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This tutorial deals with C++11's smart pointer facility, which consists unique_ptr, shared_ptr and its partner, 

weak_ptr, and some associated functions and template classes. See the posted code examples for the examples 
presented here.

Concept of the C++11 Smart Pointers
Smart pointers are class objects that behave like built-in pointers but also manage objects that you create with new 

so that you don't have to worry about when and whether to delete them - the smart pointers automatically delete the 
managed object for you at the appropriate time. The smart pointer is defined in such a way that it can be used 
syntactically almost exactly like a built-in (or "raw") pointer. So you can use them pretty much just by substituting a 
smart pointer object everywhere that the code would have used a raw pointer.  A smart pointer contains a built-in 
pointer, and is defined as a template class whose type parameter is the type of the pointed-to object, so you can 
declare smart pointers that point to a class object of any type. 

When it comes to dynamically-allocated objects, we often talk about who "owns" the object. "Owning" something 
means it is yours to keep or destroy as you see fit.  In C++, by ownership, we mean not just which code gets to refer 
to or use the object, but mostly what code is responsible for deleting it. If smart pointers are not involved, we 
implement ownership in terms of where in the code we place the delete that destroys the object. If we fail to 
implement ownership properly, we get memory leaks, or undefined behavior from trying to follow pointers to 
objects that no longer exist. Smart pointers make it easier to implement ownership correctly by making the smart 
pointer destructor the place where the object is deleted. Since the compiler ensures that the destructor of a class 
object will be called when the object is destroyed, the smart pointer destruction can then automatically handle the 
deletion of the pointed-to object.  The smart pointer owns the object and handles the deletion for us.

This tutorial first presents shared_ptr, which implements shared ownership. Any number of these smart pointers 
jointly own the object. The owned object is destroyed only when its last owning smart pointer is destroyed. In 
addition, a weak_ptr doesn't own an object at all, and so plays no role in when or whether the object gets deleted. 
Rather, a weak_ptr merely observes objects being managed by shared_ptrs, and provides facilities for 
determining whether the observed object still exists or not. C++11's weak_ptrs are used with shared_ptrs. 
Finally, unique_ptr implements unique ownership - only one smart pointer owns the object at a time; when the 
owning smart pointer is destroyed, then the owned object is automatically destroyed.

How to Access the C++11 Smart Pointers.
In a C++11 implementation, the following #include is all that is needed:
#include <memory>
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Shared Ownership with shared_ptr
The shared_ptr class template is a referenced-counted smart pointer; a count is kept of how many smart 

pointers are pointing to the managed object; when the last smart pointer is destroyed, the count goes to zero, and the 
managed object is then automatically deleted.  It is called a "shared" smart pointer because the smart pointers all 
share ownership of the managed object - any one of the smart pointers can keep the object in existence; it gets 
deleted only when no smart pointers point to it any more.  Using these can simplify memory management, as shown 
with a little example diagrammed below:

�

Suppose we need two containers (A and B) of pointers referring to a single set of objects, X1 through X3. Suppose 
that if we remove the pointer to one of the objects from one of the containers, we will want to keep the object if the 
pointer to it is still in the other container, but delete it if not. Suppose further that at some point we will need to 
empty container A or B, and only when both are emptied, we will want to delete the three pointed-to objects. 
Suppose further that it is hard to predict in what order we will do any of these operations (e.g. this is part of a game 
system where the user's activities determines what will happen). Instead of writing some delicate code to keep track 
of all the possibilities, we could use smart pointers in the containers instead of built-in pointers. Then all we have to 
do is simply remove a pointer from a container whenever we want, and if it turns out to be the last pointer to an 
object, it will get "automagically" deleted. Likewise, we could clear a container whenever we want, and if it has the 
last pointers to the objects, then they all get deleted. Pretty neat! Especially when the program is a lot more 
complicated!

However, a problem with reference-counted smart pointers is that if there is a ring, or cycle, of objects that have 
smart pointers to each other, they keep each other "alive" - they won't get deleted even if no other objects in the 
universe are pointing to them from "outside" of the ring. This cycle problem is illustrated in the diagram below that 
shows a container of smart pointers pointing to three objects each of which also point to another object with a smart 
pointer and form a ring. If we empty the container of smart pointers, the three objects won't get deleted, because 
each of them still has a smart pointer pointing to them. 

�

C++11 includes a solution: "weak" smart pointers: these only "observe" an object but do not influence its lifetime. 
A ring of objects can point to each other with weak_ptrs,  which point to the managed object but do not keep it in 
existence. This is shown in the diagram below, where the "observing" relations are shown by the dotted arrows. 
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If the container of smart pointers is emptied, the three objects in the ring will get automatically deleted because no 
other smart pointers are pointing to them; like raw pointers, the weak pointers don't keep the pointed-to object 
"alive." The cycle problem is solved. But unlike raw pointers, the weak pointers "know" whether the pointed-to 
object is still there or not and can be interrogated about it, making them much more useful than a simple raw pointer 
would be. How is this done?

How they work
A lot of effort over several years by the Boost group (boost.org) went into making sure the C++11 smart pointers 

are very well-behaved and as foolproof as possible, and so the actual implementation is very subtle. But a simplified 
sketch of the implementation helps to understand how to use these smart pointers. Below is a diagram illustrating in 
simplified form what goes on under the hood of shared_ptr and weak_ptr.

�

The process starts when the managed object is dynamically allocated, and the first shared_ptr (sp1) is created 
to point to it; the shared_ptr constructor creates a manager object (dynamically allocated). The manager object 
contains a pointer to the managed object; the overloaded member functions like shared_ptr::operator-> access 
the pointer in the manager object to get the actual pointer to the managed object.  The manager object also contains 1

two reference counts:  The shared count counts the number of shared_ptrs pointing to the manager object, and the 
weak count counts the number of weak_ptrs pointing to the manager object. When sp1 and the manager object are 
first created, the shared count will be 1, and the weak count will be 0. 

If another shared_ptr (sp2)  is created by copy or assignment from sp1, then it also points to the same manager 
object, and the copy constructor or assignment operator increments the shared count to show that 2 shared_ptrs 
are now pointing to the managed object. Likewise, when a weak pointer is created by copy or assignment from a 
shared_ptr or another weak_ptr for this object, it points to the same manager object, and the weak count is 
incremented. The diagram shows the situation after three shared_ptrs and two weak_ptrs have been created to 
point to the same object.
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 To keep the language from getting too clumsy, we'll say that a smart pointer is pointing to the managed object if it is pointing to 1

the manager object that actually contains the pointer to the managed object.
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Whenever a shared_ptr is destroyed, or reassigned to point to a different object, the shared_ptr destructor or 
assignment operator decrements the shared count. Similarly, destroying or reassigning a weak_ptr will decrement 
the weak count. Now, when the shared count reaches zero, the shared_ptr destructor deletes the managed object 
and sets the pointer to 0. If the weak count is also zero, then the manager object is deleted also, and nothing remains.  
But if the weak count is greater than zero, the manager object is kept. If the weak count is decremented to zero, and 
the shared count is also zero, the weak_ptr destructor deletes the manager object. Thus the managed object stays 
around as long as there are shared_ptrs pointing to it, and the manager object stays around as long as there are 
either shared_ptrs or weak_ptrs referring to it.

Here's why the weak_ptr is more useful than a built-in pointer. It can tell by looking at the manager object 
whether the managed object is still there: if the pointer and/or shared count are zero, the managed object is gone, and 
no attempt should be made to refer to it. If the pointer and shared count are non-zero, then the managed object is still 
present, and weak_ptr can make the pointer to it available. This is done by a weak_ptr member function that 
creates and returns a new shared_ptr to the object; the new shared_ptr increments the shared count, which 
ensures that the managed object will stay in existence as long as necessary. In this way, the weak_ptr can point to 
an object without affecting its lifetime, but still make it easy to refer to the object, and at the same time, ensure that 
it stays around if someone is interested in it.

But shared_ptr and weak_ptr have a fundamental difference: shared_ptr can be used syntactically almost 
identically to a built-in pointer. However, a weak_ptr is much more limited. You cannot use it like a built-in pointer  
— in fact, you can't use it to actually refer to the managed object at all! Almost the only things you can do are to 
interrogate it to see if the managed object is still there, or construct a shared_ptr from it. If the managed object is 
gone, the shared_ptr will be an empty one (e.g. it will test as zero); if the managed object is present, then the 
shared_ptr can be used normally. 

Important restrictions in using shared_ptr and weak_ptr
Although they have been carefully designed to be as fool-proof as possible, these smart pointers are not built into 

the language, but rather are ordinary classes subject to the regular rules of C++. This means that they aren't 
foolproof - you can get undefined results unless you follow certain rules that the compiler can't enforce. In a 
nutshell, these rules are:

• You can only use these smart pointers to refer to objects allocated with new and that can be deleted 
with delete. No pointing to objects on the function call stack! Trying to delete them will cause a run-
time error!

• You must ensure that there is only one manager object for each managed object. You do this by writing 
your code so that when an object is first created, it is immediately given to a shared_ptr to manage, 
and any other shared_ptrs or weak_ptrs that are needed to point to that object are all directly or 
indirectly copied or assigned from that first shared_ptr. The customary way to ensure this is to write 
the new object expression as the argument for a shared_ptr constructor, or use the make_shared 
function template described below.

• If you want to get the full benefit of smart pointers, your code should avoid using raw pointers to refer 
to the same objects; otherwise it is too easy to have problems with dangling pointers or double 
deletions. In particular, smart pointers have a get() function that returns the pointer member variable 
as a built-in pointer value. This function is rarely needed. As much as possible, leave the built-in 
pointers inside the smart pointers and use only the smart pointers.2

 There is no requirement that you use smart pointers everywhere in a program, it just recommended that you do not use both 2

smart and built-in pointers to the same objects.  Actually it is more subtle than that - having some built-in pointers in the mix 
might be useful, but only if you are hyper-careful that they cannot possibly be used if their objects have been deleted, and you 
never, ever, use them to delete the object or otherwise exercise ownership of the object with them.  Such mixed code can be very 
hard to get right. My recommendation is to point to a set of objects with either raw pointers (where you manage the ownership 
directly), or smart pointers (which automate the ownership), but never mix them in pointing to the same set of objects.
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Using shared_ptr
Basic use of shared_ptr

Using a shared_ptr is easy as long as you follow the rules listed above.  When you create an object with new, 
write the new expression in the constructor for the shared_ptr. Thereafter, use the shared_ptr as if it were a 
built-in pointer; it can be copied or assigned to another shared_ptr, which means it can be used as a call-by-value 
function argument or return value, or stored in containers. When it goes out of scope, or gets deleted, the reference 
count will be decremented, and the pointed-to object deleted if necessary. You can also call a reset() member 
function, which will decrement the reference count and delete the pointed-to object if appropriate, and result in an 
empty shared_ptr that is just like a default-constructed one. You can also reset a shared_ptr by assigning it the 
value nullptr, which is converted to an empty shared_ptr before the assignment. Thus while you will still write 
new to create an object, if you always use a shared_ptr to refer to it, you will never need to explicitly delete 
the object. Here is a code sketch illustrating the basic usage:

class Thing {
public:

void defrangulate();
};
ostream& operator<< (ostream&, const Thing&);
...
// a function can return a shared_ptr
shared_ptr<Thing> find_some_thing();
// a function can take a shared_ptr parameter by value; 
shared_ptr<Thing> do_something_with(shared_ptr<Thing> p); 
...
void foo() 
{

// the new is in the shared_ptr constructor expression:
shared_ptr<Thing> p1(new Thing);
...
shared_ptr<Thing> p2 = p1; // p1 and p2 now share ownership of the Thing
...
shared_ptr<Thing> p3(new Thing); // another Thing
p1 = find_some_thing(); // p1 may no longer point to first Thing
do_something_with(p2);
p3->defrangulate(); // call a member function like built-in pointer
cout << *p2 << endl; // dereference like built-in pointer
// reset with a member function or assignment to nullptr:
p1.reset(); // decrement count, delete if last
p2 = nullptr; // convert nullptr to an empty shared_ptr, and decrement count;

}
// p1, p2, p3 go out of scope, decrementing count, delete the Things if last

The design of shared_ptr helps prevent certain mistakes. For example, almost only way to get a shared_ptr 
to take an address from a raw pointer is with the constructor, which makes it easier to get a shared_ptr into the 
picture right away, and not have stray raw pointers running around that might be used to delete the object or start a 
separate shared_ptr family for the same object.  For example:3

Thing * bad_idea()
{

shared_ptr<Thing> sp; // an empty smart pointer
Thing * raw_ptr = new Thing;
sp = raw_ptr; // disallowed - compiler error !!!
return raw_ptr; // danger!!! - caller could make a mess with this!

}

 You can supply a raw pointer as the argument to the . reset() member function, which will "reseat" the shared_ptr to 3

point to the object; this does not seem to be that useful — I recommend using the constructor or make_shared.
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shared_ptr<Thing> better_idea()
{

shared_ptr<Thing> sp(new Thing);
...
return sp;

}

The only way you can get the raw pointer inside the manager object is with a member function, get() - there is 
no implicit conversion to the raw pointer type.  However, the raw pointer should be used with extreme caution - 
again you don't want to have stray raw pointers that refer to the managed objects:

Thing * another_bad_idea()

{
shared_ptr<Thing> sp(new Thing);
Thing * raw_ptr  = sp; // No implicit conversion! Compiler error!

Thing * raw_ptr = sp.get(); // you must want it, but why?
...
return raw_ptr; // danger!!! - caller could make a mess with this!

}

Inheritance and shared_ptr
A difficult part of the design of shared_ptr is to make sure that you can use them to refer to classes in a class 

hierarchy in the same way as built-in pointers. For example, with built-in pointers you can say:
class Base {};
class Derived : public Base {};
...
Derived * dp1 = new Derived;
Base * bp1 = dp1;
Base * bp2(dp1);
Base * bp3 = new Derived;

The constructors and assignment operators in shared_ptr (and weak_ptr) are defined with templates so that if 
the built-in pointers could be validly copied or assigned, then the corresponding shared_ptrs can be also:

class Base {};
class Derived : public Base {};
...
shared_ptr<Derived> dp1(new Derived);
shared_ptr<Base> bp1 = dp1;
shared_ptr<Base> bp2(dp1);
shared_ptr<Base> bp3(new Derived);4

Casting shared_ptrs
One excuse for getting the raw pointer from a shared_ptr would be in order to cast it to another type. Again to 

make it easier to avoid raw pointers, C++11 supplies some function templates that provide a casting service 
corresponding to the built-in pointer casts. These functions internally call the get() function from the supplied 

 This usage is correct, but has an odd effect. The manager object stores a pointer of the original type, Derived*, but get() 4

and the dereferencing operators will convert the stored pointer to a Base*. But the managed object will get deleted through the 
stored Derived* pointer, not through a Base* pointer. So if you forget the recommendation to declare ~Base() as virtual, 
deletion will still start with ~Derived(), unlike what would happen if you delete through a built-in Base* pointer, and 
furthermore, in this situation, correct destruction would then not happen if there are classes further derived from Derived 
unless you happened to declare ~Derived()as virtual. Rather than risk this confusion, you should still follow the usual 
recommendation to declare ~Base() as virtual, which also insures that all derived class destructors are virtual, so that correct 
destruction will happen no matter whether or how the client code is using smart pointers.
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pointer, perform the cast, and return a shared_ptr of the specified type. Again the goal is to emulate what can be 
done with built-in pointers, so they will be valid if and only if the corresponding cast between built-in pointers is 
valid. Continuing the above example:

shared_ptr<Base> base_ptr (new Base);
shared_ptr<Derived> derived_ptr;
// if static_cast<Derived *>(base_ptr.get()) is valid, then the following is valid:
derived_ptr = static_pointer_cast<Derived>(base_ptr);

Note how the casting function looks very similar to a built-in cast, but it is a function template being instantiated, 
not a built-in operator in the language. The available casting functions are static_pointer_cast, 
const_pointer_cast, and dynamic_pointer_cast, corresponding to the built-in cast operators with the 
similar names.

Testing and comparing shared_ptrs
You can compare two shared_ptrs using the ==, !=, and < operators; they compare the internal raw pointers and 

so behave just like these operators between built-in pointers. In addition, a shared_ptr provides a conversion to a 
bool, so that you can test for whether the internal raw pointer to the managed object is zero or not: So if sp is a 
shared_ptr, if(sp) will test true if sp is pointing to an object, and false if it is not pointing to an object, just like 
a built-in pointer. 5

Getting better memory allocation performance
A problem with shared_ptr is that if you create an object with new, and then create a shared_ptr, as in the 

usual scenario:
shared_ptr<Thing> p(new Thing);

There are actually two dynamic memory allocations that happen: one for the object itself from the new, and then a 
second for the manager object created by the shared_ptr constructor.  Since memory allocations are slow, this 
means that creating a shared_ptr is slow relative to using either a raw pointer, or a so-called "intrusive" reference-
counted smart pointer where the reference count is a member variable of the object. To address this problem, C++11 
includes a function template make_shared that does a single memory allocation big enough to hold both the 
manager object and the new object, passing along any constructor parameters that you specify, and returns a 
shared_ptr of the specified type, which can then be used to initialize the shared_ptr that you are creating (with 
efficient move semantics). So instead of:

shared_ptr<Thing> p(new Thing); // ouch - two allocations
you would write:

shared_ptr<Thing> p(make_shared<Thing>()); // only one allocation!
Why does <Thing> appear twice in this statement? The make_shared function returns a shared_ptr of its 
specified type, which doesn't have to be the same as the type of the shared_ptr that we are initializing (as long as 
they can be converted — see above). This enables you to specify the pointer type of the shared_ptr and the type 
of the constructed object separately, as in:

shared_ptr<Base> bp(make_shared<Derived1>());
This creates an object whose type is Derived1 (that inherits from Base), and returns a shared_ptr<Derived1> 
that is used to initialize the shared_ptr<Base>.

Finally, if Thing's constructor had parameters, you would place their values in the argument list of 
make_shared:

 The Standard says shared_ptrs can have only an explicit conversion to a bool type that must be explicit - which is a good 5

idea. The compiler automatically applies this conversion in a conditional or logical expression. However, assigning a 
shared_ptr to a bool variable, or returning it from a function that returns bool requires you to explicitly convert it with a 
static_cast or a constructor-style cast. Do not try to avoid the cast using an implicit conversion with the result of the 
get()function - this can look like an exposure of the raw pointer, which really does need to be avoided if at all possible.
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shared_ptr<Thing> p (make_shared<Thing>(42, "I'm a Thing!"));
Thanks to the magic of C++11 variadic templates and perfect forwarding, you can write anything in the function 
argument list that you could write in an ordinary constructor argument list, and they will get correctly passed to the 
constructor. 

Using make_shared also avoids explicit use of new, promoted in the slogan “no naked new!” That is, if you are 
using shared_ptrs throughout a project, then never writing new, and always using make_shared, is an easy way 
to make sure that all allocated objects are managed by shared_ptrs. 

Because only a single memory allocation is involved when you use make_shared to initialize a shared_ptr, 
you can expect improved performance over the separate allocation approach; this can be valuable if there are a lot of 
shared_ptrs being created.  As usual, the object's destructor will be called when the last shared_ptr is 
destroyed, but there is a possible downside that if there are still weak_ptrs referring to the object, the entire chunk 
of memory will not be returned to the allocation pool until the last weak_ptr is destroyed. 

Using weak_ptr
Weak pointers just "observe" the managed object; they don't "keep it alive" or affect its lifetime. Unlike 

shared_ptrs, when the last weak_ptr goes out of scope or disappears, the pointed-to object can still exist because 
the weak_ptrs do not affect the lifetime of the object - they have no ownership rights. But the weak_ptr can be 
used to determine whether the object exists, and to provide a shared_ptr that can be used to refer to it. 

The definition of weak_ptr is designed to make it relatively foolproof, so as a result there is very little you can do 
directly with a weak_ptr. For example, you can't dereference it; neither operator* nor operator-> is defined 
for a weak_ptr.  You can't access the pointer to the object with it - there is no get() function. There is a 
comparison function defined so that you can store weak_ptrs in an ordered container; but that's all.

Initializing a weak_ptr
A default-constructed weak_ptr is empty, pointing to nothing (not even a manager object). You can point a 

weak_ptr to an object only by copy or assignment from a shared_ptr or an existing weak_ptr to the object. In 
the example below, we create a new Thing pointed to by sp; then are shown the possible ways of getting a 
weak_ptr to also point to the new Thing. This makes sure that a weak_ptr is always referring to a manager object 
created by a shared_ptr.

shared_ptr<Thing> sp(new Thing);

weak_ptr<Thing> wp1(sp); // construct wp1 from a shared_ptr
weak_ptr<Thing> wp2; // an empty weak_ptr - points to nothing
wp2 = sp; // wp2 now points to the new Thing
weak_ptr<Thing> wp3 (wp2); // construct wp3 from a weak_ptr
weak_ptr<Thing> wp4 
wp4 = wp2; // wp4 now points to the new Thing.

You can use the reset() member function to set a weak_ptr back to the empty state in which it is pointing to 
nothing.6

Using a weak_ptr to refer to an object
You can't refer to the object directly with a weak_ptr; you have to get a shared_ptr from it first with the 

lock() member function. The lock() function examines the state of the manager object to determine whether the 
managed object still exists, and provides a empty shared_ptr if it does not, and a shared_ptr to the manager 
object if it does; the creation of this shared_ptr has the effect of ensuring that the managed object, if it still exists, 
stays in existence while we use it; it "locks" it into existence, so to speak (explaining the name). Continuing the 
above example:

shared_ptr<Thing> sp2 = wp2.lock(); // get shared_ptr from weak_ptr

 Unlike shared_ptr, you can't reset a weak_ptr by assignment to nullptr.6
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Now that we have another shared_ptr for the new Thing, the previous one (sp) can go out of scope, and the 
Thing will stay in existence.  However, in the normal use of a weak_ptr, it is possible that the managed object has 
already been deleted. For example, suppose we have a function that takes a weak_ptr as a parameter and wants to 
call Thing's defrangulate() function using the weak_ptr. We can't call the member function for a non-existent 
object, so we have to check that the object is still there before calling the function.  There are three ways to do this:

1. We can go ahead and get the shared_ptr,  but test for whether it is empty or pointing to something by testing 
it for true/false, analogous to what we would do with a built-in pointer that might be zero:

void do_it(weak_ptr<Thing> wp){
shared_ptr<Thing> sp = wp.lock(); // get shared_ptr from weak_ptr
if(sp)

sp->defrangulate(); // tell the Thing to do something
else

cout << "The Thing is gone!" << endl;
}

This is the most useful and common way to use a weak_ptr to access the object.
2. We can ask the weak_ptr  if it has "expired":
bool is_it_there(weak_ptr<Thing> wp) {

if(wp.expired()) {
cout << "The Thing is gone!" << endl;
return false;
}

return true;
}

This approach is useful as a way to simply ask whether the pointed-to object still exists. Notice that if after calling 
expired(), the code goes on to use lock() to get a shared_ptr to the object, testing first for expired() is 
redundant and may actually be problematic.7

3. We can construct a shared_ptr from a weak_ptr; if the weak_ptr is expired, an exception is thrown, of type 
std::bad_weak_ptr. This has its uses, but the first method is generally handier and more direct. Example:

void do_it(weak_ptr<Thing> wp){
shared_ptr<Thing> sp(wp); // construct shared_ptr from weak_ptr
// exception thrown if wp is expired, so if here, sp is good to go
sp->defrangulate(); // tell the Thing to do something

}
...
try {

do_it(wpx);
}
catch(bad_weak_ptr&)
{

cout << "A Thing (or something else) has disappeared!" << endl;
}

 The C++11 smart pointers are designed to be thread-safe (at least on most platforms). But notice that in a multithreaded 7

environment, some other thread may have been holding the shared_ptrs to the object we are pointing to with the weak_ptr, 
so if the weak_ptr is not expired, and we go ahead and acquire the shared_ptr with .lock(), we need to check the 
shared_ptr again in case the object got deleted between the expired() call and the lock() call.
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Special Case: Getting a shared_ptr for "this" Object
Why this is a problem: Suppose we have a situation where a Thing member function needs pass a pointer to "this" 

object to another function, for example an ordinary function of some sort. If we are not using smart pointers, there is 
no problem:

class Thing {
public:

void foo();
void defrangulate();

};

void transmogrify(Thing *);
int main()
{

Thing * t1 = new Thing;
t1->foo();
...
delete t1; // done with the object

}
...

void Thing::foo()
{

// we need to transmogrify this object 
transmogrify(this);

}
...
void transmogrify(Thing * ptr)
{

ptr->defrangulate();
/* etc. */

}
Now say we want to use smart pointers to automate the memory management for Thing objects. To be reliable, 

this means we need to avoid all raw pointers to Things, and hand around only smart pointers. One would think all 
we need to do is change all the Thing * to shared_ptr<Thing>, and then the following code would compile; but 
there is a big problem with it:

class Thing {
public:

void foo();
void defrangulate();

};
void transmogrify(shared_ptr<Thing>);
int main()
{

shared_ptr<Thing> t1(new Thing); // start a manager object for the Thing
t1->foo();
...
// Thing is supposed to get deleted when t1 goes out of scope

}
...
void Thing::foo()
{

// we need to transmogrify this object
shared_ptr<Thing> sp_for_this(this); // danger! a second manager object!
transmogrify(sp_for_this);

}
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...
void transmogrify(shared_ptr<Thing> ptr)
{

ptr->defrangulate();
/* etc. */}

When main creates the shared_ptr named t1, a manager object gets created for the new Thing. But in function 
Thing::foo we create a shared_ptr<Thing> named sp_for_this which is constructed from the raw pointer 
this.  We end up with a second manager object which is pointed to the same Thing object as the original manager 
object. Oops! Now we have a double-deletion error waiting to happen - in this example, as soon as the 
sp_for_this goes out of scope, the Thing will get deleted; then when the rest of main tries to use t1 it may find 
itself trying to talk to a non-existent Thing, and when t1 goes out of scope, we will be deleting something that has 
already been deleted, corrupting the heap.

While one could tinker with any one chunk of code to work around the problem, a general solution is preferable. If 
we can ensure that the managed object contains a weak_ptr referring to the same manager object as the first 
shared_ptr does, then it is pointing to this object, and so at any time we can get a shared_ptr from the 
weak_ptr that will work properly. The desired situation is shown in the diagram below:

�

Getting this done in a reliable way is a bit tricky. Rather than DIY code, you should use the solution provided in the 
C++11 Library. There is a template class named std::enabled_shared_from_this which has a weak_ptr as a 
member variable and member function named shared_from_this() which returns a shared_ptr constructed 
from the weak_ptr. 

The Thing class must be modified to inherit from enabled_shared_from_this<Thing>, so that Thing now 
has a weak_ptr<Thing> as a member variable. When the first shared_ptr to a Thing object is created, the 
shared_ptr constructor uses template magic to detect that the enable_shared_from_this base class is present, 
and then initializes the weak_ptr member variable from the first shared_ptr. Once this has been done, the 
weak_ptr in Thing points to the same manager object as the first shared_ptr. Then when you need a 
shared_ptr pointing to this Thing, you call the shared_from_this() member function, which returns a 
shared_ptr obtained by construction from the weak_ptr, which in turn will use the same manager object as the 
first shared_ptr.  

The above example code would be changed to first, have the Thing class inherit from the template class, and 
second, use shared_from_this() to get a pointer to this object:

class Thing : public enable_shared_from_this<Thing> {
public:

void foo();
void defrangulate();

};

int main()
{

// The following starts a manager object for the Thing and also
// initializes the weak_ptr member that is now part of the Thing.
shared_ptr<Thing> t1(new Thing);
t1->foo();
...

}
...

first 
shared_ptr

weak_ptr

pointer
shared count: 1
weak count: 1

manager object
managed object
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void Thing::foo()
{

// we need to transmogrify this object
// get a shared_ptr from the weak_ptr in this object
shared_ptr<Thing> sp_this = shared_from_this();
transmogrify(sp_this);

}
...

void transmogrify(shared_ptr<Thing> ptr)
{

ptr->defrangulate();
/* etc. */

}

Now when sp_this goes out of scope, there is no problem - there is only the single, original, manager object for 
the Thing.  Problem solved - the world is safe for using smart pointers everywhere!

There are three problems with this solution. First, to get a smart this pointer, we have to modify the Thing class, 
and carefully follow the rule of creating the Thing object only in the constructor of a shared_ptr. However, one 
should be following this rule anyway with shared_ptr. Second, you can't use shared_from_this() in the 
constructor of the Thing class. The weak_ptr member variable has to be set to point to the manager object by the 
shared_ptr constructor, and this can't run until the Thing constructor has completed. You'll have to do some kind 
of work-around, like a calling another member function on the constructed Thing that completes the setup involved 
that needs the shared_from_this(). Third, if you don't have access or permission to modify the Thing class, you 
can't use the enable_shared_from_this without wrapping Thing in another class, leading to some complexity. 
But only some class designs need to hand a this pointer around, and so the problem is not inevitable. 

Conclusion
C++11's shared_ptr and weak_ptr work well enough that many software organizations have adopted them as a 

standard smart pointer implementation. So feel free to use them to automate or simplify your memory management, 
especially when objects may end up pointing to each other in hard-to-predict ways. 

Unique Ownership with unique_ptr
At first glance, unique_ptr looks like it gives you the same thing as shared_ptr. With a unique_ptr, you can 

point to an allocated object, and when the unique_ptr goes out of scope, the pointed-to object gets deleted, and 
this happens regardless of how we leave the function, either by a return or an exception being thrown somewhere. 
For example:

void foo ()
{

unique_ptr<Thing> p(new Thing); // p owns the Thing
p->do_something(); // tell the thing to do something
defrangulate(); // might throw an exception

} // p gets destroyed; destructor deletes the Thing

Note that to use unique_ptr reliably, you need to follow the same basic rules as those presented earlier for 
shared_ptr. So why is unique_ptr worth having, since you could use a shared_ptr to do the same thing? 
There are two reasons: 

First, the basic mechanism of unique_ptr is so simple that it costs nothing to use. It has a pointer member 
variable of type Thing* that either points to an object, which means the unique_ptr owns it, or it is zero 
(nullptr in C++11), meaning that the unique_ptr doesn't own any object. Either way, all the destructor has to do 
is a delete on this pointer variable and if the unique_ptr owns an object, it is gone, or nothing happens if it 
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doesn't own an object .  Compare this to the overhead of how shared_ptrs dynamically allocate a manager object 8

and then increment/decrement and test one or two reference counts. This simplicity means that there is really zero 
overhead of using of unique_ptr compared to a built-in pointer. So the automatic cleanup costs nothing!  It has 
already become recommended practice to use unique_ptr in this sort of scenario. 

Second, unique_ptr implements a unique ownership concept - an object can be owned by only one 
unique_ptr at a time - the opposite of shared ownership. This means unique_ptr is very different from 
shared_ptr; this special feature is explained in the rest of this handout.

What makes the ownership unique?
An object is owned by exactly one unique_ptr.  The unique ownership is enforced by disallowing (with 

=delete) copy construction and copy assignment. So unlike built-in pointers or shared_ptr, you can't copy or 
assign a unique_ptr to another unique_ptr. If you follow the basic rules for using smart pointers, this means that 
you can't have two unique_ptrs that contain the same raw pointer value and so claim ownership to the same object 
and cause double deletion problems if both go out of scope. Forbidding copy takes care of this:

unique_ptr<Thing> p1 (new Thing); // p1 owns the Thing
unique_ptr<Thing> p2(p1); // error - copy construction is not allowed.
unique_ptr<Thing> p3; // an empty unique_ptr;
p3 = p1; // error, copy assignment is not allowed.

Notice that since copy construction is disallowed, if you want to pass a unique_ptr as a function argument, you 
have to do it by reference. 

A couple of additional goodies: You can test a unique_ptr to see if it owns an object (e.g. with if(p)); there is 
a conversion to bool that supplies the value of the pointer member variable as true/false.  If you want to delete the 9

object manually, call the reset() function or assign to nullptr  – this does the delete and then resets the 
internal pointer to nullptr.

Transferring ownership
While unique_ptr is defined to help you avoid ambiguous ownership, it might be handy to transfer ownership of 

an object from one unique_ptr to another.  This allows one to directly represent the idea of having several 
potential owners of an object, but only one of them can own the object at a time. This is easily done with move 
semantics: the move constructor and move assignment operator are defined for unique_ptr so that they transfer 
ownership from the original owner to the new owner.  After move construction, the newly created unique_ptr 
owns the object and the original unique_ptr owns nothing. After move assignment, the object previously owned 
by the left-hand unique_ptr has been deleted, and the left-hand unique_ptr now owns the object previously 
owned by the right-hand unique_ptr, which now owns nothing.  The implementation is fast and simple – the 
unique_ptr moving code just copies and zeroes the pointer member variables.

Remember that the returned value of a function is a rvalue, so the presence of move construction and assignment 
means that we can return a unique_ptr from a function and assign it to another unique_ptr; the effect is that 
ownership of the object is passed out of the function into the caller's unique_ptr. A little example:

//create a Thing and return a unique_ptr to it:
unique_ptr<Thing> create_Thing()
{

unique_ptr<Thing> local_ptr(new Thing);
return local_ptr;  // local_ptr will surrender ownership

}
void foo()
{

unique_ptr<Thing> p1(create_Thing()); // move ctor from returned rvalue

�  Recall that the delete operator is defined as doing nothing if it is given a zero or nullptr value.8

 This conversion operator is explicit - see the previous footnote about converting shared_ptr to bool.9
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// p1 now owns the Thing
unique_ptr<Thing> p2;  // default ctor'd; owns nothing
p2 = create_Thing(); // move assignment from returned rvalue
// p2 now owns the second Thing

}

Thus ownership can be transferred implicitly from an rvalue unique_ptr, but not from an lvalue unique_ptr.

Explicit transfer of ownership between unique_ptrs
If you really want to transfer ownership from one unique_ptr to another, you can use move semantics  to do it; 

all you have to do is treat the original unique_ptr as an rvalue using std::move(), which casts its argument to an 
rvalue reference. Then the move version of construction or assignment will be invoked.  For example:

unique_ptr<Thing> p1(new Thing); // p1 owns the Thing
unique_ptr<Thing> p2; // p2 owns nothing

// invoke move assignment explicitly
p2 = std::move(p1); // now p2 owns it, p1 owns nothing

// invoke move construction explicitly
unique_ptr<Thing> p3(std::move(p2)); // now p3 owns it, p2 and p1 own nothing

Using unique_ptr with Standard Containers
You can fill a Standard Container with unique_ptrs that own objects, and the ownership then effectively resides 

in the container. Here are several key things to remember in making use of this interesting concept:

• You must fill the container by supplying rvalue unique_ptrs, so the ownership transfers into the 
unique_ptr in the container. Either use an unnamed rvalue unique_ptr as the argument for the 
container inserting/filling function, or use std::move with a named unique_ptr.

• If you erase an item in the container, you are destroying the unique_ptr, which will then delete the 
object it is pointing to.

• If you empty, clear, or destroy the container, all of the pointed-to objects will be deleted because all the 
unique_ptrs will be destroyed.

• If you transfer ownership out of container items, the empty unique_ptrs stay in the container. If you 
leave empty unique_ptrs in the container, your code will need to check for empty unique_ptrs 
before dereferencing them.

• You can refer to an object by referring to the unique_ptr in the container without trying to copy or 
take it out of the container (you may have to test it for nullptr first - see above). For example: 
std::vector<unique_ptr<Thing>> v;
...
if(v[3])  // check that v[3] still owns an object

v[3]->defrangulate(); // tell object pointed to by v[3] to defrangulate

See the course examples directory for some demo code that uses unique_ptr with Standard Containers.

Avoiding explicit new
For symmetry with shared_ptr, and to support the “no naked new” slogan, C++14 added a make_unique 

template analogous to make_shared, so that you can create both the unique_ptr and the pointed-to object 
without explicitly invoking new. However, there is no performance improvement in this case because there is no 
need to allocate a manager object with unique_ptr.

Conclusion
The most common use of unique_ptr is as a pretty fool-proof way of making sure an object allocated in a 

function (or class constructor) gets deleted. However, there are situations in which ownership of objects needs to be 
transferred around but always remains in one place at a time; unique_ptr gives you way to represent this concept 
directly. 

�14


