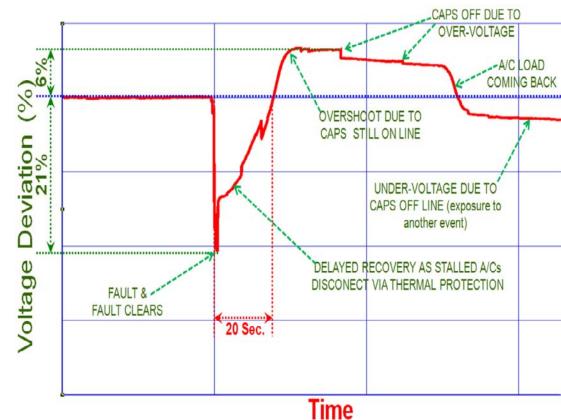
U.S. DOE-NERC Workshop on Fault-Induced Delayed Voltage Recovery (FIDVR) & Dynamic Load Modeling

Overview

Joe Eto, Lawrence Berkeley National Lab September 30, 2015 Alexandria, VA



What is FIDVR ?

Fault-Induced Delayed Voltage

- **Recovery** a voltage condition initiated by a fault and characterized by:
- 1) Stalling of induction motors;
- Initial voltage recovery after the clearing of a fault to less than 90 percent of precontingency voltage; and
- Slow voltage recovery of more than two seconds to expected post-contingency steady-state voltage levels

Source: A Technical Reference Paper: Fault-Induced Delayed Voltage Recovery. Version 1.2. Prepared by: NERC Transmission Issues Subcommittee and System Protection and Control Subcommittee. June 2009

Agenda

Wednesday, September 30, 2015

8:30-9:00	Welcome & Opening Remarks
	David Meyer, U.S. Department of Energy, Office of Electricity Delivery and Energy
	Reliability
	David Till, North American Electric Reliability Corporation
9:00-9:15	Workshop Overview & Objectives
	Joe Eto, Lawrence Berkeley National Laboratory
9:15-9:45	Current State of Load Modeling
	A landscape overview of dynamic load modeling and FIDVR – where we are today, how we
	got here, and where we're going.
	Dmitry Kosterev, Bonneville Power Administration
9:45-10:00	Break
10:00-12:00	Fundamentals, Testing & Modelings of Air-Conditioners
	A deep dive into the fundamentals of motors, laboratory testing of end-use loads, and
	modeling efforts. Development of single-phase and equivalent models using field testing
	and detailed modeling.
	John Undrill, Independent Consultant
	Dmitry Kosterev, Bonneville Power Administration
	Steven Robles, Southern California Edison
	Bernie Leseiutre, University of Wisconsin

12:00-1:00 Lunch – provided

Agenda

Wednesday, September 30, 2015 (continued)

- 1:00-2:30 Manufacturing Perspective, Future Trends & Technologies (Panel Session)
 Perspectives from the manufacturing community focusing on current and future trends in control design and engineering, end-use requirements, and future technologies.
 John Halliwell, Electric Power Research Institute
 John Berdner, Enphase Energy
 Tim Hawkins, Rheem
 Hung Pham, Emerson Climate Technologies
- 2:30-2:45 Break

2:45 – 4:30 Load Model Data

The composite load model for transmission planning studies – development, parameter selection, model structure, and data management. Ryan Quint, North American Electric Reliability Corporation John Kueck, Independent Consultant Donald Davies, Western Electricity Coordinating Council Dmitry Kosterev, Bonneville Power Administration

4:30-5:30 Field Measurements

Gathering data at the distribution level to better understand the phenomena of FIDVR and load dynamics.

Kyle Thomas, *Dominion Virginia Power* Richard Bravo, *Southern California Edison* John Undrill, *Independent Consultant*

5:30 Adjourn

Agenda

Thursday, October 1, 2015

8:30-10:00 Composite Load Modeling & System Studies (Panel Session) Experience using the composite load model for bulk transmission planning studies lessons learned, technical challenges, identified problems, and solutions. A focus on the development of the model, utilization of the model, and planning around a more detailed load model. Noah Badayos, Southern California Edison Dmitry Kosterev, Bonneville Power Administration Rob O'Keefe, American Electric Power Dean LaTulipe, National Grid Scott Ghiocel, Mitsubishi Electric Power Products, Inc.

- 10:00- Break
- 10:15

10:15- Reliability Focus (Panel Session)

11:30 A broad look at reliability aspects related to load modeling and FIDVR, including regulations and policies, system level impacts, history in planning around load-related issues, and fundamental drivers behind reliability of end-use technology changes.

Bob Cummings, North American Reliability Corporation Dmitry Kosterev, Bonneville Power Administration

John Undrill, Independent Consultant

David Till, North American Electric Reliability Corporation

- 11:30- Roundtable Discussion, Summary & Next Steps
- **12:30** Joe Eto, Lawrence Berkeley National Laboratory Moderator

12:30 Adjourn

Contacts for Follow-Up

fidvr.lbl.gov

Joe Eto, LBNL jheto@lbl.gov

Ryan Quint, NERC ryan.quint@nerc.net

