Continuation of the Marshall Islands Dose Assessment and Radioecology Program

> Terry Hamilton Marshall Island Program

Water and Environment Program Energy and Environment Directorate Lawrence Livermore National Laboratory

> Seattle Workshop Meeting 23-24 February 2005

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purpose.

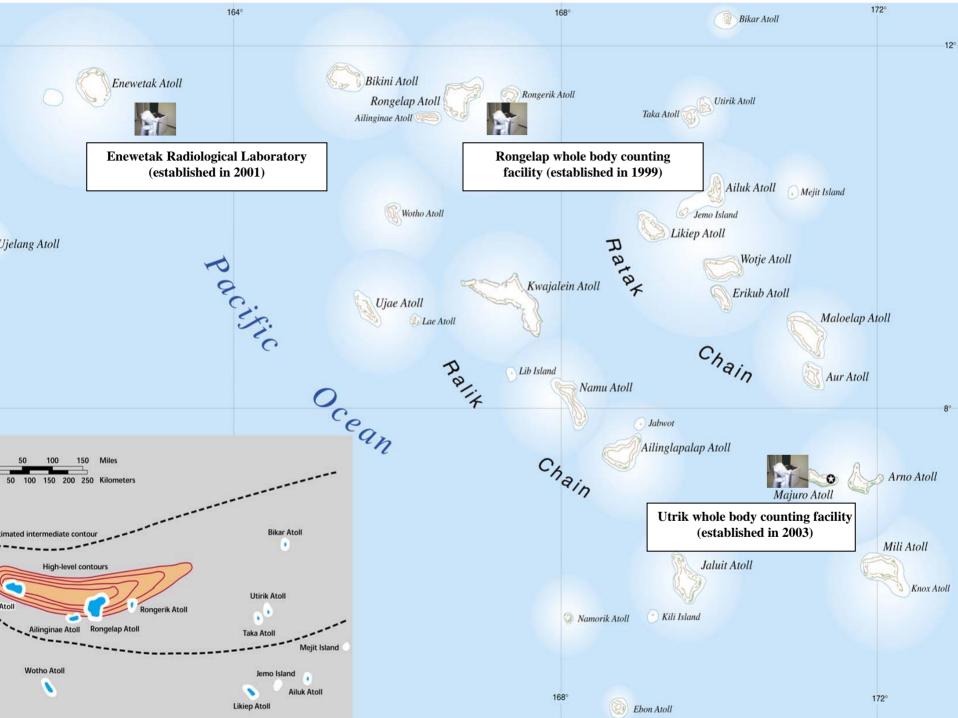
This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-750-Eng-

Standard approach to risk management in relation to radioactively contaminated sites is to control the Total Effective Dose Equivalent (TEDE).

The annual TEDE is the sum of;

<external radiation dose in a year >

(dominated by gamma radiation from residual ¹³⁷Cs in the soil)


+

< committed dose from intakes of radionuclides during that year>

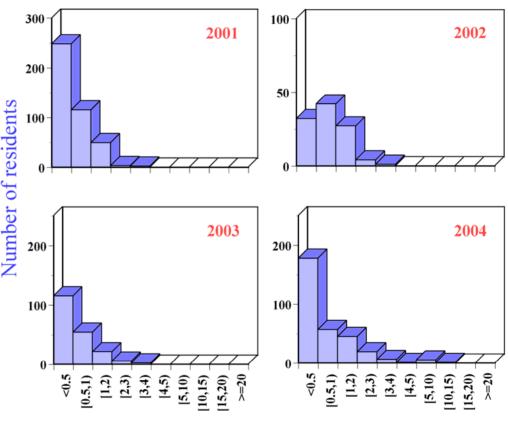
(intakes of ¹³⁷Cs, ⁹⁰Sr, and the TRUs [plutonium isotopes and ²⁴¹Am])

- 1. Results of the individual radiation protection monitoring programs based on whole body counting and plutonium bioassay
- 2. Results from the Enewetak environmental characterization studies
- **3. Update on the Rongelap resettlement support** activities

For		RI*	RI	R	R	R	R	R	R	R
		Stevenkeh	Sevenkéh	Sevenker	Sevenkeh	Sevenker	Sevenkell	Sevenkeh	Sevenkeri	SevenKehl
		planning	Step 1.	Step2	Step3.	Step 4.	Step5. bædine∩onth∨	Step6	Step7. bæseline∩onth√	Sep8
		Ninher of personal counts	TanterOC	Updepessone detaberile (importilesinto detaberi	lpptof.orf		Capycal detector anargement files (& other as results)	Ferformatia review/dectronic natk spectra and vlaccatalaass	Enail corrections	Splitatall rex filesincof
Rongelap	•	Cimia ive	Total-98							
Erevetak	Otder	Ο	_	-	—		-	-	-	_
	Noventier	58	×	×	×	×	×	×	×	×
	Decentuer	க	×	×	×	×	×	×	×	×
	Janay	38	×	×	×	×	×	×	×	×
	Feburary	39	×	×	×	×	×	×	×	×
	Mandh	68	×	×	×	×	×	×	×	×
	April	68	×	×	×	×	×	×	×	×
	Naby∕	44	×	×	×	×	×	×	×	×
	Jne	64	×	×	×	×	×	×	×	×
	Лу	72	×	×	×	×	×	×	×	×
	Agst	13	×	×	×	×	×	×	×	×
	Septentae	8	×	×	×	×	×	×	×	×
		Q.mbaive	Total-575							
Majuro		Cimbri ve	Total-298							
Note:*R-'Resp	Nite*R-'ResponsibleIndvict.et"									

Committed effective dose equivalent from intakes of cesium-137 in the measurement year

Enewetak Atoll


>No restriction on volunteer participation

➢Agricultural workers (originally identified as most critical group), monthly schedule

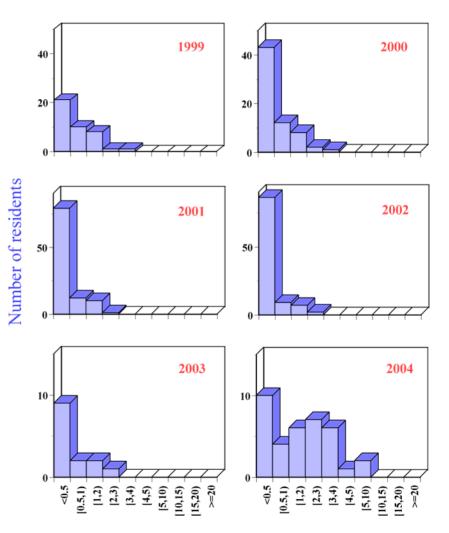
Those people showing elevated whole body burdens of cesium-137, perform follow-up (monthly counts)

>Excellent participation from the community (large numbers of children/teenagers included in program over past 12 months)

➤ Technicians becoming much more knowledgeable and more active within the community

Committed Effective Dose Equilivant (mrem)

Committed effective dose equivalent from intakes of cesium-137 in the measurement year



Rongelap Atoll (1999-2004)

➢ Initial focus on resettlement workers but include other volunteers visiting the island, workers on a monthly schedule.

➢ Indication of higher cesium-137 intakes over the past 12-18 months (higher % of counts on maintenance staff who spend more time on the island).

"Perhaps more representative of what we might find in a resident population"

Committed Effective Dose Equilivant (mrem y-1)

Committed effective dose equivalent from intakes of cesium-137 in the measurement year

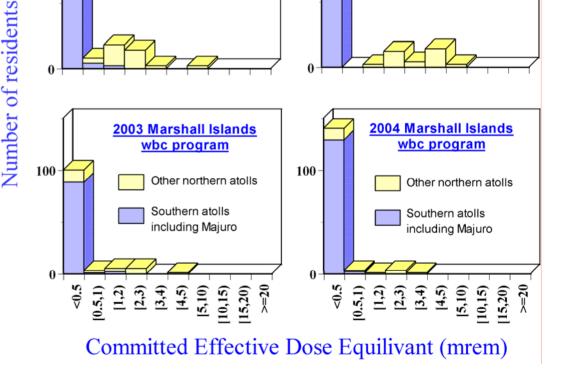
50

2003 Utrik wbc program

Utrik residents

Maiuro resident other

Utrik Atoll (2003-2004)


➢ Facility established under the UALG MOU agreement but the local government has agreed to share the use of the facility

≻Clear indication of cesium-137 uptake into the majority of Utrik residents as compared with fellow citizens living on Majuro

≻Clear indication of cesium-137 uptake into majority of people living on other northern atolls (e.g., Ailuk Atoll).

≻Very low doses (risk) from exposure in residual fallout for people living elsewhere in the Marshall Island.

≻Low participation

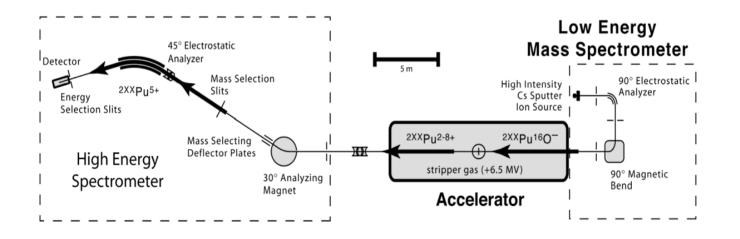
50

2004 Utrik wbc program

Majuro resident, other

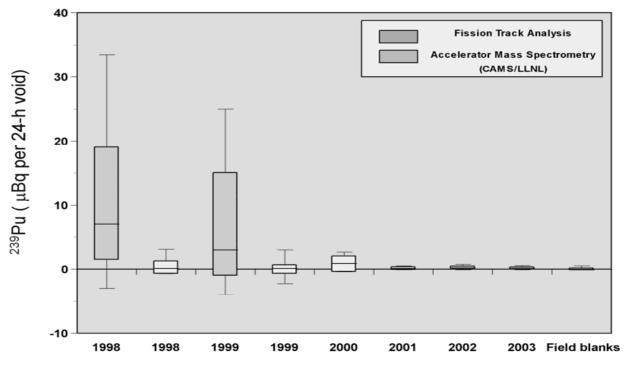
Utrik residents

>Plutonium urinalysis or bioassay is a method used to estimate the amount of internally deposited plutonium in the human body.


➢ Livermore have developed a state-of-the-art technology to conduct these tests (much improved over previously used measurement techniques)

>This new technique is based on accelerator mass spectrometry (AMS)

 \geq AMS system counts number of atoms (measures mass) rather than the the radioactive properties of the elements. Technique offers advantages in advantages in terms of sensitivity and is less susceptible to interferences interferences


➤ Techniques used at Livermore have been independently validated by the by the National Institute of Science and Technology (NIST) and the Oak Oak Ridge National Laboratory.

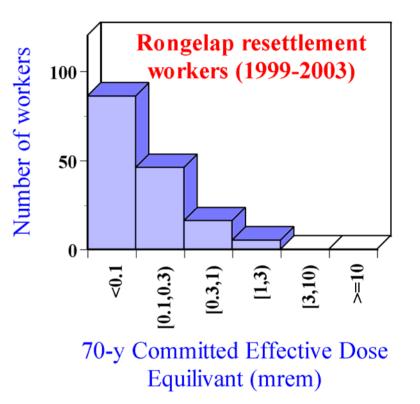
Historical perspective on excretion of plutonium versus different techniques

Rongelap Resettlement Workers (1998-2003)

Date of Collection

Explanation: The lowest, second lowest, middle, second highest and highest box points represent the 10th, 25th, median, 75th and 90th percentiles, repectively.

Committed dose from measured whole body burdens of plutonium based on AMS bioassay


Rongelap resettlement plutonium bioassay program

Sampling strategy based on monitoring Rongelap resettlement workers (original intent was to include all workers – this was not practical or achievable). Modified the call to those workers spending the most time living on Rongelap

>Additional funding received from DOE in the later half FY2004 to allow us to complete the analyses of all samples collected under the program.

>No further bioassay sampling planned for Phase 1 resettlement activities

Good cooperation from resettlement contractor, Pacific International Inc.

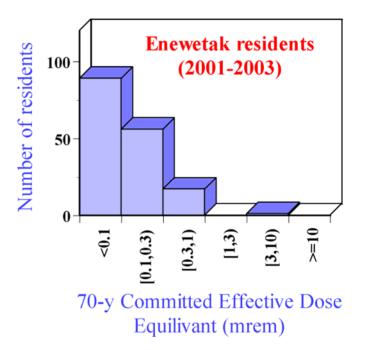
Committed dose from measured whole body burdens of plutonium based on AMS bioassay

Enewetak plutonium bioassay program

≻Sampling strategy

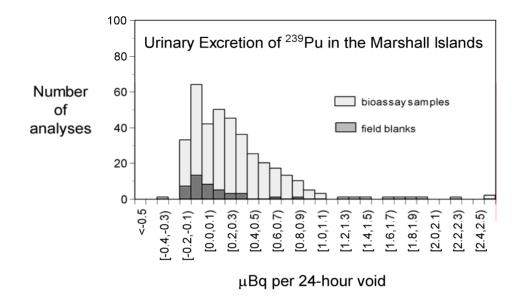
•Agricultural workers (thought to be most likely to come into contact with contaminated soil)

•People born 1950s through early 1960s, period when likely to have seen maximum ground air concentration of plutonium in the Marshall Islands


 People born on and/or living on Enewetak since resettlement in 1980

•LLNL added quality control collections which account for 10 to 12 additional samples per annual collection

Conducted 4 annual collections on Enewetak since 2001 in compliance with terms of the MOU agreement


>Additional funding received from DOE in the later half FY2004 enabling the analyses to be performed on the last collection (December 2003)

>Very pleased with upkeep of the Enewetak Radiological Laboratory which enables us to make clean sample collections

Excretion of plutonium in the Marshall Islands by AMS detection and measurement

Geometric mean (bioassay samples) = $0.2 \mu Bq$ per 24-h void

Very low amount of plutonium found in Marshallese people we have tested 'Existing levels of systemic plutonium uptake are low and, based on

these data, have always been low'

Island	TRU Activity	Soil rem	oval (m ³) to	²⁴⁰ Pu/ ²³⁹ Pu	
	GBq	crater	Dome	atom ratio	
Aomon	48.1	8,100	0	0.23	
Aomon Crypt	33.3	342	7,130	0.24	
Boken	37	322	3,450	_	
Enjebi	96.2	32,890	7,633	0.34	
Lujor	63	0	11,415	0.27	
Runit	267.4	0	8,210 ^b	0.06	

^{b.} most activity and soil in central donut under dome

"Recognized ²⁴⁰Pu/²³⁹Pu ratio might be used as an investigative tool to assess impacts of leakage from the dome"

Terrestrial sampling around Runit dome

1°33'5'N

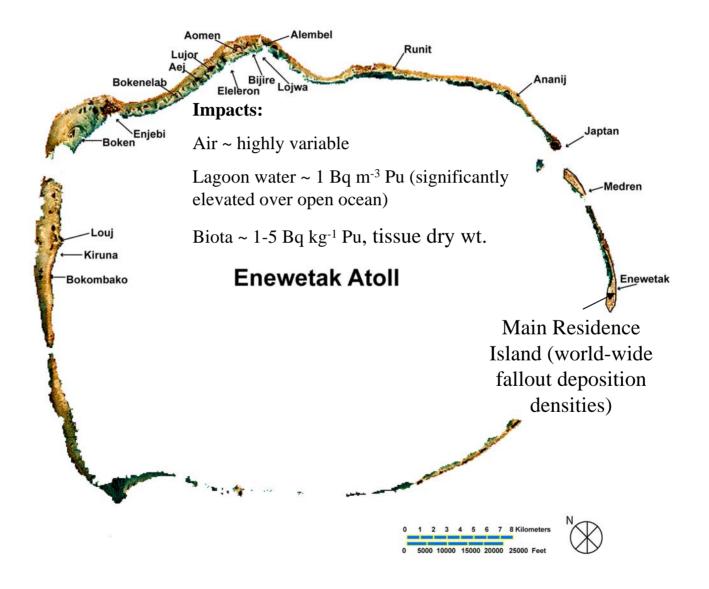
162°20'55"E


Radionuclide concentrations around the dome

Field Log #	transect (magnetic)	distance	A	Activity Concentrat	tion (Bq kg ⁻¹ , dry s	soil)	²⁴⁰ Pu/ ²³⁹ Pu
Field Log #		from - dome	¹³⁷ Cs	²³⁹ Pu	²³⁹⁺²⁴⁰ Pu	²⁴¹ Am	atom ratio
00EY-1000	north	adjacent	10.26± 0.40	122.8± 0.7	159.6± 0.7	30.14± 3.0	0.0813± 0.001
00EY-1001	NE	adjacent	21.71± 0.60	180.9±0.9	225.1±0.9	34.97± 2.4	0.0663± 0.0004
00EY-1002	east	10 m	41.00± 0.60	52.7±0.3	68.2±0.3	7.64± 1.2	0.0799± 0.001
00EY-1008	east	20 m	577.60± 2.1	1915±28	2367± 40	383.01± 4.8	0.064 ± 0.004
00EY-1009	east	30 m	2185.50± 4.6	14659± 44	18770±46	2326.40±9.6	0.0760± 0.0001
00EY-1003	SE	10 m	307.40± 1.4	306.2±1.3	390.4±1.4	50.72± 2.3	0.0747±0.0003
00EY-1010	SE	20 m	1855.80± 3.7	402.8± 2.5	505.5±2.6	60.11± 2.9	0.0691±0.0003
00EY-1011	SE	30 m	1349.00± 3.1	412.3± 1.3	526.3±1.5	82.18± 2.5	0.0750±0.0003
00EY-1004	south	10 m	325.95±1.5	244.1± 2.4	313.7±2.6	50.94±1.8	0.0774± 0.0005
00EY-1012	south	20 m	315.12± 1.7	258.2±1.6	330.5± 1.7	35.21± 4.4	0.0759± 0.0003
00EY-1013	south	30 m	200.08± 1.7	188.6± 1.2	239.5± 1.2	20.66± 1.6	0.0732± 0.0003
00EY1005	SW	10 m	18.95± 0.40	287.9± 4.5	364.5± 4.7	66.45±1.6	0.0722± 0.001
00EY-1014	SW	20 m	14.74± 0.50	223.4± 1.4	278.6± 1.5	42.73± 3.4	0.0671±0.0003
00EY-1015	SW	30 m	1.41± 0.20	113.6± 0.7	141.0 ± 0.8	36.83± 1.2	0.0654± 0.0003
00EY1006	west	10 m	5.17± 0.30	95.4±1.4	132.1± 1.6	24.45±0.5	0.1044± 0.001
00EY-1007	NW	10 m	24.54± 0.70	514.6± 7.6	652.4±7.9	88.49±3.5	0.0726± 0.0004
Soil profile c	off Cactus do	ome (mag.	SE, 20 m)				
	<u>depth</u>	<u>(cm)</u>					
00EY-1018	0-5	cm	488.84± 1.2	360.5±2.2	458.2±2.4	54.03± 0.70	0.0734± 0.0003
00EY-1019	5-10	cm	249.18± 1.9	256.0±1.6	323.5±1.7	52.13± 5.3	0.0715±0.0003
00EY-1020	10-15	i cm	261.58± 1.4	180.1± 1.5	225.7±1.6	29.42± 2.0	0.0687± 0.0005
00EY-1021	15-25	i cm	418.62± 2.7	612.7±4.4	783.8± 4.6	97.83±7.6	0.0757±0.0004
00-EY1022	25-40) cm	474.35± 1.8	724.4± 4.5	926.3± 4.7	142.11± 5.5	0.0756± 0.0002
00EY-1023	40-60) cm	523.93± 2.0	829.0± 5.1	1059± 5	146.67± 2.7	0.0752± 0.0002
Soil profile c	off Cactus do	ome (mag.	South, 20 m)				
00EY-1024	0-5	cm	1.29± 0.05	197.3± 3.4	252.7± 3.6	44.35± 4.9	0.0761± 0.0006
00EY-1025	5-10	cm	0.67± 0.02	235.6± 4.0	303.2± 4.2	41.92±1.5	0.0778± 0.0006
00EY-1026	10-15	i cm	1.12± 0.05	338.3± 5.5	422.7± 5.7	36.84 ± 4.4	0.0698± 0.0004
00EY-1027	15-25	i cm	0.72± 0.03	222.4± 3.6	285.7± 3.8	45.99± 3.5	0.0771± 0.0005
00EY-1028	25-40) cm	0.76± 0.02	169.5±0.9	217.4± 1.0	30.73± 3.4	0.0765± 0.0006
00EY-1029	40-60) cm	0.68 ± 0.03	236.1±0.8	303.4± 0.9	45.64± 2.2	0.0773±0.0003

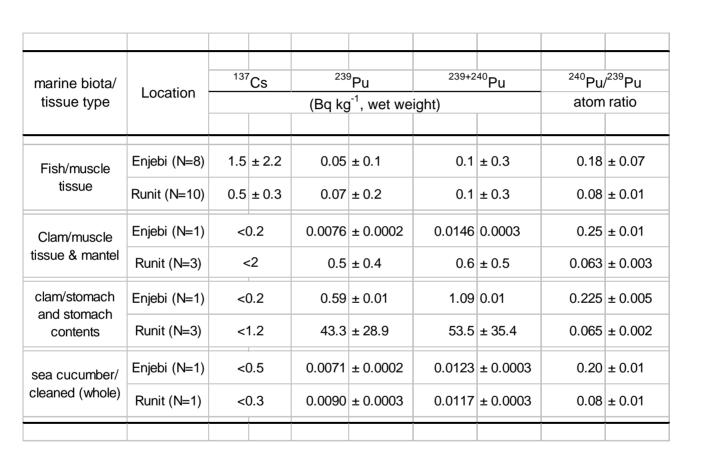
Terrestrial sampling around Fig-Quince

162*21'15'E


L

Radionuclides concentration on Fig-Quince

	Grid Point	Act	²⁴⁰ Pu/ ²³⁹ Pu			
Field Log #	Grid Point	¹³⁷ Cs	²³⁹ Pu	²³⁹⁺²⁴⁰ Pu	²⁴¹ A m	atom ratio
00EY-1104	GRID PT. (0,0)	4.89 ± 0.40	643.0 ± 4.7	795.3 ± 4.8	225.35± 2.9	0.0642 ± 0.0003
00EY-1104	GRID PT. (2,0)	35.59 ± 0.50	841.1 ± 6.1	$1,049\pm 6$	203.95 ± 3.1	0.0670 ± 0.0002
00EY-1106	GRID PT. (4,0)	33.85 ± 0.70	1097 ± 8	$1,340\pm 8$	262.45 ± 5.0	0.0603 ± 0.0002
00EY-1107	GRID PT. (6,0)	43.48 ± 0.80	1276 ± 9	$1,510 \pm 0$ $1,550 \pm 9$	132.45 ± 4.6	0.0581 ± 0.0002
00EY-1108	GRID PT. (8,0)	47.80± 1.20	1478 ± 4	$1,785\pm 5$	214.73± 2.8	0.0564 ± 0.0001
	GRID PT. (10,0)	20.69 ± 1.10	390.6 ± 2.8	494.2 ± 3.0	60.48 ± 1.6	0.0719 ± 0.0003
00EY-1110	GRID PT. (0,2)	20.10 ± 0.60	541.7 ± 3.9	691.3 ± 4.1	151.79± 4.8	0.0749 ± 0.0003
00EY-1111	GRID PT. (2,2)	52.39 ± 0.90	1268 ± 9	1593 ± 10	248.74± 2.9	0.0694 ± 0.0002
00EY-1112	GRID PT. (4,2)	52.62± 0.80	830.8 ± 6.0	$1,061\pm 6$	232.94± 2.4	0.0750 ± 0.0003
00EY-1113	GRID PT. (6,2)	116.72± 1.10	1125 ± 8.1	1506 ± 9	193.06± 1.5	0.0917 ± 0.0003
00EY-1114	GRID PT. (8,2)	31.82 ± 0.70	719.7 ± 2.2	890.8 ± 2.3	182.51± 3.9	0.0645 ± 0.0002
	GRID PT. (10,2)	50.74± 0.50	890.6 ± 6.4	1102 ± 7	218.62± 1.6	0.0645 ± 0.0002
00EY-1116	GRID PT. (0,4)	115.11 ± 0.60	1195 ± 9	1510 ± 9	361.35± 2.0	0.0717 ± 0.0002
0EY-1117	GRID PT. (2,4)	33.18 ± 0.60	1533 ± 11	1868 ± 11	394.46± 3.0	0.0592 ± 0.0002
00EY-1118	GRID PT. (4,4)	32.21± 0.50	1736 ± 13	2113 ± 13	356.10±1.6	0.0588 ± 0.0002
0EY-1119	GRID PT. (6,4)	28.18± 0.80	1328 ± 10	1619 ± 10	310.36± 5.4	0.0594 ± 0.0002
00EY-1120	GRID PT. (8,4)	26.72± 0.60	1086 ± 8	1325 ± 8	174.37± 4.4	0.0595 ± 0.0002
00EY-1121	GRID PT. (10,4)	25.87± 0.70	978.6 ± 6.0	1192 ± 6	108.38± 2.1	0.0591 ± 0.0003
00EY-1122	GRID PT. (0,6)	10.56 ± 0.40	705.9 ± 3.7	856.3 ± 3.8	160.13± 2.9	0.0578 ± 0.0002
00EY-1123	GRID PT. (2,6)	10.55 ± 0.50	1013 ± 3	1227 ± 4	246.55± 2.4	0.0571 ± 0.0002
00EY-1124	GRID PT. (4,6)	34.20 ± 0.70	582.0 ± 4.2	711.8 ± 4.4	528.58± 3.6	0.0605 ± 0.0002
00EY-1125	GRID PT. (6,6)	31.84 ± 0.60	1926 ± 8	2333 ± 8	386.88± 4.6	0.0573 ± 0.000
00EY-1126	GRID PT. (8,6)	8.81± 0.40	1433 ± 6	1739 ± 6	315.83± 2.8	0.0580 ± 0.0001
00EY-1127	GRID PT. (10,6)	7.57± 0.40	2302 ± 7	2783 ± 8	414.40± 5.1	0.0567 ± 0.000
00EY-1128	GRID PT. (0,8)	5.60 ± 0.40	1452 ± 6	1753 ± 6	290.98± 2.7	0.0561 ± 0.0001
0EY-1129	GRID PT. (2,8)	7.84± 0.30	2533± 8	3062± 8	521.74± 3.1	0.0567±0.000
0EY-1130	GRID PT. (4,8)	9.14 ± 0.40	1675±5	2032± 5	441.52± 3.1	0.0577±0.000
0EY-1131	GRID PT. (6,8)	5.03 ± 0.30	1643± 5	1996± 5	353.09±2.8	0.0583± 0.000
0EY-1132	GRID PT. (8,8)	5.18 ± 0.90	1038± 3	1272± 3	141.81± 2.5	0.0609± 0.000
0EY-1133	GRID PT. (10,8)	4.62 ± 0.60	1030± 3	1264± 3	201.97± 5.1	0.0614± 0.000
0EY-1134	GRID PT. (0,10)	7.17±0.20	765.0±2.5	927± 2.6	203.37±2.0	0.0573±0.000
00EY-1135	GRID PT. (2,10)	3.88 ± 0.50	931.0±2.8	1137±3	202.52± 4.0	0.0600 ± 0.000
)0EY-1136	GRID PT. (4,10)	3.01 ± 0.30	898.7±2.7	1094± 3	194.17± 2.7	0.0590± 0.000

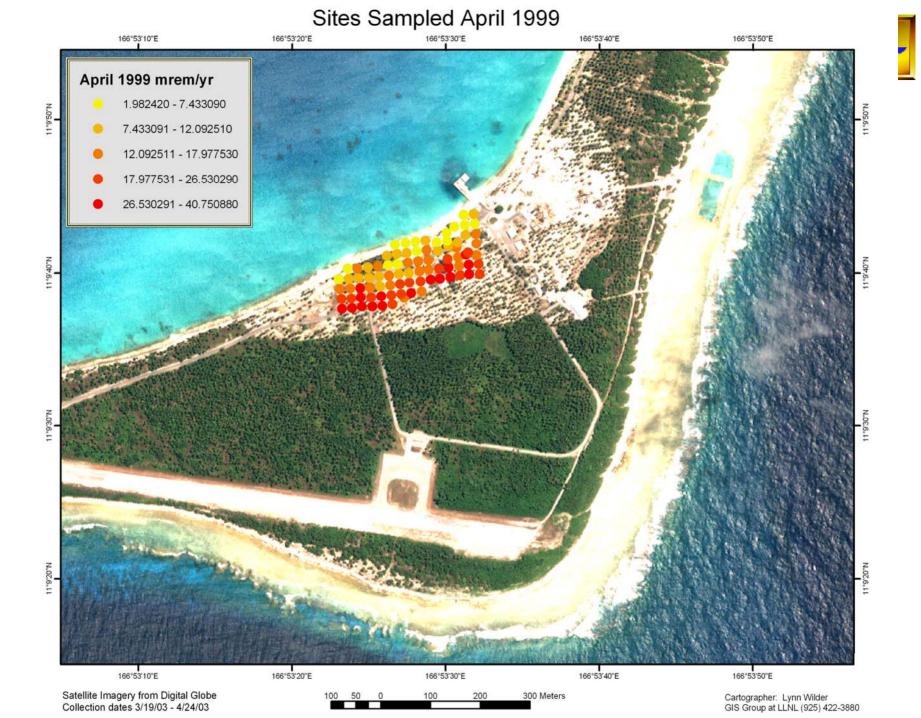

Enewetak Atoll

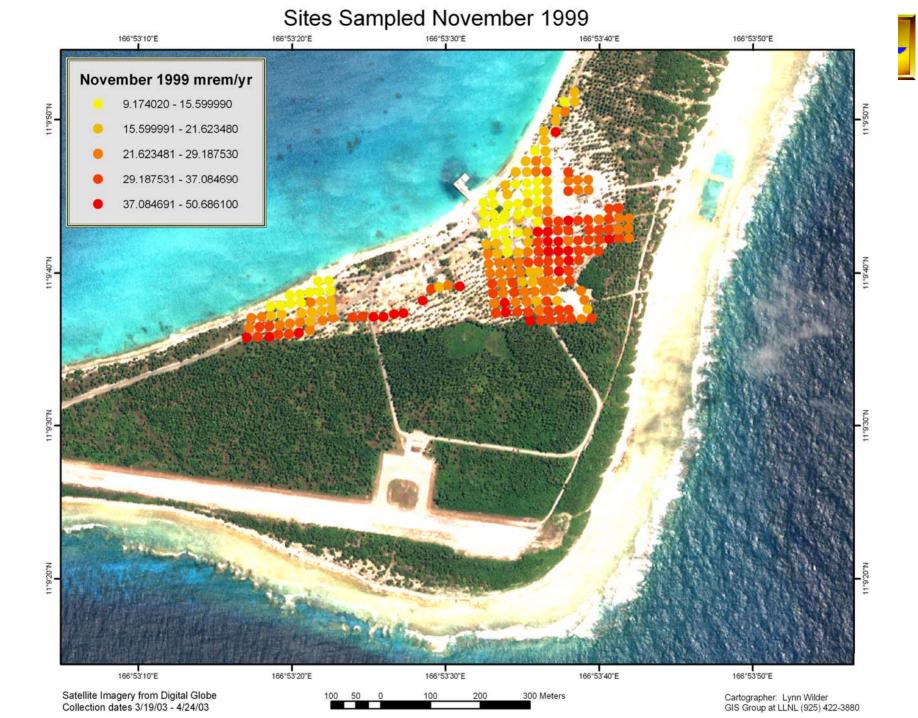
	Loc	cation	Activity Co	²⁴⁰ Pu/ ²³⁹ Pu			
Station	Latitude Longitude (°N) (°E)		¹³⁷ Cs	²³⁹ Pu	²³⁹⁺²⁴⁰ Pu	²⁴¹ Am	atom ratio
3	11.53	162.35	3.5 ± 0.6	814.6±1.4	1003.6 ± 1.8	94.2 ± 1.4	0.0629 ± 0.0004
11	11.53	162.34	_	233.5±0.3	286.9 ± 0.4	43.8±0.9	0.0620 ± 0.0003
10	11.54	162.34	3.9 ± 0.4	1057.2 ± 1.1	1306.5±1.3	215.8±1.5	0.0639 ± 0.0002
7	11.55	162.33	4.0 ± 0.5	$618.8{\pm}0.5$	757.3±0.7	119.0±1.4	0.0607 ± 0.0002
12	11.59	162.32	_	66.0 ± 0.1	90.5±0.2	25.4 ± 0.6	0.1004 ± 0.0007
2	11.62	162.29	4.5 ± 0.8	125.8 ± 0.2	198.0 ± 0.4	94.2±1.4	0.1555 ± 0.0006
14	11.62	162.23	7.7 ± 0.6	146.4 ± 0.2	229.2±0.4	120.0±1.4	0.1533 ± 0.0007
9	11.63	162.26	1.9 ± 0.4	55.9 ± 0.3	102.1 ± 0.5	60.3±1.0	0.224 ± 0.002
19	11.64	162.16	30.1±0.5	283.4 ± 0.4	499.6±0.7	245.3±1.3	0.2069 ± 0.0006
16	11.65	162.23	18.3±0.6	1054.7±1.3	1370.5±1.7	308.3±1.3	0.0812 ± 0.0003

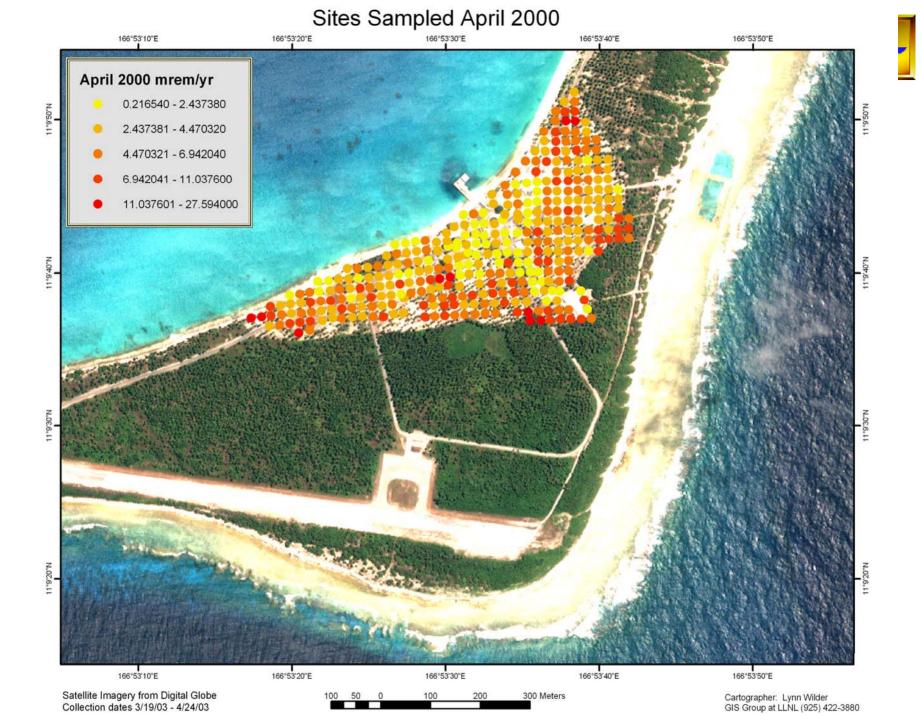
Radionuclide concentration in marine biota

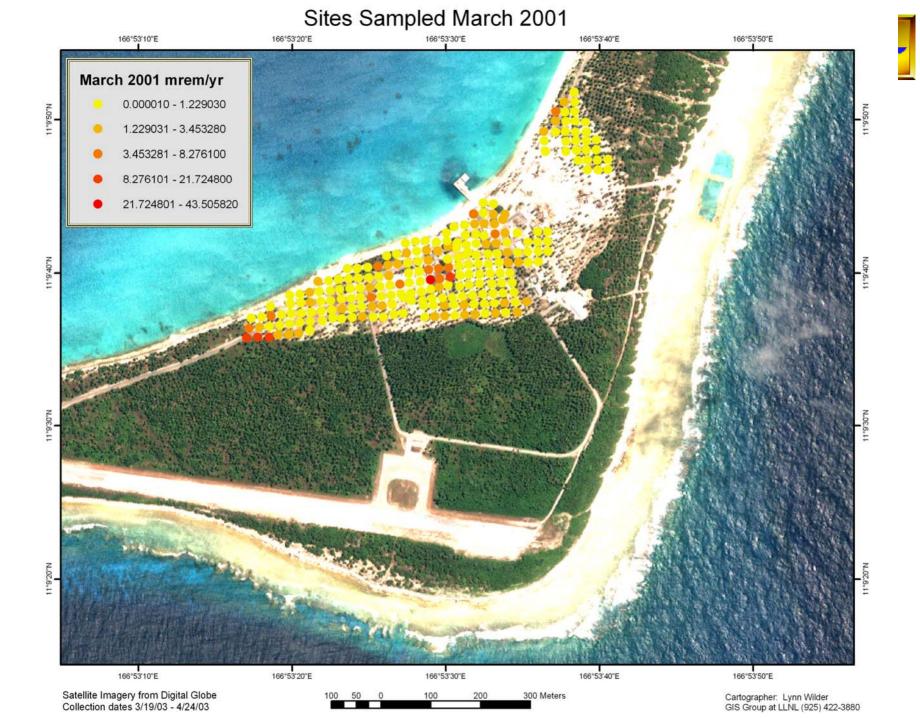
> Levels of radioactive contamination of the marine environment at Enewetak Atoll appear to be decreasing over time with the possible exception of the TRUs (e.g., plutonium isotopes)

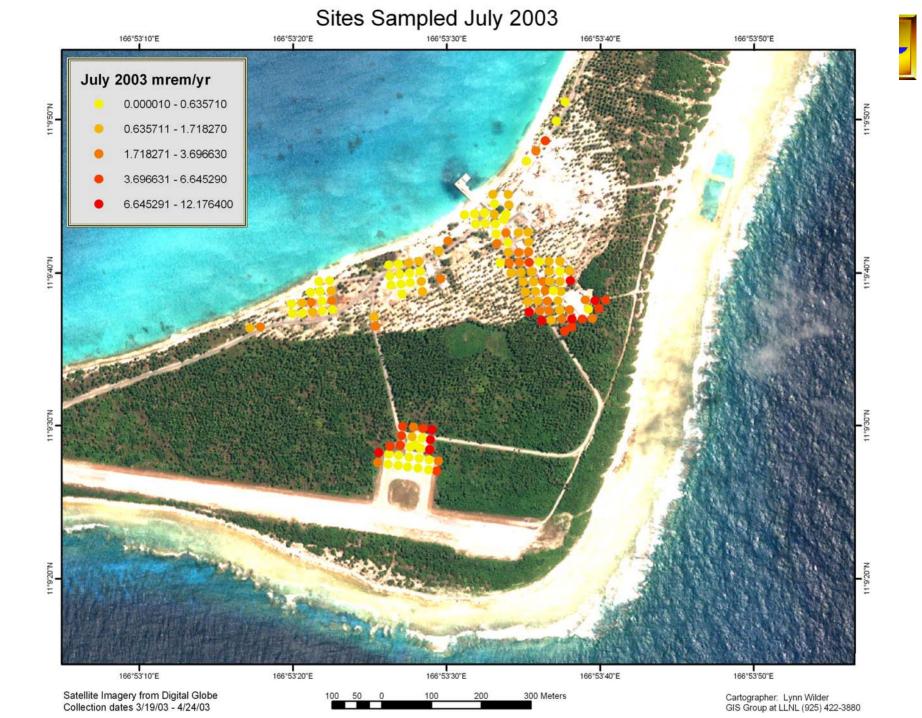
> Based on plutonium isotopic signatures in sediments, biota and water, there appears to be no detectable (discernable) radioactive contamination of the marine environment that can be directly linked to leakage of material from inside Runit dome


Levels of plutonium contamination in clam muscle and especially in clam stomach are higher than those observed for other species. Consequently, clams provide a potential indicator species for monitoring of plutonium contamination in the marine environment


>Based on the small number of sediment samples analyzed, levels of plutonium (and amercium-241) contamination in sediments collected from around Runit Island are generally higher than at other locations in the north of the atoll. However, there are exceptions that appear to be associated with close-in fallout from specific test events.


Environmental Characterization in Support of Rongelap Resettlement





Lawrence Livermore National Laboratory

April 2001

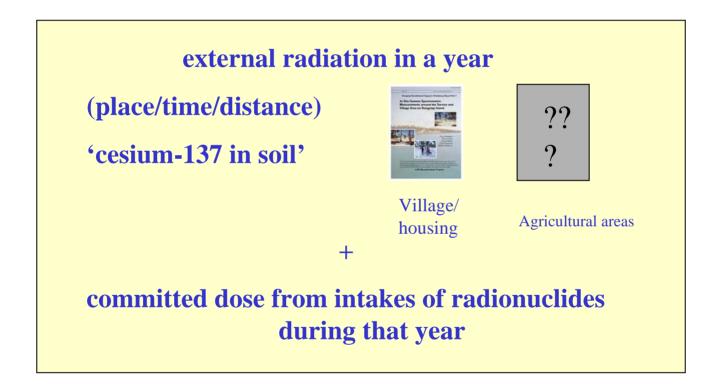
Rongelap Resettlement Support—Preliminary Report Part 1

In-Situ Gamma Spectrometric Measurements around the Service and Village Area on Rongelap Island

Terry Hamilton Steven Kehl James Brunk Frank Gouveia William Robison

This report was prepared in partial fulfillment of LLNL program level goals and actions supporting the Rongelap Atoll settlement as formally outlined under a Memorandum of Understanding (MOU) between the U. S. Department of Energy (DOE), the Rongelap Atoll Local Government (RALGOV), and the Republic of the Marshall Islands (RMI).

LLNL Marshall Islands Program



sampling -	137	¹ , wet weig	ht)	maximum annual				
period	drinking coconut meat		copra meat		effective dose (mrem y ⁻¹) [#]		reference	
NIMRS +	58.3	+/-50.1	98.5	+/-81.7				
(1986+1993)	(N=436)		(N=122)		21.3		Robison et al., 1995	
2002	20.7	+/-18.0	17.3	+/-2.5	7.0		RALGOV - LLNL	
2003	(N=98)		(N=3)		7.6		resettlement support	
							program	
# all data decay corrected to August 2003; dose estimate for the 2003 sampling collection based on the ¹³⁷ Cs concentration ratio found in drinking coconut meat compared with that reported by Robison et al. 1995								

Rongelap Resettlement Support

Ŀ

Annual Total Effective DOSE Equivalent (TEDE)

Rongelap Resettlement Support

Annual Total Effective DOSE Equivalent (TEDE)

external radiation in a year

+

committed dose from intakes of radionuclides during that year

(concentration of Cs-137, Sr-90 in foods)
(annual intakes of locally grown foods)
(variability, biokinetic behavior & environ. conc.)
(changing conditions, lifestyle etc.)

Models???

(Predictive)

WBC is a direct measure of internally deposited cesium-137

(on-land facility – benefits of assessing 'high end' doses, seasonal trends and other changes)

[plutonium isotopes, Sr-90]

>Soil remediation work has been very successful

➢ Based on preliminary data, the effect of adding potassium on reducing cesium-137 uptake into coconut has been less than that observed on Bikini

➢ More work will be required to accurately assess external gamma exposure rates on Rongelap Islands, especially around individual home sites located outside the community center and in open agricultural fields

Additional sampling and analysis of food crops are planned for FY2005 to include measurements of cesium-137 and possibility strontium-90