
A Lex Tutorial

Victor Eijkhout

July 2004

1 Introduction

The unix utility lexparses a file of characters. It uses regular expression matching; typically
it is used to ‘tokenize’ the contents of the file. In that context, it is often used together with
theyaccutility. However, there are many other applications possible.

2 Structure of a lexfile

A lexfile looks like

...definitions...
%%

...rules...
%%

...code...

Here is a simple example:

%{
int charcount=0,linecount=0;

%}

%%

. charcount++;
\n {linecount++; charcount++;}

%%
int main()
{

yylex();
printf("There were %d characters in %d lines\n",

charcount,linecount);
return 0;

}

If you store this code in a filecount.l , you can build an executable from it by

lex -t count.l > count.c
cc -c -o count.o count.l
cc -o counter count.o -ll

1

You see that thelex file is first turned into a normal C file, which is then compiled and
linked.

If you use themakeutility (highly recommended!) you can save a few steps becausemake
knows aboutlex:

counter: count.o
cc -o counter count.o -ll

In the example you just saw, all three sections are present:

definitions All code between%{ and%} is copied to the beginning of the resulting C file.
rules A number of combinations of pattern and action: if the action is more than a single

command it needs to be in braces.
code This can be very elaborate, but the main ingredient is the call toyylex , the lexical

analyser. If the code segment is left out, a default main is used which only calls
yylex .

3 Definitions section

There are three things that can go in the definitions section:

C code Any indented code between%{ and%} is copied to the C file. This is typically
used for defining file variables, and for prototypes of routines that are defined in the
code segment.

definitions A definition is very much like a#define cpp directive. For example
letter [a-zA-Z]
digit [0-9]
punct [,.:;!?]
nonblank [ˆ \t]
These definitions can be used in the rules section: one could start a rule
{letter}+ {...

state definitions If a rule depends on context, it’s possible to introduce states and incor-
porate those in the rules. A state definition looks like%s STATE, and by default a
stateINITIAL is already given. See section 4.2 for more info.

4 Rules section

The rules section has a number of pattern-action pairs. The patterns are regular expressions
(see section 5, and the actions are either a single C command, or a sequence enclosed in
braces.

If more than one rule matches the input, the longer match is taken. If two matches are the
same length, the earlier one in the list is taken.

4.1 Matched text

When a rule matches part of the input, the matched text is available to the programmer as
a variablechar* yytext of lengthint yyleng .

To extend the example from the introduction to be able to count words, we would write

2

%{
int charcount=0,linecount=0,wordcount=0;

%}
letter [ˆ \t\n]

%%

{letter}+ {wordcount++; charcount+=yyleng;}
. charcount++;
\n {linecount++; charcount++;}

4.2 State

If the application of a rule depends on context, there are a couple of ways of dealing with
this. We distinguish between ‘left state’ and ‘right state’, basically letting a rule depend on
what comes before or after the matched token.

See section 8.1 for a good example of the use of state.

4.2.1 Left state

A rule can be prefixed as

<STATE>(some pattern) {...

meaning that the rule will only be evaluated if the specified state holds. Switching between
states is done in the action part of the rule:

<STATE>(some pattern) {some action; BEGIN OTHERSTATE;}

where all state names have been defined with%s SOMESTATEstatements, as described in
section 3. The initial state oflex is INITIAL .

4.2.2 Right state

It is also possible to let a rule depend on what follows the matched text. For instance

abc/de {some action}

means ‘matchabc but only when followed byde . This is different from matching on
abcde because thede tokens are still in the input stream, and they will be submitted to
matching next.

It is in fact possible to match on the longer string; in that case the command

abcde {yyless(3);}

pushes back everything after the first 3 characters. The difference with the slash approach
is that now the right state tokens are actually inyytext so they can be inspected.

5 Regular expressions

Many Unix utilities have regular expressions of some sort, but unfortunately they don’t all
have the same power. Here are the basics:

. Match any character except newlines.
\n A newline character.

3

\t A tab character.
ˆ The beginning of the line.
$ The end of the line.
<expr>* Zero or more occurences of the expression.
<expr>+ One or more occurences of the expression.
(<expr1>|<expr2>) One expression of another.
[<set>] A set of character or ranges, such as[a-zA-Z] .
[ˆ<set>] The complement of the set, for instance[ˆ \t] .

6 User code section

If the lex program is to be used on its own, this section will contain amain program. If
you leave this section empty you will get the default main:

int main()
{

yylex();
return 0;

}

whereyylex is the parser that is built from the rules.

7 Lex and Yacc

The integration oflex andyaccwill be discussed in theyacctutorial; here are just a few
general comments.

7.1 Definition section

In the section of literal C code, you will most likely have an include statement:

#include "mylexyaccprog.h"

as well as prototypes ofyaccroutines such asyyerror that you may be using. In some
yaccimplementations declarations like

extern int yylval;

are put in the.h file that theyaccprogram generates. If this is not the case, you need to
include that here too if you useyylval .

7.2 Rules section

If you lexprogrammer is supplying a tokenizer, theyaccprogram will repeatedly call the
yylex routine. The rules will probably function by callingreturn everytime they have
constructed a token.

7.3 User code section

If the lex program is used coupled to ayaccprogram, you obviously do not want a main
program: that one will be in theyacccode. In that case, leave this section empty; thanks to
some cleverness you will not get the default main if the compiledlex andyaccprograms
are linked together.

4

8 Examples

8.1 Text spacing cleanup

(This section illustrates the use of states; see section 4.2.)

Suppose we want to clean up sloppy spacing and punctuation in typed text. For example,
in this text:

This text (all of it)has occasional lapses , in
punctuation(sometimes pretty bad) ,(sometimes not so).

(Ha!) Is this: fun? Or what!

We have

• Multiple consecutive blank lines: those should be compacted.
• Multiple consecutive spaces, also to be compacted.
• Space before punctuation and after opening parentheses, and
• Missing spaces before opening and after closing parentheses.

That last item is a good illustration of where state comes in: a closing paren followed by
punctuation is allowed, but followed by a letter it is an error to be corrected.

8.1.1 Right state solution

Let us first try a solution that uses ‘right state’: it basically describes all cases and corrects
the spacing.

punct [,.;:!?]
text [a-zA-Z]

%%

")"" "+/{punct} {printf(")");}
")"/{text} {printf(") ");}
{text}+" "+/")" {while (yytext[yyleng-1]==’ ’) yyleng--; ECHO;}

({punct}|{text}+)/"(" {ECHO; printf(" ");}
"("" "+/{text} {while (yytext[yyleng-1]==’ ’) yyleng--; ECHO;}

{text}+" "+/{punct} {while (yytext[yyleng-1]==’ ’) yyleng--; ECHO;}

ˆ" "+ ;
" "+ {printf(" ");}
. {ECHO;}
\n/\n\n ;
\n {ECHO;}

In the cases where we match superfluous white space, we manipulateyyleng to remove
the spaces.

8.1.2 Left state solution

One problem with the right state approach is that generalizing it may become unwieldy:
the number of rules potentially grows as the product of the number of categories that we

5

recognise before and after the spaces. A solution that only grows as the sum of these can
be found by using ‘left state’.

Using left state, we implement a finite state automaton inlex, and specify how to treat
spacing in the various state transitions. Somewhat surprisingly, we discard spaces entirely,
and reinsert them when appropriate.

We recognise that there are four categories, corresponding to having just encountered an
open or close parenthesis, text, or punctuation. The rules for punctuation and closing paren-
theses are easy, since we discard spaces: these symbols are inserted regardless the state. For
text and opening parentheses we need to write rules for the various states.

punct [,.;:!?]
text [a-zA-Z]

%s OPEN
%s CLOSE
%s TEXT
%s PUNCT

%%

" "+ ;

<INITIAL>"(" {ECHO; BEGIN OPEN;}
<TEXT>"(" {printf(" "); ECHO; BEGIN OPEN;}
<PUNCT>"(" {printf(" "); ECHO; BEGIN OPEN;}

")" {ECHO ; BEGIN CLOSE;}

<INITIAL>{text}+ {ECHO; BEGIN TEXT;}
<OPEN>{text}+ {ECHO; BEGIN TEXT;}
<CLOSE>{text}+ {printf(" "); ECHO; BEGIN TEXT;}
<TEXT>{text}+ {printf(" "); ECHO; BEGIN TEXT;}
<PUNCT>{text}+ {printf(" "); ECHO; BEGIN TEXT;}

{punct}+ {ECHO; BEGIN PUNCT;}

\n {ECHO; BEGIN INITIAL;}

%%

6

	 Introduction
	 Structure of a lex file
	 Definitions section
	 Rules section
	 Matched text
	 State
	 Left state
	 Right state

	 Regular expressions
	 User code section
	 Lex and Yacc
	 Definition section
	 Rules section
	 User code section

	 Examples
	 Text spacing cleanup
	 Right state solution
	 Left state solution

