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1. Introduction 
The National Survey on Drug Use and Health (NSDUH) is the primary source of 

statistical information on the use of illegal drugs, alcohol, and tobacco by the U.S. civilian, 
noninstitutionalized population aged 12 or older. Conducted by the Federal Government since 
1971, the survey collects data through face-to-face interviews with a representative sample of the 
population at the respondent's place of residence. Since 1990, the survey has been conducted 
annually with separate samples drawn each year. The survey is sponsored by the Substance 
Abuse and Mental Health Services Administration (SAMHSA), U.S. Department of Health and 
Human Services, and is planned and managed by SAMHSA's Center for Behavioral Health 
Statistics and Quality (CBHSQ). The annual conduct of NSDUH is paramount in meeting a 
critical objective of SAMHSA's mission to maintain current data on the prevalence of substance 
use in the United States. 

To continue producing data that are accurate and on a timely basis, SAMHSA's CBHSQ 
must update NSDUH periodically to reflect changing substance use and mental health issues. 
CBHSQ is planning to implement changes related to a partial NSDUH redesign. These changes 
include use of a new sample design in 2014 and a limited update to the interview questionnaire 
in 2015. The new sample design will allow for continued national, State, and substate-level 
estimation comparable with estimations from previous surveys. The sample design's improved 
efficiency will result in significant cost savings. The primary change to the questionnaire is an 
updated set of prescription drug modules, which will include current prescription drugs and 
incorporate a new questionnaire structure. Other planned changes to the questionnaire include a 
revised health module that contains new questions about drug and alcohol screening by primary 
care physicians. These changes will seek to achieve three main goals: (1) to revise the 
questionnaire to address changing policy and research data needs, (2) to modify the survey 
methodology to improve the quality of estimates and the efficiency of data collection and 
processing, and (3) to maintain trends in core substance use estimates across survey years.  

SAMHSA's planned changes for the NSDUH in 2014 and 2015 also provide an 
opportunity to investigate new and innovative approaches to nonresponse adjustment that may 
have the potential of improving overall NSDUH data quality in the face of declining response 
rates for both the NSDUH and surveys in general. This report describes the results of an 
investigation of the callback modeling approach for adjusting for nonresponse. Current NSDUH 
nonresponse adjustments assume that the nonresponse mechanism is ignorable. Nonresponse 
adjustments using the callback model described in this report attempt to reduce the nonignorable 
nonresponse bias. If successful, this approach will improve the NSDUH data quality by reducing 
the bias due to nonresponse. 

The report is organized as follows. In the remainder of this section, we present a general 
description of the callback modeling approach for nonresponse adjustment. Section 2 provides a 
brief review of the callback modeling literature and describes prior applications of the 
methodology used in this study. Section 3 describes the data requirements for applying the 
callback model methodology with particular emphasis on the NSDUH data used in our analysis. 
The NSDUH call record data used to measure interviewing effort is described in some detail. 
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Section 4 formally presents the statistical model and notation developed for the approach and 
Section 5 derives the maximum likelihood estimators of the model parameters. Section 6 
considers several important extensions of the basic model proposed in Section 4 that are required 
for the NSDUH application. As a by-product of the estimation approach, several measures of 
nonignorable nonresponse are derived in Section 7. In Section 8, the methodology developed in 
the previous sections are applied to the NSDUH data described in Section 3. Section 9 discusses 
some issues associated with the callback level of effort data used in the analysis that may 
explained the somewhat disappointing results provided in Section 8. Finally, in Section 10, we 
provide our conclusions and recommendations for further research. 

In most sample surveys, response propensity weighting is used to compensate for unit 
nonresponse that is related to refusals, noncontacts, and other causes. Response propensity 
weighting reduces nonresponse bias by weighting a responding unit by the inverse of its 
probability of responding to the survey. This is analogous to the Horvitz-Thompson estimator 
that weights a unit by the inverse of its probability of selection in the sample.  

Suppose a simple random sample (SRS) of size n is selected and the value of the survey 
variable Y, denoted by yi, is observed for all respondents. Let  Ri denote the response indicator 
variable for the ith sample unit, which is equal to 1 if the unit responds to the survey and to 0 if 
the unit does not respond. Let  r ii

n R=∑ denote the number of respondents in the sample. Let Yi 

denote the characteristic value for the ith population member, and let  1
1

N
ii

Y N Y−
=

= ∑  denote the 

population mean to be estimated. A natural estimator of Y  is the sample mean of observations 
given by 

 

 

1
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y
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n
==
∑
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However, this estimator is biased unless  ( , ) 0i iCov R y = ; that is, unless there is no relationship 
between the propensity to respond and the outcome variable (see Lessler & Kalsbeek, 1992). 
Lessler and Kalsbeek show that  

 
 

1

1 rn
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yy
n ρ=

= ∑  (2) 

is an unbiased estimator, where  ( | )i iE R iρ =  and where  ( | )iE R i  denotes expectation over the 
hypothetical response propensity distribution for the ith sample member. Note that  ρi  can also be 
written as  Pr( 1| )iR i=  or the probability the ith unit responds to the survey. The  ρi 's  are often 
called response propensities in the survey literature and are unknown in practical applications. 
The usual approach is to estimate them using a weighting class approach or a response 
propensity model. The  ρi 's  in equation (2) are then replaced by their estimates (e.g., Biemer & 
Christ, 2008). Roughly speaking, a callback is an attempt to obtain a response from a sampling 
unit. A callback model uses information on the number of such attempts and their outcomes to 
estimate the response propensities,  ρi , and ultimately to adjust the estimators for nonresponse. 
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Traditional methods for estimating  ρi  require information that is available for both 
respondents and nonrespondents. For example, in the weighting class approach, the sample is 
partitioned into L categories corresponding to the L values of a discrete variable G, which is 
known for both respondents and nonrespondents. The response rate for category G=g is given by 
 /g rg gR n n= , where  nrg is the number of respondents in category g and is an estimator of  ρg , 
which is the average value of  ρi  for the category. The weighting class estimator is then 

 
 

1 1 1

1 1rgnL L
gi

wc g rg
g i gg

y
y n y

n R n= = =

= =∑∑ ∑ , (3) 

where  yrg  is the respondent mean of Y in category g and  ng  is the number of sample units in 

category g. It can be shown (Brick & Kalton, 1996) that  ywc is unbiased for  Y  if, for all g,  

  ( , | ) 0,  for 1,...,i iCov y g g Lρ = =  (4) 

(i.e.,  yi  and  ρi  are uncorrelated within each category of G).  

One advantage of the callback modeling approach is the ability to use variables that are 
known only for respondents. This addresses the issue of nonignorable nonresponse (Little & 
Rubin, 1987), which essentially means that the nonresponse propensities are correlated with 
unmeasured variables, including the y-values that are unknown for nonrespondents. By 
definition, adjusting for nonignorable nonresponse bias is not possible using traditional model-
based nonresponse adjustment methods. 

The callback modeling approach adopted in this report expresses the likelihood of the 
observed and unobserved data as a function of response propensities related to the number of 
callbacks. Maximum likelihood estimation (MLE) and the expectation-maximization (EM) 
algorithm are then used to obtain estimates of the response propensities. To further describe this 
approach, let  ϕai  denote the conditional probability that ith unit responds at callback a given no 
response before the ath callback. For the ith sample unit, define the probability of response in K 
callbacks by  ρKi  and note that  

  
1 1 2 1 2 ( 1)(1 ) (1 )(1 ) (1 )Ki i i i i i K i Kiρ ϕ ϕ ϕ ϕ ϕ ϕ ϕ−= + − + + − − −  . (5) 

For example, if we assume that the conditional probability of response at callback a is the same 
for all a (i.e.,  ϕai =  ϕi  a=1,…,K), then equation (5) can be rewritten as 

 
 1

1
(1 )

K
a

Ki i i
a

ρ ϕ ϕ−
=

= −∑ , (6) 

which is the cumulative distribution function for the geometric density. Thus, for K callbacks, 
the response propensity,  ρKi , is a function of individual response probabilities at each callback.  
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Now suppose G is known only for respondents and assume group homogeneity (i.e., the 
conditional response probabilities are equal for all units in the same group). Mathematically, this 
is written as  φai = φag , say, for all units i in category g for g=1,..,L. To further simplify the 
discussion, assume that conditional probabilities of the response are equal for all callbacks (i.e., 
 φag =φg  for a=1,…,K) so that the response probabilities take the form of equation (6) and let 
 ρKg  denote the common response probability in group g. Let  nag  denote the number of units in 
group g that respond at the ath call attempt. Under these assumptions, the data  1 2( , ,..., )g g Kgn n n  
follow a multinomial distribution with parameters  ng  and  ρag , g=1,…,L, and a=1,…,K. The log-
likelihood kernel is, therefore, given by 

 
 

1 1
log( )

K L

ag g ag
a g

n π ρ
= =

=∑∑L , (7)  

where  π g is the proportion of the population in category g. This likelihood can be maximized 
using a variety of methods, including the EM algorithm (Dempster, Laird, & Rubin, 1977) to 
obtain estimates of the parameters  π g  and  φg , g=1,..,L. In particular, let  π̂ g  denote the MLE of 
 π g . Then,  nπ̂ g  can replace  ng  in equation (3) to obtain the estimator 
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To obtain an expression for the variance of  y , we use the first order Taylor series 
approximation. Let  Ωπ̂ denote the variance–covariance matrix for the vector  ˆ ˆ[ ]gπ=π  and let 

 [ ]rgy=ry , where 
 

1
/

rgn

rg gi rg
i

y y n
=

=∑  is the simple expansion mean of all observations in group g, g 

= 1,...,K. An approximate expression of the variance of  y  is  
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(Biemer & Link, 2007), which is estimated by substituting the appropriate estimators for the 
parameters in equation (8) by 
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1

ˆˆ( ) ( )
K

g g
g

v y v yπ
=

′= +∑ πyΩ y  . (10) 

When Y is a categorical variable, it can replace the grouping variable G in equation (8). In that 
case, the estimates of the proportion in category y of Y are given by  ˆ yπ , which are the estimates 
from the callback model. Moreover, the estimator is model unbiased since the covariance in 
equation (4) and conditional on y is 0. This is an important special case that will be explored in 
this report. 
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2. Background 
The idea of using data on respondent availability and contact difficulty to adjust for 

nonignorable nonresponse bias has been around for more than 60 years. Politz and Simmons 
(1949) used a throwaway idea by Hartley (1946) to develop a famous method of adjustment 
based upon retrospective reports of availability. Although the Politz and Simmons adjustment 
was rather crude, it clearly demonstrated that contact difficulty was related to many 
characteristics and could be used to reduce nonresponse bias. These early ideas led to a callback 
modeling framework for nonresponse adjustment that encompasses two distinctly different 
approaches: regression modeling and probability modeling.  

The regression modeling approach (Alho, 1990; Anido & Valdéz, 2000; Wood, White & 
Hotopf, 2006) is an extension of the traditional response propensity logistic regression model. 
This approach models an individual's propensity to respond at each attempt. Using a modified 
conditional likelihood estimation approach, the model incorporates partially missing data as well 
as fully observed predictors at each attempt. The model predicts the response propensity for each 
respondent that can then be used to build a nonresponse adjusted weight. By using partially 
observed data, the model adjustment can compensate for nonignorable and ignorable 
nonresponse. Extensions of the basic approach include the use of probit rather than the logistic 
distribution (Anido & Valdéz, 2000) and models that incorporate Bayesian priors (Wood, et al, 
2006). 

The probability modeling approach (Drew & Fuller,1980; Potthoff, Manton, & 
Woodbury, 1993; Biemer & Link, 2007) is similar in that it too uses a modified maximum 
likelihood method to obtain the estimates. However, rather than modeling response propensity, 
the approach specifies a model for the probability that an observation falls into a particular cell 
of the data summary table (see Table 1 in Chapter 3 for more details), which is the cross-
classification of the dependent variable, the number of contact attempts, and the contact 
outcomes. It does not directly estimate an overall response propensity; rather it simultaneously 
estimates probabilities of contact and probabilities of interview based on contact as well as the 
population proportions in each category of a survey characteristic. These parameter estimates can 
be used to build nonresponse adjustment weights if desired. It employs the expectation-
maximization (EM) algorithm to address the incomplete predictors. Since it too uses partially 
observed variables, it provides adjustments for nonignorable nonresponse. 

One criticism of both modeling approaches is their simplifying assumptions that seldom 
hold for practical applications. For example, most of the models provide only for the probability 
of contacting a sample member, ignoring the probability that the sample member consents to an 
interview conditional upon the contact. The models often assume that the probability of a contact 
and interview does not vary by callback attempt. In addition, there has been no rigorous 
evaluation of the bias reduction capabilities of the approaches, relying instead on simulations, 
applications to artificial populations, and model fit diagnostics to gauge the viability of the 
approaches. Biemer and Link (2007) provides one attempt to apply a callback model to a set of 
real data and address some of the problems associated with applications of callback modeling to 
actual field work. 
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Biemer and Link (2007) extended the probability modeling approach proposed by Drew 
and Fuller (1980). Their method used level of effort (LOE) indicators based on call attempts to 
model the relationship between response propensity, LOE, and nonresponse bias for key 
outcome variables. In most surveys, call history data are available for all sample members, 
including nonrespondents, and since the LOE required to interview a sample member is likely to 
be highly correlated with response propensity, this method is ideally suited for modeling the 
nonignorable nonresponse. Biemer and Link (2007) applied their approach to data for a random-
digit dialing (RDD) telephone survey.  

The rest of this report presents the results of analyses in which the Biemer and Link 
(2007) methodology is applied to data from the 2006 National Survey on Drug Use and Health 
(NSDUH). In this research, two key questions are addressed. First, we want to determine 
whether callback models can be used to evaluate the quality of the current NSDUH nonresponse 
adjustment. Second, we want to determine whether the current NSDUH nonresponse adjustment 
approach can be improved by incorporating callback information into the adjustment process, 
and if so, how much improvement is possible. Chapter 3 discusses some relevant data set details 
for our study. 
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3. Data 
The methods used in this report were adapted from Biemer and Link (2007) for the 

National Survey on Drug Use and Health (NSDUH). To facilitate developing the model 
described in the next chapter, we will briefly review the structure of NSDUH data used in our 
analysis.  

The NSDUH interview process consists of a household screener used to enumerate 
household members and identify eligible respondents, followed by the selection of up to two 
members of the household for an interview. Interviews are conducted primarily using audio 
computer-assisted self-interviewing (ACASI), but some items (mostly demographic) are 
gathered through computer-assisted personal interviewing (CAPI). In 2006, 137,057 households 
were screened and interviews were conducted with 67,802 respondents. The weighted screener 
response rate was 90.6 percent and the weighted interview response rate was 74.4 percent. 

Thus, the NSDUH has unit nonresponse at two levels: the screening interview and the 
main interview. The focus of this report is on the latter (referred to as the main interview). 
Because the main interview nonresponse rate is lower, the potential for nonresponse bias is 
higher for this type of nonresponse. Although this has not yet been attempted, the methods 
discussed in this report could also be applied to adjust for screener nonresponse. The 
observations used for analysis come from all 85,034 screener respondents that were successfully 
screened and selected for an interview. 

Our analysis uses information that is entered by interviewers for each visit to a sampled 
dwelling unit. Interviewers enter case status information into the record of calls (ROC) data 
using a handheld computer. Collected data elements include the interim or final outcome of the 
call (e.g., noncontact, refusal, completed screening, completed interview, etc.) and an open-
ended notes field. The time and day of the call attempt are automatically recorded by the 
handheld computer. Results are transmitted daily to a central database and can be reviewed by an 
interviewer's supervisors in a Web-accessible case management system (CMS). Interviewers use 
the ROC data to record information that can help with case management and scheduling.  

Records in the ROC data that did not reflect actual visits were removed from the data for 
our analyses. For example, final result codes for main interview nonresponse cases are entered 
into the ROC data after review and approval by a field supervisor and do not result from a visit 
by the interviewer and were, therefore, removed from the data. 

NSDUH interviewers may attempt to contact and interview a sample member numerous 
times before further attempts are terminated and the case is closed out. All sample cases are 
ultimately categorized into a number of final case dispositions. For our purposes, these 
dispositions have been collapsed further into four main types: (1) interviewed, (2) final refusal, 
(3) final nonresponse other than refusal (e.g., language barriers, physically or mentally unable, or 
unavailable), or (4) censored. Dispositions (1), (2), and (3) are self-explanatory. Disposition (4), 
censored cases, are essentially noncontacted cases that have been terminated prematurely 
because either they are no longer needed for the sample (e.g., sample size requirements have 
been met) or it is no longer cost effective, efficient, or viable to pursue them. For example, at the 
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end of the field period, cases that have not received disposition (1), (2), or (3) are categorized as 
(4), censored, regardless of their number of attempts. Because censored cases can contribute 
information on nonresponse, we will consider ways of using them in the analysis. 

Table 1 provides a data summary and shows a three-way cross-classification of sample 
persons by call attempt (denoted by a), disposition (denoted by d), and some grouping variable 
(denoted by G). The variable G can be essentially any variable that is known for all respondents 
for which nonresponse bias is to be assessed. Knowledge of G for nonrespondents is not 
required. Table 1 assumes G is a dichotomous variable; however, extending the table for L>2 
categories is straightforward. Each row of the table corresponds to a call attempt made by the 
interviewer assigned to a case, up to a maximum of K call attempts. For persons in dispositions 1 
(interviewed), 2 (refused), and 3 (other NR), the row corresponds to the call attempt at which a 
first contact was made with the sample person. For censored cases (d = 4), the row corresponds 
to the last attempt prior to censoring the case. Within a row, persons are also classified by final 
disposition 1 through 4 and, for interviewed cases, G. We assume that G is not known for 
dispositions 2 through 4.  

In Table 1,  adgn  denotes the number of persons in row a, disposition d, and group g, and 
 adn + denotes summation across groups (i.e.,  ad adgg

n n+ =∑ , where a = 1,…,A; d = 1,…,4; and g 

= 1,…,L). For the present discussion, the frequencies, 
 

adgn , are unweighted; however, 
subsequently, these counts will be replaced by selection probability weighted frequencies 
because the NSDUH is a unequal probability sample design. The cells in the last column are the 
total number of cases that were not contacted at the particular attempt. Thus,  4Ln +  is the number 
of cases that remain noncontacted after K call attempts. The sum of all cells in the table is the 
overall sample size n.  

Table 1. Data Summary for Callback Model 
First Contact Call 
Attempt 

1 = Interviewed 
2= Refused 3= Other NR 4= Censored G=1 G=2 

1  
111n   112n   12n +   13n +   14n +  

2  
211n   

212n   
22n +   

23n +   
24n +  

…      
a  11an   12an   2an +   3an +   

4an +  
….      
K  

11Ln   
12Ln   

2Ln +   
3Ln +   

4Ln +  

NR = nonresponse. 

In Chapter 4, we show that the likelihood of the data in Table 1 as a function of the 
number of callbacks, the probability of contact, and the probability of dispositions (1), (2), (3), 
and (4) given an initial contact was made. We will show that the unrestricted model is not 
identifiable; however, through parameter restrictions, which seem plausible for most 
applications, the model can be made identifiable. Then, the expectation-maximization (EM) 
algorithm will be applied to maximize the likelihood and obtain the parameter estimates.  
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4. Model and Notation 
For ease of exposition, we assume simple random sample (SRS) of size n households is 

selected from a population of size N households and later extend these results for complex 
survey sampling. Extending the notation in equation (5), let  agα denote the probability a person 
in group g is contacted at call attempt a for a = 1,…,K, and let  adgβ for d=1,..,3 denote the 
conditional probability that a person in group g is classified to final disposition d at attempt a 
given the person is contacted at attempt a.  

Several schemes can be used to define a "contact" and the "final disposition." For 
example, a contact could correspond to the first contact with the sample person, first contact with 
any household member, or the last contact with the household or sample person. Likewise, a 
final disposition could be defined for sample person or household. The meanings of these terms 
can vary across applications depending what scheme best describes the data likelihood. In our 
experience, good results have been obtained assuming that the contact attempt refers to the 
attempt at which first contact was made with the sample member. The following pending 
interview result codes were considered contacts: appointment for interview, breakoff (partial 
interview), physically/mentally incompetent, language barrier (Spanish), language barrier 
(other), refusal, and parental refusal (for 12 to 17 year olds). Noncontact pending interview result 
codes were No One at Dwelling Unit, Respondent Unavailable, and Other.1 This intuitively 
makes sense because the number of attempts to obtain the first contact would provide 
predictability of the likelihood for contacting a person. Other issues to consider in the definition 
of a contact attempt will be discussed in Section 8.1. 

Finally, let  agδ  denote the probability that a person in group g is censored at call attempt 
a, and let  gπ  denote the proportion of the population in group g. Under this notation and 
assumptions, we can write the probability an individual is classified in cell (a,d,g) of the full data 
table denoted by  adgρ . 

 

 1

1

1

1
1

1

(1 )(1 ) ,  for 1, 2,3 and 1,...,

(1 )(1 ),  for 4 and 

(1 )(1 ),  for 4 and 

a

adg g ag adg tg tg
t

a

g ag tg tg
t

K

g tg tg
t

d g L

d a K

d a K

ρ π α β δ α

π δ δ α

π δ α

−

=

−

=

−

=

 
= − − = = 

 

= − − = <

= − − = =

∏

∏

∏

, (11) 

where, as before, it is assumed that all noncontacted cases after attempt K are closed out 
(censored). The log-likelihood kernel for Table 1 for polytomous G is, therefore, 

                                                 
1 One limitation of the data is that the Respondent Unavailable category includes cases where the 

respondent is contacted but indicates they cannot be interviewed at that time. The data do not allow us to separate 
such cases from ones where the selected person was not at the dwelling unit. Also, we considered the Other category 
to be noncontacts since many of these are from controlled access units.  
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 4

1 1
1 1 1 2 1

log log
K G K L

a g a g ad adg
a g a d g

n nρ ρ+
= = = = =

= +∑∑ ∑∑ ∑ . (12) 

Note that, in this likelihood, the response probabilities are summed over the L groups as 
 

1

L

adg
g

ρ
=
∑  

for dispositions (2), (3), and (4) because we assume that only the sums,  adgg
n∑ , are known for 

noninterviewed persons. 

In general, the number of cells in Table 1 is K(L+4), which is the maximum number of 
parameters that can be estimated. The data likelihood for Table 1 contains many more than 
K(L+4) parameters and is, therefore, not identifiable unless some parameter restrictions are 
imposed. A number of restrictions will be considered in the application. However, one that 
seems practical for the National Survey on Drug Use and Health (NSDUH) application is to 
reduce the number of censoring probabilities. For many surveys, the decision to terminate further 
effort on a case does not depend on the grouping variable, G, particularly in cases where G is a 
questionnaire variable (Y) and is unknown during fieldwork. In such cases, G does not influence 
censoring and it may be plausible to assume that the probability of censoring is the same for all 
groups (i.e.,  ag aδ δ=  for g =1,…,L). It may also be plausible to assume that the censoring 
probabilities are the same across call attempts:  

  1(1 )a
aδ δ δ −= − . (13) 

Both of these assumptions can be tested. For example, cases requiring greater numbers of call 
backs may be censored with higher probabilities because they would be more likely to still be 
active toward the end of the survey when most censoring occurs. In addition, some groups G are 
more difficult to contact than the others and may require more callbacks to finalize. Such cases 
would also seem to be more likely to be censored. Fortunately, if the number of censored cases is 
small (as it is in the NSDUH), then it is unlikely that a significant reduction in model fit will be 
observed by restricting the censoring probabilities as shown in equation (13). 

Finally, we will consider restrictions on the disposition probabilities,  adgβ , to further 
reduce model complexity and achieve model identifiability. In other studies (e.g., Groves & 
Couper, 1998), contact difficultly is not strongly related to the ultimate cooperation (i.e., persons 
that are difficult to contact are often not more likely to refuse nor are persons who are easy to 
contact more likely to cooperate in the survey). This means that it may be plausible to assume 
that  adg dgβ β=  for a=1,…,K, d=1,2,3 and g=1,…,L, which saves an additional 2L(K-1) 
parameters. This assumption can be tested for a subset of call attempts; however, this more 
simplified model provides a reasonable starting point for an identifiable model. With this 
assumption combined with the restrictions on  gaδ , the model has (K+3)L-1 parameters and the 
model becomes identifiable as long as K is greater than L. In practical applications, these 
restrictions are usually not sufficient, however, since these ignore 0 frequency cells, which also 
create identifiability issues, particularly when K is large relative to the sample size. In those 
cases, the  α  and  β  parameters can be further restricted, usually with little loss of model fit. 
Some plausible approaches for this will be explored in the application.  
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5. Parameter Estimation 
The model parameters in equation (11), with restrictions imposed, can be estimated by 

maximum likelihood estimation (MLE) via the expectation-maximization (EM) algorithm 
(Dempster, Laird, & Rubin, 1977). This chapter illustrates this approach for equation (11), with 
restrictions on the censoring probabilities and disposition probabilities described previously. 
Some ideas for further restrictions on the  α  and  β  parameters in practical situations will also be 
described. First, we consider the form of the MLEs under a very simple case that assumes that 
 

ag gα α=  and  ag gβ β=  for all a=1,…,K. These assumptions are usually not satisfied for most 
survey data. Nevertheless, we used this case to gain insights regarding the general structure of 
the MLEs. Under these simplifying assumptions, the likelihood kernel in equation (11) can be 
rewritten as 

 

 1 1

1

1

(1 ) (1 ) ,  for 1, 2,3

(1 ) (1 ) ,  for 4 and 

(1 ) (1 ) ,  for 4 and 

a a
adg g g g dg

a a
g g

K K
g g

d

d a K

d a K

ρ π δ α α β

δ δ π α

δ π α

− −

−

−

= − − =

= − − = <

= − − = =

, (14) 

where, as before, it is assumed that all cases that have yet to be contacted are censored at attempt 
K. Now there are 3L+1 parameters to be estimated:  , ,  for 1,...,g g g g Lπ α β =  and  δ .  

The EM algorithm can be applied to the incomplete data to obtain MLEs of the model 
parameters. To do this, parameter estimates expressions for the full data likelihood are needed. 
These are obtained by differentiating the full data likelihood given by  

    4

1 1 1
log

K L

adg adg
a d g

n ρ
= = =

=∑∑∑ , (15)

regarding each parameter, setting the derivatives to 0 and solving for the parameters in terms of 
the full table counts,  adgn . It can be shown that 
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




3 1

1 1 1 12 1

3 2
1 1 1 12 1 2 2

1

1 1
1

K L K L

a g a g
a g a gg g g
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∂ −
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. (16) 

Setting these partial derivatives to 0 and solving yields the following estimators: 
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. (17) 

The full table counts are obtained initially from user supplied starting values of the parameters. 
The estimates of  adgn  for the tth iteration is 

 
 ( )
( )

( )

ˆ
ˆ

t
adgt

adg ad t
adgg

n n
ρ
ρ+=

∑ , (18) 

where  ( )t
adgρ  is obtained from equation (14) after replacing the parameters by their estimators at 

this iteration in equation (17). 
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6. Extensions to the Basic Model 
A number of extensions to the basic callback model in equation (14) are possible. First, 

as previously noted, additional  'sα can be introduced to account for possible variation in contact 
probabilities over call attempts. As an example, interviewers may obtain information about the 
sample persons at an earlier callback that can increase the probability of a future contact. 
Neighbors or other household members may suggest better times to call back or may indicate 
certain times of the day (like weekday afternoons) that are fruitless and should be avoided. Such 
information may change the contact probabilities at future attempts.  

It is possible to specify a separate contact probability for each attempt a and group g. 
However, adding too many  'sα  can also cause problems. To understand why, suppose we allow 
the  agα  to vary by attempt and group, for a total of KL  α -parameters. Extending equation (17), 
the full data likelihood estimate of  agα  is 

 

 3

1
4

1

ˆ ,  1,..., ;  1,...,
agd

d
ag

agd
d

n
a K g L

an
α =

=

= = =
∑

∑
, (19) 

where it is assumed the denominator is nonzero. If the denominator is very small, which occurs 
for larger a, particularly when K is large (e.g., 10 or more), the maximum likelihood estimation 
(MLEs) of  gaα can become quite unstable. For this reason, it may be more practical, efficient, 
and sufficient to specify unique contact probabilities for the first few attempts only. This is 
logical because after several visits to a household, interviewers are unlikely to acquire new 
information that would change the probability of contact on future attempts. One model that 
worked well in our applications (referred to as Model 3 in Section 8.1) specifies that there are 
three probabilities,  1gα ,  2gα , and  3gα , for each group, where  3ag gα α= , for a=3,…,K. 
Alternative specifications will also be explored in the application discussed in Chapter 8. 

Another useful extension is to vary the censoring parameter,  δ  , across groups or 
attempts or both. However, data sparseness problems are even more severe for MLEs of the  'sδ
than for the  'sα  because the proportion of censored cases can be quite small (e.g., less that 10 
percent of all cases). As mentioned previously, censoring is unlikely to depend upon G in many 
practical applications, so an adequate fit can usually be obtained by specifying equal  'sδ  across 
groups. Although the censoring probability can vary across attempts, modeling this variation will 
not affect the estimates of  gπ  if the censoring parameters are still equated across groups. For this 
reason, it is usually sufficient to specify a single  δ -parameter in the model. 

Another important extension of the model is to replace the unweighted frequencies   adgn
by weighted frequencies  adgω , where  
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{ }adg ii adg

wω
∈

=∑ , (20) 

where  { }adg  denotes the set of sampling units classified in cell (a,d,g) of the summary table 
(Table 1) and wi is the selection weight (i.e., inverse of probability of selection) for the ith unit 
where the sum extends over all sampling units, i, in { }adg . It is often desirable to rescale the ω -
weights so that  

  
adg adg

a d g a d g
nω =∑∑∑ ∑∑∑ . (21) 

For many surveys, sampling frame variables or variables from a screening interview are 
available for nonrespondents and these data can be incorporated into a nonresponse adjustment. 
For callback modeling, variables known only for respondents can also be incorporated because 
callback information is usually available for all sample members. Usually, the more variables 
that are available for nonresponse modeling, the more effective the nonresponse adjustment can 
be. However, with the callback model, data sparseness caused by too many covariates is a 
concern.  

To see why, note that the callback model can be easily extended to multiple grouping 
variables by regarding the grouping variable, G, in the basic model as a cross-classification of J 
grouping variables  jG with  jL categories for j=1,…,J. Each category of G then corresponds to 

one of the 
 

1

J

j
j

L L
=

=∏  cells in the cross-classification. As an example, four grouping variables 

with three categories each yields a combined variable, G, with 12 categories. As the number of 
cells increases, so does the number of empty or low-frequency cells. The result is instability in 
the MLEs  agρ  and  gπ . Another issue is that only categorical variables are permitted in this 
formulation. An alternative approach that addresses both of these issues is to combine the 
callback modeling approach with the standard nonresponse adjustment approach, where the latter 
can be based upon many variables, both continuous and discrete.  

Our approach for combining traditional, logistic regression modeling approaches with the 
callback modeling approach is to form response propensity strata using the traditional model and 
then applying the callback model within each propensity stratum. The callback model estimates 
are obtained for each propensity stratum and then weighted together to obtain the callback 
model-adjusted estimate for the entire sample. To illustrate, let  ,ˆR iρ  denote an estimate of the 
response propensity for unit i, which can be obtained from either a logistic model for the 
response propensity or a weighting class adjustment procedure (see, for example, Little, 1986). 
Following Vartivarian and Little (2003), form S propensity strata, which are approximately 
homogeneous with respect to  ,ˆR iρ . If nonresponse is missing at random (MAR) and if  ,ˆR iρ  
accurately estimates  iρ , then the outcome variables are independent of  iρ  within propensity 
strata. Applying the callback model to an outcome variable, Y, within each response propensity 
stratum, s, will provide a weight adjustment for each category of Y and stratum s = 1,…,S that 
further adjust the weights for nonresponse that is not MAR (NMAR). Thus, this two-step 
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approach combines traditional nonresponse adjustment modeling (e.g., using logistic regression) 
and callback modeling (via MLE) to obtain nonresponse adjustments that adjust for both 
ignorable and nonignorable nonresponse without many of the sparseness issues in callback 
modeling, with a large number of covariates or the restriction that all covariates should be 
categorical. In our example, 20 propensity strata are formed that still provides an adequate 
sample in each stratum for estimating the callback model parameters.  

Finally, Biemer and Link (2007) and Biemer and Wang (2007) extend the callback model 
considered above by adding terms representing hard core nonrespondents (HCNRs) (i.e., persons 
who have zero response propensities and cannot be interviewed regardless of the number of call 
attempts). Such persons are indistinguishable in the sample from persons who have not been 
interviewed but have a nonzero response propensity. The authors represent the HCNR population 
by adding a dichotomous latent variable (say,  η ) to the callback model, which is an indicator for 
HCNR and non-HCNR persons (i.e.,  η =1 for HCNR and  η = 0  otherwise). This latent variable 
is allowed to vary by group G. In the simplest model they consider, this adds L additional 
parameter to the model (i.e.,  Pr( 1| )gη =  for g=1,…,L). These additional probabilities along 
with the other callback model parameters can be estimated by MLE, again using the expectation-
maximization (EM) algorithm. For the National Survey on Drug Use and Health (NSDUH) 
analysis, Biemer and Wang (2007) found little improvement in the estimates of  π g  for this 
model compared with the models considered previously that do not have this feature. Therefore, 
we will not consider it further for this report. 
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7. Measures of Nonignorable Bias 
Using response propensity stratification in conjunction with the callback model has an 

additional advantage. It also provides a test of the assumption of missing at random (MAR) 
invoked by traditional nonresponse adjustment approaches. Let  ρsyi  denote the response 
propensity for the ith unit in response propensity stratum s and category y of the outcome variable 
Y. If the MAR assumption holds for Y, then  sy syρ ρ ′=  for all y and y′. If this equality is rejected, 
so must be the MAR assumption. In this way, the callback model with response propensity 
stratification can be used to test the adequacy of a traditional nonresponse adjustment.  

Consider a callback model with parameters  syπ ,  say syα α= ,  say sβ β= , and  sya sδ δ=  for 
s=1,…,S, y = 1,…, C, and a = 1,…,K, where S is the number of response propensity strata, and C 
is the number of categories of Y. (This model will be referred to as Model 1 in Section 8.1.) The 
model specifies that the prevalence of Y varies by stratum (s) and that the contact probabilities  
( syα ) vary across both the categories of Y and strata. Further, it assumes interview probabilities  
( 

sβ  and  sδ ) do not depend upon Y and vary only by stratum. Let Model 0 denote Model 1 with 
the additional restriction that  sy sα α= , for all y. Roughly speaking, Model 0 assumes that 
response propensities do not vary within stratum across the categories of Y (i.e., the traditional 
nonresponse adjustment fully compensates for nonresponse with respect to Y). This is equivalent 
to specifying that, conditional on s, nonresponse is MAR with respect to Y. Since Model 1 is 
nested within Model 0, the conditional chi-squared test can be used to test the null hypothesis 
 

sy sα α= .  

Specifically, let  
0

2
0,dfL  and  

1

2
1,dfL  denote the likelihood ratio chi-square statistics for 

Models 0 and 1, respectively. The difference,  
0 1

2 2
12 0, 1,df dfd L L= − , is distributed as a  χ 2  random 

variable. If  12d  exceeds the (1-p)th percentile of  2
1Cχ −  where C is the number of categories of Y, 

the MAR assumption is rejected with probability 1-p, providing evidence that the MAR 
assumption is not valid for Y. It may also be concluded that the response propensity model used 
to create the S strata does not adequately adjust for the nonresponse bias in estimates from Y. In 
this way, the potential of nonignorable nonresponse to affect the estimates of Y after traditional 
nonresponse adjustments have been applied to the sampling weights can also be formally tested.  

Alternative tests can also be constructed. For example, let Model 1′ denote Model 1 after 
relaxing the restriction on the  ' sβ . In particular, assume  sya syβ β=  for s=1,…,S, y=1,…,C, and 
a=1,…,K. Since Model 1′ is also nested in Model 0, the nested chi-squared test can be used to 
test whether both  

 
sy sα α= and  sy sβ β= . Note that the degrees of freedom for this test is 2(C-1) 

and, thus, provides a more powerful test.  
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8. Application to the National Survey on 
Drug Use and Health 

As described previously, the National Survey on Drug Use and Health (NSDUH) 
incorporates a short screening interview—referred to as the screener—followed by an hour-long 
substantive interview—referred to as the main interview. The screener is designed to identify 
youths aged 12 to 17 years and young adults aged 18 to 25 years for oversampling. In addition to 
age, the screener collects addition demographic variables such as sex and race/ethnicity. The 
main interview is subsequently conducted with a random subsample of the screener respondents.  

Nonresponse can occur for both the screener and main interviews. As noted previously, 
for the data analyzed in this report, screener nonresponse was about 9 percent and the main 
interview nonresponse was about 16 percent. The NSDUH employs separate nonresponse 
weighting adjustments for the two types of nonresponse. For the present analysis, only the main 
interview nonresponse adjustment is considered. Subsequent references to nonresponse 
adjustments in this report pertain to the main interview only.  

When performing the main interview nonresponse weight adjustment, the NSDUH uses a 
response propensity model that is a logit model incorporating 13 variables and selected 
interactions, including a number of State-specific components obtained from U.S. Census data 
(Chen et al., 2005). These variables include those obtained from the screener, which are available 
for all main interview nonrespondents. The models are fit using the Generalized Exponential 
Model (GEM) procedure developed by Folsom and Singh (2000). The GEM procedure also 
applies a calibration adjustment that poststratifies the nonresponse adjusted counts to census 
control totals across a number of demographic variables. The application in this chapter 
considers the bias in the NSDUH estimates after the nonresponse adjustment has been applied 
and prior to the poststratification adjustment. 

The next section describes the approach we used to apply the callback models in the 
previous sections to the NSDUH, and then the results of the study are given the subsequent 
sections.  

8.1. Approach 

As noted in Chapter 2, two key questions were addressed by this research: (a) can 
callback models be used to evaluate the quality of the current NSDUH nonresponse adjustment? 
and (b) is it possible to improve the current NSDUH nonresponse adjustment approach by 
incorporating callback information into the adjustment process? To address (a), we applied a 
number of alternative callback models ranging from the simple to the complex. The results 
below focus on four models that represent the type of results we obtained and illustrate the 
potential of the callback modeling approach for evaluating and reducing nonignorable 
nonresponse in the NSDUH estimates. The four callback models are: 

Model 0:  gπ , agα α= ,  agβ β= ,  agδ δ=  for  1,..., , 1,...,g L a A= =  
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Model 1:  gπ , ag gα α= ,  agβ β= ,  agδ δ=  for  1,..., , 1,...,g L a A= =   

Model 2: same as Model 1, except  1 2, , 2,...,g ag g a Lα α α= =  

Model 3: same as Model 1, except  1 2 3, , , 3,...,g g ag g a Lα α α α= = . 

Model 0, referred to as the null model, Model 0, specifies that neither contact 
probabilities nor interview probabilities vary by group (i.e.,  gaα α= and  agβ β=  for g=1,…,L). 
This model is equivalent to the assumption of no nonignorable nonresponse bias for the variable 
of interest. When the response propensity strata are formed using response propensities estimated 
from the GEM model, the Model 0 estimates are essentially the same as the GEM estimates 
within each stratum. Model 1 contains 2L +1 parameters corresponding to the L-1 prevalence 
probabilities ( , 1,..., 1g g Lπ = − ), L contact probabilities ( , 1,...,g g Lα = ), a single interview 
probability  β , and a single censoring probability  δ . The key assumption for this model is that 
contact probabilities remain constant for all call attempts a. Model 2 assumes that the probability 
of contact for the first call attempt is unique in each group, but call attempts 2 through L share 
the same contact probability within each group. Thus, Model 2 contains an additional L 
parameter. Finally, Model 3 allows unique contract probabilities for the first two call attempts, 
while they are the same across attempts a = 3,…,L. Model 3, therefore, adds L more contact 
probability parameters to Model 2.  

Models that allowed the  'sβ  and  'sδ to vary across groups and call attempts were also 
explored. The models that varied the censoring probabilities ( 'sδ ) by group gave results that 
were very similar to the models where group equality was imposed. However, models that 
allowed the disposition probabilities ( 'sβ ) to vary by group gave results that were quite 
different from and considerably biased compared to models where group equality was imposed. 
One possible explanation for the extreme bias is error in the callback data. As we will discuss in 
Chapter 9, the number of call attempts recorded for a case can be inaccurate for modeling 
purposes. Our extensive investigations into the appropriateness of using NSDUH record of calls 
(ROC) data as a source of callback data suggest that interviewers tend to underreport call 
attempts as envisioned in the callback model. (This is discussed in more detail in Appendix A.) 
A limited simulation study revealed that the maximum likelihood estimation (MLEs) of the   'sβ
are much more affected by these recording errors than MLEs of the other model parameters. 
More work is needed to fully understand why. Nevertheless, models that allow the disposition 
probabilities to vary by group performed poorly and those results will not be presented in this 
report.  

One additional model that incorporates callback information was considered. This is the 
NSDUH GEM model augmented by a new variable derived from the number of call attempts 
required to obtain a final disposition for a unit (referred to as the level of effort or LOE variable). 
This model, denoted by GEM+, and the standard GEM model (without the LOE variable) bring 
the number of models in the analysis to six.  

Early work to apply callback models to the NSDUH (Biemer & Wang, 2007) considered 
a number of alternate definitions of a call attempt. A call attempt can be defined as any attempt 
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to contact and interview a respondent. However, as will be discussed later, this definition is 
problematic primarily because of the inaccuracy with which it is recorded by interviewers for 
callback modeling purposes. For example, interviewers may make several calls to the same unit 
within a single afternoon. Some interviewers may record each attempt separately as they should, 
while others may collapse these into a single attempt. Biemer and Wang (2007) found that 
combining multiple attempts within the same morning, afternoon, or evening (call time slots) 
produced somewhat better results. For the present analysis, call days (i.e., combining multiple 
attempts on the same day into a single attempt) offered further improvement, and this definition 
was used for the results presented here.  

Since age, race, sex, and ethnicity are obtained in the screener interview (some by proxy 
response) for all main interview persons, these characteristics are known and can be used to 
construct gold standard estimates for the purposes of evaluating a given model's ability to adjust 
for nonignorable nonresponse bias. Let Y denote one of these variables and form the data 
summary table (Table 1), using Y to play the role of the grouping variable G. Replace the cell 
frequencies ( yadn ) by selection weighted counts ( 

yadω ) as described in Chapter 6. We then apply 

the callback model to this data table to estimate:  , 1,...,y y Cπ = . Let  ( )ˆ m
yπ  denote the estimate of 

 
yπ  from callback model m, where m = 0, 1, 2, 3, GEM and GEM+. Let  ( )ˆ T

yπ  denote the estimate 
based upon the full screener data, which is considered the gold standard (i.e., assume that 
 ( )ˆ( )T

y yE π π= ). Then, the bias in the adjusted estimate from model m is  

  ( ) ( ) ( )ˆm m T
y yB π π= − . (22) 

The NSDUH GEM model includes the screener variables age, race, sex, and ethnicity, 
which are the Y variables for this analysis. As such, the biases for GEM and GEM+ weighted 
adjusted estimates for these Y's are essentially 0. This is not a fair comparison of the GEM 
modeling approach because we are interested in how the GEM nonresponse adjustment performs 
for variables that are not in the model (so-called ignored variables). This is accomplished by the 
leave-one-out approach, where Y is omitted from the GEM and GEM+ models for assessing the 
nonignorable nonresponse bias for estimates of Y.  

As an example, to evaluate the nonignorable nonresponse bias for sex, this variable is 
omitted from the GEM model, and the nonresponse weight adjustment factors are estimated 
using the response propensities from the reduced model. Applying these factors to the NSDUH 
base weights produces nonresponse adjusted estimates of the prevalence of males (or females) in 
the population. Since sex is left out of the GEM model, the estimates of the prevalence of sex 
will be biased to the extent that the other variables in the model are unable to account for the 
differences in the nonresponse mechanisms for males and females. This nonignorable 
nonresponse bias can be estimated by equation (22) using the estimate of the prevalence of males 
from the screener. The nonresponse biases for the ethnicity, age, and race are computed in the 
same manner. In this way, we obtain insight about the performance of the GEM nonresponse 
adjustment for Y-variables that are ignored in the model that may be related to sex, ethnicity, age, 
and race. This process also provides the opportunity to evaluate how the callback modeling 
approach performs relative to the GEM and GEM+ models for adjusting for nonignorable 
nonresponse bias. 
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Finally, for reasons described in Chapter 7, the callback models (1, 2, and 3) were fit 
separately to 20 equally sized response propensity strata. These strata were formed using 
response propensities from the GEM model with the Y variable removed to simulate the situation 
of nonignorable nonresponse. The overall callback model estimate was then computed by 
weighting the estimates of  ( )ˆ m

syπ for strata s=1,…,20, by the total weight in each stratum 
following the usual estimator for stratified sampling.  

Thus, to summarize our approach for some screener variable, Y, the full GEM model 
(excluding Y) is used to estimate the response propensities for each unit in the sample. The units 
are then sorted and 20 response propensity strata of equal size are created. Within each stratum, a 
data summary table (like Table 1) is generated separately for sex, ethnicity, age, and race using 
frequencies that are weighted by the NSDUH selection probabilities. For each of these variables, 
the four callback models (including Model 0) were applied to the weighted data summary table 
in each stratum to produce the model parameters estimates. Of particular interest in this analysis 
are the estimates of the proportions  ( )ˆ m

syπ , for s=1,…,20 and y=1,…,C for each model and the 

overall estimate  ( )ˆ m
yπ . For the callback model, the overall estimate is computed from the stratum 

estimates by  
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where  sω +  is the sum of the selection weights for all cases in stratum s. To obtain the 
corresponding GEM+ estimates for a particular screener variable, Y, the GEM model was fit 
after removing the Y. The nonresponse adjustment weight factors from this model were applied 
to the selection weights in each stratum. The GEM estimate for  yπ is then 
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where  ( )GEM
syω +  is the GEM nonresponse adjusted weight for interviewed cases in stratum s having 

Y=y. The GEM+ model estimates were formed analogously using the GEM model with the LOE 
variable added. 

8.2. Results for Screener Variables 

Table 2 shows the prevalence estimates for screener (Y) variables for the unadjusted 
model (Model 0) and the five nonresponse adjusted models in our comparison. The estimate 
based upon full screener information is in the last column and will be considered the gold 
standard for this analysis. Models 0 through 3 and the screener estimates are a weighted average 
for estimates over the 20 propensity strata. The GEM and GEM+ estimates were produced from 
models fit to the entire data set. As noted previously, for the latter models, the corresponding Y 
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variable was omitted from the GEM model. Thus, the estimates in the table show a models 
ability to adjust for the missing variable using other variables in the model.  

Table 2. Prevalence Estimates for Sex, Ethnicity, Age, and Race, by Model and 
Screener  

Variable (Y) Model 01 Model 12 Model 23 Model 34 GEM5 GEM+5 Screener 
Sex        

Males 47.1 48.0 47.5 47.4 47.0 47.4 48.2 
Ethnicity        

Hispanic or 
Latino 14.3 16.0 14.7 14.5 14.1 14.1 13.8 

Age        
12-17 13.1 12.9 13.0 13.1 11.3 11.1 10.4 
18-25 15.7 17.0 15.8 15.9 14.3 14.5 13.2 
26-34 14.4 14.2 14.5 14.5 14.5 14.6 14.2 
35-49 25.1 24.8 25.3 25.3 26.3 26.6 26.2 

50+ 31.7 31.0 31.3 31.3 33.5 33.2 35.9 
Race        

American 
Indian 1.1 1.1 1.2 1.1 0.9 0.9 0.9 
Asian 3.1 3.7 3.2 3.2 3.6 3.7 4.7 

Black or 
African 

American 13.1 12.9 13.1 13.1 12.2 12.2 11.8 
White 81.3 80.2 81.1 81.1 81.8 81.8 81.3 

Multiple Race 1.4 2.1 1.5 1.5 1.4 1.4 1.3 
GEM = generalized exponential model. 
1Model 0 parameters are  gπ , agα α= ,  agβ β= ,  agδ δ=  for  1,..., , 1,...,g L a A= =  
2Model 1 parameters are  gπ , ag gα α= ,  agβ β= , 

 
agδ δ=  for  1, ..., , 1, ...,g L a A= =; 

3Model 2 is similar to Model 1 but with  1 2, , 2, ...,g ag g a Lα α α= =  
4Model 3 is similar to Model 1 but with,  1 2 3, , , 3, ...,g g ag g a Lα α α α= =
5GEM+ is the GEM model with the LOE variable added. 

The bias in an estimate in Table 1 can be computed by subtracting the screener estimate 
from the model estimate. These are shown in Table 3. Over the 20 strata, the bias in the Model 0 
estimator is never very large for any of the four variables except for the oldest age category. 
Persons aged 50 and older are underestimated in the NSDUH, and the GEM and GEM+ models 
are best at compensating for this bias, although the adjustment is not perfect. The GEM and 
GEM+ models appear to do better in compensating for the 50 years or older nonresponse. 

The last two rows of Table 3 ranks the models on their ability to adjust for nonignorable 
nonresponse by two criteria: absolute bias rank (denoted |Bias| Rank) and average absolute bias 
rank (denoted Avg |Bias| Rank). To compute |Bias| Rank, the absolute value of the biases in each 
row of the table were ranked from smallest (rank of 1) to largest (rank of 6). The ranks were then 
averaged over the Y variables in the table for each model. By this criterion, the GEM model does 
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slightly better than the other models, with the GEM+ model coming in a close second. Note that 
the lowest value of |Bias| Rank is obtained with the GEM model. 

The second criterion is used to rate the six models in the Avg |Bias| Rank criterion in the 
last row of Table 3. This criterion bases the model rankings on the smallest absolute bias for each 
propensity stratum averaged overall for all 20 propensity strata. The criterion is more stringent 
because it requires a model to perform well in every propensity stratum to obtain the best rank 
(i.e., there is no opportunity for a large negative bias in one stratum to be cancelled out by a large 
positive bias in another). This criterion could suggest how a method performs for estimates of 
population subgroups whose response propensities may vary from low to high. For this criterion, 
the GEM+ model performs best.  

Table 3. Nonignorable Bias for Sex, Ethnicity, Age, and Race, by Model  

Variable (Y) Model 0 Model 1 Model 2 Model 3 GEM GEM+ 
Sex       

Males -1.05 -0.17 -0.69 -0.75 -1.11 -0.73 
Ethnicity       

Hispanic or Latino 0.52 2.19 0.90 0.74 0.29 0.32 
Age       

12-17 2.73 2.51 2.64 2.68 0.94 0.69 
18-25 2.44 3.76 2.60 2.64 1.09 1.24 
26-34 0.14 -0.02 0.29 0.23 0.25 0.38 
35-49 -1.05 -1.35 -0.87 -0.93 0.10 0.42 

50+ -4.26 -4.91 -4.65 -4.62 -2.39 -2.73 
Race       

American Indian 0.21 0.24 0.27 0.23 0.02 0.01 
Asian -1.54 -0.95 -1.47 -1.49 -1.04 -1.00 

Black or African American 1.21 1.08 1.22 1.21 0.36 0.31 
White -0.02 -1.12 -0.23 -0.14 0.52 0.55 

Multiple Race 0.15 0.76 0.23 0.20 0.14 0.12 
|Bias| Rank 3.1 3.8 4.3 3.7 2.9 3.3 

Avg |Bias| Rank 3.3 4.4 4.3 3.8 2.8 2.4 
GEM = generalized exponential model. 
1Model 0 parameters are  gπ , agα α= ,  agβ β= ,  agδ δ=  for  1,..., , 1,...,g L a A= =  
2Model 1 parameters are  gπ , ag gα α= ,  agβ β= , 

 
agδ δ=  for  1, ..., , 1, ...,g L a A= =   

3Model 2 is similar to Model 1 but with  1 2, , 2, ...,g ag g a Lα α α= =  
4Model 3 is similar to Model 1 but with,  1 2 3, , , 3, ...,g g ag g a Lα α α α= =
5GEM+ is the GEM model with the LOE variable added. 

As discussed previously, another use of the callback model is to test for nonignorable 
nonresponse, for example, by comparing the chi-square values for Models 0 and 1. This test was 
rejected for all four screener variables and all 20 propensity strata. The graphs in Figure 1 
summarize these results for the four screener variables. The x-axis in these graphs is  ∆  (delta) 
defined as 
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where  
0

2
0,dfL and  

1

2
1,dfL are the log-likelihood ratio chi-square values for Models 0 and 1, 

respectively. The y-axis is the absolute bias (|Bias|) averaged over the categories of the Y 
variable. Hispanicity, age, and race exhibit high correlations between  ∆  and |Bias|: 0.55, 0.70, 
and 0.78, respectively. Thus, as the absolute bias of these variables increases, so does the value 
of  ∆ . This provides some evidence of the validity of  ∆  as an indicator of nonignorable 
nonresponse bias in an estimate. In the next section, we will employ this metric to gauge the 
potential bias in a number of important drug and other health-related variables from the NSDUH 
survey. 

Figure 1. Graphs of the Relationship Between  ∆ and |Bias| for 20 Response Propensity 
Strata for Hispanicity, Sex, Age, and Race 
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8.3. Results for Substantive Variables 

In addition to the screener variables, 10 substantive variables were also analyzed using 
the same five models. These variables, listed in Table 4, were selected by the Substance Abuse 
and Mental Health Services Administration (SAMHSA) to represent a range of high- and low- 
prevalence characteristics that are essential to the NSDUH objectives. All the variables are 
intrinsically dichotomous. Unlike the screener variables, there is no natural gold standard 
estimates for these variables; thus, it is essentially impossible to accurately assess the biases. 
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Perhaps the best option for providing some indications of the nonignorable nonresponse bias for 
these variables is to perform the tests of ignorability by propensity stratum described in 
Chapter 7.  

Following the same approach used for the screener variable analysis, 20 response 
propensity strata were formed based upon the GEM model. In this analysis, the full GEM model, 
including the four screener variables was used to form the strata. If the GEM model is successful 
at removing the bias for a substantive variable, Y, then the tests of ignorability for the variable Y 
should not be rejected in any stratum. If the test is rejected for one or more strata, then there is at 
least some evidence that response propensity differs by the levels of Y. This implies that the 
GEM does not adequately remove the nonignorable nonresponse bias for this Y variable.  

An overall measure of the adequacy of the GEM model is the (weighted) average value 
of  ∆ for the 20 response propensity strata, denoted by  ∆ , using weights proportional to the 
stratum size. The larger the value of  ∆ , the greater the potential bias in the GEM estimator. To 
judge the magnitude of  ∆ , we can use results for the two dichotomous variables in the screener 
analysis: sex and Hispanicity. For these variables,  ∆  was 0.05 and 0.09, respectively. Both of 
those variables display an appreciable bias when  ∆ exceeded 0.10. This suggests that a  ∆  larger 
than 0.10 might be considered an indication of potentially problematic nonignorable nonresponse 
bias in the GEM estimator. Of course, this is just a rule of thumb and there is no guarantee that 
variables for which  ∆ is less than 0.10 do not also have large nonignorable nonresponse biases. 

Table 4. Variable Names and their Definitions for the Analysis of Substantive Variables 

ALCMON Past month use of alcohol 
ALCYR Past year use of alcohol 
CIGMON Past month use of cigarettes 
COCMON Past month use of cocaine 
COCYR Past year use of cocaine 
MDELT Had major depressive episode in lifetime 
MDYR Had major depressive episode in the past year 
MRJMON Past month use of marijuana 
MRJYR Past year use of marijuana 
TOBMON Past month use of tobacco 
 

The first column of Table 5 reports the unadjusted prevalence estimate from Model 0 
(i.e.,  (0)

1π̂ ). The remaining columns report the difference between this estimate and the model 

estimate (i.e.,  (0) ( )
1 1ˆ ˆ mπ π− ) for the model in the column heading. This difference can be 

interpreted as an estimate of the nonignorable nonresponse bias estimate under Model (m) (i.e., 
assuming Model (m) were unbiased). Again, these overall estimates were computed for 20 
response propensity strata and then averaged over the strata weighting by the stratum size. The 
last column reports the value of  ∆  as an indicator of the severity of the bias in the GEM 
estimator. Of particular interests are the GEM and GEM+ estimates since these performed well 
in the tests for screener variables.  
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Across all models, the differences are in the range of -2 to 0.1 percentage points 
suggesting that, for these 10 variables, underestimation may be the primary issue. According to 
the model estimates, the biggest absolute biases are observed for Model 1; however, model fit 
improves moving to Model 2 and Model 3, and the magnitude of the bias estimates tend to get 
smaller. In general, the GEM model tends to report the smallest biases. The GEM+ model biases 
tend to be larger in magnitude than the GEM model bias estimates. This result combined with the 
result from the callback model bias estimates suggest that the GEM model estimates may be 
subject to nonignorable nonresponse bias. 

In Table 5, four variables have  's∆ that exceed 0.10—COCMON, COCYR, MRJMON, 
and MRJYR—which is evidence that nonignorable nonresponse bias may be a problem for these 
variables. A large value of  ∆  means that Model 1 provides a substantial improvement in fit over 
Model 0 and, further, that Model 1 reduces the ignorable nonresponse bias ignored by the 
standard GEM adjustment. Since the GEM and GEM+ adjustments are essentially negligible for 
these variables, this implies that the GEM+ model is ineffective at removing the nonignorable 
nonresponse bias for these variables. Using the Model 3 results, the nonignorable nonresponse 
bias may be as large -0.15 percentage points for past year cocaine use (COCYR) and -0.20 
percentage points for past year marijuana use (MRJYR). 

Table 5. Model 0 Estimates of Prevalence for the Substantive Variables and the Bias 
Estimated by the Five Models (in Percent) among Persons Aged 12 or Older 

 Model 0  Model 1 Model 2 Model 3 GEM GEM+  ∆  
ALCMON 50.97 -0.73 -0.32 -0.23 -0.04 -0.21 0.06 
ALCYR 66.10 -0.07 -0.25 -0.23 0.01 -0.15 0.06 
CIGMON 25.13 -1.03 -0.29 -0.17 -0.05 -0.09 0.07 
COCMON 0.98 -1.48 -0.22 -0.13 0.00 0.02 0.14 
COCYR 2.48 -1.68 -0.26 -0.15 0.01 0.04 0.14 
MDELT1 13.90 -1.40 -0.12 0.00 0.02 0.04 0.07 
MDEYR1 7.43 -1.73 -0.06 -0.03 0.06 0.11 0.09 
MRJMON 6.09 -1.80 -0.26 -0.16 0.02 0.02 0.13 
MRJYR 10.34 -1.76 -0.32 -0.19 0.01 -0.01 0.12 
TOBMON 29.70 -1.02 -0.31 -0.18 -0.08 -0.18 0.07 
GEM = generalized exponential model. 
1 Estimate is based only on respondents aged 18 or older. 

8.4. Estimates and Standard Errors of GEM and GEM+ Models 

The previous results suggest that, although not perfect, the GEM and GEM+ models 
perform best among the models considered. The performance of the callback models, particularly 
Model 3, was somewhat disappointing, especially given the more positive results concerning the 
use of  ∆  for detecting nonignorable nonresponse, which is also based upon callback model 
theory in Chapter 4. Some plausible reasons why the callback models did not perform up to 
expectations are provided in Chapter 9. In this section, we consider some further comparisons 
involving only the GEM and GEM+ models.  
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As noted in the screener analysis, the GEM+ model outperformed the GEM model for the 
more stringent Avg |Bias| Rank criterion suggesting that adding the LOE variable to the GEM 
could be an improvement over the standard GEM currently in use, particularly for population 
subgroups analysis (Section 8.2). However, it is still possible that, although the GEM+ model 
reduces bias, it may increase the standard errors of the estimates. This raises the question of how 
the mean squared errors (MSEs) of the GEM and GEM+ estimates compare. In addition, any 
reduction in bias or MSE realized by the GEM+ model may not be sustained throughout the 
remaining steps of the NSDUH postsurvey adjustment process. As an example, poststratification 
can also reduce both nonresponse bias and frame coverage bias. It is possible that when 
poststratification is applied to the GEM and GEM+ model estimates, any MSE reduction 
afforded by the GEM+ model vanishes.  

To answer these questions, the standard errors and MSEs of the GEM and GEM+ 
estimates were compared for the 10 variables in Table 4. To broaden the comparison, the 13 
additional dichotomous substantive variables in Table 6 were also included in this part of the 
analysis. These variables were not included in the callback model analysis in Section 8.2 because 
they involve responses from branching questions and do not meet the callback model data 
requirements.2 For all 23 variables, we computed the GEM and GEM+ prevalence estimates, 
their standard errors and their "pseudo-MSEs" both before and after the usual NSDUH 
poststratification adjustments were applied.  

We use the term pseudo-MSE to emphasize that no valid estimate of the nonresponse bias 
in the prevalence estimates is available, which precludes the possibility of computing true MSEs 
for the estimates. The pseudo-MSE approach assumes that the GEM+ estimates are essentially 
unbiased. In that case, the MSE of the GEM+ estimate is given by its sampling variance. Further, 
the bias of the GEM estimate is estimated by the difference  ( ) ( )

1 1ˆ ˆGEM GEMπ π +−  and its MSE (or 
pseudo-MSE) is estimated by  

  ( ) ( ) 2 1/2
1 1ˆ ˆ( ) ( ) var( ) 2[var( ) var( )]GEM GEMMSE GEM GEM GEM GEMπ π + = − − + + +  , (26) 

where  ( )
1

GEMπ  and  ( )
1

GEMπ +  are prevalence estimates for the GEM and GEM+ models, 
respectively, and  var( )GEM  and  var( )GEM +  are their associated sampling variance estimates 
(see, for example, Biemer, 2010). The estimate in equation (26) weighs the potential of the 

                                                 
2 The callback model assumes that all nonrespondents for a particular variable meet the eligibility criteria to 

respond to the question. For TOBMON, CIGMON, and ALCMON, all respondents in the sample are eligible to 
respond. Likewise, for variables such as SPD_UADJ, MDELT, and MDEYR, eligibility to respond depends upon 
the respondent’s age, which we can determine from the screener questionnaire. Thus, it is still possible to properly 
subset the data for the callback model analysis. However, all the variables in Table 6 depend upon eligibility criteria 
that are not known and, therefore, cannot be applied for the nonrespondents. As an example, the variable 
ABODALC (abuse or dependence of alcohol) is based on ABUSEALC (past year abuse of alcohol). ABUSEALC is 
a derived variable based on positive responses to four questions in the substance dependence and abuse module that 
are only asked of persons who drank in the past year. It is impossible to determine which nonrespondents are 
drinkers and should have responded to this question. Similarly, dependence on alcohol is based on items that are 
only asked of persons who drank. In such cases, we are not able to separate out nonrespondents who are eligible for 
the item and whose response to the item should be estimated, from nonrespondents who are ineligible for the item 
and whose data should be removed from the callback model analysis. 
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GEM+ estimator to reduce the bias in the GEM estimator against the potential of the GEM+ 
approach to increase the standard errors of the estimates. If  ( )MSE GEM + , which is, by 

assumption, equal to  var( )GEM + , is smaller than  ( )MSE GEM , then we can state that any 
increase in variance caused by adding the LOE variable to the GEM model does not erase any 
gains in bias reduction it affords relative to the GEM estimate.  

Table 6. Additional Variables for Analysis of Estimates and Standard Errors 

Variable Description 
ABODALC Past year alcohol abuse or dependence  
ABODANL Past year pain reliever abuse or dependence  
ABODCOC Past year cocaine abuse or dependence 
ABODHER Past year heroin abuse or dependence 
ABODILL Past year illicit drug abuse or dependence of any kind 
ADODMRJ Past year marijuana abuse or dependence 
ABODTRN Past year tranquilizer abuse or dependence 
ABODILAL Past year illicit drug or alcohol abuse or dependence of any kind  
HERMON Past month heroin use 
ILLTRMT Received treatment any location for illicit drug use—past year  
ALCTRMT Received treatment at any location for alcohol use—past year  
TXILALEV Received treatment for drug or alcohol use in lifetime  
SPD_UADJ Serious psychological distress indicator—unadjusted  
 

To assess whether the GEM+ weighting scheme increases the variance of the weights, 
thereby increasing the sampling variance of the estimates, unequal weighting effect (UWE) was 
computed for the GEM and GEM+ weights both before and after the NSDUH poststratification 
adjustment was applied. These results and other information regarding the distribution of the 
weights are shown in Table 7. It appears that adding the LOE variable to the GEM model only 
slightly increases the weight variation, and this is true both before and after the poststratification 
adjustment.  

Table 7. Weight Distribution for the NSDUH Sample 

Statistics 
Before PSA After PSA 

GEM GEM+ GEM GEM+ 
Minimum 5 5 1 1 
25% 789 767 758 748 
Median 1,536 1,506 1,531 1,520 
75% 4,005 3,950 3,945 3,916 
Maximum 90,821 95,527 94,918 98,703 
UWE 3.2078 3.3412 3.3161 3.3743 
PSA = poststratification adjustment. 
GEM = generalized exponential model. 
UWE = unequal weight effect. 
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Next, prevalence estimates and their associated standard errors and MSEs were computed 
using these weights, and these results are shown in Table 8. There are no discernible patterns in 
the direction of differences in estimates and standard errors between the GEM and GEM+ model 
before or after the poststratification adjustment. In Table 8, more than half (16 out of 23) of the 
estimates from GEM+ model had smaller MSE than the estimates from GEM model before the 
PSA, and 18 out of 23 estimates from GEM+ model had smaller MSE than the estimates from 
GEM model after the poststratification adjustment. These results suggest that adding LOE in the 
nonresponse adjustment model could improve estimates. 
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Table 8. Estimates, Standard Errors, and Mean Square Errors of GEM and GEM+ Model among Persons Aged 12 or Older 

Propensity 
Group 

Before PSA After PSA 
GEM 

Estimates 
GEM+ 

Estimates 
GEM 

SE 
GEM+ 

SE 
GEM 
MSE 

GEM+ 
MSE   

GEM 
Estimates 

GEM+ 
Estimates 

GEM 
SE 

GEM+ 
SE 

GEM 
MSE 

GEM+ 
MSE   

ABODALC 7.6902 7.6498 0.1678 0.1690 0.1726 0.1690 * 7.6410 7.6204 0.1673 0.1679 0.1685 0.1679 * 
ABODANL 0.6578 0.6416 0.0425 0.0413 0.0455 0.0413 * 0.6647 0.6513 0.0423 0.0409 0.0444 0.0409 * 
ABODCOC 0.6816 0.6716 0.0519 0.0521 0.0529 0.0521 * 0.6790 0.6720 0.0517 0.0521 0.0522 0.0521 * 
ABODHER 0.1397 0.1404 0.0335 0.0341 0.0335 0.0341    0.1314 0.1331 0.0268 0.0283 0.0269 0.0283    
ADODILL 2.9196 2.8847 0.0943 0.0940 0.1005 0.0940 * 2.8533 2.8383 0.0898 0.0894 0.0910 0.0894 * 
ABODMRJ 1.7330 1.7186 0.0636 0.0642 0.0652 0.0642 * 1.6957 1.6927 0.0624 0.0624 0.0625 0.0624 * 
ABODTRN 0.1570 0.1525 0.0197 0.0190 0.0202 0.0190 * 0.1633 0.1593 0.0214 0.0209 0.0217 0.0209 * 
ABODILAL 9.2815 9.2193 0.1878 0.1884 0.1978 0.1884 * 9.1915 9.1636 0.1848 0.1853 0.1868 0.1853 * 
MRJYR 10.3301 10.3502 0.1893 0.1896 0.1904 0.1896 * 10.3152 10.3301 0.1940 0.1929 0.1946 0.1929 * 
COCYR 2.4685 2.4422 0.0954 0.0956 0.0990 0.0956 * 2.4668 2.4486 0.0935 0.0930 0.0952 0.0930 * 
ALCYR 66.0872 66.2422 0.3640 0.3690 0.3956 0.3690 * 66.0165 66.0747 0.3715 0.3742 0.3761 0.3742 * 
COCMON 0.9826 0.9594 0.0636 0.0627 0.0677 0.0627 * 0.9842 0.9658 0.0624 0.0614 0.0650 0.0614 * 
MRJMON 6.0736 6.0718 0.1446 0.1473 0.1446 0.1473    6.0209 6.0337 0.1447 0.1454 0.1453 0.1454    
HERMON 0.1456 0.1461 0.0379 0.0383 0.0379 0.0383    0.1375 0.1388 0.0313 0.0324 0.0313 0.0324    
TOBMON 29.7852 29.8759 0.3403 0.3483 0.3521 0.3483 * 29.6205 29.6339 0.3447 0.3473 0.3450 0.3473    
CIGMON 25.1767 25.2205 0.3209 0.3283 0.3237 0.3283    25.0244 25.0175 0.3270 0.3288 0.3271 0.3288    
ALCMON 51.0094 51.1809 0.3852 0.3912 0.4216 0.3912 * 50.9339 50.9855 0.3938 0.3956 0.3972 0.3956 * 
ILLTRMT 0.9567 0.9428 0.0625 0.0619 0.0640 0.0619 * 0.9985 0.9862 0.0639 0.0631 0.0651 0.0631 * 
ALCTRMT 1.1152 1.1116 0.0698 0.0688 0.0699 0.0688 * 1.1233 1.1226 0.0721 0.0706 0.0721 0.0706 * 
TXILALEV 5.9441 5.9406 0.1724 0.1730 0.1724 0.1730    5.9089 5.8958 0.1768 0.1748 0.1773 0.1748 * 
SPD_UADJ1 11.4199 11.4156 0.2242 0.2327 0.2240 0.2327    11.2862 11.2291 0.2231 0.2249 0.2303 0.2249 * 
MDELT1 13.8886 13.8695 0.2274 0.2341 0.2281 0.2341    13.7550 13.7155 0.2266 0.2282 0.2300 0.2282 * 
MDEYR1 7.3667 7.3179 0.1702 0.1740 0.1771 0.1740 * 7.2836 7.2279 0.1688 0.1693 0.1778 0.1693 * 
PSA = poststratification adjustment; GEM = generalized exponential modeling; SE = standard error; MSE = mean square errors. 
* GEM+ MSE is smaller than GEM MSE 
1 Estimate is based only on respondents aged 18 or older. 
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9. The Quality of the NSDUH Callback Data 
There are several possible explanations for why the callback model estimates considered 

in Sections 8.1 and 8.2 showed little or no improvement over the GEM and GEM+ model 
estimates. Obviously, these results suggest that the callback models are misspecified in some 
way because a well-specified model should produce better results. Based upon the experience 
from this application, we believe the problem does not stem from the lack of fit of the models. 
For example, adding more  α  parameters to the model, while improving model fit, did not reduce 
the bias in the estimates of prevalence. In fact, an interesting phenomenon was observed 
regarding the  β parameters. Models that allowed the  β parameters to vary across the levels of Y 
markedly improved the model fit, yet the resulting prevalence estimates were substantially more 
biased. One possibility for these puzzling results is that data that are being used to model 
response propensity in the callback models (i.e., the callback data) are flawed for the purpose of 
callback modeling.  

The callback model assumes that the number call attempts are recorded accurately by the 
interviewers. The estimated response propensity for an individual is a function of the number of 
callbacks that were made on behalf of that individual to obtain an initial contact. Even small 
errors in the number of callbacks can cause biases in the estimates of response propensity. As a 
result, the nonresponse weighting adjustments, which are functions of the estimated response 
propensities, will be biased resulting in either overcorrecting or undercorrecting the weights.  

To see this, consider the simple expression for response propensity in equation (6) and 
suppose  0.2α =  for all sample persons. If the number of callbacks is actually K = 3, the 
estimated response propensity by this formula is estimated to be 0.49. If instead the interviewer 
records only K=2 call attempts for this case, the estimated response propensity drops to 0.36. 
Likewise, if the interviewer records K=4 attempts rather than 3, the estimated response 
propensity increases to 0.59. Such recording errors can make a meaningful difference in the 
weight that is applied to a case. For example, instead of a weight factor of around 2.0 (with K=3), 
a weight factor of 2.8 (K=2) or 1.7 (K=4) would be applied.  

A small level of error in the callback data is unavoidable and, based upon preliminary 
results from a limited simulation study, will not create important biases in the callback model 
estimates. The effect of measurement error will be larger when there are fewer callbacks than 
when there are a greater number of callbacks. In other words, the error associated in recording 
two or four callbacks when three should have been recorded is much larger than in recording 12 
or 14 callbacks when 13 should have been recorded. In the present analysis, the number of 
callbacks was truncated at 15, and all cases not finalized at that call attempt were treated as 
censored. This appeared to have no appreciable effects on the estimates. Future applications 
might consider lowering the truncation limit to 12 or even 10 to ameliorate callback error bias for 
higher numbers of callbacks. 

It would seem that any response propensity model incorporating level of effort (LOE) 
would be subject to this callback error bias. Interestingly, however, the GEM+ appears to be less 
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susceptible, which may account for its apparent superior performance in this study. The GEM+ 
model may be more robust to these errors because it uses the sum total of all call attempts to 
contact a case in the model rather than the outcomes from each individual attempt as the callback 
models do. In addition, there are 13 other variables in the GEM+ model that reduces the effects 
of an error in any one variable. Still, we believe the performance of any response propensity 
model that incorporates LOE data would be improved if the LOE data could be obtained 
accurately.  

Because the quality of the callback data is an important question for this research, this 
question was addressed to some extent in this study by investigating the process used to collect 
the callback data. The purpose of this investigation was twofold. First, we wanted to learn about 
the accuracy of the callback data regarding the needs of the callback model. In particular, we 
sought information from field staff on how callback data are recorded and what factors might 
lead interviewers to record information on callbacks incorrectly. Second, we wished to obtain 
recommendations from the field staff for either improving the accuracy of entering callback data 
or making the process easier to carry out without reducing the accuracy or imposing additional 
burdens on the field staff. First, an informal survey was conducted in September 2009 of all 
National Survey on Drug Use and Health (NSDUH) interviewers that asked about their current 
reporting practices and how they would handle specific situations in the field. A total of 601 
responses were obtained from 653 interviewers.  

A typical sample question from this survey is the following:  

You approach a controlled access community containing several dwelling units. 
While trying to enter, you are stopped by a security guard and after speaking with 
him briefly, he refuses to let you enter. Later in the day, you make a second visit 
and notice the same security guard standing outside. You do not attempt to speak 
to him again and decide to work in another part of the segment. Would you enter 
a record to document this second visit to the community in control system? 

In addition to the survey, two teleconference meetings were conducted with groups of field 
supervisors, regional supervisors, and regional directors during the same period.  

A full report of the findings from this investigation appears in Appendix A. However, the 
following bullet points summarize the main findings.  

• Underreporting seems to be more frequent than overreporting of call attempts. 

– Interviewers are prevented from overreporting because this practice can usually 
be discovered through timesheet reviews, and the consequences of intentionally 
falsifying these data are severe. 

– Underreporting may occur because of pressures to keep a case "alive." If too 
many unproductive visits are recorded, the case may get closed out.  

– Field staff wishing to avoid being perceived as not using time effectively may 
also underreport. 

– Failure to report "drive-by" visits seems to be a primary cause of underreporting. 
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– Another frequent cause of underreporting is the failure to report attempts to 
interview multiple sample persons within the same household. 

• The degree of underreporting can vary a lot by interviewer. This interviewer variance 
is very difficult to model in any nonresponse adjustment framework. 

• Depending on the level of precision needed for callback modeling, potential changes 
range from modest (e.g., interviewer prompts when there are two interviews in a 
household) to extensive (e.g., new definitions of visits and procedures for recording 
visits). 

This study concluded that the level of error in the callback data for callback modeling 
purposes is quite high and has the potential to seriously bias the results of the callback modeling 
approach to nonresponse adjustment. Our limited simulation study confirmed that even a small 
degree of underreporting (say 5 percent) is enough to appreciably bias the callback model 
estimates. But add to this the complications introduced by variations among supervisors, 
interviewers, and types of units in the levels of underreporting and the situation becomes 
somewhat intractable to address through model enhancements alone. Rather, the preferred 
solution would seem to be improvements in the quality of the callback data for modeling 
purposes at its source. Unfortunately, changing the field procedures currently in use for 
collecting these data and introducing additional quality checks to ensure accurate reporting of 
callbacks suitable for callback modeling would introduce additional burdens on interviewers. 
One concern is that increasing the burden associated with this task could draw the interviewer's 
attention away from crucial tasks such as contacting sample members, gaining their cooperation, 
and conducting the interview. A more prudent approach would be to wait until the NSDUH field 
systems are redesigned to take advantage of new technologies and other innovations. At that 
opportunity, a common purpose of the callback data for accuracy and other paradata should be 
considered a high priority.  
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10. Conclusions 
The number of callbacks required to establish contact with a sample person is strongly 

correlated with that person's contactability. Two basic approaches for incorporating this 
information into the nonresponse adjustment process were investigated in this study. One 
approach, the callback model, essentially equates a person's response propensity to the product of 
the probability of contact at each attempt and the probability of an interview given an initial 
contact was made. The second approach (referred to as GEM+) incorporates a level of effort 
(LOE) variable in a traditional logistic regression model for response propensity. Both 
approaches were compared with the current logistic regression approach (referred to as GEM) 
used in the National Survey on Drug Use and Health (NSDUH). The nonignorable nonresponse 
biases in four screener variables and 10 substantive variables were estimated for the null model 
(Model 0), three callback models, the GEM+ model, and the GEM model. The mean square 
errors (MSEs) of the GEM and GEM+ models were compared further for 13 additional 
substantive variables. 

A basic framework for investigating these models was developed that incorporated 20 
response propensity strata. For each screener variable (sex, ethnicity, age, and race), the strata 
were created using the GEM model estimates of response propensities. However, to simulate 
nonignorable nonresponse, the screener variable was left out of the GEM model. The ability of 
the various models to compensate for the "ignored" variable was then assessed at the stratum 
level and overall. For the substantive variables, the full GEM model was used to create the 
response propensity strata. The variation in the estimates across the models was assessed both at 
the stratum level and overall. 

In addition to developing the basic framework for estimating and comparing these 
models, the study also developed a new statistic for gauging the severity of nonignorable 
nonresponse bias based upon a test of ignorability. This statistic, denoted by  ∆ , was moderately 
to highly correlated with nonignorable nonresponse bias in the screener variables that were 
analyzed. It was used in the analysis of the substantive variables to identify variables that are 
most susceptible to nonignorable nonresponse bias under the GEM model.  

The study confirmed what we know from other studies on nonresponse adjustment 
approaches (i.e., there is no uniformly best approach for reducing the effects of nonresponse on 
survey estimates). In our study, all models—even the null model—were the best in some 
situations. However, in our most stringent test, the GEM+ model ranked best overall in removing 
nonignorable nonresponse bias for the screener variables—the only variables were this bias 
could be estimated. The current GEM model ranked a close second. The best callback model, 
Model 3, did not outperform either of the regression models.  

In our analysis, improving model fit did not always improve model performance. In fact, 
specifying more complex models actually increased model bias in some cases even while model 
fit significantly improved. These results suggest that the lackluster performance of the callback 
modeling approach in this study is attributable to callback data errors. Bolstering this view, an 
informal investigation of the process for collecting LOE data suggests that the underreporting 
errors in the NSDUH record of calls (ROCs) data is substantial and may be problematic for 
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applications requiring a high degree of accuracy in these data like callback modeling. A limited 
simulation study (not discussed in this report) confirmed that even a small level of 
underreporting error (say 5 percent) can cause appreciable biases in the callback model 
estimates.  

It may be possible to somehow incorporate an error term in the callback modeling 
approach to correct for underreporting error; however, given the potential complexity of these 
errors, modeling them is ostensibly not a viable option. A more successful approach may be to 
introduce changes in the data collection process to enhance the quality of the callback data. 
However, because of the likely burdens they would impose on the interviewers, such changes 
will have to wait until a complete redesign of the field systems can be mounted. 

Biemer and Link (2007) report much better success with the callback modeling approach 
in their application to the Behavior Risk Factor Surveillance System (BRFSS)—a national 
random-digit dialing (RDD) survey. However, callback data could be of much greater quality in 
this survey, as well as in RDD surveys in general, because of the controls in place for recording 
call attempts and their outcomes for each dialed number. In addition, in their study, the callback 
model was competing with a somewhat ineffective poststratification adjustment approach for 
adjusting for nonresponse bias in the BRFSS. In that situation, the callback model provided a 
marked improvement in bias reduction. By contrast, the NSDUH GEM model uses a 
considerable amount of data available at the household level. It should be no surprise then that 
adding an LOE variable to this extensive amount of data showed much less improvement.  
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Appendix A: Investigation of Call Record 
Data Properties 

The callback model assumes that all visits to potential respondents are recorded and that a 
visit can be defined and recorded in a standard way. The estimated response propensity for an 
individual case is a function of the number of callbacks. If the number of callbacks is not 
recorded accurately, the response propensity will be estimated incorrectly. In turn, nonresponse 
weighting adjustments are a function of the estimated response propensity. Thus, errors in 
recording the number of callbacks will result in nonresponse weighting adjustments that are too 
large or too small. In general, as the number of callbacks increases, the response propensity 
increases and the nonresponse adjustment factor decreases. If too many callbacks are recorded 
relative to the true number of callbacks, the response propensity will be underestimated and the 
resulting weight adjustment will be too large. If too few callbacks are recorded, the response 
propensity will be underestimated and the associated weight adjustment will seem too small. 
Also, the impact of measurement error will be larger when there are fewer callbacks than when 
there are a greater numbers of callbacks. In other words, the error associated in recording two or 
four callbacks when three should have been recorded is much larger than in recording 12 or 14 
callbacks when 13 should have been recorded. 

The purpose of this investigation was twofold. First, we wished to learn about the 
accuracy of the callback data in terms of recording actual visits to sample dwelling units. In 
particular, we sought information from field staff on how callback data are recorded and what 
factors might lead field interviewers (FIs) to record information on callbacks in ways that differ 
from how callbacks are conceptualized in the callback model. Second, we wished to obtain 
recommendations from the field staff for either improving the accuracy of entering callback data 
or making the process easier to carry out without reducing the accuracy or imposing additional 
burdens on the field staff.  

Description of the Investigation 

We used two methods to obtain information from field staff on the suitability of the 
callback data. First, we administered an informal questionnaire to FIs in which we asked 
interviewers several questions about their practices in recording callback data. In several 
questions, interviewers were presented with hypothetical scenarios and asked what, if anything, 
they would enter into the callback data. Overall, 601 out of 653 (92 percent) of interviewers 
completed the questionnaire between September 8, 2009 and September 16, 2009. 

Second, we conducted two conference calls with groups of field supervisors and regional 
supervisors, along with the regional directors. The calls were held on September 29, 2009 and 
October 5, 2009. The calls involved a total of 10 field supervisors and six regional supervisors. 
In addition, all three regional directors participated in both calls. Other attendees included the 
NSDUH operations director, national field director, and project director. In these calls, we asked 
supervisors about their experiences with reasons for over- or underreporting of visits in the 
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record of calls (ROC) data, practices for reviewing the entry of visits in the ROC data, and about 
problems, complaints, or questions they receive from interviewers about the ROC system.  

Findings 

One conclusion from the conference calls was that supervisors believed that 
underreporting of visits was more prevalent than overreporting. Supervisors noted two reasons 
that FIs might have an incentive to underreport visits. First, there may be underreporting of visits 
if FIs are concerned that project management staff will instruct supervisors to close out cases that 
have a high number of ROC entries. The number of ROCs along with other information at the 
case level is used to define viable cases. In addition, FIs may underreport visits if they are 
concerned about appearing inefficient in using their time. 

Supervisors felt that "padding" or overreporting of visits was much less prevalent than 
underreporting. An FI might be motivated to overreport visits if they want their supervisor to 
think they were working when they were not. FIs are instructed to work in a segment for at least 
4 hours each day when they are in the segment, so an FI may overreport visits if they want to 
make it appear they are fulfilling the work requirement. Also, in the third month of the quarter, 
when many cases have closed out and there is comparatively less work available, an FI may 
overreport visits to keep their pay consistent throughout the quarter. Supervisors can detect both 
underreporting and overreporting by comparing FI timesheets and ROC entries. FIs that are 
detected "padding" are caught quickly through timesheet reviews and removed from the project.  

A major source of error in reporting visits stems from the treatment of "drive-bys" or 
situations in which an interviewer goes to the dwelling unit and for whatever reason does not 
knock on the door or otherwise attempt to contact the dwelling unit.  

• In some cases, the interviewer may be relying upon visual cues to determine if 
anything about the dwelling unit has changed to indicate that someone is in the unit. 
For example, an FI may check on a dwelling unit after an initial visit in which no one 
was home. If there is no visible change in the unit (e.g., no car nearby), the FI may 
conclude that no one is home and not record this as a visit.  

• In more extreme cases, supervisors cited examples in which a person in the household 
was selected for the interview but the screener respondent gave a specific cue for the 
interviewer to look for to see if the selected person was home and not bother 
knocking in the absence of that cue. For example, the screener respondent may say 
that the selected person drives a particular vehicle and the FI should knock on the 
door only if that vehicle is at the dwelling unit. 

• Supervisors reported that some FIs will drive-by dwelling units if they just happen to 
be in the area but will not record these visits since they are going by on their own 
time. 

All these cases should be recorded as visits. When they are not it results in 
underreporting. To an interviewer, such visits may not seem very informative for the purpose of 
case management and therefore not worth entering in the ROC data. However, from the 
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perspective of estimating response propensity, such visits are worth noting since they are 
predictive of response propensity. 

In responses to the survey administered to interviewers, there were expressions of 
uncertainty about how to treat drive-bys because of potentially conflicting instructions or 
motivations to keep ROC entries down. One key factor determining if an entry is made in the 
ROC data is whether the FI attempted to make contact. We asked the following question in our 
survey of FIs: 

You approach a controlled access community containing several SDUs. While 
trying to enter the community, you are stopped by a security guard and after 
speaking with him briefly, he refuses to let you enter. Later in the day, you make 
a second visit to the community and notice the same security guard standing 
outside. You do not attempt to speak to him again and decide to work in another 
part of the segment. 

Would you enter a ROC to document this second visit to the community in your 
iPAQ? 

Half of the FIs were asked this question. The other half of the sample was asked the same 
question except that a different guard appears in the second visit and this guard also refuses to 
grant entry. In the first version, 79 percent of FIs responded that they would record the second 
visit in the ROC data. In the second version, 99 percent of FIs responded that they would record 
the second visit. Thus, for 20 percent of FIs, whether an attempt is made determines if the visit is 
recorded.  

Finally, drive-bys may be underreported when FIs resort to summarizing a number of 
different attempts within a single ROC entry. Thus, what appears to be one visit actually 
represents several visits during the same day. The FI may or may not note this in the open-ended 
text. This is particularly likely to occur toward the end of the quarter when an FI may make 
several visits to the unit in a last-ditch effort to obtain a completed interview.  

Another source of underreporting stems from cases where many attempts have been made 
and nearing the end of the field period, a field supervisor may instruct the FI to make one last 
visit. If they are unsuccessful in obtaining a completed screener or interview, the FI closes the 
case out and assigns it a final result code. We asked FIs a question about such "one and done" 
situations as follows:  

Your FS has instructed you to make one last attempt to contact an interview 
respondent who you've never been able to find at home, and has given you 
permission to final code the case if you are not able to complete the interview 
today. You go to the SDU and no one is home. 

Which interview result code(s) would you enter for this case?  

In this situation, FIs should make two ROC entries. The first would be an interim one 
indicating that no one was home and the second one would be final result code (no one home 
after repeated visits). But 44 percent of FIs answered that they would only enter a single ROC 
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entry, the final result code. Thus, for situations like this, the number of visits would be 
underreported. Also, the current system for entering information on visits does not allow for FIs 
to indicate if they are operating under such one and done instructions, so the scope of the 
underreporting is unknown. 

Not all errors are associated with over- or underreporting. That the NSDUH interviews up 
to two persons in eligible dwelling units can also contribute to errors in reporting the numbers of 
visits. During each visit to a dwelling unit with two persons selected for an interview, FIs should 
normally record visits for each selected person (unless separate appointments have been made at 
different times). In some cases, FIs will forget to record visits for both selected persons, leading 
to underreporting of visits. FIs may also introduce error in either the numbers of visits or the 
result codes for those visits by recording information for the first selected respondent in the call 
history for the second selected respondent and vice versa. In response to a survey question about 
this, 17 percent of FIs responded that they have switched around ROC entries for different 
respondents in the same dwelling unit either "often" or "sometimes." 

Conclusion 

Overall, we found more evidence of underreporting of visits in NSDUH ROC data than 
overreporting. If interviewers underreport visits, response propensities will be underestimated, 
but if the underreporting is consistent across interviewers and over time, adjustments could be 
made to the callback models. 

However, underreporting appears to be driven by a set of factors that can vary by 
interviewer. Some interviewers will record all drive-bys as separate ROC entries, some will 
collapse multiple drive-bys into a single ROC, and some will not enter drive-bys as ROC entries. 
Individual interviewers will also have different levels of concern about reporting too many drive-
bys and appearing to be inefficient or have different levels of concern about having cases closed 
out due to reporting too many visits. Finally, we saw differences in interviewer responses in what 
they would enter in the ROC data under hypothetical scenarios. Thus, interviewer variability in 
recording visits needs to be accounted for in modeling response propensities, which may make 
the models intractable. 

The NSDUH system for recording visits serves primarily as a means for interviewers and 
supervisors to help manage caseloads. Changes in the system or the development of another 
system would be needed to obtain more accurate data on visits for the purpose of callback 
models. Some of the changes could be fairly modest. For example, for households with two 
persons selected for the interview, a pop-up reminder could make the interviewer aware to enter 
an ROC for the second case (if necessary) after the FI has entered one for the first case. Other 
changes would be more difficult to implement and potentially costly. For example, having 
interviewers enter all visits in the ROC data, perhaps by including a result code for drive-bys, 
could require modifications to the iPAQ program and reporting systems, additional or modified 
training for interviewers and supervisors, and an additional burden to interviewers in terms of the 
time required to enter the additional visits. Extensive changes in the collection of call record data 
could also adversely affect the main data collection effort that the ROC data supports. 
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