Basic principles and applications of spin chemistry

(a brief review)

Maria Vyushkova

Notre Dame Radiation Laboratory, April 2011

Outline

- What is spin chemistry? Definition, history & introductory notes
- Radical pairs, radical pair reaction mechanism, spin correlation in a pair
- □ Methods of radical pair generation/detection of products
- □ CIDEP and CIDNP

I. What is spin chemistry?

An interdisciplinary field of chemistry and physics dealing

with magnetic and <u>spin</u> effects in <u>chemical</u> reactions

Historical background

- **1900** Gomberg : Discovery of free radicals
- **1937** Hey and Walters: Role of free radicals in the solution reaction mechanisms
- 1944 Zavoisky: Discovery of EPR
- 1963 Fessenden and Schuler: Anomalous EPR intensities in irradiated CH₄ (CIDEP)
- **1967** Bargon et al.; Ward and Lowler: Anomalous NMR intensities in reacting systems (CIDNP)

1969 Closs; Captein and Oosterhoff: **Radical pair mechanism** proposed for explanation

Range of phenomena

Magnetic field effects, chemically induced magnetic polarization, magnetic isotope effects, spin catalysis, quantum beats in radical pairs

In biology and medicine: animal magnetoreception, health hazards of environmental electromagnetic radiation

Chemical reactions are controlled by energy and angular momentum

Thermodynamic (ΔG) or kinetic (E_a) control

□ Chemical reactions are usually spin-conserving

Basic principle:

 $\Sigma \vec{s}_i$ (reactants) = $\Sigma \vec{s}_j$ (products)

"...one of the most mysterious problems in science - whether ordinary magnetic fields can exert an appreciable influence on chemical and biochemical reactions."

... Thermodynamic and kinetic effects of magnetic fields are very small.

<u>Thermal:</u> kT = 2.5 kJ/mole at 300K

<u>Chemical reactions</u>: $\Delta_r E \sim 10^2 \text{ kJ/mole}$

Magnetic field:
$$E_B(kJ/mole) = -(\vec{\mu} \cdot \vec{B}) \sim \mu_B B \sim 10^{-2} \cdot B(T)$$

 $B_{HFC} \sim 10^{-3} T$ 300 MHz NMR: ~ 7 T

"...Though negligibly small in terms of energy, magnetic interactions can play a key role in reaction mechanisms: -by <u>changing the spin multiplicity</u> of pre-reactional state, they allow switching between spin forbidden and spin-allowed reaction pathways"

Spin sublevels in magnetic field

$$|\alpha\rangle = |\uparrow\rangle \qquad |S\rangle = \frac{1}{\sqrt{2}} (|\alpha\beta\rangle - |\beta\alpha\rangle) \qquad |T_{-}\rangle = |\beta\beta\rangle$$
$$|\beta\rangle = |\downarrow\rangle \qquad |T_{0}\rangle = \frac{1}{\sqrt{2}} (|\alpha\beta\rangle + |\beta\alpha\rangle) \qquad |T_{+}\rangle = |\alpha\alpha\rangle$$

Single electron

Two coupled electrons

□ Radical pair members are not bonded together

□Condensed phases restrict the radical movement relative to one another (cage effect)

Diffusion and escape from the cage should be considered

Methods of radical pair generation

To create radicals, it usually requires the input of external energy:

UV/visible light (photochemical generation)

photo-CIDNP – the most ubiquitous spin chemistry technique SNP, RYDMR, MARY, time resolved EPR

□ Ionizing irradiation (radiation chemistry)

radiofluorescence techniques: OD EPR, MARY, quantum beats spectroscopy; time resolved EPR

Photochemical generation:

Absorbing molecules of photosensitizer in a "transparent" solvent => <u>selective</u> and <u>uniform</u> production of the excited solute molecules

 \Box Decomposition/electron transfer of the excited state (S₁ or T₁) of the precursor

□ Both singlet and triplet-born radical pairs (ISC mechanism)

Generation of radical pairs by ionizing radiation:

□ an "overkill" method in terms of photon/particle energy

□ each photon/particle produces many ionizations/excited states along its track

□ the "bulk" solvent molecules are ionized/excited

Chemically induced magnetic polarization (CIDEP and CIDNP)

Anomalous intensities of EPR and NMR spectral lines

Radicals formed with non-

equilibrium spin polarization

□ <u>Short-lived</u> effect (microsecond

timescale)

□More complex <u>mechanism(s)</u>

Exchange interaction involved

□<u>A mixture of **net (**∆g) and</u>

multiplet (HFC) polarization is

observed

Stable products formed with non-equilibrium <u>nuclear</u> spin polarization
 NMR relaxation timescale (0.1-10s)
 S-T mixing and spin-selective recombination => sorting of nuclear spin states in the reaction products

J.R. Woodward, PRKM, 2002, vol. 27, 165-207

J.A. Syage, Chem. Phys. Lett. 1982 (91) 378-382

References (what to read on spin chemistry)

- K.M. Salikhov, Yu.N. Molin, R.Z. Sagdeev, A.L. Buchachenko. Spin Polarization and Magnetic Effects in Radical Reactions. Elsevier, Amsterdam-Oxford-New York-Tokyo, 1984
- U.E. Steiner and T. Ulrich. Magnetic Field Effects in Chemical Kinetics and Related Phenomena // Chem. Rev. 1989, 89, p, 51-147
- 3. H. Hayashi. Introduction to Dynamic Spin Chemistry. Magnetic Field Effects on Chemical and Biochemical Reactions. World Scientific, 2004
- J.R. Woodward. Radical Pairs in Solution. //Progress in Reaction Kinetics and Mechanism, 2002, 27, p. 65-207

