KejTOTheTReasury OOThe Deep OHGUSHIS PEERLESS RESPIRATORS IINRVALLED IN THE WORLD

VIEW AF COLLECTING CAFALS IN THE DEEP

TOKYO SUBMARIME INDUJIRIRLCOMPAYY LONG DIST. PHONE, NO.3578. KYOBASH?

LETTERS PATENT OF OHGUSHIS "RESPIRATORS"

Italy.(Pat. No, int,96i.)

India.(Pat. $\mathrm{N}, 3,3,703$.)
Spain.(Pat. No. 67,209.)

r
5
-

4 x
2

4

View of Ohgushi's Bre thing Apparatus Connected withat Patented Watanabe's High Presure Air-Pump and Rutber Hose.

Fig. 4.

The Front View of a Diver Full Dressed and Connected with the Air-Pump.

Fig. 5.

The Bick view of a Diser Full Dresed and Connected with the Air-Pump.

Thic Ir Vill View of a Diver Drezel in a Diving Sait and Conneted with a Compressed Air Pump.

Fig. 7.

Phi. Kuck view of a Man Dressed in a Diving Sait and Connected with a Compressed Air Pump.

Important Addition to Submarine Work

1. General Explanation.

The influence of the Great European War upon the world's shipping lus been very remarkable, and the fact that the activities of German sabmarine-boats caused the sacrifice of so many precious lives and raluable vessels is indeed a great loss to the world. The repeated casualties on the sea have stimulated the interests of the salvage work as well as the rapid development of submarine appliances, the principal mission of which is to do the very work. The improvement made in the construction and use of submarine appliances has brought about their practical applications in varions directions. It has revolutionized not only the marine sulvage work, but also fishery at large, and thus there has Iren done no little contribution to the development of marine business.

However, these diving apparati are of too great size, and the diver neels too heavy a suit of clothes, causing there-by a great resistance against water, which hinders the freedom of actions of the diver in water. Fspecially where the current is rapid his freedom is, in no small measure, restricted. Moreover, the apparati can not stand the heavy pressure of water. With them to do the work under the depth of 150). feet of water is almont impossible. According to the latest report from America the diving apparatus invented by Mr. Charles H. jackson was used under the depth of 360 fect of water outside Boston Harbor, and that invented by: Mr. I eavitt is said to have made the international record of 361 feet in (irand Traverse Bay, but judging from the dress and other things need by the diver, they are not fit for the practical use. It requires many years before they are brought to perfection. The Ohgushi's Breathing opparatus (diving machine) of our company is of the invention of a Japance. It is the newest machine patented not only in Japan, but alko

2

in Earope and Amerion, and is proxided with all the arrangementwanting in the other kinds of diving machines. It is not two much to suy that it holls the unique preition among diving machines of the work.

Fig 1. represent the Ohguli's Breathing $\Lambda_{\text {pparatus. It is to be }}^{\text {to }}$ fistred to the face of a diver and is t, $\left.\right|_{x}$, werl for breathing the air which is sent into the moxth of the opemen. There are two ways of sending air. The one is by menn of a pump, and the other is by comprowed air.

Fig 2. repreents Watamabe's Sir-Pimp for the diving apparatus (patutal). It is a high provare pamp (apable of embing air of 20) atmos. It inn be uexl for sending air of high presane contimumsly from the dip alowe the water into the diver at work in the deep wal.

Fig 3. reprosents a ted lxothe for amprencel air. It hokls 1,000 litno of compresed air at 150 atmon. The diver (an eary it himelf'
 if amerlange with tike dyth of water by mane of a rexlucing valve. The amont of 1,000 litro of air will lat for twenty minute at the depth of 300 fert of water, and forty minut- at $t^{\prime} x$ depth of 60 or 70 fier of water and easily one lumer at the depth of 50 firt.

Fig 4. repreent the front view of a diver dreast, being supplied with air by means of a pump.

Fig 5. represent the $1_{\text {nack }}$ view.
Fig 6. repreent the front view of a diver carrving empreserl air.
Fig 7. The back view.

2. Experiments and their Efferts.

1. The experiment made in Octuler, 1918, upon the diving apparatus of likionka Harbour in the prowene of the Naval authorities by their nylust won their high favour, and by their requesto the machine was aboptal in cach and every naval station.
2. The mathine was employd during the yome extembling from 1918 to 1919 in the taking int, parts the Norwegian vereel (akendar amk to the lettmo of the ens out-icle. Naganaki Harlor at the depth of 200 lint of water and acremplisierl it- ohjert to the sati-faction. Austher sun-fill cmphement of the machiok was made in taking into partthe Fuglid voed Nile at the depth of 200 fiet off the crent of Yamanotio poristure in 1919.
3. In duly of 19.9 by the mepuet of the Koluthi prefietural authoritios thre diffie nt expriment- were made "ן = the diving machine in the pixany of the bal prefietural authorition, members of the Finhery

Vio. if Fixpits	Place	Depth	Time
$1+$	Off Mizuri-zaki	28.2 t.	$10^{\prime} 10^{\prime \prime}$
2 ml	Off Kandı-zaki	32.1 ft .	$9^{\prime} 10 \times$
3 nl	In)	284 ft .	$15^{\prime} 00{ }^{\prime \prime}$

Stheranl we surevelel in collerting combe at the depth of 37.5 fint of "aler in the same perfierture.
 int the ficharing peint-;

1. 'The simplicity of the machine anmotrotion and famility of it lamiling. 2. A. the wright and balk of the dreer are litthe, it- icri-tanse ngaint the curient is small, so that the operator can do hi- work f.cdly and ca-ily.
2. After only a Week's practice even a beginner is able to dive down into the depth of 150 feet of water.
3. The diver can go down to the depth of over 300 feet of water to do his work, and moreover, be is marly free from passible attack of any disease which diver are liable to aiflir from.
4. The diver can prepare himelf for the work in only two or three minuter
5. The diver invested with the suit can get into or ont of a marrow places easily.
6. There is absolutely no risk whatever for the diver even where he holds his head down.
7. So risk of injuring the health of the diver even though he may be engaged in a contimons work for many days.
8. In the case of being provided with compressed air a single lat can at several divers at work at the same time, and all the other working hands than the rope-fwher an be diepeneal with.
9. So expensive rubles snit is needled, lat the ordinary suit of common working dress, working arks, and gloves.

3. Notion to the People Fagged in Salvage

Work ans l Fivdery at Large.
The diving work in our cometry in still in a primitive conclition and the qu ene of potion application of the diving machine in very burrow.

We an only fink it application in the marine salvage work or in aphanling the artick fuel in the later of the san, and there are very for oravions which are availed by there who mage themedver in finery. Many rowan hay give rive to these effects, lat the high ext of anlinary machines in the frimejal one.

In the worblly nominal fiducry anantry like Japan practical incan(ts of making the of the matins are very mumerom- The collection and
 same of them. Sit it is a mater of regrets that the machine is still mot in general practical tiv:

We urgently Index, with the diving machine of the aforesaid special damateristies th carry on the work independently. Yet, as it is rather a lunk task for in- t, conduct variant kind of the promising work by gur*hers all alone, we with th cenperat" with, or request the assistance of other parture in the work, in wonder t, win-leck the precious treasury of the deep.

The industrial firm- patronizing one machines which are the powerfill addition to the in-troment- herl in submarine industry and wishing to extol their flue of activation are cordially requester write t, us informing the hims of their work, addresses, actual conditions and other particulars, al that inf way reamer them any possible assistance which is at our contuatal.

1 Directions for the Use of Ohgushi's Breathing Apparatus.

There are two instance in which the apparatus is used.

1. When diving with the supply of compreserl air.
2. When diving with the supply of air by mane of a pump.

$$
\text { Explanation } 1 .
$$

When diving with the apply of compress air.

Preparation.

Buckle the knapeay to the nir-lxatle of 1,000 litre at 150 athos. Attach the relaying valve to the step valve at on s ami of the battle. Examine the pronate of air container l in the Inottle ley means of the page. Exchange the grange with the arew-lid and attach the diving machine to the math of the sir-lattle, wat carry the whole thing on lack of the diver. In under 1 , Inane the weight of the front and rear of the diver ane to income hi- weight fasten a piece of lad weighing alone 20 punk- t, his front bine.

Adjust the wank to the fire al ac th fix the immerse protruding part of it to the month of the diver, and turing the In, chats of the ruble re strange to the lank of the diver's hand where they are to by fastened together. (See Fix, ; \& 7)
 the current of air properly bey the rexheng-rew of the valve on an t, comply the diving preparations.

Methexl of Breathing.
When the diver bite time inside protroion of the make, the current of air will peas in-iche the mask from it-side. The quantity of air taken into the mask varia - in areordane with the strength and duration of the
 adjusting enow. The air Gould be breathed in through the noe and be exhaled into, the water from the month of the diver. Should it be difficult
adjust the value with the month of the diver and be hard to breathe on amount of the air current lowing thence or $t \times x$ moth air being went in，just pinch the upper ene of the valse and wiggle it up and down ．． as to attain the proper alju－twent．

> Important Remark-

1．The allowance of air for the berthing burped is accelerated in proportion t，the depth of water，at that the diver should adjust the ament of air th his own requirements ley mans of the roluecing valse in ：averolanes with the depth of water． 2．The duration of diving be whine the compress！air－lnottle of 1,000 litn－at 1 年在 aton．i－ahonit 40 minutes at the depth of 75 fist of wat r ．

The ament of consumption of air varices a little with each diver，lat in mental，for an expert，two or thee breathe will ｜x sufficient in a minus：

$$
\text { Fypanation } \because \text {. }
$$

Pryarati．．．．

Attach the dis ine－man－the the and of the hose comectad with the pump，ane fix the math，the fare of the diver on that he may lite the imide protrusion of the mark，and fasten lath end of the ruler string re at the lank of hi－low il．I－the mat k is mot heave enough t．keep the diver down in water，it i－nexatiry for him to carry about 30 pomes of have weight at eat hi－lint

Mather af Iterations
 as there i－in．corlucine valse attached th this pump，the amount of air should la mental with the－strength and duration of the bite of the diver at the inside protrusion of the mat k．But the pumper may generally

8
adjust properly the amount of air which is to be sent to the diver by his constant watching at the gauge of the pump in accordance with the depth of water.

The pressure of atmosphere sent in by means of the pump is regulated by the following standard.

Depth	Pressure	Depth	Pressure
25 ft.	20 lhs.	50 ft.	40 lhs.
75 ft.	60 lbs.	150 ft.	80 lhs.
150 ft.	120 lhs.	200 ft.	160 lhs.
250 ft.	200 lhs.	300 ft.	240 lhs.

Remarks.

- There is no special style of the diving-suit to be worn by the diver domed with the machine, yet in order to keep him at a proper temperatture and to allow him a complete frecdom of actions in water a suit of wowllen under-wear, working clothes and rubber-soled canvas-shoes are recommended to be the best outfit.

The end.

History of "Ohgushi's Peerless Respirator"

This mask style respirator was invented by Riichi Watanabe, Omura clansman of Kyushu, Japan. After Watanabe was graduated from Tokyo Fisheries Institute in 1904, he was engaged in fishery research, and established the Takashima Cultured Pearls Enterprise in Nagasaki Prefecture for the first time in Japan. Then he started the first step for invention of the mask style respirator with assistance of Kinzo Ohgushi, blacksmith at that time, and they made the utmost efforts for manufacturing design of the respirator as theit life work and finally succeeded. In order to praise their achievement, it was named the "Ohgushi's Peerless Respirator".

The motive of invention of the respirator was born from necessity to collect mother shell of pearl for culture. At that time, the collection of mother shell of pearl was done by male skin divers. They thought that if one more respiration of air could be given to those divers underwater, efficiency should be twice, and they manufactured an iron cylinder of 7 litres containing $90 \mathrm{p} . \operatorname{sif}$. or $6.3 \mathrm{~kg} / \mathrm{cm}^{2}$ of compressed air at first, which could be carried on the back of a diver. A push valve of the hand-push style that enables to send air into the mask was fixed on the left side of mask connecting an air hose therewith, and breathed air by controlling it with one hand. As they were accustomed to use it, their undervater stay hours were extended, but as to efficiency there was almost no difference with the helmet style respirator, owing to lower the inefficient valve by one hand.

In 1916 Captain Yumihachi Kataoka met Watanabe and corporated together to keep pace with development of the mask style respirator. The research was developed and the type of valve was changed from the Hand-move style open and close to the Bite style structure and the "Ohgushi's Peerless Respirator" was born, making a boast in the world.

In 1917 Captain Kataoka projected the Underwater Resources Research Team in Polynesian Islands, the territory mandated to Japan at the time, and researched successfully collection of the sea bottom products among Polynesian Islands and other islends with the actual test of the "Ohgushi's Respirator" by himself for about six months. From the good result, he had confidence of abolute profitable underwater operation for the warm sea bottom works.

In 1918 Tokyo Submarine Industrial Company was established for the purpose of marketing of the Ohgushi's mask style respirators, salvage works and collecting business of sea bottom products, using the respirator. (catalogue was issued at that time)

In 1922 by request of a Japanese lived in Thursday Island of Australia and for the purpose of extention to further foreign license of the Ohgushi's respirator patent, Captain Kataoka and three divers sailed to the Island.

After arrival there, the collection work test of deep sea products (pearl oyster shells) was performed off Dunley Island for the first time in the presence of Mr. May, vice president of the Torres Strait Pearl Oyster Shell Guild, and the representative of the Guild. Two divers dived twice and collected fifty nine pieces of the pearl oyster shells (family of Pteriidae) from the depth of 258 feet, and the test was very successful with the attendants' surprise.

continued:-

The Torres Strait Pearl Guild and Members conferred and asked for purpose of use of the patented Ohgushi's mask style respirator in the sea of Australasia. The contract was made at the key money of 7,000 pounds sterling, and the Japanese team received 500 pounds sterling as the option money and returned to Japan. Then, the British Homeland Diving Equipment Manufacturers and Dealers started the opposition campaig and developed to the helmet divers' strike of the spot Guild members and finally the Guild was obliged to announce cancellation of the contract.

The enterprise that made the Ohgushi's mask style respirator famous in the world was the salvage work of 100,000 pounds sterling gold coins kept in a safe of s.s. "Yasaka Maru", 12,000 tons owned by Nippon Yusen Kaisha (N.Y.K.), which was sank by the German submarine off the mouth of River Nile, Egypt, in the Nediterranean Sea during the First World War in 1915, for which work the respirator took the principal part. In 1925 the main working team consisting of 10 persons of salvage engineers and divers led by Captain Kataoka was based on Portsaid and chartered two work ships. After they fought against the disadvantage of the underwater work for about three months, they. succeeded to recover 99,991 pound gold coins (say 100% accomplishment) from the safe of the "Yasaka

- Maru" sank at the sea bottom of 250 feet depth in the Mediterranean Sea. The world people were much astonished for the big news.

In 1934 Kataoka, president of Deep Sea Industrial Company, was engaged in the inspection work of the precious metals loaded on the sunken Russian Warship "HAXMMOB" off Tsushima Island of the Sea of Japan, principally using the Ohgushi's respirators and practised the deep operation for three years until 107 meters depth that was deemed the limit of compressed air diving. In 1950 a group led by Captain Akiyuki Suzuki graduated from Merchant Ship Higher School continued to inspect the inside of the aforesaid "HAXMOB" with use of the Ohgushi's respirators.

Thus, the "Ohgushi's Mask Style Respirator" which was originally invented by Riichi Watanabe, assisted by the blacksmith Kinzo Ohgushi, showed its excellent function by Captain Yumihachi Kataoka in the world, while many distinguished divers had been grown up by Teinosuke Miura and; Yasozaemon Yamashita in the fishery field. Then, it was adopted for the duty of the Japanese Underwater Unit during the Pacific War, but : there has been no succeeding instructor for the respirator since the War ended.

The End.

