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a b s t r a c t

Two multiple-scaling methods for Monte Carlo simulations were derived from integral

radiative transfer equation for calculating radiance in cloudy atmosphere accurately

and rapidly. The first one is to truncate sharp forward peaks of phase functions for each

order of scattering adaptively. The truncated functions for forward peaks are approxi-

mated as quadratic functions; only one prescribed parameter is used to set maximum

truncation fraction for various phase functions. The second one is to increase extinction

coefficients in optically thin regions for each order scattering adaptively, which could

enhance the collision chance adaptively in the regions where samples are rare. Several

one-dimensional and three-dimensional cloud fields were selected to validate the

methods. The numerical results demonstrate that the bias errors were below 0.2% for

almost all directions except for glory direction (less than 0.4%) and the higher numerical

efficiency could be achieved when quadratic functions were used. The second method

could decrease radiance noise to 0.60% for cumulus and accelerate convergence in

optically thin regions. In general, the main advantage of the proposed methods is that

we could modify the atmospheric optical quantities adaptively for each order of

scattering and sample important contribution according to the specific atmospheric

conditions.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Rapid and accurate radiative transfer model is essen-
tial to evaluate the earth’s radiation budget and retrieve
atmospheric components from remote sensing observa-
tions. A large number of three-dimensional (3D) radiative
effects have been examined using improved numerical
modeling from satellite observations at continuously
improving spatial resolution, such as the scale break of
radiative fields [1], roughening and smoothening of radia-
tive fields [2,3] as well as enhanced clear sky reflectance
near clouds [4–7], etc. 3D radiative transfer models as the
ll rights reserved.

ote Sensing, Anhui

ademy of Sciences,
only tools to examine these effects now become more and
more important. Monte Carlo methods as an effective and
flexible means are often employed in simulating radiance in
cloudy atmosphere realistically. But there are some obsta-
cles in practical applications, such as an inherent slow rate
of convergence and very expensive computation taxing for
current computational power [8–12]. Partly removing these
obstacles is the aim of this study.

Among a variety of variance reduction techniques with
biases, the most efficient one may be truncation approxima-
tion, which truncates sharp peaks of phase functions for large
water or ice droplets at visible wavelength and approximates
it to a linear mixture of the delta function and smoothing
(regular) function [10,11,13–17] and could accelerate con-
vergence greatly. Two issues should be addressed here. First,
a suitable smoothing function should be chosen to match
original phase function as much as possible. Antyufeev [17]
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truncated forward peaks directly, which could decrease
random noise greatly but introduce large biases; Iwabuchi
[11] truncated forward and backward peaks simultaneously
with a constraint of conservation for first two moments,
which could greatly improve accuracy except in direction
near the solar and anti-solar points; Iwabuchi and Suzuki
[10] made slightly improvement to replace forward peaks
with the flat function, which could have high accuracy in
almost all directions at cost of more computation time. The
second issue is that how to construct Monte Carlo algorithm
to simulate trajectories with different delta fraction depen-
dent on the order scattering. Suzuki et al. [18] and Iwabuchi
and Suzuki [10] derived radiative transfer equation (RTE)
with scattering order-dependent truncation approximations
based on the method of successive orders of scattering (SOS)
for 1D and 3D atmosphere, respectively. In this paper, the
multiple-scaling methods were derived from integral RTE
and could formulate Monte Carlo algorithm and local esti-
mate method directly. The new truncation functions were
proposed to replace forward peaks, which were more similar
to original phase function than flat functions.

Moreover, the poor sampling in optically thin regions
often contaminates estimated radiance, even covers the
characterization of radiative fields, such as smoothening
of radiative fields and enhanced clear sky reflectance near
cloud, which is used to correct 1D retrieval results [19].
All these characterizations are mainly due to multiple
scattering. Thus the more high-order scattering we sam-
ple in optically thin regions, the more accurate the
estimated radiance will be. Iwabuchi [11] proposed colli-
sion-forcing method for optically thin media with a
domainwide constant (minimum atmospheric optical
thickness) to scale optical properties for each atmospheric
column. The method may be not economic for partly
cloudy atmosphere because it increases collision chances
nonuniformly in optically thin regions, too large for
column without clouds and too small for column with
clouds and at same time it increases simulation time in
optically thick regions due to scaled optical thickness. In
this paper, we formulate another multiple-scaling method
derived from integral RTE, which could scale optical
quantities adaptively dependent on the order of scatter-
ing. It could be applied to optically thin regions to infer
the characterization of radiative fields.

This paper is organized as follows. We make transfor-
mation of integral RTE and formulate multiple-scaling
methods for anisotropy phase function and optically thin
regions based on integral RTE and introduce several
truncation approximations in Section 2; the performance
of the proposed methods is presented in Section 3; and
the last section contains conclusions.

2. Multiple-scaling methods

2.1. Transformation of integral RTE

The solution of integral RTE in optical medium R can
be represented as a Neumann series [17,20,21]

Fðr,XÞ ¼
X1
n ¼ 0

Fnðr,XÞ, ð1Þ
where F(r,X) is the collision density in the direction X at
point r, defined as the product of extinction coefficient
s(r) and radiance I(r,X), and Fn(r,X) is the collision
density of the nth order, defined as

Fnðr,XÞ ¼

R
R

R
Xkðr0,X0; r,XÞFn�1ðr0,X0ÞdX0dr0 n40

sexpð�s:r�r0:Þ n¼ 0
,

(

ð2Þ

where the kernel kðr0,X0; r,XÞ is the probability density
function (PDF) of the transition from phase point ðr0,X0Þ
into (r,X) and can be given as

kðr0,X0; r,XÞ ¼o PðX0dXÞ
4p

sexpð�s:r�r0:Þ

:r�r0:2
d X�

r�r0

:r�r0:

 !
,

ð3Þ

where o is the single scattering albedo, PðX0dXÞ=4p is the
normalized scattering phase function and s is the extinc-
tion coefficient. For simplicity, we assume these quanti-
ties to be constants in whole R.

After transformation from the Cartesian to the polar
coordinates [17], Fn(r,X) for n40 can be rewritten as

Fnðr,XÞ ¼
1

4p

Z 1
0

Z
X
oPðX0dXÞf ðlÞFn�1ðr�lX,X0ÞdX0dl, n40,

ð4Þ

where f(l) is free path PDF [22], defined as

f ðlÞ ¼ sexpð�slÞ: ð5Þ

We can let r¼r0þtX, r0 ¼ r0þt0X due to X¼ ðr�
r0Þ=:r�r0:. Considering that f(l)¼0 for lo0 and changing
the variable l to t [17], we can rewrite Fn(r,X) as

Fnðt,XÞ ¼
1

4p

Z
X

dX0oPðX0dXÞ
Z 1
�1

dt0f ðt�t0ÞFn�1ðt
0,X0Þ, n40:

ð6Þ

Here
R1
�1

dt0f ðt�t0ÞFn�1ðt
0,X0Þ is the convolution of the

functions f(t) and Fn�1(t,X0) of a single variable t. By
applying the Laplace transform with respect to the vari-
able t to both sides of Eq. (6), we obtain

F̂nðs,XÞ ¼
1

4p

Z
X

dX0oPðX0dXÞf̂ ðsÞF̂n�1ðs,X0Þ, n40, ð7Þ

where F̂nðs,XÞ and f̂ ðsÞ in ‘‘s-space’’ are Laplace transform
of Fn(t,X) and f(t) in ‘‘t-space’’, respectively. According to
Eq. (5), f̂ ðsÞ could be given as

f̂ ðsÞ ¼
s

sþs : ð8Þ

In addition, F̂nðs,XÞ for n¼0 could be easily formulated as

F̂nðs,XÞ ¼ f̂ ðsÞ, n¼ 0: ð9Þ

2.2. Multiple-scaling method for anisotropic phase function

In this section, we formulate the multiple-scaling
method based on Eqs. (7) and (9), which can construct
Monte Carlo algorithms directly for simulating the trajec-
tories of individual sample with different smooth phase
functions depending on the order of scattering.
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First an approximated phase function ~PnðX0dXÞ is
introduced to replace PðX0dXÞ, which is a linear mixture
of Dirac’s delta function and smooth function
[10,11,13–17] with different truncation fraction f ðnÞd for
each order independently,

~PnðX0dXÞ ¼ f ðnÞd dðX0�XÞþð1�f ðnÞd ÞP
n

nðX
0dXÞ: ð10Þ

Substituting Eq. (10) into Eq. (7) instead of PðX0dXÞ, we
obtain

F̂nðs,XÞ ¼of ðnÞd f̂ ðsÞF̂n�1ðs,XÞ

þ
1

4p

Z
X

dX0oð1�f ðnÞd ÞP
n

nðX
0dXÞf̂ ðsÞF̂n�1ðs,X0Þ, n40,

ð11Þ

then we sum up Eqs. (9) and (11) for all scattering orders

X1
n ¼ 0

F̂nðs,XÞ ¼
X1
n ¼ 1

of ðnÞd f̂ ðsÞF̂n�1ðs,XÞþ f̂ ðsÞ

þ
X1
n ¼ 1

1

4p

Z
X

dX0oð1�f ðnÞd ÞP
n

nðX
0dXÞf̂ ðsÞF̂n�1ðs,X0Þ

� �
:

ð12Þ

Rearranging Eq. (12) for all scattering orders, we
obtain

X1
n ¼ 0

ð1�of ðnþ1Þ
d f̂ ðsÞÞF̂nðs,XÞ

ih

¼ f̂ ðsÞþ
X1
n ¼ 1

1

4p

Z
X

dX0oð1�f ðnÞd ÞP
n

nðX
0dXÞf̂ ðsÞF̂n�1ðs,X0Þ

�
:

�

ð13Þ

Thus a new set of equations for each order can be given as

F̂nðs,XÞ ¼

1

4p

Z
X

dX0
oð1�f ðnÞd Þ

1�of ðnþ1Þ
d f̂ ðsÞ

Pn

nðX
0dXÞf̂ ðsÞF̂n�1ðs,X0Þ n40

f̂ ðsÞ

1�of ðnþ1Þ
d f̂ ðsÞ

n¼ 0

:

8>>>><
>>>>:

ð14Þ

Next, by applying the inverse Laplace transform to
both sides of Eq. (14) and changing the current coordi-
nates to Cartesian coordinates, we obtain

Fn

nðr,XÞ ¼

R
R

R
Xkn

nðr
0,X0; r,XÞFn

n�1ðr
0,X0ÞdX0dr0 n40

sn

nþ1expð�sn

nþ1:r�r0:Þ n¼ 0
,

(

ð15Þ

where

kn

nðr
0,X0; r,XÞ

¼on

n

Pn
nðX

0dXÞ
4p

sn

nþ1 expð�sn

nþ1:r�r0:Þ

:r�r0:2
d X�

r�r0

:r�r0:

 !

ð16Þ

is a new PDF of the transition scaled by the multiple-
scaling method and

Fn

nðr,XÞ ¼ sn

nþ1Inðr,XÞ ð17Þ

is the collision density of the nth order. The scaled optical
quantities for nth scattering order can be given by

sn

nþ1 ¼ ð1�f ðnþ1Þ
d oÞs, ð18Þ
on

n ¼
ð1�f ðnÞd Þo
1�f ðnÞd o

: ð19Þ

Now the collision density

Fnðr,XÞ ¼
X1
n ¼ 0

Fn

nðr,XÞ ð20Þ

gives an approximated solution of integral RTE. The
solution compared with its different formalism in [10]
could more easily construct Monte Carlo algorithm for
simulating samples’ trajectories according to the new PDF
(see Eq. (16)), which is composed of three PDFs for nth
order. First we determine whether scattering event occurs
according to single scattering PDF on

n and then select a
new direction from scattering direction PDF Pn

nðX
0dXÞ=4p,

and lastly determine next collision point according to free
path PDF sn

nþ1 expð�sn

nþ1:r�r0:Þ. Furthermore, according
to the derivation procedures of local estimate method
[20,21], the contribution function Cn

nðr,XÞ of radiance in
the direction Xn at point rn for nth order could be
modified as

Cn

nðr,XÞ ¼wn

n

Pn
nðXdXn

Þ

4p
expð�sn

nþ1:rn�r:Þ

:rn�r:2
drn ,Xn ðr,XÞ,

ð21Þ

where sample’s weight is equal to wn
n ¼

Qn
i ¼ 1 on

i . We
should note that the extinction coefficient in Eq. (21)
should be scaled with respect to (nþ1)th order when
estimating contribution of nth order [11]. Although the
multiple-scaling method is derived from homogenous
optical medium, it could be directly applied to inhomo-
geneous atmosphere such as partly cloudy atmosphere.

2.3. Various truncation approximations for phase function

There are two principles to reasonably represent
smooth function Pn

nðyÞ in Eq. (10) (where y is hereafter
referred to as scattering angle, equal to cos�1ðX0dXÞ),
which is also called as truncated phase function [10,11].
First, a sharp forward peak due to diffraction of cloud drops
should be truncated as much as possible, because it can be
larger than the minimum phase function by a factor of a
million or more at visible wavelengths and thus cause large
variance in radiance estimates [9–12]. Second, the similar-
ity between P(y) and Pn

nðyÞ at mostly other’s direction
should be preserved to avoid making huge phase function
tables for each different f ðnÞd [11] and make simulations of
multiple scattering radiation field realistically.

In order to fulfill above principles, the truncated phase
function can be represented as follows [10]:

Pn

nðyÞ ¼
1

1�f ðnÞd

Pf ðyÞ yoyf

PðyÞ yZyf
,

(
ð22Þ

where yf is truncated scattering angle. For yZyf, the
approximated phase function in Eq. (10) is exactly the
same as the original P(y). For yoyf, there are several
subjective choices to represent Pf(y) [9–11,17]. Here two
approximations are introduced as follows:

Pf ðyÞ ¼ PF , ð23Þ



Table 1
An example of the parameters in the truncated phase functions using

both flat and quadratic functions approximation with respect to differ-

ent H(wn) (see Eq. (34)). The tuning parameters were Pmax ¼ 10 and

hmax¼5.

H(wn) Flat function

approximation

Quadratic function

approximation

f ðnÞd
yf PF f ðnÞd

yf a b

0.2 0.0841 1.3157 1746.08 0.0925 0.9748 1930.30 0.0554

0.4 0.1681 1.8432 834.41 0.1850 1.3081 980.76 0.1022

0.6 0.2521 2.5225 348.89 0.2775 1.6847 422.42 0.1341

0.8 0.3362 3.8195 106.37 0.3700 2.4407 105.81 0.1261

1.0 0.4202 7.7580 19.24 0.4625 7.7580 9.97 0.0425

Fig. 1. An example of the truncated phase functions with respect to

different H(w) (see Table 1). Flat (dotted line) and quadratic (dash dot

line) functions were used to replace forward peaks. The inset shows the

region with a small angle. The tuning parameters were Pmax ¼ 10 and

hmax¼5.
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Pf ðyÞ ¼ aþbcos2y: ð24Þ

A flat [10] and quadratic function replaces the peak in Eqs.
(23) and (24), respectively. The constraint of moment
conservation should be added to estimate radiance accu-
rately [11], thus defining the zeroth and first moments of
truncation fraction of original and approximated phase
function, respectively, as

g0f ¼
1

2

Z yf

0
PðyÞsinydy, ð25Þ

ĝ0f ¼
1

2

Z yf

0
Pf ðyÞsinydy, ð26Þ

g1f ¼
1

2

Z yf

0
PðyÞcosysinydy, ð27Þ

ĝ1f ¼
1

2

Z yf

0
Pf ðyÞcosysinydy: ð28Þ

Due to equalities between two corresponding moments of
the original phase function and those of approximated,
following equations can be given as:

g0f ¼ f ðnÞd þ ĝ0f , ð29Þ

g1f ¼ f ðnÞd þ ĝ1f : ð30Þ

If f ðnÞd is a prescribed parameter for flat function approx-
imation, it is flexible to determine the parameters of yf

and PF in Eq. (23) by solving Eqs. (29) and (30), respec-
tively. In order to fulfill second principle, we maintain the
continuity of the truncated phase function at truncated
scattering angle yf for quadratic function approximation,
thus

Pf ðyf Þ ¼ Pðyf Þ: ð31Þ

Therefore we could solve Eqs. (29)–(31) to determine the
parameters yf, a and b in Eq. (24).

Iwabuchi [11] introduced an efficient method to deter-
mine f ðnÞd according to the statistical directionality para-
meter wn, which could be interpreted as ensemble-averaged
cosine angle between initial direction of the sample propa-
gation and the directions for nth order [23] and defined as

wn ¼ wn�19gn9, ð32Þ

where gn is the asymmetry factor of the truncated phase
function of nth order. However the formula of the delta
fraction (see Eq. (26) in [11]) was just designed for the
truncation approximations in [11], so we slightly modify
the formula as

f ðnþ1Þ
d ¼ FmaxHðwnÞ, ð33Þ

where H(wn) (see Eq. (29) in [11]) is given as

HðwnÞ ¼

0 wnZwmax

hðwnÞ=hmax wminrwnrwmin

1 wnowmin

8><
>: ð34Þ

and the maximum delta fraction Fmax is a constant for a
specific phase function. Following first principle above, the
value Pmax of phase function as a single tuning parameter is
used to determine the maximum truncated scattering angle
ymax for each phase function, and then Fmax is given by

Fmax ¼

Z ymax

0
PðyÞcosydy: ð35Þ

It diminishes the difficulty of determining Fmax for various
phase functions. For preliminary tests, Pmax could be suited
for various phase function from small cloud droplets to
large ones.

An example of truncation approximations for phase
function of cloud droplet with effective radius 10 mm has
been shown in Fig. 1. It shows that quadratic functions
were continuous and smooth at truncated scattering angles
while flat functions were step functions at these angles. In
Table 1, we found that quadratic functions took more
truncation fraction f ðnÞd and they came closer to original
phase function for small H(wn) (low order scattering). Thus
quadratic functions follow above principles more. In addi-
tion, by further analysis, we could know that the parameter
a is aimed to truncate forward peaks while the parameter b

is used to ensure moment conservation equation (Eqs. (29)
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and (30)) and avoid jumping at truncated scattering angle
(Eq. (31)) although the parameter b was quite small in
Table 1.

2.4. Multiple-scaling method for optically thin regions

Due to rare scatterings occurring in optically thin
regions, the noise of the radiance estimated by local
estimate method may hide the true radiance field char-
acterization, such as enhanced clear sky radiances near
clouds or smoothed radiances in optically thin medium,
which greatly depend on contribution of high order of
scattering [1,5]. Therefore the higher the scattering order
is, the more collision probability should be added to
estimate radiance in optically thin regions. Iwabuchi
[11] pointed out that similarity relations [24] could be
used to scale extinction coefficient for an arbitrary scat-
tering order with different delta fraction when presenting
collision-forcing method for optically thin media. How-
ever there were no rigorous proofs for this conclusion. So,
in this section, we firstly formulate a multiple-scaling
method to prove it and then propose a method of
gradually increasing sampling probability with scattering
order only in optically thin regions.

First adding Eq. (7) and the equality

of ðnÞd

ð1�f ðnÞd Þ
f̂ ðsÞF̂n�1ðs,XÞ

¼
1

4p

Z
X

dX0
of ðnÞd

ð1�f ðnÞd Þ
dðX0�XÞf̂ ðsÞF̂n�1ðs,X0Þ, ð36Þ

we can obtain

F̂nðs,XÞ ¼�
of ðnÞd

ð1�f ðnÞd Þ
f̂ ðsÞF̂n�1ðs,XÞ

þ
1

4p

Z
X

dX0
o

ð1�f ðnÞd Þ
Pn

nðX
0dXÞf̂ ðsÞF̂n�1ðs,X0Þ, n40

ð37Þ

where Pn
nðX

0dXÞ is defined as

Pn

nðX
0dXÞ ¼ f ðnÞd dðX0�XÞþð1�f ðnÞd ÞPðX

0dXÞ: ð38Þ

Then by summing up of Eqs. (9) and (37) for all
scattering orders, we can obtain

X1
n ¼ 0

F̂nðs,XÞ ¼�
X1
n ¼ 1

of ðnÞd

ð1�f ðnÞd Þ
f̂ ðsÞF̂n�1ðs,XÞ

" #
þ f̂ ðsÞ

þ
X1
n ¼ 1

1

4p

Z
X

dX0
o

ð1�f ðnÞd Þ
Pn

nðX
0dXÞf̂ ðsÞF̂n�1ðs,X0Þ

" #
:

ð39Þ

By rearranging Eq. (39), we obtain

X1
n ¼ 0

F̂nðs,XÞ ¼�
X1
n ¼ 0

of ðnþ1Þ
d

ð1�f ðnþ1Þ
d Þ

f̂ ðsÞF̂nðs,XÞ

" #
þ f̂ ðsÞ

þ
X1
n ¼ 1

1

4p

Z
X

dX0
o

ð1�f ðnÞd Þ
Pn

nðX
0dXÞf̂ ðsÞF̂n�1ðs,X0Þ

" #
:

ð40Þ
Thus the following equations can be given:

F̂nðs,XÞ ¼

1

4p

Z
X

dX0
of̂ ðsÞPn

nðX
0dXÞF̂n�1ðs,X0Þ

ð1�f ðnÞd Þ 1þ
of ðnþ1Þ

d f̂ ðsÞ

ð1�f ðnþ1Þ
d Þ

 ! n40

f̂ ðsÞ

1þ
of ðnþ1Þ

d f̂ ðsÞ

ð1�f ðnþ1Þ
d Þ

 ! n¼ 0

:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð41Þ

Now taking the same procedures to Eq. (41) as Eq. (14)
in Section 2.2, we have formulas of the solution same as
multiple-scaling method for anisotropic phase function
except formulas of the new scaled optical quantities for
nth order of scattering, which is given as

sn

nþ1 ¼ s 1þo
f ðnþ1Þ
d

1�f ðnþ1Þ
d

 !
, ð42Þ

on

n ¼
o

1�ð1�oÞf ðnÞd

: ð43Þ

Eqs. (42) and (43) satisfy similarity relations [11,24]
for each order of scattering. The sample’s trajectories
could be easily simulated with scaled optical quantities
in Eqs. (38), (42) and (43). Here it should be noted that the
radiance In(r,X) for nth order does not change although
collision density is scaled as Eq. (17) and the scattering
points simulated by scaled quantities have ð1�f ðnÞd Þ possi-
bility to be true scattering. Thus local estimate method
could be used to estimate radiance at each order of
scattering with weight factor of ð1�f ðnÞd Þ, we can obtain

Cn

nðr,XÞ ¼ ð1�f ðnÞd Þw
n

n

PðXdXn
Þ

4p
expð�s:rn�r:Þ

:rn�r:2
drn ,Xn ðr,XÞ:

ð44Þ

Above method should be only used in the regions
where scattering extinction is below a prescribed para-
meter sðminÞ

s to avoid increasing extra collision chances
in optically thick regions. f ðnþ1Þ

d for (nþ1)th order could
be also determined by sample’s directionality parameter
wn as

f ðnþ1Þ
d ¼ ðfmax�fminÞHðwnÞþ fmin, ð45Þ

where the tuning parameter fmax (fmin) is maximum
(minimum) possibility of virtual scattering. Thus a rela-
tively large value of fd could be used for the transfer of
near-isotropic light in optically thin regions to capture the
diffusion characterization rapidly.

Although the above methods are derived under the
assumption of homogenous medium, these methods could
be applied to inhomogeneous medium. In this paper, the
simulation procedures are omitted because lots of papers
have presented it in detail, such as [11,25–27].

3. Validation and evaluations

The forward Monte Carlo simulations have been per-
formed for examining the impacts of multiple-scaling



Fig. 3. Reflected radiances for solar zenith angle 401 in plane-parallel

clouds as functions of viewing zenith angles along the principal plane,

which were used as benchmark values to validate the results calculated

by multiple-scaling method for anisotropic phase function (MSAPF). The

negative (positive) viewing zenith angles correspond to forward (back-

ward) viewing directions.

Table 2
Summary of several parameter sets for both multiple-scaling methods.

Method (abbreviation) Case Parameter set

Multiple-scaling method for

anisotropic phase function (MSAPF),

using flat and quadratic function for

truncation approximations

(FTA and QTA)

(1) Pmax ¼ 1000

(2) Pmax ¼ 100

(3) Pmax ¼ 10

Multiple-scaling method for optically

thin regions (MSOTR)

(1) fmin ¼ 0:0, fmax ¼ 0:7

(2) fmin ¼ 0:5, fmax ¼ 0:7

(3) fmin ¼ 0:7, fmax ¼ 0:7

Fig. 2. 3D illustration of (left) cumulus and (right) stratocumulus fields, produced by large eddy simulations [28]. The color plates show the cross section

of extinction coefficients (in km�1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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methods (MSM) on radiance calculations with respect to
standard methods (SM) without optimizations. We
selected several plane-parallel atmosphere (PPA) cases
and two 3D cloud cases to validate MSM and evaluate
numerical efficiency of MSM for typical cloudy atmospheres.

3.1. Setup of numerical experiments

MSM for optically thin regions (MSOTR) is no biased
method, so simulations for PPA cases were performed for
examining biases due to MSM for anisotropic phase func-
tion (MSAPF) only. The phase function shown in Fig. 1 was
used for validating MSAPF. The surface was assumed to a
flat, lambertian reflector with albedo of 0.05. Simulations
were also done for both 3D cloud fields to evaluate
numerical efficiency of both MSM. Both fields were taken
from large-eddy simulations described in [28], illustrated
in Fig. 2. One was a cumulus field over land, having an
extension of 6.6 km�6.6 km with a horizontal resolution
of 100 m, vertical depth of 1.44 km with a vertical resolu-
tion of 40 m, filled with some scattered clouds; the second
one was a maritime stratocumulus, an extension of
2.6 km�2.6 km with 50 m resolution, depth of 0.45 km
with 10 m resolution. Both fields were water clouds,
composed of water droplets with a constant droplet
number (100 cm�3 for the cumulus and 70 cm�3 for the
stratocumulus), which was assumed to calculate effective
radii for each cloud grid box. The cloud optical properties
at the wavelength of 670 nm (extinction coefficients, single
scattering albedo, and scattering phase function) were
calculated using Mie theory for gamma size distributions
with the assumption of effective variance of 0.1. The
domain average cloud optical thickness (COD) was 3.23
for cumulus and 14.03 for stratocumulus. Aerosols were
included in two scenes. The rural and maritime types of
aerosols were chosen for cumulus with aerosol optical
thickness (AOD) of 0.138 and stratocumulus fields with
AOD of 0.045 [29]. A standard US atmosphere was used to
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consider the Rayleigh scattering [29]. The surface was
assumed to be a flat, lambertian reflector with albedo of
0.2 for cumulus and 0.05 for stratocumulus.

In this paper, radiances were normalized and defined as

r¼ pI=ðF0 cosy0Þ, ð46Þ

where I is radiance, F0 is incident solar irradiance, and y0 is
the solar zenith angle. Bias errors were introduced to check
biases due to MSM, defined as

DrMSM ¼
rMSM�rSM

rSM

� �
� 100%: ð47Þ

In addition, efficiency factors were used to evaluate
the numerical efficiency, defined as

ZMSM ¼
d2

SMTSM

d2
MSMTMSM

, ð48Þ

where d is root-mean-square relative error (RMSE), T is
single-CPU time with 2.5 GHz. The subscript in Eqs. (47)
and (48) means specific method was used. True RMSE
could be approximately estimated as RMSE of a set of
samples’ batches [9]. This way could underestimate true
RMSE [8]. But its accuracy would be enough especially for
Fig. 4. Bias errors of reflected radiance as functions of viewing zenith angles, c

1000 and with (left) flat function and (right) quadratic function for truncation a

are explained in Fig. 3.
larger RMSE. It should be noted that some parameters
remained unchanged during simulations. For both MSM,
hmax ¼ 5, wmax ¼ 0:9 and wmin ¼ 0:4 (see the definitions in
[11]); for MSOTR, sðminÞ

s ¼ 5km�1. For more detailed para-
meters see Table 2.

3.2. Biases due to multiple-scaling method

Reflected radiances along the principal plane shown in
Fig. 3 were calculated for PPA cases with optical thickness
t¼1, 5, and 15 using a large number of samples (2�109

for t¼1; 1�109 for others). The Monte Carlo noise was
less than 0.13%. Results computed without optimizations
shown in Fig. 3 were considered as benchmark values. The
bias errors for results computed with MSAPF are shown in
Fig. 4, using flat and quadratic function for truncation
approximations (FTA and QTA), with the tuning para-
meter Pmax ¼ 10, 100, and 1000. In addition, Table 3
summarizes the mean and maximum bias errors for these
results.

The bias errors were extremely small (always less than
0.54%) in all viewing directions for both TA with various
Pmax. When Pmax was small, the delta fraction was large.
alculated by MSAPF with various tuning parameters Pmax ¼ 10, 100, and

pproximations (FTA and QTA). Negative (positive) viewing zenith angles



Fig. 5. Efficiency factors of reflected radiance using FTA and QTA (see

Table 2) as functions of the tuning parameters Pmax.

Fig. 6. Radiance fields reflected from top of (a) cumulus and (b)

stratocumulus fields in four directions from (top) to (bottom), which

were used as benchmark values to validate the results calculated by

multiple-scaling methods for anisotropic phase function and optically

thin regions (MSAPF and MSOTR).

Table 3
Bias and standard errors of reflected radiance for plane-parallel clouds

using MSAPF with different cases (see Table 2).

t MSAPF Maximum bias (%) Mean bias (%) Mean std error (%)

Case FTA QTA FTA QTA FTA QTA

1.0 (1) 0.2837 0.3942 0.0808 0.0848 0.0726 0.0577

(2) 0.5384 0.3189 0.0783 0.0737 0.0469 0.0373

(3) 0.5315 0.3082 0.0769 0.0779 0.0317 0.0312

5.0 (1) 0.3343 0.3133 0.0909 0.0739 0.0666 0.0506

(2) 0.4137 0.2680 0.0714 0.0672 0.0378 0.0271

(3) 0.3949 0.2514 0.0646 0.0875 0.0226 0.0219

15.0 (1) 0.3003 0.2501 0.0749 0.0656 0.0517 0.0381

(2) 0.2205 0.1317 0.0518 0.0495 0.0274 0.0179

(3) 0.2000 0.1580 0.0529 0.0634 0.0147 0.0141
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Therefore smaller Pmax would cause larger bias. But
Table 3 shows that smaller Pmax reduced mean bias errors
more largely for almost cases. The main reason was that
bias errors were covered by simulations noises especially
for larger Pmax although the noises were very small. In
some sense, it means that MSAPF was highly accurate for
reflected radiance calculation even with the smallest
tuning parameter Pmax. In addition, the mean bias error
for QTA was slightly larger than that of FTA when
Pmax ¼ 10, which was due to larger delta fraction for
QTA than for FTA (see Fig. 1). But Fig. 4 depicts that
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slightly larger bias error for FTA was occurred in glory
direction (y¼401) especially in the optically thin case
(tr5). The reason was that less similarity between
truncated phase function and original one may cause
large contribution bias for low-order scattering (see
Fig. 1) where the contribution for low-order scattering
dominated. In the optically thick case (t¼15), both TA
exhibited very little bias even for glory direction where
high-order scattering dominated. In general, we could
find that QTA was slightly more accurate than FTA for
almost cases when comparing maximum bias errors.
Finally, efficiency factors are also shown in Fig. 5. The
results show that efficiency factor increased as Pmax

decreased and t increased for both TA. It has been increased
by a factor of 42 for FTA and 51 for QTA when t¼15. QTA
Fig. 7. RMSE of reflected radiance for (left) cumulus and (right) stratocumulus

methods with different parameter sets in Table 2. RMSE were evaluated with be

For each legend, a few symbols are combined to represent each simulation sche

(F) as QTA (FTA) for MSAPF, C as MSOTR, and Arabic numbers as parameter s

simulations were performed using both MSAPF with case (3) and QTA and MS

Fig. 8. Efficiency factors of reflected radiance for (left) cumulus and (right)

averaged over all pixels and viewing directions, as functions of single-CPU com

The interpretation of legend is same as Fig. 7.
was more efficient than FTA for all cases especially when
Pmax ¼ 100. In general, we could find that QTA could have
more accuracy in glory direction and almost same accuracy
in others as well as higher numerical efficiency.
3.3. Numerical efficiency for multiple-scaling methods

Several simulation schemes for both 3D cloud fields
were performed with the sun in the direction ðy0,f0Þ ¼

ð303,1803
Þ. Radiances were computed at four angles, corre-

sponding to the viewing angles of experiments for Phase 2
cloud fields of I3RC [30], that was, at ðy,fÞ ¼ ð03,03

Þ, ð603,
03
Þ, ð603,903

Þ, and ð603,1803
Þ. Radiances for each scheme

using Ncol ¼ ð103,104,105
Þ samples per pixel for cumulus
fields as functions of single-CPU computation time for multiple-scaling

nchmark values and then averaged over all pixels and viewing directions.

mes, where we denote S as standard simulation without optimizations, Q

ets of each method shown in Table 2. For example, Q3C1 indicates that

OTR with case (1) (see more details in Table 2).

stratocumulus fields, evaluated with benchmark calculations and then

putation time for multiple-scaling methods with various parameter sets.
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and Ncol ¼ ð103,104,105,106
Þ samples per pixel for stratocu-

mulus were compared with benchmark values using 1010

samples totally. Fig. 6 illustrates radiance fields in each
direction for both cloud fields.

Although MSAPF is the biased method, it is highly
accurate (In Table 3, maximum bias error less than 0.5%;
mean bias error less than 0.1%). It means that the bias
error due to MSAPF could be negligible when accuracy of
1% was expected. Thus the most important issue is
numerical efficiency for various schemes. RMSE as func-
tions of single-CPU time are shown in Fig. 7, which were
gradually reduced for both cloud fields as Pmax decreased.
For example, the RMSE were reduced to 0.69% for cumu-
lus with 105 samples per pixel and 0.46% for stratocumu-
lus with 106 samples per pixel, when Q3 scheme (see
description in Fig. 7) was performed and the correspond-
ing efficiency factors were increased to 12.88 and 58.06,
respectively, in Fig. 8. At same time, it demonstrates that
MSAPF was highly efficient especially for stratocumulus
field with a large domain average optical thickness. In
addition, QTA was more efficient than FTA especially
when Pmax ¼ 100, where the efficiency factors for strato-
cumulus were 11.86 for FTA and 33.41 for QTA when 105

samples per pixel was used. This was due to more
truncation fraction for high-order scattering when QTA
was used (see Fig. 1). In general, MSAPF with QTA is more
efficient in computing reflected radiance.
Fig. 9. RMSE of reflected radiance for (left) cumulus field with 105 samples per p

with benchmark calculations and averaged over all pixels, as functions of viewi

interpretation of legend is same as Fig. 7 too.

Table 4
RMSE, Bias errors and simulation time of reflected radiance for cumulus

field using MSOTR with three cases and MSAPF with case (3) (see

Table 2). The 106 samples per pixel were used.

MSOTR case RMSE (%) Bias (%) Time (s)

(1) 0.6020 0.6650 12248.8

(2) 0.5850 0.7814 12657.6

(3) 0.5804 1.0149 12838.5
With careful examination, we can know that efficiency
factor for cumulus was much small. This was due to less
collision chances in optically thin regions for cumulus.
MSOTR has been applied to solve this problem. RMSE for
Q3C1 scheme with 105 samples per pixel was reduced
from 0.69% to 0.60%, and the corresponding efficiency
factor was increased from 12.88 to 16.50 while the
simulation timing nearly was not increased. MSOTR
increased collision chance for optically thin regions adap-
tively. The higher efficiency could be accomplished when
QTA coupled with MSOTR. In order to further show the
ability of MSOTR, bias errors instead of the RMSE were
calculated for three simulation cases. Because true RMSE
were close to bias errors as the underestimated RMSE
were less than bias errors. We could find that bias errors
and simulation timing increased as fmin increased in
Table 4. It shows that gradually increasing scattering
extinction coefficients with scattering order could have
higher numerical efficiency.

RMSE for each viewing direction were different (see
Fig. 9). We could find that large RMSE occurred in back-
ward viewing direction. Illuminations from cloud sides
were main 3D effects in this direction where contribution
of low-order scattering was large. In other words, MSAPF
could not reduce noises caused by low-order scattering
rapidly although it could handle high-order scattering
efficiently. This is limitation of MSAPF. The problem may
be solved by detector directional importance sample [8].
4. Summary and conclusions

We have formulated two multiple-scaling methods for
convergence acceleration of radiance estimates for Monte
Carlo radiative transfer model in cloudy atmosphere. Both
methods were derived from integral radiative transfer
equation rigorously and could be used to construct Monte
Carlo simulation procedures and formulate local estimate
ixel and (right) stratocumulus field with 106 samples per pixel, evaluated

ng angles for multiple-scaling methods with various parameter sets. The
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method directly. The core of both methods is to simulate
sample’s trajectories in the variable medium (i.e., the optical
properties of the medium could be modified adaptively
according to sample’s statistical directionality parameter).
For the first one, we approximate phase function as a linear
mixture of delta function and truncated phase function and
increase truncation fraction with decreasing sample’s sta-
tistical directionality parameter. More importantly, we
introduce quadratic functions rather than flat functions to
replace sharp forward peaks of phase function, which can
take more truncation fraction to reduce computation bur-
den significantly and maintain continuity at truncated
angles to improve accuracy slightly, especially in glory
direction. Moreover, a single prescribed parameter as a
value of phase function is used to determine maximum
truncation fraction for each phase function, which is suita-
ble for solving three-dimensionally inhomogeneous atmo-
sphere. For the second method, we firstly proofed that
similarity relations could be used for each order of scatter-
ing under rigorous derivation. Then through increasing
collision possibility (i.e., scattering extinction coefficient)
only in optically thin regions with decreasing sample’s
statistical directionality parameter, we could rapidly reduce
radiance’s noise nearly without extra time. Furthermore, we
could combine both methods to bring higher numerical
efficiency for partly cloudy atmosphere, such as cumulus. It
is very useful to examine three-dimensional interaction
between clear sky and clouds, such as enhancement of clear
sky near clouds.

Generally, due to large truncation fraction and colli-
sion possibility for high order of scattering (i.e., small
sample’s statistical directionality parameter), both meth-
ods can rapidly reduce radiance’s noise caused by high-
order scattering. In other words, the main advantage of
both methods is that they are quite efficient to solve
Monte Carlo radiative transfer in partly cloudy atmo-
sphere with large domain optical thickness.
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