .
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GenUpdate noV ((k , v), n) :=
(bits, v1)← Gen loop((k , v), n)
k1 ← fk(v1||00 ... 00)
ret (bits, (k1, v1))

The second version, GenUpdate starts by updating v and does not update v
again.

GenUpdate((k , v), n) :=
v1 ← fk(v)
(bits, v2)← Gen loop(k , v1, n)
k1 ← fk(v2||00 ... 00)
ret (bits, (k1, v2))

We prove that the pseudorandom output produced by this sequence of calls

[GenUpdate original ,GenUpdate original , ...]

is identically distributed to the pseudorandom output produced by this new se-
quence of calls

[GenUpdate noV ,GenUpdate,GenUpdate, ...].

(Note that the intermediate (k , v) state between the PRG calls is not the same, but
the two outputs are still identically distributed.) The proof is omitted because it
is a proof of program equivalence, but it is present in the Coq development as
GenUpdate v output probability .

We rewrite G real to replace GenUpdate original with the two new versions.

G real noV :=
l ← A
(k , v)← Instantiate
(head bits, state ′)←

GenUpdate noV ((k , v), (head l))
(tail bits, _)← oracleMap(GenUpdate, state ′, (taill))
ret A(head bits ||tail bits)

Lemma 7.4. Pr[G real ] = Pr[G real noV ].

Proof. By program equivalence on the outputs.

Pretend that this is what G real has been all along, and that all subsequent
rewrites of G real have followed this structure. (We can simply add this as a game
in the beginning. The v -updating is mentioned here, and not in the beginning of
the proof, because it is better motivated in context.)
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Now, as we originally desired, we can write each GenUpdate (and GenUpdate noV )
to query a provided oracle instead of the PRF.

GenUpdate oc(o, (k , v), n) :=
v1 ← o.query(v)
(bits, v2)← Gen loop oc(o, k , v1, n)
k1 ← o.query(v2||00 ... 00)
ret (bits, (k1, v2))

Again, note that after the PRF is re-keyed, we do not further query it in this call
of GenUpdate. This is much neater than before.

Finally, we can rewrite G hybrid ′(i) and G hybrid rf (i) in terms of PRF Adversary .

PRF Adversary(o, i) :=
l ← A
(k , v)← Instantiate
bits ← oracleMap(oracle i useO(o, i), (0, (k , v)), l)
ret A(bits)

G hybrid oc’(i) :=

k
R←− {0, 1}n

(b, _)← PRF Adversary(f oracle(k), i)
ret(b)

G hybrid rf oc(i) :=
(bits, _)← PRF Adversary(randomFunc oracle, i)
ret(b)

Lemma 7.5. for all i ,

|Pr[G hybrid oc ′(i)]− Pr[G hybrid rf oc(i)]|
≤ PRF Advantage(i).

Proof. More precisely, PRF Advantage is parametrized by the PRF Adversary passed
in, which is parametrized by the hybrid index i . The bits generated differ depend-
ing on i .

This is similar to Lemma 3.1, but does not reduce to it.

As is evident from the lemma above, there are multiple PRF adversaries, one
for each i . So, we take the final bound to be the greatest of the PRF Advantages:

PRF Advantage max := max
i

PRF Advantage(i).

This completes our proof bounding the distance between hybrid i and the in-
termediate hybrid for i .
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Now we bound the distance between the intermediate hybrid and the next real
hybrid.

Lemma 7.6. for all i ,

|Pr[G hybrid rf (i)]− Pr[G hybrid(i + 1)]| ≤ (li + 1)2

2c
.

Proof. We define the bad event, show that the two games are identical until bad,
and bound the probability of the bad event happening.

Definition 8. The bad event is that there are duplicates in the inputs to the oracle used
on the i + 1th call. Intuitively, we need to “zoom in” on the inputs and outputs to the
oracles in only the i + 1th call of each game. Then, the bad event becomes the same as the
bad event discussed in Theorem 4, in the proof about the simpler PRG.

Theorem 4 gives a detailed overview of why the bad event is bad, the funda-
mental lemma of game-playing, the definition of “identical until bad”, the tech-
nique of exposing the bad event, and the Pr1 and Pr2 notation. This section will
omit that discussion.

As before, we expose the bad event in both games by returning both the gener-
ated bits and a boolean indicating whether the bad event occurred in the oracle’s
state.

First, we expose the bad event in G hybrid(i + 1), rewritten to use an oracle that
returns ideal randomness when queried and keeps track of all input-output pairs.
The second return value of PRF Adversary is the oracle’s state. (Implicit program
equivalence: G hybrid(i + 1) is the same as replacing the oracle on the i + 1th call
with random bits.)

G hybrid rb oc 2(i) :=
(bits, state)← PRF Adversary(rb oracle, i)
ret(b, hasDups(inputsOf (state))

Similarly, we expose the bad event in G hybrid rf , rewritten to use a random
function oracle that keeps track of duplicate inputs. (Again, on the i + 1th call, it
uses this RF oracle.)

G hybrid rf oc 2(i) :=
(bits, state)← PRF Adversary(randomFunc withDups, i)
ret(b, hasDups(inputsOf (state))

Lemma 8.1. for all i , G hybrid rf oc 2(i) and G hybrid rb oc 2(i) are identical until
bad.

Proof. They satisfy the two requirements. The reasoning is the same as in Theorem
4, because we only have to reason about the one call between the computations
that uses the two different oracles. The only difference between here and Theorem
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4 is that the oracle is queried either one or two additional times when we update k
and v at the end of GenUpdate.

1. If the bad event does not happen, their output distributions are iden-
tical. If there are no duplicates in the inputs to the oracle (rb oracle or
randomFunc withDups), they behave the same.

2. The probability of the bad event happening is the same in both. Again, this
is obvious.

This lemma is obvious on paper, but it took much effort to formalize. We had
to do a tricky induction over the list of blocks l that the adversary requested. See
the discussion of oracleCompMap oracle eq until bad dups in Appendix C.1.

Then we may bound the distance between the two games by the probability of
the bad event happening.

Lemma 8.2. for all i ,

|Pr
1
[G hybrid rf oc 2(i)]− Pr

1
[G hybrid rb oc 2(i)]|

≤ Pr
2
[G hybrid rb oc 2(i)].

Proof. Because we just proved that the two games are identical until bad, we apply
the fundamental lemma, which yields this result.

Now we need only reason about the bad event in the second game, which re-
places the PRF with ideal randomness in the i + 1th oracle call. We rewrite the
game into several simpler forms and prove that each preserves the probability of
the bad event happening, then reduce it to the bound proven earlier in Lemma 4.7.

Intuitively, we only care about the computation that queries the oracle, which is
one iteration of GenUpdate oc . We can discard the other calls to GenUpdate oc . By
the ordering of the hybrid argument, we know that the state coming into this call
is ideally random. (This was an important reason we picked this hybrid ordering.)

Thus, we inline GenUpdate oc and replace Gen loop with genRandForEach, since
we replaced the PRF with ideal randomness.

G hybrid rb oc bad 1(i) :=
l ← A
firstInput v

R←− {0, 1}n

(because the v coming in is ideally random)
outputsAsInputs ← tail(genRandForEach(l))

(the v is the first input; we throw away one element, which is an output)

v2
R←− {0, 1}n

keyInput ← v2||0 ... 0 (updating the key)
ret(hasDups([keyInput, firstInput v ]||outputsAsInputs))
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By NIST’s design, the PRF is re-keyed as such:

k1 ← fk(v ||0 ... 0)

(v ||0 ... 0) can never be a duplicate input for that particular PRF, because the
PRF was always queried previously with inputs of length c , and this input is
longer. (Our guess is that NIST made this design decision so that for that PRF,
the new key would always be ideally random.) Therefore, we can remove the key
input from our list of possible duplicate inputs.

We are left with essentially the same situation as in Theorem 4. The total
number of inputs is the sum of the total number of blocks requested (minus 1
because the last one is an output; plus 1 for the initial v ), plus one more input
because GenUpdate made one more query to the oracle to update v at the end. (The
v -updating is not present in GenUpdate noV , but the bound still holds.)

G hybrid rb oc bad 2(i) :=
l ← A
inputs ← generate bitvectors(1+ sum(l))
ret(hasDups(inputs))

Each rewrite preserves the probability of the bad event happening.

Lemma 8.3. for all i ,

Pr
2
[G hybrid rb oc 2(i)] = Pr[G hybrid rb oc bad 1(i)]

= Pr[G hybrid rb oc bad 2(i)]

Proof. This is one lemma which is intuitively obvious, but subtle. It’s easy to inline
GenUpdate wrong by hand, mistake an output for an input, or make an off-by-
one error. (The last error doesn’t matter asymptotically, but it’s still good to be
accurate.)

Here is where formal verification shines. In the explanation above, we com-
bined 5-6 possible intermediate games into 2 games for brevity; in Coq, we can
write out each one and prove each adjacent pair equivalent. These proofs can be
found in the Coq development under the theorem Gi rb bad collisions .

Finally, we bound the probability of the bad event happening.

Lemma 8.4. for all i ,

Pr[G hybrid rb oc bad 2(i)] ≤ (li + 1)2

2c

Proof. The game is in almost exactly the same form as G ideal 4, so we reuse the
collision probability bound with n := 1+ sum(l).
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This completes our bound on the distance between hybrid i + 1 and the inter-
mediate hybrid for i .

This completes our bound on the distance between adjacent hybrids Hi and
Hi+1.

Theorem 9 (Distance between first and last hybrid.).

AdvD1,D2
(A) ≤ t · PRF Advantage Max +

t−1
∑
0

(li + 1)2

2c

≤ t · (PRF Advantage Max +
(maxBlocks + 1)2

2c
).

Proof. The first inequality follows by the triangle inequality combined with Theo-
rem 7.

The second inequality follows by the fact that the PRG imposes an upper limit
on the number of blocks that may be requested per call. This is 219 bits for HMAC-
DRBG, according to NIST SP 800-90A (39).

This is a negligible quantity for sufficiently large c . Usually c is 256, since
HMAC’s internal hash function is typically SHA-256.

This completes our bound on the total probability of distinguishing between
the real-world and ideal-world games.

Remark 9.1. Assuming real-world usage of the DRBG, we estimate the bound. Again, we
typically use SHA-256, so c = 256 = 28. NIST SP800-90A bounds the number of bits
per call by 219, which is 211 blocks per call. The standard also bounds the number of calls
before reseeding by 248. So, let the adversary makes 240 requests of 210 blocks each. Assume
that the DRBG is not otherwise compromised or reseeded during that time.

PRF Advantage is typically left as a black block (e.g. Hirose (2008)’s estimate). Under
the assumption that HMAC is a PRF, the maximum probability of being able to distinguish
ought to be negligible in the number of queries made.

Then the probability of the adversary being able to distinguish pseudorandom bits from
ideally random bits is bounded by (dropping the +1 in maxBlocks + 1 since it’s asymptot-
ically irrelevant)

248 · (PRF Advantage Max +
220

2256
) = 248 · PRF Advantage Max + 2−188.

Assuming PRF Advantage Max ≤ 2−100, which is reasonable, the probability of the
adversary being able to distinguish is less than 10−16.

See Hirose (2008) for a similar estimate of the probability of being able to distinguish
for the core loop (not the full DRBG).
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3.4 Proof of backtracking resistance

It is not enough for a real-world DRBG to possess pseudorandomness. As a moti-
vating example, say Alice and Bob want to communicate secretly. Perhaps they are
sneaky vegans who want to trade insider information about the future stock prices
of Earth Balance Inc. Thus, they use a simple hybrid cryptosystem to communi-
cate, consisting of some public-key encryption scheme P and some symmetric-
key encryption scheme S . (Such schemes are used in practice; one example is
OpenPGP. They are used because the symmetric-key scheme is typically faster than
the public-key scheme.)

On Bob’s end, he obtains Alice’s public key through some trusted authority,
generates a fresh symmetric key, encrypts the message using the symmetric key,
encrypts the symmetric key using the public key, and sends both encryptions to
Alice.

On Alice’s end, she receives both encryptions. She first decrypts the second
encryption with her private key to obtain the symmetric key, then uses the sym-
metric key to decrypt the message. Afterward, Alice and Bob communicate only
within the scheme S . After a certain number of messages, for good hygiene, one of
them generates a new symmetric key, encrypts that using the old symmetric key,
and sends it over. From then on they use the new symmetric key to communicate.

Symmetric keys are essentially generated by a DRBG, with possibly some deter-
ministic function applied to the pseudorandomness afterward. Say the DRBG only
possesses the property of pseudorandomness. The DRBG’s output here must be
kept secret, but if only the output becomes public, then the adversary only knows
the symmetric key for time T . However, if the DRBG is fully compromised at time
T (meaning that an adversary receives its key and seed at that time), the adver-
sary can also apply the DRBG’s Generate function to generate the symmetric keys
to encrypt and decrypt messages sent after time T . And the adversary may be able
to run the DRBG “backward” to generate the symmetric keys used to encrypt and
decrypt messages sent before time T .

We give a formal definition of an adversary not being able to run a PRG “back-
ward.”

Definition 10. Backtracking resistance. Informally, if a PRG is compromised at time
T , the adversary still cannot distinguish its previous output from ideal random strings.

Specializing to HMAC-DRBG: any nonuniform nonadaptive PPT adversary A is given
a Compromise oracle that it can call after a certain number of calls to the GenUpdate oracle
to reveal the PRG’s internal (k , v). Even given this additional state, the adversary has a
negligible probability of distinguishing the previous output from ideal randomness. This
definition is based on the definition given by Barak (2005).

Here is the real-world game. Since ABR (the backtracking resistance adversary) is
nonadaptive, there is no separate Compromise oracle; the length of the list implicitly
indicates the number of calls after which A wishes to see the internal state (k , v) of the
PRG. Then it is given the generated pseudorandom bits and the final (k , v) state.
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G real BR :=
l ← A
(k , v)← Instantiate
(bits, (kf , vf ))←

oracleMap(GenUpdate original , (k , v), l)
ret ABR(bits, (kf , vf ))

In the ideal-world game, ABR is given a string of ideal randomness of the same length,
as well as (k , v) that are ideally random.

G ideal BR :=
l ← A
(k , v)← Instantiate
bits ← genRandForEach(l)
ret ABR(bits, (k , v))

The PRG modeled on HMAC-DRBG is backtracking-resistant if for all nonuniform
nonadaptive PPTs ABR that ask for a polynomial number of blocks over a polynomial num-
ber of GenUpdate calls, ABR has a negligible chance of distinguishing between the worlds.

|Pr[G real BR ]− Pr[G ideal BR ]| ≤ neg(n, l).

By this definition of backtracking resistance, the real-world and ideal-world
games are very similar to the respective games in the definition of pseudorandom-
ness, discussed in Section 3.3. The only difference is that in the real-world game,
the new adversary is given the final state, and in the ideal-world game, the new
adversary is given an ideally random state. Thus, intuitively, the proof of back-
tracking resistance can reuse many of the steps and reductions we used to prove
pseudorandomness.

Theorem 11. HMAC-DRBG is backtracking resistant.

|Pr[G real BR ]− Pr[G ideal BR ]|

≤ t · PRF Advantage Max +
t−1
∑
0

(li + 1)2

2c

≤ t · (PRF Advantage Max +
(maxBlocks + 1)2

2c
).

Proof. This is a proof sketch, not the full proof.
Note that in every proof we reuse from the pseudorandomness proof, we have

to check that the result holds for an adversary that also receives the state. We run
into such a problem in the first step.

We reuse the work in Lemma 7.3 to move each v -update in GenUpdate to the
beginning of the next call. Because this is a program equivalence proof, the result
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holds as-is on the output. However, the state at the end of a GenUpdate noV call is
not the same as it would be at the end of a GenUpdate call.

This breaks backtracking resistance. Referring to GenUpdate original (in Section
3.3), the adversary would receive v1, not v2. But if ABR knows that the last block of
the PRG’s output is v1. So if ABR is in the real-world game, it can simply check if
this is true. This happening has a negligible probability of happening in the ideal-
world game, since the v that ABR receives is ideally random. To fix this, we simply
update v1 before giving the state to ABR .2

Here is the new game with v -updating.

G real BR noV :=
l ← A
(k , v)← Instantiate
(head bits, state ′)←

GenUpdate noV ((k , v), (head l))
(tail bits, (kf , v1))←

oracleMap(GenUpdate, state ′, (tail l))
vf ← fk(v1)
ret ABR(head bits ||tail bits, (kf , vf ))

Afterward, we take the same strategy. We define the same hybrids: Hi replaces
the PRF on calls ≤ i with ideal randomness, and using the PRF normally after-
ward. Then we use the triangle inequality so that we only need bound the distance
between adjacent hybrids Hi and Hi+1.

The first step in the bound between adjacent hybrids is the same as in the
pseudorandomness proof. We use the same intermediate hybrid H ′i : we rewrite
G real BR noV in the form of a game G real BR noV RF (i) that passes a random
function oracle to some PRF adversary, which uses ideal randomness in place of
the PRF on calls ≤ i , the provided oracle on call i + 1, and the PRF afterward. We
rewrite the beginning hybrid Hi in the same form, just passing the PRF adversary
the PRF as an oracle instead.

The distance between Hi and H ′i is PRF Advantage Max by definition and by
taking the maximum PRF Advantage over all hybrids (discussed in Section 3.3). In
this step, we don’t need to reason about the ABR being given the state; no matter
what happens, the bound is PRF Advantage Max by definition.

The second step in the bound between adjacent hybrids is to rewrite the ideal-
world game in the form of a game that instead passes the PRF adversary the oracle
rb oracle for all calls. (This oracle uniformly samples random bits and records the
input-output pairs.) Then, we reason that this new game, G real BR noV RB , is
related to the intermediate game because they are identical until bad. This is true.

2One could change the ideal-world definition to give ABR the last block of the ideally random
output as v , but that would weaken the definition. Anyway, we still need to fix the v -updating in
order to rewrite the game in terms of the PRF adversary, as discussed in Section 3.3.
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To see this, we consider the distribution of the output (bits, (kf , vf )) instead of just
bits as before.

1. The bad event (duplicates in the inputs to the provided oracle) has the same
chance of happening in both games. This is true. Outputting the end state
does not affect whether the bad event happens.

2. If the bad event does not happpen, the output distributions are identical be-
tween the games. We already proved this for bits . For (kf , vf ), the key is
always ideally random because its input is length-extended. vf is ideally
random because it is the first query of a freshly re-keyed PRF. This is true
across both games.

At this point, we have essentially replaced the first hybrid with the last hybrid,
adding on the collision bounds along the way. The last hybrid here is a slightly dif-
ferent game from the ideal-world game, whereas in the pseudorandomness proof
the last hybrid was the same as the ideal-world game by program equivalence.
The last hybrid here still possesses the last v -update after the GenUpdate noV calls.

G last hybrid BR :=
l ← A
bits ← genRandForEach(l)

kf
R←− {0, 1}n

lastV ← lastBlockOf (bits)
vf ← randomFunc withDups(lastV )

(note this v-update!)
ret ABR(bits, (kf , vf ))

Clearly, since vf is the first query to a random function, it is ideally random.
Thus (bits, (kf , vf )) has the same distribution here as in the ideal-world game, so
the distribution of ABR ’s guess is the same.

The bound on the probability that ABR breaks backtracking resistance can be
the same as the bound on the probability that A can break pseudorandomness.
This is not immediately obvious!

3.5 On proving prediction resistance

NIST also specifies that HMAC-DRBG possesses the complementary property of
prediction resistance. That is, if it is compromised at time T , the adversary will
find it difficult to distinguish HMAC-DRBG’s future output from ideal random
strings. Naively, if given (k , v) at time T , the adversary should be able to compute
all future DRBG output and thus distinguish it from ideal randomness. Thus, the
Reseed function should ensure prediction resistance by injecting fresh entropy into
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the DRBG that is unknown to the adversary. (It refreshes the (k , v) by re-HMACing
them with fresh entropy appended to the previous (k , v).)

However, proving things about this is difficult. Dodis et al. (2013) proved that
the Linux DRBG was insecure and did not possess prediction resistance. However,
they had to do tricky reasoning about how much entropy was injected at once and
where. They had to reason about, for example, the difference between injecting
entropy as five bits per call over ten calls, versus fifty bits in one call, and relative
difficulties for the adversary.
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Chapter 4

Comments on the machine-checked
proofs

4.1 Proof tree

Here we give an outline of the structure of the Coq development. The main defi-
nitions and games were given in Section 3.3, and each lemma in the Coq develop-
ment is explained in detail in Appendix C. Below, a dagger (†) denotes a lemma
proven by Petcher. When a lemma is specific to the Coq development and is too
obvious to mention in the paper proof, I denote it with an asterisk (∗).

I am confident that all the lemmas are true; paper proofs are given in Ap-
pendix C. However, some rely on admitted lemmas, which are either proofs of
game equivalence or inductions that I haven’t had time to fill in. I denote admitted
lemmas with a question mark ((?)). Some lemmas are completely proven except
for the admitted lemmas they depend on; I will not mark these.

This is the main theorem and its Coq proof. It states that the probability that
the adversary can distinguish between the real-world and ideal-world games is
bounded by the length of the list of blocks requested, multiplied by a constant
upper bound on the difference between adjacent hybrids.

Theorem G1_G2_close :

| Pr[G1_prg_original] - Pr[G2_prg] | <=

(numCalls / 1) * Gi_Gi_plus_1_bound.

Proof.

rewrite G1_Gi_O_equal.

rewrite GenUpdate_v_output_probability.

rewrite G2_Gi_n_equal.

(* inductive argument *)

specialize (distance_le_prod_f

(fun i => Pr[Gi_prg i])

Gi_Gi_plus_1_close numCalls).

intuition.

Qed.
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This is its proof tree, with a very short explanation given for each lemma. For
conciseness I use “equivalent” to mean either that two games are equal via pro-
gram equivalence, or that their outputs have computationally indistinguishable
distributions.

1. G1_Gi_O_equal∗ (?): the real-world game is equal to the first hybrid.

2. GenUpdate_v_output_probability: we can move each v -update to the begin-
ning of the next GenUpdate call.

3. G2_Gi_n_equal∗ (?): the ideal-world game is equal to the last hybrid.

4. distance_le_prod_f†: the triangle inequality, which lets us bound the dis-
tance between adjacent hybrids.

5. Gi_Gi_plus_1_close: the probability of distinguishing between adjacent hy-
brids is negligible.

a. Gi_normal_prf_eq∗: program equivalence relating normal hybrids and
oracle-replacing hybrids. (The two have different types.)

i. Gi_normal_prf_eq_compspec∗ (?): prove the above in PRPL, requiring
a tricky induction over the list of block numbers.

b. Gi_prf_rf_close: replace the PRF in the i th call of GenUpdate in the i th
hybrid with a RF, and bound the difference by PRF Advantage Max .

i. PRF_Advantages_lt∗ (?): we can pick some i for which PRF Advantage
is maximized.

c. Gi_rf_rb_close: replace the RF in the i th call of GenUpdate in the i th
hybrid with RB, and bound the difference by the probability of collisions
in the oracle’s inputs.

i. Gi_normal_rb_eq∗ (?): another program equivalence relating nor-
mal hybrids and oracle-replacing hybrids, along the lines of
Gi_normal_prf_eq.

ii. Gi_rf_return_bad_eq∗: expose the bad event in Gi_rf.
iii. Gi_rb_return_bad_eq∗: expose the bad event in Gi_rb.
iv. Gi_rb_rf_identical_until_bad:

(1) fundamental_lemma_h†: Bellare’s fundamental lemma of game-
playing.

(2) Gi_rb_rf_return_bad_same: the first assumption of “identical un-
til bad”: the bad event has the same probability of happening in
each game.

(3) Gi_rb_rf_no_bad_same: the second assumption of “identical until
bad”: if the bad event does not happen, the two games have
identically-distributed outputs.
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(a) oracleCompMap__oracle_eq_until_bad_dups∗: we combine the
two “identical until bad” assumptions as a postcondition on
the bit-generation computation and prove that they hold us-
ing PRPL.

(i) fcf_oracle_eq_until_bad†∗: a theorem that lets us strip
away extraneous oracle computations and prove the post-
condition holds on a very simple oracle computation.

v. Gi_rb_bad_collisions: bound the probability of the bad event hap-
pening.
(1) Various game equivalences (Gi_rb_bad_eq_i)†∗ (?): ruthlessly

simplify the oracle computation using the RB oracle, and in the
end apply Petcher’s existing collision bound.

4.2 Coq-specific reasoning

Working in Coq requires doing many proofs of program and game equivalence,
which can be tedious. Two examples of this above are Gi_normal_prf_eq and
Gi_normal_rb_eq. Because using oracles changes the types of every computa-
tion that uses that computation, the types of Gen loop, GenUpdate, Oi prg , and
oracleMap all change from Comp to OracleComp, and we write new functions with
the new type. And we need to change the functions slightly to use the oracle in
the i th call. Proving the above requires doing an induction over both the list of
blocks provided by the adversary, and over each number of blocks in a call. Also,
Gi_rb_bad_eq_i is one lemma that requires doing many game transformations and
proving equivalences between them.

Also, all of the proofs in this paper are in the concrete setting. Since we use
FCF to mechanize our proofs, in the Coq development, we must make the infor-
mal assumption that the PRG adversaries are PPT. Our constructed adversaries are
informally PPT upon inspection, assuming the PRG adversaries are PPT.

4.3 What’s left to prove in the Coq development

The development spans 2000 lines of code. Petcher’s proof for the core loop spans
less than 1000 lines.

First, we want to prove the 22 remaining admitted lemmas. There are 17 main
lemmas (off of which the admitted ones branch) and many small ones. I’ve proved
the four most difficult ones and am confident about the rest, which are mostly
game equivalence proofs.

Besides proving the admitted lemmas, we also want to extend our proof to
yield more general and powerful results.

• We need to adapt the pseudorandomness proof to a nonadaptive adversary
that picks any list of blocksPerCall and numCalls beforehand, not the hard-
coded maxBlocksPerCall and maxCalls . One can imagine a pathological DRBG
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that outputs its key for only numCalls = 7, for example. The paper proof here
already holds for the more general adversary.

• We need to figure out how to extend the pseudorandomness proof, as well as
the backtracking resistance proof, to an adaptive adversary. This adversary
can choose the number of calls and number of blocks per call, then once it
receives the output, can call again as many times as it wishes with parame-
ters of its choice. One can imagine a pathological DRBG that “encourages”
an adversary to input 7 as blocksPerCall and outputs its secret key after 3 such
calls, so that if it discovers that 7 is a “bad” input, it keeps inputting it. A non-
adaptive adversary would have negligible chance of making this experiment
or this discovery.

• Reuse the pseudorandomness proofs to show backtracking resistance. The
proof is outlined in Section 3.4.

• Prove that our cryptographic specification of HMAC-DRBG and a different,
functional specification of HMAC-DRBG are equivalent. This is discussed in
Section 5.1.

We also abstracted or ignored a few aspects of HMAC-DRBG and would like
to extend our proof to include them.

• NIST specifies that Instantiate produces the (k , v) by calling Update using
hardcoded constant (k , v) and some additional entropy. The entropy might
not be uniformly random, so to reason about this construction, we would
have to show that HMAC is an “entropy extractor,” meaning it converts high-
entropy input to uniformly random output. This does not seem worth the
trouble, so we assume that Instantiate samples (k , v) uniformly at random.

We could extend our proof to hold on the real Instantiate in two ways. First,
we could prove that HMAC is an entropy extractor. Fouque (2008) proved
a variant of the property, but for an HMAC that uses an ideally random
key, which is not the case in Instantiate. Or we could assume that the real
Instantatiate is given ideally random entropy and show that it outputs ide-
ally random (k , v).

• Update includes a call to Reseed if the reseed counter is greater than reseed
count, or the DRBG’s state is compromised. (Reseed provides prediction re-
sistance by injecting entropy unknown to the adversary into the DRBG). We
remove the call to Reseed because again, it’s hard to reason about entropy,
so our DRBG is not prediction resistant. Also, the reseed counter’s limit is a
very large number that means you would naturally reseed about once every
million years.

• We ignore the “additional input” and “personalization string” parameters of
Generate, Update, and Instantiate. These are generally used for fork-safety, so
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our PRG is not necessarily fork-safe. If you fork the DRBG process, the child
process starts with exactly the same internal state, so one would update the
state with something unique to that process, generally the process ID.

• We have made the simplifying assumption we can always get as much ideal
randomness as desired. In the real world, when the DRBG requests entropy,
it may receive a failure and have to try again.

4.4 How verification helped

Working in Coq and FCF enabled us to state definitions, functions, and games in a
language that was easy to read, expressive, precise, and executable. This benefited
our proof in two main ways.

First, working in this environment prevented us from making subtle mistakes
in dealing with a tricky hybrid argument. For example, for every lemma bounding
the difference between adjacent hybrids Hi and Hi+1, Coq forced every lemma to
be parametrized by i . This helped early in the proof, when Coq forced us to real-
ize that there were multiple PRF adversaries (one for each hybrid Hi , so it is also
parametrized by i). Typical crypto proofs don’t have multiple PRF adversaries, so
we hadn’t even considered this possibility.

Additionally, Coq prevented us from making suble off-by-one errors in the hy-
brid argument. It’s easy to mix up the total number of hybrids for a list of blocks of
n elements—is it n or n + 1 hybrids? It’s also easy to mix up whether the oracle is
replaced in the i th call or the i + 1th call. If your numbering is wrong, your lemmas
will become unprovable.

Second, working in this environment allowed us to “execute” computations in
lemmas and test if they held true on small examples. One example of this can be
found in the lemmas whose names begin with Gi_normal_prf_eq_compspec, where
wrong results after computing on small expressions allowed us to unearth sev-
eral typos in the indices in Oi oc ′ and GenUpdate. For example, in GenUpdate, we
had typed ret (bits, (k ′, v ′)) instead of ret (bits, (k ′, v ′′)), which made one lemma
unprovable until we fixed it. Similar bugs have been found in real-world code be-
cause a typo or mistake rendered the code unverifiable. These bugs have also been
turned into real-world exploits.

4.4.1 Comments on HMAC-DRBG’s design

Formally verifying HMAC-DRBG helped us notice two NIST design decisions that
made our job either harder or easier.

First, NIST re-keys the PRF with a length-extended input. This is good because
HMAC can take inputs of any length, and all previous inputs for HMAC with that
key were of fixed length (since HMAC has a fixed output). So we know the new
key won’t collide with previous outputs.
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Next, updating the v immediately after re-keying the PRF, in the same oracle
call, is hard to reason about. This is because at the beginning of each call, by the
hybrid argument, we can assume that the (k , v) have been randomly sampled.
Now we have to replace the key with a random key to reason about updating the
v. The solution is simple: we move each v-update to the beginning of the next call
and prove that the new sequence of programs is indistinguishable to the adversary.
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Chapter 5

Future work

5.1 Linking our crypto spec with the functional spec

Sanguansin (2016) proved functional correctness of the mbedTLS implementation
of HMAC-DRBG using a different functional specification, also written in Gallina.
He did this proof using the Verified Software Toolchain (VST) framework, which
provides a logic for reasoning that the outputs of some C function satisfy some
postcondition given that the inputs satisfied some precondition.

To create a truly end-to-end proof of correctness, we must prove that our cryp-
tographic specification of HMAC-DRBG is the same as his specification. This is the
labeled arrow in Figure 5.1. To bridge this gap, we must prove lemmas about at
least the following differences between the specifications.

1. Sanguansin (2016)’s code has essentially the same core loop (Gen loop) and
Generate and Update code. However, it’s surrounded by many layers of error
checking code, e.g. for prediction_resistance_request. We need to prove
equivalence modulo error checking.

2. Sanguansin (2016)’s code also models failures in the type for the entropy
stream. It is an infinite stream of either bit or failure. Also, it is not necessarily
ideally random. We need to relate FCF’s sampling uniformly at random to
this more realistic entropy model. Petcher (2015)’s doctoral thesis provides
relevant theorems about the operational semantics of FCF that can help in
proving this relation.

Beringer (2015)’s verification of HMAC was similarly structured. They started
with separate proofs of cryptographic security (in this case, that HMAC is a PRF
given that SHA is a PRF) and of functional correctness (of an OpenSSL imple-
mentation of HMAC). Thus, they also had two separate specifications of HMAC,
one using dependent types to enable cryptographic proofs in FCF, and one closely
modeling the NIST standard for HMAC. Thus, they also had to do a similar proof
of equivalence between the specifications. (I was the one who did this proof, with
help from Beringer. See Ye (2014) for a detailed description of the proof.) This gives
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Figure 5.1: A fully verified HMAC-DRBG.

us confidence that such a proof can be done, and that proving equivalence does not
require adding too many weakening assumptions on security or correctness.

5.2 Extending our work to other DRBGs

HMAC is slow. AES is fast. Thus, AES CTR-DRBG, which uses AES in CTR mode,
is much more widely used in practice than HMAC-DRBG (e.g. Amazon uses AES
CTR-DRBG). It would be practically useful to formally verify HMAC-DRBG, but
also theoretically interesting. How do our proofs generalize? (Some things would
be different; e.g. HMAC is assumed a PRF, and AES is assumed a pseudorandom
permutation. Their respective DRBGs are slightly different as well. Some things
would break; e.g. to refresh the key without a collision, NIST cannot length-extend
the input.) Can we build a general framework for verifying DRBGs? How auto-
mated can it be? Is the concrete security bound better?

All of this effort was predicated on the fact that HMAC-DRBG’s specifica-
tion will not change, and mbedTLS’s implementation of HMAC-DRBG does not
change. Time will test the modularity of our proofs.
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Also, there have been rumors that OpenSSL’s team is picking or designing a
new DRBG. In this situation, and in similar situations, we hope our work encour-
ages implementors to co-design their libraries with formal methods researchers.

5.2.1 Metrics for success on the final project

After we have completed the computer-checked proofs of pseudorandomness,
backtracking resistance, and spec equivalence, we will consider the following met-
rics for success on the entire development.

• How automated was the project?

• How much effort was it, in time and in lines of code?

• Did we contribute original math?

• How many properties were we able to verify, and how important are they?

• Is our verification actually right?

• What attacks can be definitively ruled out by our verification? What attacks
are still possible?

• Are the security and formal verification communities excited about using or
building on our work?
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Chapter 6

Conclusion

We have contributed a paper proof of the pseudorandomness of a simplified ver-
sion of HMAC-DRBG. Hirose (2008) had already written paper proofs, but they
were complicated and not linked to functional specifications or implementations.
No prior proof considered real-world use of HMAC-DRBG (or any similar DRBG)
over multiple calls to the Generate function, or including updating of the state.
Also, no prior proof has proven backtracking resistance for this type of DRBG.

We have mostly formally verified the pseudorandomness of a simplified ver-
sion of HMAC-DRBG. Simple PRGs have been verified before, but they were on
the order of verifying the core loop in Generate (e.g. in the EasyCrypt documenta-
tion), not real-world PRGs.

We have contributed knowledge about the challenges and benefits of formally
verifying PRGs, and especially about proving things about hybrid arguments. The
process of writing a machine-checked proof of security unearthed several subtle
errors, such as off-by-one errors in hybrid numbering and the presence of multiple
PRF adversaries.

We plan to link this security proof to a functional correctness proof. Thus,
mbedTLS’s implementation of HMAC-DRBG will be fully certified.
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Appendix A

Code

The HMAC-DRBG pseudorandomness proof may be found in this file. (The back-
tracking proof will be added in that repository in a month or two.)

github.com/hypotext/fcf/blob/master/src/examples/HMAC_DRBG_nonadaptive.v

The HMAC-DRBG functional correctness proof may be found in this repository.
https://bitbucket.org/naphatkrit/rng

The Foundational Cryptography Framework may be found in this repository.
https://github.com/adampetcher/fcf

The full verification of HMAC may be found in this repository, subdirectories sha,
fcf , and hmacfcf .

https://github.com/PrincetonUniversity/VST/
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Appendix B

Main definitions in the Coq
development

B.1 PRF-DRBG definitions

This function corresponds to the core loop, H , discussed in Section 3.2.

Fixpoint PRF_DRBG_f (v : D)(n : nat)(k : Key) :=

match n with

| O => nil

| S n’ =>

r <- (f k v);

r :: (PRF_DRBG_f (injD r) n’ k)

end.

B.2 HMAC-DRBG definitions

The core inner loop of HMAC-DRBG that generates pseudorandom blocks.

(* save the last v and output it as part of the state *)

Fixpoint Gen_loop (k : Bvector eta) (v : Bvector eta) (n : nat)

: list (Bvector eta) * Bvector eta :=

match n with

| O => (nil, v)

| S n’ =>

let v’ := f k (Vector.to_list v) in

let (bits, v’’) := Gen_loop k v’ n’ in

(v’ :: bits, v’’)

end.

We combined the Generate and Update functions into one program, since they’re
always called together.

Definition GenUpdate_original (state : KV) (n : nat) :

Comp (list (Bvector eta) * KV) :=
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[k, v] <-2 state;

[bits, v’] <-2 Gen_loop k v n;

k’ <- f k (to_list v’ ++ zeroes);

v’’ <- f k’ (to_list v’);

ret (bits, (k’, v’’)).

B.3 Proof of pseudorandomness

Here are the statement and the proof in Coq.

Theorem G1_G2_close :

| Pr[G1_prg_original] - Pr[G2_prg] | <=

(numCalls / 1) * Gi_Gi_plus_1_bound.

Proof.

rewrite G1_Gi_O_equal.

rewrite G2_Gi_n_equal.

(* inductive argument *)

specialize (distance_le_prod_f

(fun i => Pr[Gi_prg i])

Gi_Gi_plus_1_close numCalls).

intuition.

Qed.

B.3.1 Main games

Updating the v immediately after re-keying the PRF, in the same oracle call, is
hard to reason about. This is because at the beginning of each call, by the hybrid
argument, we can assume that the (k , v) have been randomly sampled. Now we
have to replace the key with a random key to reason about updating the v. The
solution is simple: we move each v-update to the beginning of the next call and
prove that the new sequence of programs is indistinguishable to the adversary.

(* [GenUpdate_original, GenUpdate_original, ...] = [GenUpdate_noV,

GenUpdate, Genupdate, ...] *)

(* use this for the first call *)

Definition GenUpdate_noV (state : KV) (n : nat) :

Comp (list (Bvector eta) * KV) :=

[k, v] <-2 state;

[bits, v’] <-2 Gen_loop k v n;

k’ <- f k (to_list v’ ++ zeroes);

ret (bits, (k’, v’)).

Definition GenUpdate (state : KV) (n : nat) :

Comp (list (Bvector eta) * KV) :=

[k, v] <-2 state;

v’ <- f k (to_list v);
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[bits, v’’] <-2 Gen_loop k v’ n;

k’ <- f k (to_list v’’ ++ zeroes);

ret (bits, (k’, v’’)).

The adversary, an abstract probabilistic polynomial time algorithm. It takes a
list of blocks and returns a guess.

(* nonadaptive adversary. *)

Variable A : list (list (Bvector eta)) -> Comp bool.

Hypothesis A_wf: forall ls, well_formed_comp (A ls).

The real-world game models normal usage of the PRG with the PRF.

(* blocks generated by GenLoop *)

Variable blocksPerCall : nat.

(* number of calls to GenUpdate *)

Variable numCalls : nat.

Hypothesis H_numCalls : numCalls > 0.

Definition maxCallsAndBlocks : list nat :=

replicate numCalls blocksPerCall.

(* only first call uses GenUpdate_noV; assumes numCalls > 0 *)

Definition G1_prg : Comp bool :=

[k, v] <-$2 Instantiate;

[head_bits, state’] <-$2 GenUpdate_noV (k, v) blocksPerCall;

(* call the oracle numCalls times, each time requesting blocksPerCall

blocks *)

[tail_bits, _] <-$2 oracleMap _ _ GenUpdate state’ (tail

maxCallsAndBlocks);

A (head_bits :: tail_bits).

In the ideal-world game, the returned bits are ideally random.

(* simpler version of GenUpdate only requires compMap. prove the two games

equivalent *)

Definition G2_prg : Comp bool :=

[k, v] <-$2 Instantiate;

bits <-$ compMap _ GenUpdate_rb maxCallsAndBlocks;

A bits.

Hybrid games.
Game i uses RBs for all calls less than i and PRF for all calls greater than or

equal to i . Call numbering starts at 0. It passes i to oracle i , which chooses the
appropriate oracle to use.

(* oracle i *)

(* number of calls: first call is 0, last call is (numCalls - 1) for

numCalls calls total

G0: PRF PRF PRF

G1: RB PRF PRF
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G2: RB RB PRF

G3: RB RB RB

there should be (S numCalls) games, so games are numbered from 0 through

numCalls *)

Definition Oi_prg (i : nat) (sn : nat * KV) (n : nat)

: Comp (list (Bvector eta) * (nat * KV)) :=

[callsSoFar, state] <-2 sn;

let GenUpdate_choose := if lt_dec callsSoFar i (* callsSoFar < i *)

then GenUpdate_rb_intermediate

(* first call does not update v, to make proving

equiv. easier*)

else if beq_nat callsSoFar O then GenUpdate_noV

else GenUpdate in

(* note: have to use intermediate, not final GenUpdate_rb here *)

[bits, state’] <-$2 GenUpdate_choose state n;

ret (bits, (S callsSoFar, state’)).

(* game i (Gi 0 = G1 and Gi q = G2) *)

Definition Gi_prg (i : nat) : Comp bool :=

[k, v] <-$2 Instantiate;

[bits, _] <-$2 oracleMap _ _ (Oi_prg i) (O, (k, v)) maxCallsAndBlocks;

A bits.

The PRF adversary. It uses the existing adversary so we can go from PRF to RF,
which is much easier to reason about. Game i here is more complicated because
we can pass in any oracle to use on only the i th call, instead of the the hardcoding
in game i above.

Definition PRF_Adversary (i : nat) : OracleComp Blist (Bvector eta) bool :=

bits <--$ oracleCompMap_outer _ _ (Oi_oc’ i) maxCallsAndBlocks;

$ A bits.

(* ith game: use RF oracle *)

Definition Gi_rf (i : nat) : Comp bool :=

[b, _] <-$2 PRF_Adversary i _ _ (randomFunc ({0,1}^eta) eqdbl) nil;

ret b.

Oracle i : like previous oracle i , but uses the provided oracle on the i th call.

(* same as Oi_prg but each GenUpdate in it has been converted to OracleComp

*)

(* number of calls starts at 0 and ends at q. e.g.

G1: RB PRF PRF

Gi_rf 1: RB RF PRF (i = 1 here)

G2: RB RB PRF *)

(* number of calls: first call is 0, last call is (numCalls - 1) for

numCalls calls total

G0: PRF PRF PRF <-- Gi_prf 0

RF PRF PRF <-- Gi_rf 0

G1: RB PRF PRF <-- Gi_prf 1
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RB RF PRF <-- Gi_rf 1

G2: RB RB PRF

RB RB RF

G3: RB RB RB <-- note that there is no oracle slot to replace here

RB RB RB <-- likewise

there should be (S numCalls) games, so games are numbered from 0 through

numCalls *)

Definition Oi_oc’ (i : nat) (sn : nat * KV) (n : nat)

: OracleComp Blist (Bvector eta) (list (Bvector eta) * (nat * KV)) :=

[callsSoFar, state] <-2 sn;

[k, v] <-2 state;

let GenUpdate_choose :=

if lt_dec callsSoFar i (* callsSoFar < i *)

then GenUpdate_rb_intermediate_oc

else if beq_nat callsSoFar i (* callsSoFar = i *)

then GenUpdate_oc (* uses provided oracle (PRF or RF) *)

else if beq_nat callsSoFar O

then GenUpdate_noV_oc (* first call does not update v *)

else GenUpdate_PRF_oc in (* uses PRF with (k,v) updating *)

[bits, state’] <--$2 GenUpdate_choose (k, v) n;

$ ret (bits, (S callsSoFar, state’)).

Refer to HMAC_DRBG_nonadaptive.v in the FCF repository for the rest.
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Appendix C

Explanations of each lemma in the
Coq development

We explain the proof tree described in Section 4.1 from the top down (roughly
breadth-first).

Note that the hybrid numbering is slightly different from the numbering in the
paper proof. We replace the PRF in the i th call with the provided oracle, not the
i + 1th call as in the paper proof.

For the top-level theorem,

G1_G2_close : | Pr[G1_prg] - Pr[G2_prg] | <=

(numCalls / 1) * Gi_Gi_plus_1_bound.

1. GenUpdate_v_output_probability :

Pr[G1_prg_original] == Pr[G1_prg].

If we move each v-update to the beginning of the next GenUpdate call, the
games are equivalent, since the output the adversary sees is exactly the same.
The rest of the proof will be done on the modified GenUpdates.

2. G1_Gi_O_equal :

Pr[G1_prg] == Pr[Gi_prg O].

Recall that G1 is the first game we defined. It simulates “worst-case” real-
world use of HMAC-DRBG by a nonadaptive adversary by calling GenUpdate
the maximum number of times, requesting the maximum number of blocks,
and passing the output to the adversary. Since this models real-world use,
every call to GenUpdate uses HMAC (abstracted to be any PRF). This game
is equivalent to the first hybrid, where every call to the GenUpdate oc oracle
uses the PRF.

3. G2_Gi_n_equal :

Pr[G2_prg] == Pr[Gi_prg numCalls].
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Recall that G2 is the second game we defined. It simulates how we would
ideally like HMAC-DRBG to behave. It calls GenUpdate rb the maximum
number of times, requesting the maximum number of blocks, and passing
the output to the adversary. GenUpdate rb is a version of GenUpdate with
every call to HMAC (the PRF) replaced by uniformly sampling a random
bitvector. This game is equivalent to the last hybrid, where every call to the
GenUpdate oc oracle uses uniform random sampling.

4. Gi_Gi_plus_1_close :

forall (n : nat),

| Pr[Gi_prg n] - Pr[Gi_prg (S n)] | <= Gi_Gi_plus_1_bound.

This is the important part of the proof. We prove that the difference between
each adjacent hybrid is bounded by some constant, defined as such:

Gi_Gi_plus_1_bound := PRF_Advantage_i + Pr_collisions.

Petcher’s existing lemma handles the rest of the work, yielding the result
that the difference between the first and the last hybrid is at most this bound
times the number of hybrids.

C.1 Adjacent hybrids are close

For Gi Gi plus 1 close, number four above:

1. Gi_normal_prf_eq : forall (i : nat),

Pr[Gi_prg i] == Pr[Gi_prf i].

We write the i th hybrid in terms of the i th oracle-replaced hybrid using the
PRF oracle. Outputting random bits on calls < i and the PRF afterward is
equivalent to outputting random bits on calls < i , using the PRF oracle on
call i , and using the PRF oracle afterward.

n = 4, i = 2

call # : 0 1 2 3

Gi_prg 2: RB RB PRF PRF

Gi_prf 2: RB RB PRF PRF

More formally,

Theorem Gi_normal_prf_eq_compspec :

forall (l : list nat) (i : nat) (k1 k2 v : Bvector eta),

comp_spec

(fun (x : list (list (Bvector eta)) * (nat * KV))

(y : list (list (Bvector eta)) * (nat * KV) * unit) =>

fst x = fst3 y)

(oracleMap (pair_EqDec nat_EqDec eqDecState) (list_EqDec eqdbv)

(Oi_prg i) (O, (k1, v)) l)
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((oracleCompMap_inner

(pair_EqDec (list_EqDec (list_EqDec eqdbv))

(pair_EqDec nat_EqDec eqDecState))

(list_EqDec (list_EqDec eqdbv)) (Oi_oc’ i)

(O, (k2, v)) l) unit unit_EqDec (* note: k’s differ. we aren’t

using this one *)

(f_oracle f eqdbv k1) tt).

This theorem is quantified over two important things: the list l of blocks
that the adversary requests per call, and the number of the hybrid i . Intu-
itively, given that the two computations (one using oracleMap, the other using
oracleCompMap_inner) output equal pseudorandom bits for a list l , if we make
another call, the two outputs for that call will be equal too. This is true be-
cause there are three cases, according to the structure of Oi_oc’. Let n denote
the length of l .

(a) n + 1 > i : for the new call, we use the PRF oracle in both computations.

(b) n + 1 = i : for the new call, in the oracleMap computation, we use the
PRF oracle, and in the oracleCompMap_inner computation, we use the
provided oracle. The caller is providing f_oracle, which is the PRF ora-
cle.

(c) n + 1 < i : for the new call, we use the RB oracle in both computations.

To prove this in Coq, we have to encode the insight that the theorem is in-
ductive over appending to the list, rather than pre-pending (consing) to the
beginning of the list. Thus, we induct on the reverse of the list l .

We also have to deal with the special case of the first call, since we must use
the special GenUpdate_noV oracle on that call. So we set calls > 0, perform the
induction on the reverse of the list, then add the first call onto the head of the
list.

2. Gi_prf_rf_close_i : forall (i : nat),

| Pr[Gi_prf i] - Pr[Gi_rf i] | <= PRF_Advantage_Game i.

In the i th call to the GenUpdate oracle, replace the pseudorandom function
(PRF) oracle used with the random function (RF) oracle.

n = 4, i = 1

call # : 0 1 2 3

Gi_prf 2: RB RB PRF PRF

Gi_rf 2: RB RB RF PRF

The probability that any adversary can distinguish between the PRF and the
RF is defined by cryptographers to be upper-bounded by a quantity called
PRF_Advantage. We construct this adversary from the existing PRG adversary
and call it PRF_Adversary.
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Definition PRF_Advantage_Game i : Rat :=

PRF_Advantage RndK ({0,1}^eta) f eqdbl eqdbv (PRF_Adversary i).

PRF_Advantage =

fun (D R Key : Set) (RndKey : Comp Key)

(RndR : Comp R) (f : Key -> D -> R)

(A : OracleComp D R bool) =>

| Pr[PRF_G_A RndKey f A] - Pr[PRF_G_B RndR A] |

The PRF adversary is given an oracle (PRF or RF with equal probability) and
can call it as many times as it wants on whatever inputs it chooses. It needs
to guess whether the oracle was the PRF or the RF.

We want to get our existing hybrid game i in this format, so we simply con-
struct this PRF adversary by passing the oracle we are given to the abstract
PRG, then returning what our PRG adversary returns.

Definition PRF_Adversary (i : nat) : OracleComp Blist (Bvector eta)

bool :=

bits <--$ oracleCompMap_outer _ _ (Oi_oc’ i) maxCallsAndBlocks;

$ A bits.

3. Gi_rf_rb_close : forall (i : nat),

| Pr[Gi_rf i] - Pr[Gi_prg (S i)] | <= Pr_collisions.

We replace the random function oracle in the i th call with an oracle that sim-
ply outputs random bits. We want to upper-bound the difference in prob-
ability that any adversary can distinguish a list of n things outputted by a
random function (where each output is used as the next input) from a list of
n uniformly sampled random bitvectors.

n = 4

Gi_rf 2: RB RB RF PRF

Gi_prg 3: RB RB RB PRF

We show that it is the probability that there is a collision in the random func-
tion’s inputs, which is a list of length n. Intuitively, the random function
acts exactly like random bits, except for the pathological case where one of
the randomly-sampled outputs O happens to be one of the previous inputs.
Then, when it is fed in as an input, RF (O) yields its previous output, since
it was “cached.” In fact all outputs will repeat from then on, leading to a
“cycle.”

For example, take 101 as a fixed initial input, and everything after it as an
output. ∗000∗ denotes the bad event of the first repeated input. Note the
following cycle.

101, 000, 011, 001,
∗ 000∗, ∗011∗, ∗001∗,
∗ 000∗, ∗001∗, ...

58



The analogous proof in PRF_DRBG is PRF_DRBG_G3_G4_close.

For PRF Advantage (Gi_prf_rf_close), number two above:

1. Gi_prf_rf_close_i : forall (i : nat),

| Pr[Gi_prf i] - Pr[Gi_rf i] | <= PRF_Advantage_Game i.

n = 4, i = 2

Gi_prf 2: RB RB PRF PRF PRF

Gi_rf 2: RB RB RF PRF PRF

The PRF advantage for hybrid game i is defined to be the normal PRF advan-
tage using the constructed PRF adversary on the i th game. Note that here the
PRF advantage is parametrized by i , whereas in a non-hybrid argument, it
would simply be the cryptographer-defined upper bound of PRF_Advantage.

Definition PRF_Advantage_Game i : Rat :=

PRF_Advantage RndK ({0,1}^eta) f eqdbl eqdbv (PRF_Adversary i).

We can prove this theorem by simply unfolding the definitions of Gi_prf and
Gi_rf, because they are both in the form stipulated by PRF_Advantage. The RF
game passes the oracle to an adversary, which returns a guess.

Definition Gi_rf (i : nat) : Comp bool :=

[b, _] <-$2 PRF_Adversary i _ _ (randomFunc ({0,1}^eta) eqdbl) nil;

ret b.

The PRF game uniformly samples a random key for the adversary, then
passes the adversary the PRF oracle using that key (which it cannot see).

Definition Gi_prf (i : nat) : Comp bool :=

k <-$ RndK;

[b, _] <-$2 PRF_Adversary i _ _ (f_oracle f _ k) tt;

ret b.

2. PRF_Advantages_lt : forall (j : nat), exists (i : nat),

PRF_Advantage_Game i <= PRF_Advantage_Game j.

We would like to use a constant PRF_Advantage and eliminate the i , and we
want to get an accurate bound, so we pick the a PRF_Advantage_Max which
maximizes PRF_Advantage i over i .

Note that for i = n, PRF_Advantage n = 0, since everything has been replaced
with random bits, so the two hybrids are equal. Hence the ≤ in the theorem.

n = 4, i = 0

Gi_prf 0: PRF PRF PRF PRF

Gi_rf 0: RF PRF PRF PRF

n = 4, i = 4

Gi_prf 4: RB RB RB RB

Gi_rf 4: RB RB RB RB
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C.1.1 Identical until bad

Gi_rf_rb_close, number three for Gi_Gi_plus_1_close above:

1. Gi_normal_rb_eq : forall (i : nat),

Pr[Gi_prg (S i)] == Pr[Gi_rb i].

Put Gi_prg into the form using the PRF adversary, passing it the RB oracle.

The idea here is much the same as Gi_normal_prf_eq.

2. Gi_rf_return_bad_eq : forall (i : nat),

Pr[Gi_rf i] == Pr[x <-$ Gi_rf_bad i; ret fst x].

Expose the bad event in Gi_rf. The bad event is that there are duplicates in
the inputs to the i th oracle call.

3. Gi_rb_return_bad_eq : forall (i : nat),

Pr[Gi_rb i] == Pr[x <-$ Gi_rb_bad i; ret fst x].

Expose the bad event Gi_rb.

4. Gi_rb_rf_identical_until_bad : forall (i:nat),

| Pr[x <-$ Gi_rf_bad i; ret fst x]

- Pr[x <-$ Gi_rb_bad i; ret fst x] |

<= Pr[x <-$ Gi_rb_bad i; ret snd x]

The difference of two games is difficult to work with. We prefer to work with
one game, which we can then massage and prove equivalent to other games.
Therefore, we apply Bellare’s “fundamental lemma of game-playing.” It
upper-bounds the probability that the adversary can distinguish between
Gi_rf_bad and Gi_rb_bad by the probability that the bad event occurs in
Gi_rb_bad, which gives us a single game to work with.

5. Gi_rb_bad_collisions : forall (i : nat),

Pr [x <-$ Gi_rb_bad i; ret snd x ] <=

Pr_collisions.

As explained in Gi_rf_rb_close above, the probability of a bad event hap-
pening in the RB game is bounded by the probability of collisions in a list of
length (n+1) of randomly-sampled bit vectors.

To prove this, after transforming and simplifying Gi_rb_bad via many inter-
mediate games, we apply the collision bound found in PRF_DRBG.

To prove Gi_rb_rf_identical_until_bad (number two above):

1. fundamental_lemma_h : forall (A : Set)

(eqda : EqDec A) (c1 c2 : Comp (A * bool)),

Pr [x <-$ c1; ret snd x ] ==
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Pr [x <-$ c2; ret snd x ] ->

(forall a : A, evalDist c1 (a, false) ==

evalDist c2 (a, false)) ->

forall a : A,

| evalDist (x <-$ c1; ret fst x) a -

evalDist (x <-$ c2; ret fst x) a |

<= Pr [x <-$ c1; ret snd x ].

This is the statement of Bellare’s fundamental lemma. Below, we prove the
two assumptions in the theorem, yielding the conclusion.

2. Gi_rb_rf_return_bad_same : forall (i : nat),

Pr [x <-$ Gi_rb_bad i; ret snd x ] ==

Pr [x <-$ Gi_rf_bad i; ret snd x ].

This is the first assumption needed to apply the fundamental lemma: show
that the two games have the same probability of returning bad (that is, the
bad event has the same probability of happening).

Concretely, this is true for Gi_rb_bad and Gi_rf_bad because the probability
of the bad event in both is the probability of duplicates in a list of length n of
uniformly-randomly-sampled bit vectors.

3. Gi_rb_rf_no_bad_same : forall (i : nat) (a : bool),

evalDist (Gi_rb_bad i) (a, false) ==

evalDist (Gi_rf_bad i) (a, false).

I don’t work with it probabilistically; working in the program logic, the goal
becomes this:

comp_spec (fun b1 b2 : bool * bool => b1 = (a, false) <-> b2 = (a,

false))

(Gi_rb_bad i) (Gi_rf_dups_bad i)

This is the second assumption needed to apply the fundamental lemma:
given that the bad event does not happen, the distributions of the outputs
of the two games are identical (that is, “identical until bad”).

Concretely, this is true for Gi_rb_bad and Gi_rf_bad because if there are no du-
plicates in the i th oracle call’s inputs, clearly the random function behaves ex-
actly like uniformly sampling random bitvectors. So their output should be
indistinguishable (or identical, if you provide each run with the same “coins”
of randomness).

Both Gi_rb_rf_return_bad_same and Gi_rb_rf_no_bad_same, when unfolded, es-
sentially assert that some combined postcondition relates the PRF_Adversary exe-
cutions, one using the random bits oracle and one using the random function that
preserves duplicate.

Gi_rb_rf_return_bad_same, when unfolded, looks like this:
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comp_spec eq

(a <-$

(PRF_Adversary i) (list (Blist * Bvector eta))

(list_EqDec (pair_EqDec eqdbl eqdbv)) rb_oracle nil;

x <-$ ([b, state]<-2 a; ret (b, hasInputDups state)); ret snd x)

(a <-$

(PRF_Adversary i) (list (Blist * Bvector eta))

(list_EqDec (pair_EqDec eqdbl eqdbv)) randomFunc_withDups nil;

x <-$ ([b, state]<-2 a; ret (b, hasInputDups state)); ret snd x)

The postcondition here is equality (comp_spec eq). That is, both computations
return the same value for whether the bad event happened.

And Gi_rb_rf_no_bad_same, when unfolded, looks like this:

comp_spec (fun b1 b2 : bool * bool => b1 = (a, false) <-> b2 = (a, false

))

(z <-$

(PRF_Adversary i) (list (Blist * Bvector eta))

(list_EqDec (pair_EqDec eqdbl eqdbv)) rb_oracle nil;

[b, state]<-2 z; ret (b, hasInputDups state))

(z <-$

(PRF_Adversary i) (list (Blist * Bvector eta))

(list_EqDec (pair_EqDec eqdbl eqdbv)) randomFunc_withDups nil;

[b, state]<-2 z; ret (b, hasInputDups state))

The postcondition here is that if hasInputDups state = false (that is, the bad
event didn’t happen), then both computations return the same output bits (the a in
b1 = (a, false)<-> b2 = (a, false)).

So, the combined postcondition on the PRF_Adversary computation (which re-
turns the bits and state) simply combines the two postconditions above. Stated as
a separate lemma,

Theorem PRF_Adv_eq_until_bad : forall (i : nat),

comp_spec

(fun a b : bool * list (Blist * Bvector eta) =>

let (adv_rb, state_rb) := a in

let (adv_rf, state_rf) := b in

let (inputs_rb, outputs_rb) := (fst (split state_rb), snd (split

state_rb)) in

let (inputs_rf, output_rf) := (fst (split state_rf), snd (split

state_rf)) in

hasDups _ inputs_rb = hasDups _ inputs_rf /\

(hasDups _ inputs_rb = false ->

state_rb = state_rf /\ adv_rb = adv_rf))

((PRF_Adversary i) (list (Blist * Bvector eta))

(list_EqDec (pair_EqDec eqdbl eqdbv)) rb_oracle nil)

((PRF_Adversary i) (list (Blist * Bvector eta))

62



(list_EqDec (pair_EqDec eqdbl eqdbv))

randomFunc_withDups nil).

The postcondition looks intimidating, but is simply the conjunction of the two
postconditions discussed above. A computation has duplicates in the oracle inputs
only if the other computation does. And, if there are no duplicates, then the oracle
states are equal and the adversary guesses are equal. I use that lemma to prove
both the identical until bad conditions, and now we only have to worry about
proving the one lemma PRF_Adv_eq_until_bad.

PRF_Adversary generates the pseudorandom bits, then returns the PRG adver-
sary’s guess.

Definition PRF_Adversary (i : nat) : OracleComp Blist (Bvector eta) bool :=

bits <--$ oracleCompMap_outer _ _ (Oi_oc’ i) maxCallsAndBlocks;

$ A bits.

So, we can push the postconditions into the generation of the pseudo-
random bits, specifically into oracleCompMap inner , and use that to prove
PRF_Adv_eq_until_bad. The inner lemma is:

Theorem oracleCompMap__oracle_eq_until_bad_dups : forall (i : nat) b b0,

comp_spec

(fun y1 y2 : list (list (Bvector eta)) * list (Blist * Bvector eta) =>

hasDups _ (fst (split (snd y1))) = hasDups _ (fst (split (snd y2)))

/\

(hasDups _ (fst (split (snd y1))) = false ->

snd y1 = snd y2 /\ fst y1 = fst y2))

((z <--$

oracleCompMap_inner

(pair_EqDec (list_EqDec (list_EqDec eqdbv))

(pair_EqDec nat_EqDec eqDecState))

(list_EqDec (list_EqDec eqdbv)) (Oi_oc’ i)

(O, (b, b0)) maxCallsAndBlocks; [bits, _]<-2 z; $ ret bits)

(list (Blist * Bvector eta)) (list_EqDec (pair_EqDec eqdbl eqdbv))

rb_oracle nil)

((z <--$

oracleCompMap_inner

(pair_EqDec (list_EqDec (list_EqDec eqdbv))

(pair_EqDec nat_EqDec eqDecState))

(list_EqDec (list_EqDec eqdbv)) (Oi_oc’ i)

(O, (b, b0)) maxCallsAndBlocks; [bits, _]<-2 z; $ ret bits)

(list (Blist * Bvector eta)) (list_EqDec (pair_EqDec eqdbl eqdbv))

randomFunc_withDups nil).

The postcondition is the same as in PRF_Adv_eq_until_bad, except that instead
of saying that the adversary guesses are the same, we say that the generated pseu-
dorandom bits are the same, which clearly implies the former. (Intuitively, doing
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proofs relating two probabilistic programs is like proving things about the deter-
ministic programs given the same “tape” of randomness.)

The proverbial buck stops here; we don’t push the postcondition back further
into oracleCompMap_inner (which iterates chosen GenUpdate oracles), Oi_oc (which
chooses which GenUpdate oracle to use), the GenUpdate oracles, or Gen_loop, which
uses the provided random bits or random-function-with-duplicates oracle to gen-
erate bits. If we did that, we would have to reason about many computations
extraneous to the oracle, whereas we only need to reason about the properties of
the oracle and how it handles bad events.

We use a powerful theorem called fcf_oracle_eq_until_bad to “strip away” the
computations that use the oracle so we can just reason about the oracle. Infor-
mally, fcf_oracle_eq_until_bad states that postconditions in our “identical until
bad” form are true if we can prove three side conditions:

1. If the two oracles start in the same state, if the bad event either did not hap-
pen or did happen in both states (meaning NOT (the bad event happened in
one state and not the other)), then the same identical-until-bad postcondition
relates one run of the each of the oracles.

2. For the first oracle, if its state starts bad, it stays bad.

3. For the second oracle, if its state starts bad, it stays bad.

The full statement of the theorem is very long, so refer to fcf_oracle_eq_until_bad

in Tactics.v in the FCF repository for more details.
Because this proof doesn’t depend on the details of the computations, only the

oracle, and our oracles here are the same as in the corresponding proof in PRF_DRBG

(which is PRF_A_randomFunc_eq_until_bad), so we can simply re-use that proof to
prove oracleCompMap__oracle_eq_until_bad_dups.

Here’s how we prove the side conditions. (Numbers correspond to above num-
bering.)

1. To prove the first condition: first, we unfold the definition of randomFunc_withDups
in the statement of the theorem.

y <-$

match arrayLookup D_EqDec xs a with

| Some y => ret y

| None => { 0 , 1 }^eta

end; ret (y, (a, y) :: xs)

Then we do a case analysis on whether the newest input is a duplicate (that
is, is already in the state of the random function oracle that preserves dupli-
cates). In the Coq tactic language, that’s case_eq (arrayLookup _ xs a).

The first case is easy. If the element a is not in the random function’s state
xs, then the random function uniformly randomly samples a bitvector, so the
expression simplifies to be identical to that of rb_oracle:
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comp_spec

(fun y1 y2 : Bvector eta * list (D * Bvector eta) =>

hasDups D_EqDec (fst (split (snd y1))) =

hasDups D_EqDec (fst (split (snd y2))) /\

(hasDups D_EqDec (fst (split (snd y1))) = false ->

snd y1 = snd y2 /\ fst y1 = fst y2))

(y <-$ { 0 , 1 }^eta; ret (y, (a, y) :: x2))

(r <-$ { 0 , 1 }^eta; ret (r, (a, r) :: x2))

We were already given the first postcondition as a hypothesis. The second
postcondition holds because indeed, there are no duplicates (by the case anal-
ysis) and the return values are equal.

The second case is more involved. If the element a is in the random function’s
state xs, then we know there are duplicates in the random function’s state.
So, since the two oracles start with the same state, the rb_oracle also has
duplicates in its state. After simplifying, our new goal is to prove this:

comp_spec

(fun y1 y2 : Bvector eta * list (D * Bvector eta) =>

hasDups D_EqDec (fst (split (snd y1))) =

hasDups D_EqDec (fst (split (snd y2))) /\

(hasDups D_EqDec (fst (split (snd y1))) = false ->

snd y1 = snd y2 /\ fst y1 = fst y2)) (ret (b, (a, b) :: x2))

(ret (b0, (a, b0) :: x2))

So, we use the tactic fcf_spec_ret, which says, “we’re done manipulating the
two games and now they simply return things; let’s prove that the postcon-
dition relates their two return values.”

The second part of the postcondition is easy to discharge:

(hasDups D_EqDec (fst (split (snd y1))) = false ->

snd y1 = snd y2 /\ fst y1 = fst y2)

It starts with the assumption that there are no duplicates in the entire state.
But, by our case analysis earlier, we are in the case where there are duplicates
in the tail of the state, which implies that there are duplicates in the entire
state. So, we can eliminate this case.

The first part of the postcondition,

hasDups D_EqDec (fst (split (snd y1))) =

hasDups D_EqDec (fst (split (snd y2)))

requires us to prove that whether the randomFunc_withDups oracle has du-
plicates equals whether the rb_oracle has dups. This follows because they
started with the same initial state, which has duplicates. hasDups (thing1 ::

x2)= hasDups (thing2 :: x2) since hasDups x2.
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2. For the randomFunc_withDups oracle, the state is append-only. So, if the state
starts out with duplicates, no matter what we query or what we return, the
state will continue to have duplicates.

3. For the rb_oracle, the state is also append-only. So, as above, if the state
starts out with duplicates, no matter what we query or what we return, the
state will continue to have duplicates.
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