
Best Increments for the Average Case
of Shellsort

Marcin Ciura

Department of Computer Science, Silesian Institute of Technology,
Akademicka 16, PL–44–100 Gliwice, Poland

Abstract. This paper presents the results of using sequential analysis
to find increment sequences that minimize the average running time of
Shellsort, for array sizes up to several thousand elements. The obtained
sequences outperform by about 3% the best ones known so far, and there
is a plausible evidence that they are the optimal ones.

1 Shellsort

A well implemented Shellsort is among the fastest general algorithms for sorting
arrays of several dozen elements, and even for huge arrays it is not prohibitively
slow. Moreover, it is an adaptive method that runs faster on “nearly sorted”
arrays that often occur in practice. Published by D. L. Shell in 1959 [11], it is
one of the earliest sorts discovered, it can be easily understood and implemented,
yet its analysis is difficult and still incomplete.
Shellsort forN elementsX[0, . . . , N−1] is based on a predetermined sequence

of integer increments 0 < h0, . . . , ht−1 < N , where h0 = 1. In general, the
increment sequences can change with N , but customarily initial elements of
some infinite sequence are used for simplicity.
The algorithm performs t passes over the array: one pass for each increment

from ht−1 down to h0. The pass number t − k sorts by straight insertion all the
subarrays that consist of elements hk apart: X[0, hk, . . .],X[1, hk + 1, . . .], . . . ,
X[hk − 1, 2hk − 1, . . .]. This way each pass involves sorting subarrays that are
either small or nearly in order, and straight insertion sort performs well in these
circumstances.
The number of operations made by the algorithm depends on the incre-

ment sequence, and indeed many sequences have been proposed and used. Ref-
erences [7,10] contain broad surveys of previous research on Shellsort. Theoreti-
cal analysis of its running time is, however, confined to worst case. The average
running time was susceptible to analysis only in cases that do not cover the
sequences used in practice [2,5,14]. Also, sequences of increments that minimize
the average running time of Shellsort were not known so far.

2 Sequential Analysis

Sequential analysis is a method of verifying statistical hypotheses developed by
Abraham Wald in the 1940s [13]. Whereas classical statistical criteria fix the

R. Freivalds (Ed.): FCT 2001, LNCS 2138, pp. 106–117, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Best Increments for the Average Case of Shellsort 107

size of the random sample before it is drawn, in sequential analysis its size is
determined dynamically by analyzing a sequentially obtained series of data.
Sequential analysis has been employed in fields, where sampling is costly,

for example drug investigation and destructive qualification testing of goods.
We use it to determine in reasonable time the best increments for the average
case of Shellsort. For example, suppose that we are interested in minimizing
C, the number of comparisons made by a five-increment Shellsort when sorting
128 elements. A good fairy tells us that there are only a few dozen sequences,
for whose the average number of comparisons EC is less than 1005, and the
distribution of C for all of them, being inherently discrete, can be approximated
by the normal distribution with a standard deviation SC ≈ 34. After all, EC <
1005 surely causes SC to be ≤ σmax = 40.
Using this information, we can construct a sequential test that acts like a low-

band filter and allows to shorten the time of computations by a factor of thou-
sands. We are willing to accept a good sequence when its EC < θ0 = 1005 and
reject a bad one when, say, EC > θ1 = 1015. We consent to accidental rejecting a
good sequence with probability α = 0.01 and accidental accepting a bad one with
probability β = 0.01. With each sequence probed, we are running Shellsort on
randomly generated permutations and summing ci, the number of comparisons
made in the ith trial. We prolong the test as long as

ak =
σ2max

θ1 − θ0
ln

β

1− α
+ k

θ0 + θ1
2

≤
k∑

i=1

ci ≤ σ2max
θ1 − θ0

ln
1− β

α
+ k

θ0 + θ1
2

= rk.

If the sum is less than ak, the sequence is accepted; if it is greater than rk, the
sequence is rejected; if it is between ak and rk, k gets incremented, ak and rk

are adjusted, and another trial is made.
The sequences that passed the test have biased estimate of the average num-

ber of comparisons, so it has to be evaluated again on some number of indepen-
dent permutations, but the vast majority of sequences (those with large EC) is
rejected in the test after just a few trials. Fig. 1 shows the mean and standard
deviation of the number of comparisons made by Shellsort using 790 sequences
that passed the test described above, evaluated subsequently in 10000 trials.
To make the sequential test fast, it is essential to choose θ0 near the actual

minimal EC. To estimate EC and SC of the best sequences in default of a fairy,
we can use a random sample of sequences that begin with increments known to
be good (more on good increments below).
If our assumptions are true, we should have missed no more than 1% of se-

quences with EC < 1005. In fact, the distribution of the number of comparisons
is not normal, but skewed (see Fig. 2 for a typical example). In an attempt to
compensate this asymmetry, the chosen value of σmax is greater than the actual
standard deviations. Moreover, by the Central Limit Theorem, the sum of ci’s
obtained in independent trials tends to the normal distribution.
This reasoning can seem fallacious, as it involves knowing in advance, what

we are looking for [1], but in fact it is not. If there exists a sequence with EC < θ0
and SC > σ, the probability that it was accidentally rejected is less than 1/2

108 M. Ciura

28

30

32

34

36

38

40

42

44

1002 1004 1006 1008 1010 1012 1014 1016 1018

st
an

da
rd

 d
ev

ia
tio

n

mean

Fig. 1. Mean and standard deviation of the number of comparisons in Shellsort. Five-
increment sequences for sorting 128 elements that passed the sequential test are shown

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

850 900 950 1000 1050 1100 1150

pr
ob

ab
ili

ty

comparisons

Fig. 2. Distribution of the number of comparisons in Shellsort using the sequence
(1, 4, 9, 24, 85) for sorting 128 elements (solid line), and the normal distribution with
the same mean and standard devistion (dashed line)

Best Increments for the Average Case of Shellsort 109

in the symmetrical distribution model, and still less than one for any skewed
distribution. Therefore, when the search is independently run several times, the
sequence should pass the test at least once. It never happened in author’s search:
the standard deviation of the best sequences was always similar.

3 The Dominant Operation in Shellsort

Almost all studies of Shellsort treat its running time as proportional to the
number of element moves. It is probably because the number of moves can be
expressed in terms of the number of permutation inversions, and there are known
techniques for inversion counting. These techniques give satisfactory answers for
algorithms like insertion sort, where the ratio of the number of comparisons to
the number of moves approaches 1 quickly.
In Shellsort, the picture is different. Figures 3 and 4 show the average num-

ber of computer cycles per move and per comparison for 10 ≤ N ≤ 108.
They concern Knuth’s implementation of Shellsort for his mythical computer
MIX and several increment sequences: Hibbard’s (1, 3, 7, 15, . . .) [3], Knuth’s
(1, 4, 13, 40, . . . | 2hk < N) [7], Tokuda’s (hk = �(9(94)k − 4)/5� | 9

4hk <
N) [12], Sedgewick’s (1, 5, 19, 41, . . .) [9], Incerpi-Sedgewick (1, 3, 7, 21, . . .) [4],
and (1, 4, 10, 23, 57, 132, 301, 701) (up to N = 4000) [see below]. Knuth’s discus-
sion assumes that the running time can be approximated as 9×number of moves,
while Figures 3 and 4 show that for each sequence the number of key compar-
isons is a better measure of the running time than the number of moves. The
asymptotic ratio of 9 cycles per move is not too precise for N ≤ 108, and, if some
hypothetical sequence makes Θ(N logN) moves, it is never attained. Analogous
plots for other computer architectures would lead to the same conclusion.
Treating moves as the dominant operation leads to mistaken conclusions

about the optimal sequences. Table 1 leads us to believe that the move-optimal
sequence is Pratt’s one (1, 2, 3, 4, 6, 8, 9, 12, . . .) = {2p3q} [8], with Θ(log2 N)
passes. However, the best practical sequences known so far are approximately
geometrical, so they make Θ(logN) passes. Also, a recent result [6] is that if
there is a sequence that yields Shellsort’s average running time Θ(N logN), it
has to make precisely Θ(logN) passes.
Compare-optimal sequences seem to make Θ(logN) passes. It is illustrated

in Tables 1 and 2 that show the best sequences of various length for sorting
128 elements, obtained in the above described way with respect to the average
number of moves and comparisons. In Table 1, there are no empirical sequences
with more than 12 increments, since finding them would take too much time,
but hopefully the point is clear. In Table 2, the difference between the last two
lines is within possible error; sequences with more than six increments do not
improve the results.
In fact, concentrating on the number of moves, we can obtain sequences that

are good for practical purposes, but we have to guess an appropriate number
of passes for a given N , lest they be too ‘stretched’ or too ‘squeezed.’ When

110 M. Ciura

0

5

10

15

20

25

30

10 100 1000 10000 100000 1e+06 1e+07 1e+08

M
IX

 c
yc

le
s

pe
r

m
ov

e

N

Hibbard
Knuth

Incerpi-Sedgewick
Sedgewick

Tokuda
new

Fig. 3. Average MIX computer time per move in Shellsort using various sequences of
increments

9

9.5

10

10.5

11

11.5

12

10 100 1000 10000 100000 1e+06 1e+07 1e+08

M
IX

 c
yc

le
s

pe
r

co
m

pa
ris

on

N

Hibbard
Knuth

Incerpi-Sedgewick
Sedgewick

Tokuda
new

Fig. 4. Average MIX computer time per comparison in Shellsort using various se-
quences of increments

Best Increments for the Average Case of Shellsort 111

Table 1. Move-optimal sequences for sorting 128 elements

Increments Moves Comparisons MIX time

1 4064.0 4186.8 37847
1 8 1280.2 1506.2 13958
1 4 17 762.80 1090.69 10422.4
1 4 9 24 588.25 1018.74 9956.9
1 3 7 15 35 506.56 1032.39 10256.0
1 3 7 12 20 51 458.18 1071.99 10761.8
1 3 4 10 15 28 47 427.43 1151.14 11625.6
1 2 5 7 13 22 33 56 405.20 1220.71 12393.3
1 3 4 6 11 18 26 35 56 389.36 1308.48 13323.4
1 2 3 5 8 12 18 27 41 75 375.70 1390.80 14301.2
1 2 3 5 8 12 18 27 38 59 84 365.83 1440.45 14717.1
1 2 3 4 6 11 14 18 27 37 62 86 357.63 1545.17 15793.3
. .
1 2 3 4 6 8 9 12 16 18 . . . 96 108 338.08 2209.59 22700.4

Table 2. Compare-optimal sequences for sorting 128 elements

Increments Comparisons Moves MIX time

1 4186.8 4064.0 37847
1 9 1504.6 1280.7 13945
1 4 17 1090.69 762.80 10422.4
1 4 9 38 1009.75 598.90 9895.0
1 4 9 24 85 1002.22 538.06 9919.9
1 4 9 24 85 126 1002.25 535.71 9933.2

working with comparisons, at least choosing the number of passes too high does
no harm.

4 Further Enhancements to the Method

The investigations were begun for small N and a broad range of sequences with
2 ≤ h1 ≤ 10 and 1 < hk/hk−1 < 4 for k > 1. It turns out that the best
sequences had h1 ∈ {4, 5} and hk/hk−1 ∈ (2, 3), for k > 0; except perhaps
the last increments, where a larger value of hk/hk−1 is sometimes better. Also,
having hk+1 mod hk = 0 is always a hindrance.
The smallest increments are stable among the best sequences with a maximal

t for various N . Indeed, for N greater than a few dozen, the best sequences are
(1, 4, 9, . . .), (1, 4, 10, . . .), (1, 4, 13, . . .), (1, 5, 11, . . .). A few other beginnings are
also not bad, yet consistently worse than these four. The increment h3 crystal-
lizes when N ≈ 100, and the top sequences are (1, 4, 9, 24, . . .), (1, 4, 9, 29, . . .),
(1, 4, 10, 21, . . .), (1, 4, 10, 23, . . .), and (1, 4, 10, 27, . . .).

112 M. Ciura

As N grows, the feasible values of the remaining increments show up, too:
given (h0, . . . , hk−1), there is always a small set of good values for hk. Fig-
ures 5 and 6 show the average number of comparisons made by sequences be-
ginning with (1, 4, 10, 23) and (1, 4, 10, 21) when sorting 300 and 1000 elements
as a function of h4.

2960

2965

2970

2975

2980

40 50 60 70 80 90 100 110

co
m

pa
ris

on
s

1 4 10 23

2960

2965

2970

2975

2980

40 50 60 70 80 90 100 110

co
m

pa
ris

on
s

1 4 10 21

Fig. 5. Performance of Shellsort that uses the sequences (1, 4, 10, 23, h4, h5) and
(1, 4, 10, 21, h4, h5) for N = 300 depending on h4

Thus, we can speed the search up, considering only the sequences beginning
with these increments, and imposing more strict conditions on the remaining in-
crements. The author would like to stress that he took a conservative approach
and checked a much wider fan of sequences. It was seeing some patterns con-
sistently losing for several N ’s that encouraged him not to consider them for
a greater number of elements.

12920

12925

12930

12935

12940

12945

12950

12955

12960

40 50 60 70 80 90 100 110

co
m

pa
ris

on
s

1 4 10 23

12920

12925

12930

12935

12940

12945

12950

12955

12960

40 50 60 70 80 90 100 110

co
m

pa
ris

on
s

1 4 10 21

Fig. 6. Performance of Shellsort that uses the sequences (1, 4, 10, 23, h4, h5, h6) and
(1, 4, 10, 21, h4, h5, h6) for N = 1000 depending on h4

Best Increments for the Average Case of Shellsort 113

5 The Results

The size of this paper limits the author to present only a digest of his numerical
results. Table 3 shows the best sequences of length 6–8 for sorting 1000 elements,
and, for some increments, the best sequences beginning with them. The omitted
sequences differ only with the biggest increments from those shown. However,
there is a chance that some sequences that should be on these lists were acci-
dentally rejected in the sequential test.

Table 3. The best 6-, 7-, and 8-pass sequences for sorting 1000 elements

Increments Comparisons

1 4 13 32 85 290 13059.0 ± 195.9
1 4 13 32 85 284 13060.4 ± 196.3
1 5 11 30 81 278 13061.5 ± 198.2
1 5 11 30 81 277 13063.1 ± 201.2

1 4 10 23 57 156 409 12930.4 ± 157.5
1 4 10 23 57 155 398 12931.7 ± 157.5
1 4 10 23 57 156 401 12932.4 ± 157.6
(21 seq. omitted)

1 4 10 21 57 143 390 12936.8 ± 157.9
(14 seq. omitted)

1 4 10 21 56 125 400 12938.5 ± 157.0
(22 seq. omitted)

1 4 9 24 58 153 396 12940.3 ± 158.9

1 4 10 23 57 156 409 995 12928.9 ± 158.1
1 4 10 23 57 156 409 996 12929.0 ± 157.2
1 4 10 23 57 155 393 984 12929.1 ± 156.9

(98 seq. omitted)
1 4 10 21 56 135 376 961 12931.9 ± 155.8

(18 seq. omitted)
1 4 10 21 57 143 382 977 12932.1 ± 156.2

(735 seq. omitted)
1 4 10 23 61 154 411 999 12936.6 ± 159.9

(366 seq. omitted)
1 4 10 23 58 135 388 979 12937.9 ± 155.5

(278 seq. omitted)
1 4 9 24 58 153 403 991 12938.6 ± 158.1

As the greatest increments play a minor role in the overall performance of
a sequence, the author abandoned the idea of finding truly optimal sequences
up to the greatest increment for greater N , and concentrated instead on finding
the feasible values of the middle increments.
To this end, 6-increment beginnings perform best for N = 1000, 2000, 4000

were selected. For each of them, all the sequences with h6 ∈ (2h5, 3h5) and

114 M. Ciura

h7 ∈ (2h6, 3h6) were generated. For each of the 8-increment beginnings ob-
tained, 100 random endings h8 ∈ (2h7, 3h7), h9 ∈ (2h8,min(3h8, 8000)) were
drawn. The sequential test was then run for each 10-increment sequence for
N = 8000. The percentage of (h8, h9) endings that passed the test was recorded
for each (h0, . . . , h7). The top 8-increment beginnings were re-examined in 10000
independent tests.

Table 4. The best 8-increment beginnings of 10-pass sequences for sorting 8000 ele-
ments

Increments Ratio passed

1 4 10 23 57 132 301 758 0.6798
1 4 10 23 57 132 301 701 0.6756
1 4 10 21 56 125 288 717 0.6607
1 4 10 23 57 132 301 721 0.6573
1 4 10 23 57 132 301 710 0.6553
1 4 9 24 58 129 311 739 0.6470
1 4 10 23 57 132 313 726 0.6401
1 4 10 21 56 125 288 661 0.6335
1 4 10 23 57 122 288 697 0.6335

From limited experience with yet larger array sizes, the author conjectures
that the sequence beginning with 1, 4, 10, 23, 57, 132, 301, 701 shall turn up opti-
mal for greater N .

6 Why Are Some Sequences Better than Others

It seems that some sequences are better than others on the average not only due
to a good global ratio hk+1/hk, but also because they cause less redundant com-
parisons, that is comparisons between elements that have already been directly or
indirectly compared, which depends on local interactions between passes. Tables
5 and 6 show the average number of comparisons Ci and redundant comparisons
Ri in each pass for two increment sequences.
Some heuristic rules on good sequences can be deduced from the observation

that the subarrays sorted in each pass are quite well ordered and the elements
move just a few h on the average in each h-sorting, as exemplified in Fig. 7.
Let’s consider hk+1 expressed as a linear combination with integer coefficients

of hk−1 and hk. Patterns like these on Figures 5 and 6 can be forecasted to some
extent using the following rule: if there is a solution of the Diophantine equation
hk+1 = ahk+ bhk−1 with a small value of |b|, say ≤ 5, then this hk+1 is certainly
not a good choice. The value of b in analogous expressions with small multiples
of hk+1 on the left side is nearly as much important.
The distribution of the distance travelled in a given pass is similar for all the

elements far enough from the ends of the table. The order of two elements that are
hk+1 apart after hk+1-sorting is known. In subsequent pass both elements move

Best Increments for the Average Case of Shellsort 115

Table 5. Average number of comparisons and redundant comparisons for Shellsort
using the sequence (1, 4, 10, 23, 57, 132, 301, 701, 1750), for N = 40, 400, 4000

hk Ci Ri

23 17 0
10 41.3 ± 2.6 0
4 62.4 ± 5.5 3.3 ± 2.3
1 90.8 ± 10.5 25.0 ± 7.6

Σ 211.5 ± 12.1 28.3 ± 8.7

hk Ci Ri

301 99 0
132 334 ± 6 0
57 543 ± 14 0
23 720 ± 27 2.6 ± 2.3
10 792 ± 38 41 ± 14
4 809 ± 33 158 ± 24
1 976 ± 41 354 ± 33

Σ 4274 ± 73 557 ± 51

hk Ci Ri

1750 2570 ± 10 0
701 5200 ± 40 0
301 6740 ± 70 0
132 7720 ± 110 7 ± 4
57 8410 ± 180 90 ± 20
23 9020 ± 190 370 ± 50
10 8570 ± 130 840 ± 60
4 8310 ± 100 1880 ± 90
1 9830 ± 140 3700 ± 120

Σ 66370 ± 430 6890 ± 220

Table 6. Average number of comparisons and redundant comparisons for Shellsort
using Knuth’s sequence (1, 4, 13, 40, 121, 364, 1093), for N = 40, 400, 4000

hk Ci Ri

13 36.4 ± 1.9 0
4 74.0 ± 7.1 0.02 ± 0.2
1 98.4 ± 13.0 22.7 ± 9.2

Σ 208.8 ± 15.5 22.7 ± 9.2

hk Ci Ri

121 401 ± 7 0
40 713 ± 21 0
13 984 ± 51 53 ± 16
4 1223 ± 116 164 ± 54
1 1092 ± 47 376 ± 44

Σ 4413 ± 153 593 ± 81

hk Ci Ri

1093 4480 ± 30 0
364 7430 ± 50 0
121 9850 ± 170 560 ± 40
40 11930 ± 310 1470 ± 120
13 14860 ± 930 2160 ± 280
4 15050 ± 770 3530 ± 460
1 11020 ± 40 4100 ± 100

Σ 74620 ± 1800 11510 ± 780

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

-20 -15 -10 -5 0 5 10 15 20

pr
ob

ab
ili

ty

distance / h

1750
701
301
132

57
23
10

4
1

Fig. 7. Distance travelled by elements in subsequent passes of Shellsort using the se-
quence (1, 4, 10, 23, 57, 132, 301, 701, 1750) for sorting 4000 elements

116 M. Ciura

a few hk to the left or to the right, and then their distance is d = hk+1 + ahk.
If d turns out to be a multiple of hk−1, then they are redundantly compared
again in subsequent hk−1-sorting.
Unfortunately, the interdependence between the quality of a sequence and

the solutions of equations hk+1 = a0hk + . . . + alhk−l becomes more and more
obscure as l grows. However, there is some evidence that in good sequences
the norm of the shortest vector-solution (a0, . . . , al) for fixed l asymptotically
grows as we move on to greater increments. It seems to exclude the possibility
that the optimal uniform sequence can be defined by a linear recurrence with
constant coefficients or by interleaving such sequences. See Fig. 8 for a plot
of average number of comparisons made by Shellsort using various increment
sequences. Both Knuth’s and Hibbard’s sequences are relatively bad, because
they are defined by simple linear recurrences. The Sedgewick’s sequence that
consists of two interleaved sequences defined by linear recurrences, also becomes
to deteriorate for N > 106.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

av
er

ag
e

nu
m

be
r

of
 c

om
pa

ris
on

s
/ l

g
N

!

N

Hibbard
Knuth

Incerpi-Sedgewick
Sedgewick

Tokuda
new

Fig. 8. Average number of comparisons divided by lgN ! for Shellsort using selected
increment sequences

7 Summary

Using sequential analysis, the search for optimal increment sequences for Shell-
sort was accelerated enough to find them for arrays up to several thousand
elements. The obtained results show that comparisons rather than moves should
be considered the dominant operation in Shellsort. It was also possible to state
some heuristic rules about good sequences of increments.

Best Increments for the Average Case of Shellsort 117

However, the sequences obtained so far are too short to draw a reliable
conclusion whether an appropriate sequence of increments can make Shellsort
a Θ(N logN) sorting method on the average. Some hypotheses may be possible
when the sequences are prolonged to sort arrays of about 105 elements.

References

1. ↩Aριστoτ έλης: ↩Aναλυτικά πρoτ έρα, 64b28–65a37; Σoφιστικoὶ ↩έλεγχoι, 181a15.
In: Aristotelis Opera. Vol. 1: Aristoteles græce, Academia Regia Borussica,
Berolini, 1831.

2. Ghoshdastidar, D., Roy, M. K.: A study on the evaluation of Shell’s sorting tech-
nique. Computer Journal 18 (1975), 234–235.

3. Hibbard, T. N.: An empirical study of minimal storage sorting. Communications
of the ACM 6 (1963), 206–213.

4. Incerpi, J., Sedgewick, R.: Improved upper bounds on Shellsort. Journal of Com-
puter and System Sciences 31 (1985), 210–224.

5. Janson, S., Knuth, D. E.: Shellsort with three increments. Random Structures and
Algorithms 10 (1997), 125–142.

6. Jiang, T., Li, M., Vitányi, P.: The average-case complexity of Shellsort. Lecture
Notes in Computer Science 1644 (1999), 453–462.

7. Knuth, D. E.: The Art of Computer Programming. Vol. 3: Sorting and Searching.
Addison-Wesley, Reading, MA, 1998.

8. Pratt, V. R.: Shellsort and Sorting Networks. Garland, New York, 1979, PhD thesis,
Stanford University, Department of Computer Science, 1971.

9. Sedgewick, R: A new upper bound for Shellsort. Journal of Algorithms 7 (1986),
159–173.

10. Sedgewick, R.: Analysis of Shellsort and related algorithms. Lecture Notes in Com-
puter Science 1136 (1996), 1–11.

11. Shell, D. L.: A high-speed sorting procedure. Communications of the ACM 2
(1959), 30–32.

12. Tokuda, N: An improved Shellsort. IFIP Transactions A-12 (1992), 449–457.
13. Wald, A.: Sequential Analysis. J. Wiley & Sons, New York, 1947.
14. Yao, A. C.: An analysis of (h, k, 1)-Shellsort. Journal of Algorithms 1 (1980), 14–50.

	Shellsort
	Sequential Analysis
	The Dominant Operation in Shellsort
	Further Enhancements to the Method
	The Results
	Why Are Some Sequences Better Than Others
	Summary

