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Introduction

Poor man's parallelism is a term to describe the harnessing of commonly available
computational approaches containing a high degree of implicit or explicit parallelism
with distributed computer resources to produce a large gain in processing time.  The
distinguishing features of poor man's techniques are their accessibility and relatively
low cost.  In some circumstances, the clever exploitation of existing hardware and
software may achieve as much improvement in the timely completion of tasks as do
high-end, state-of-the-art parallel technologies.  The ANN-GA approach to the
optimization of environmental remediation strategies is an example of poor man's
parallelism: it integrates two well-known computational technologies, artificial neural
networks (ANNs) and the genetic algorithm (GA), with a simple scheme for
exploiting a network of Unix workstations to solve a nonlinear combinatorial
optimization problem.  Although this work has been motivated by the need to tame a
computational tiger rather than to experiment with different flavors of parallelism, the
approach has reached a level of maturity where it is instructive to examine how
parallelism is embodied in its various components.  It also stands as a demonstration
of how even resource-lean organizations can take advantage of parallelism to solve
problems.

The Optimization Problem

Figure 1 illustrates the kind of design problem for which the ANN-GA approach was
developed.  It shows a contour map of groundwater contaminated by volatile organic
compounds at an industrial site, overlaid by a pattern of extraction and injection wells
intended to clean up the contamination by means of the pump-and-treat strategy. The
goal of optimization for this type of design problem is often to find one or more
combinations of extraction and injection well locations that will capture or clean up
the contamination at minimum cost or time.  Although the number of well
combinations is potentially infinite, it has been customary in groundwater
optimization work to prespecify a grid of potentially good locations and then
formulate the search to locate the most cost-effective subsets of those locations which
meet remediation goals.

Early optimization work at an illustrative Superfund site used 20 preselected
extraction locations with fixed pumping rates and searched for the subset producing
the smallest volume of treated water (a convenient surrogate for cost) which
contained the contamination over a 40-year planning period (Rogers and Dowla,
1994).  Later work focused on 28 fixed-rate extraction and injection locations in a
multiple-objective search which balanced cost-efficiency with mass-extraction
performance, while meeting a containment constraint over a 50-year planning period
(Rogers, Dowla, and Johnson, 1995).  Current versions of the problem involve 225
potential extraction and 43 potential injection locations with variable pumping-rates
and additional constraints regarding the dewatering of the aquifer.

Regardless of the problem formulation or the type of search technique employed, the
fitness or cost function associated with a particular well pattern is largely supplied by
a contaminant transport model which assesses the impact of the well pattern on the
distribution of the contamination over some period of time.  Even in 2-D, numerical
models of this sort can take hours to evaluate a single pattern on a conventional Unix
workstation.  As the resolution, dimensionality, and complexity of the models
increase,  the  time  required  for this  evaluation  can extend to days.  Since  even  the
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Figure 1.  Example of a well pattern intended to
remediate groundwater contamination at an industrial site.

most directed search techniques  must  evaluate  hundreds  of  patterns,  the  modeling
step becomes the biggest single impediment to the optimization of field-scale
problems.

One set of solutions to the modeling bottleneck involves reducing the execution time
required by the model through parallel algorithms and computer architectures (e.g.
Dougherty, 1991).  This represents a "rich man's" approach because of the costs
normally associated with gaining access to computer resources of this kind.  The
ANN-GA approach, in contrast, addresses the problem by training neural networks to
predict selected model results.  The trained networks, rather than the original model,
are then used by a simple genetic algorithm (Goldberg, 1989) to obtain fitness
information in fractions of a second.

The network architecture used for this prediction task is a multilayer perceptron with
the conjugate gradient variation (Johansson, Dowla, and Goodman, 1992) on the
standard backpropagation learning algorithm.  Networks are trained from examples
associating well pattern variations to selected outcomes such as the amount of
contamination that has been removed, the highest remaining concentrations after
treatment is complete, and whether or not contamination has spread beyond certain
boundaries.  The examples are drawn from a knowledge base initially created by
running the contaminant transport model on a representative sample of well patterns.
Since there are no dependencies among the model runs,  they can be distributed over a
network of processors using only the basic remote file system and execution facilities
that are now a standard part of most network environments.  Components of the
approach are shown in Figure 2.

Parallelism in the ANN-GA Approach

Apart from theoretical treatments of the intrinsic parallelism of schema processing,
discussions of parallelism in the genetic algorithm have focused mainly on
parallelization of population processing (Gordon, Whitley, and Bohm, 1992).  At the
global end, a single population is maintained in shared memory and accessed by
different processors assigned to different reproductive subtasks.  In the island
approach, the population is divided into subpopulations, each handled by a different
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processor.  Periodic migration of individuals among subpopulations aids the location
of global optima.  When a large number of processors is available, as in the case of
massively parallel architectures, the number of individuals per subpopulation can go
as low as one.

 

Use ANNs to evaluate well
patterns in multiple searches 

directed by the GA

Re-use ANNs to evaluate
well patterns in simulation

experiments

Train/test ANNs to predict
selected model outcomes

(e.g. mass removal)

Create knowledge base of
representative model runs
via distributed processing

Figure 2.  Basic steps in the ANN-GA approach to optimization.

Possibly because it is so problem dependent, parallelization of the evaluation of
fitness has received less attention in the literature (Reeves, 1993).  However, this is,
in essence, how the ANN-GA approach parallelizes the optimization task.  On the
surface, the simple GA that is being used appears to process the fitness evaluations in
the customary serial manner.  However, it is doing so by calling upon networks to
supply the fitness information.  And those networks were trained from data obtained
by modeling runs accomplished by distributed processing over a network of
workstations.  So far as the computational time required for modeling is concerned,
the simple GA's directed-random, serial search has been converted to a random,
parallel search.

The key to parallelism in the ANN-GA approach lies in how the initial knowledge
base of model runs is created.  Example well patterns are generated by random
sampling over the space of well patterns, supplemented by expert judgment and
analyses highlighting particularly promising combinations.  The required number of
examples is determined by the networks' predictive accuracy on test examples.  This,
in turn, is roughly related to the number of variables (number and type of locations,
pump rates, etc.) in the problem formulation and the complexity of the underlying
relationships.  An initial set of patterns is run through the model, results are analyzed,
and a second refined set is generated and run.  Within a set, the examples are
independent of each other; so they can be farmed out to different machines either
manually or by an automated scheduler.  Once trained, the networks interpolate over
the space of well combinations to generate the fitness information required by the
GA.  So, an initial investment in model runs on the order of hundreds can serve to
evaluate thousands or even millions of well patterns.  The cost-efficiency of the
approach depends on the degree to which the networks are used and re-used in
various ways.
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Some Illustrative Numbers

Performance comparisons conducted so far have focused on the total number of calls
to the model.  An early study (Rogers and Dowla, 1994) of the 20-well problem
compared the ANN-GA approach with NPSOL, a nonlinear optimization procedure
well-known in groundwater management.  Both procedures used the 2-D contaminant
transport model SUTRA (Voss, 1984) to evaluate well patterns.  245 runs, each
requiring an average of 2.5 hours to complete, were needed to construct the ANN-GA
knowledge base.  The NPSOL procedure converged (with results similar to those
obtained by the ANN-GA approach) after 206 calls to the model, which would appear
to make it the winner.  However,  NPSOL requires that the calls be made serially, as
it searches through the space of well patterns.  Runs for the knowledge base, in
contrast, were obtained in parallel from a mix of machines.  Furthermore, the trained
networks are re-usable in subsequent searches and for different analytic purposes.

Re-useability was demonstrated on a later 28-well multiple-objective problem
(Rogers, Dowla, and Johnson, 1995).  325 SUTRA runs were conducted to create the
initial knowledge base.  Initially, the fitness function for the GA was the simple sum
of three components: 1) whether or not a containment constraint was met, 2) the
amount of contaminant mass removed, and 3) the cost of installing and operating the
well pattern.  To test the impact of each component on the search results, the search
was repeated six times, systematically zeroing out or doubling the weight of each
component.  Each search was allowed to run for 12,000 generations of the GA and
required 22 hours on a Sun Sparcstation II.  In that space of time, only 8.8 calls to the
model could have been made, which is not nearly sufficient for convergence by any
nonlinear search technique.  In addition, the same networks were re-used in Monte
Carlo simulation experiments testing the contributions of particular well locations
alone or in combination (Johnson and Rogers, 1995).  Four experiments evaluated
112,834 well patterns, a task that would have required 225,668 hours if SUTRA had
been used but which was completed by the networks in under an hour.

The current version of the problem uses 225 extraction and 43 injection locations, is
based on a higher-resolution numerical grid, makes predictions over a 100-year
planning period, and contains several additional constraints.  As a result, execution
time per SUTRA run now averages 8 hours and the minimum size of the knowledge
base is in the thousands rather than hundreds.  A simple automated scheduler was
written to generate a well pattern, find a free machine from a list of 75 networked Sun
workstations (ranging from Sparcstation 10s to IPCs), remotely initiate a model run
for that pattern on that machine, and continue with the next pattern.  All I/O is
directed from/to a central exported filesystem.  Because the models execute at lowest-
possible priority, they exploit the resources of these largely idle computers without
significantly interfering with their owners' tasks.  Because no synchronization among
runs is required, no additional message-passing software need be installed.  Despite
machine and network down-time and various public relations problems, the scheduler
completed over 10,000 model runs in two months of operation.  This may sound like
a very long period of time.  However, the engineering design time-frame for this type
of optimization problem is normally measured in years.

Conclusions

The ANN-GA approach does much more than simply parallelize the evaluation of
fitness in the genetic algorithm.  Once embodied in the trained neural networks, the



Poor Man's Parallelism - 5 -

parallelization of the space of well combinations can be put to use, in a modular
fashion, by other search techniques such as simulated annealing and other
applications such as sensitivity analysis and inverse modeling.  Although the ease
with which the knowledge base is built is dependent on access to networks of
computers, this represents a reasonable alternative for many organizations seeking to
exploit resources they already have before they invest in new hardware and software.
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