
Chapter 8

Electrolyte Solutions

In the last few chapters of this book, we will deal with several specific types of
chemical systems. The first one is solutions and equilibria involving electrolytes,
which we will take up in this chapter. The thermodynamics of electrolyte so-
lutions is important for a large number of chemical systems, such as acid-base
chemistry, biochemical processes and electrochemical reactions.

8.1 Electrolyte Solutions and Their Nonideality

An electrolyte is a compound which produces an ionic solution when dissolved in
an aqueous solution. For example, a salt like KCl would produce an electrolyte
solution. Those compounds which produce a large number of ions in solution are
called strong electrolytes. KCl, because it is highly soluble, would be a strong
electrolyte. On the other hand, those compounds which produce a small number
of ions in solution are weak electrolytes. Notice that nonionic compounds can
produce electrolyte solutions too. Common examples are acids produced by
dissolving molecules such as HCl in water. Soluble compounds that produce no
dissolved ions are called nonelectrolytes.

In the last few chapters when we deal with solutions, we see that the activity
is used to describe the correction to the chemical potential when a compound
is not pure:

µi = µ◦i +RT ln ai, (8.1)

where µ◦i is the chemical potential of the pure standard state and ai is the
activity. When a solution is ideal, the activity of the solvent as are just equal
to its mole fraction xs. But for a dilute solute i, the approximation ai ≈ xi
is expected to also hold, because as we have seen in Ch. 5, the Gibbs-Duhem
equation demands that if the solvent has as = xs, a dilute solute should also
have ai = xi. In fact, when studying the liquid-vapor coexistence of binary
mixtures, we have found that because of Henry’s law, the chemical potential of
the solute is indeed approximately given by

µi ≈ µ∗i +RT lnxi, (8.2)
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2 8.2. ACTIVITY COEFFICIENTS OF ELECTROLYTE SOLUTIONS

where µ∗i is the chemical potential for Henry’s law standard state. The approx-
imation ai ≈ xi is good for many nonelectrolyte solutions up to rather large
solute mole fractions xi ≈ 0.05 or even 0.1. But for most electrolyte solutions,
substantial deviations from ideality begin to show at mole fractions as small as
10−4 or 10−5. Therefore, the nonideality of nonelectrolyte solutions cannot be
ignored.

8.2 Activity Coefficients of Electrolyte Solutions

To begin the discussion of nonideality in electrolyte solutions, we first define
the activity coefficients. Let’s say we have an electrolyte which when one mole
of it is dissolved in an aqueous solution, ν+ moles of positive ions with charge
z+ and ν− moles of negative ions with charge z− are produced. An example is
Na2SO4, for which ν+ = 2, z+ = +1, ν− = 1, and z− = −2. If n moles of this
electrolyte is dissolved, the solute’s contribution to the Gibbs free energy of the
entire solution is:

G−Gs = nµ = n(ν+µ+ + ν−µ−), (8.3)

where µ+ and µ− are the chemical potentials of the positive and negative ions
separately, and Gs is the free enrgy due to the solvent.

Because the effects of the positive and negative ions are difficult to separate,
we often define the mean ionic chemical potential µ± as:

µ = νµ± = ν+µ+ + ν−µ− (8.4)

where ν is the total number of ions produced by one mole of solute:

ν = ν+ + ν−. (8.5)

In this way, the chemical potential of the solute (from both the positive and
negative ions) becomes:

µ = µ◦ +RT ln a = ν(µ◦± +RT ln a±), (8.6)

where a± is the mean ionic activity of the solute, which is related to the
activity a by a = aν±. On the other hand, if we were able to write the chemical
potential separately for the positive and the negative ions, we would have:

µ = ν+(µ◦+ +RT ln a+) + ν−(µ◦− +RT ln a−), (8.7)

where a+ and a− are their activities separately, we see that the mean ionic
activity is just the geometric mean of the two separate ionic activities:

aν± = a
ν+
+ · a

ν−
− . (8.8)

To quantify the concentration of electrolyte solutions, it is often convenient
to use the molality instead of mole fraction. The molality m of a solute is
defined as the number of moles of the solute n per kilogram of solvent. Because
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CHAPTER 8. ELECTROLYTE SOLUTIONS 3

the solvent has a certain molar mass, the molality of solute i is simply related
to its mole fraction xi by:

mi =
1000xi
xsMs

, (8.9)

where xs and Ms are the mole fraction and the molar mass (in g/mol) of the
solvent (the factor 1000 is needed because the molar mass is usually represented
in units of grams per mole). The nice feature about using the molality to
describe solute concentration instead of the mole fraction or the molarity is
that the molality of one solute is independent of all other solutes. In contrast
to the molarity, the molality is also independent of temperature or the mixing
volume. In the dilute limit, all three concentration measures are proportional
to each other. The activity of a solute in an electrolyte solution is often written
as the activity coefficient γ multiplied by its molality m, so that Eqs.(8.6)
and (8.7) become:

µ = µ◦ +RT ln γm = ν(µ◦± +RT ln γ±m±) (8.10)
= ν+(µ◦+ +RT ln γ+m+) + ν−(µ◦− +RT ln γ−m−), (8.11)

which requires that the mean ionic activity coefficient γ± and the mean
ionic molality m± be related to the corresponding properties of the separate
ions as:

γν±m
ν
± = γ

ν+
+ γ

ν−
− m

ν+
+ m

ν−
− , (8.12)

or separating the activity coefficient from the molality:

γν± = γ
ν+
+ γ

ν−
− , (8.13)

mν
± = m

ν+
+ m

ν−
− . (8.14)

Using the molality of the positive and negative ions

m+ = ν+m m− = ν−m, (8.15)

we can obtain the necessary relationship between the mean ionic molality and
the molality of the solute as

m± = (νν++ ν
ν−
− )1/νm. (8.16)

With this relationship, we can calculate m± from the molality of the solute.
The corresponding expression for the chemical potential is:

µ = µ◦ + νRT ln γ±m±. (8.17)

8.3 Equilibria in Electrolyte Solutions

Before we discuss how to determine the mean ionic activity coefficient, we will
look at how nonideality may affect equilibria in electrolyte solutions.
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4 8.3. EQUILIBRIA IN ELECTROLYTE SOLUTIONS

As we know, to first order the correction to the chemical potential for a
compound i that is not pure is given by the term RT lnxi. Since the molality
mi is proportional to xi, we can replace xi by mi by switching to a standard state
where mi = 1 instead of xi = 1. The activity coefficient can then be thought of
as the second order correction to the chemical potential due to concentration:

µ = µ◦ +RT lnmi +RT ln γi. (8.18)

For an ideal solution γi → 1.
To illustrate how the inclusion of the activity coefficient influences equilibria

in electolyte solutions, consider first the effect of the solute on the freezing point
of the solution. In Ch. 7, we saw how freezing point depression is related to
the solute’s mole fraction. For a nonideal solution, the mole fraction should be
replaced by the activity ai = γimi, so for a dilute solution with only one solute:

T ′f − Tf =

(
RT 2

fMs

1000∆H◦fus

)
γm, (8.19)

where we have used the definition of the molality in Eq.(8.9) and approximated
the mole fraction of the solvent by 1. The freezing point depression of an
electrolyte solution therefore provides an estimate of the activity coefficient
near the freezing temperature. The mean ionic activity coefficients for several
electrolyte solutions are shown in Fig. 8.1 as a function of the square root of the
molality. One thing is immediately clear – in this molality range (1 molal or
less), the activity coefficients are all less than unity and the larger the charges
of the dissolved ions, the small it becomes. A second thing that may not be as
obvious is that solutions with ions of the same charge composition (e.g. +1:-1
electrolytes like HCl and KCl) seem to have the same activity coefficient in the
dilute limit. Interestingly, solutions of a +1:-2 electrolyte like Ca(NO3)2 and
a +2:-1 electrolyte like H2SO4 also seem to have the same activity coefficients
in the dilute limit. Therefore, it appears that it is not the sign of the ionic
charges that is important for determining the mean activity coefficient, but
rather the absolute values of the charges of the ions and their density in the
solution. Other colligative properties, such as the osmotic pressure, can also
be used to determine the activity coefficients of electrolyte solutions, but the
freezing point depression is by far the easiest and most accurate though it only
provides activity data near the freezing temperature. Other than colligative
properties, equilibrium constants in electrolyte solutions can also be used to
determine their activity coefficients.

As a second example of how the activity coefficient of electrolyte solutions
may modify their equilibria, consider the dissociation equilibrium of a weak acid
HA:

HA ⇀↽ H+ + A−.

The equilibrium constant for this reaction is

K =
aH+aA−

aHA
. (8.20)
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CHAPTER 8. ELECTROLYTE SOLUTIONS 5

Figure 8.1: Mean ionic activity coefficients of some electrolyte solutions as a
function of the molality.

Since

aH+ = γ+mH+ , aA− = γ−mA− , aHA = γHAmHA, (8.21)

expressing the molalities in terms of the extent of reaction ξ and the initial
molality m:

mH+ = mA− = ξm, mHA = (1− ξ)m, (8.22)

we obtain the following equation for the equilibrium constant:

K =
γ2
±ξ

2m

γHA(1− ξ)
, (8.23)

where we have used the mean activity coefficient γ± = γ+γ−. If the acid is weak
(ξ � 1) and assuming that γHA ≈ 1, we can estimate the extent of reaction by
the approximation:

ξ =
(
K

m

)1/2 1
γ±

. (8.24)

As we have seen in Fig. 8.1, deviation from ideality produces an activity co-
efficient less than unity. Therefore, the extent of dissociation is larger than
expected. For example for chloroacetic acid, K = 1.4 × 10−3. The extent of dis-
sociation in a 1 molal solution assuming an ideal value of γ± = 1 is 3.7%. Based
on this, the effective ionic molality of this solution is approximately 0.04 m. We
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6 8.4. ELECTROSTATICS

can use Fig. 8.1 to estimate γ± for a +1:-1 electrolyte, which for m = 0.04 is
about 0.8. Using this value for γ±, we obtain a dissociation of 4.6%, which is
about 25% larger than the ideal value.

By measuring the equilibrium constants of various reactions in electrolyte
solutions, their activity coefficients can be determined under a variety of condi-
tions. The majority of activity data for electrolyte solutions comes from elec-
trochemical reactions, which we will discuss later in this chapter. Activity co-
efficients for some strong electrolyte solutions are shown in the table below.

Figure 8.2: Activity coefficients for some strong electrolyte solutions.

8.4 Electrostatics

In the next section, we will describe how to estimate the activity coefficients of
electrolyte solutions. To prepare for that, we will first review some basic ideas
of electrostatics.

The key to understanding electrolyte solutions is to realize that the inter-
actions between ions are long range. In contrast with other nonbonded in-
teractions, such as dispersion interactions between gas molecules discussed in
Ch. 1 which operate over a distance of just a few angstroms, the Coulombic
interactions between charged particles reach over much longer distances, often
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CHAPTER 8. ELECTROLYTE SOLUTIONS 7

hundreds of angstroms or more. This means that a large number of ions can
interact with each other as the same time, and so to understand a single ion,
we must account for the influence of the rest of the ions on it.

To appreciate this, we turn to a familiar example. Everyone knows that high
and lows tides are caused by the gravitational field of the moon, but few people
question why the moon can have such large effects on the ocean on earth’s
surface when it is almost 400,000 km away. Just like the Coulombic forces
between charged particles, gravitational forces act over large distances though
they are small in absolute magnitude. In fact, gravitational forces has exactly
the same distance dependence as Coulombic forces.

The potential energy between two charged particles with charge z1qe and
z2qe (qe is the electron charge) separated by a distance r follows the Coulomb
law:

u(r) =
q2e

4πε
z1z2
r
, (8.25)

where the electric permitivity ε = ε0εr is the product of the vacuum permi-
tivity ε0 and the dielectric constant εr of the medium. The dielectric constant
εr accounts for the fact that the medium might contains flexible dipoles which
to a certain degree can reorient themselves to dilute the Coulombic interactions
between the ions. In vacuum, the dielectric constant is one, and in water it is
78.

Now, imagine that we have a collection of ions at positions r1, r2, etc. If I
place a new charge z at position r, the potential energy of this charge is given
by the the electric potential φ at this point multiplied by z:

U(r) = zqeφ(r) (8.26)

and for the present case, the electric potential is produced a sum over the effects
of all the ions:

zqeφ(r) =
∑
i

u(|r− ri|). (8.27)

We can also use the charge density ρ to rewrite this equation as:

φ(r) =
1

4πε

∫
dr′

ρ(r′)
|r− r′|

, (8.28)

where ρ(r′) is the total charge per unit volume at position r′. According to elec-
trostatics, the charge density is related to the electric potential by the Poisson
equation:

−∇2φ(r) =
ρ(r)
ε
. (8.29)

(The Poisson equation can be easily proven by substituting Eq.(8.28) into Eq.(8.29)
in Fourier space.)

In general, the electric potential does not provide any additional information
beyond what is given by the charge density ρ in conjunction with Coulomb’s law.
But if the ions are free to move about in solution, they will arrange themselves
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8 8.5. DEBYE-HÜCKEL THEORY

according to the electric potential, and the resulting charge density will be a
function of the electric potential. If we can express ρ as a function of φ, the
Poisson equation can be solved self-consistently for the density ρ.

8.5 Debye-Hückel Theory

The first successful theory of electrolyte solutions was formulated by Debye and
Hückel in 1923, which now bears their names.

The basic idea behind Debye-Hückel theory is that the ions, since they are
free to move about in the solution, will try to arrange themselves around a
certain ion in order to lower the energy. Thus, surrounding an ion of a certain
charge z, you will always find a higher than average density of ions of the
opposite charge. While enhancing the local density of the opposite charges,
this screening layer will greatly reduce the Coulombic force of this ion z on
charges far away. The thickness of the screening layer, which is given the symbol
κ−1 in Debye-Hückel theory, effectively cuts off the long-ranged nature of the
Coulomb interactions. Beyond the screening length κ−1, ions are effectively
noninteracting. Whereas inside κ−1, Debye-Hückel theory provides an estimate
for the charge density, and the interaction between it and the charge z can be
used to determine the chemical potential of each ion.

Let’s say we have a solution with positive ions having charge z+qe and neg-
ative ions having charge z−qe. Imagine there is also an ion of charge z at the
origin. (This ion must have an excluded volume, so the other charges don’t
collapse onto the center of it.) This ion polarizes the ionic density around it
creating a screening layer. We expect spherical symmetry around this ion so the
density of the ions in the vinicity of the origin is a function only of r, the distance
from the origin, and it is controlled by the electric potential φ, which is also a
function of r. This is shown schematically in Fig. 8.3 for a positive z. We can
separate the charge density ρ(r) into the density of the positive ions ρ+(r) and
the density of the negative ions ρ−(r), such that ρ(r) = qe(z+ρ+(r) + z−ρ−(r)).

Now we let the charge at the origin be the same as one of the positive ions
z = z+. We expect φ(r) > 0 close to the origin. In Ch. 4, we saw that the
probability of a microstate follows the Boltzmann distribution, so we expect the
density of the positive and negative ions around z to be:

z+ρ+(r) = z+ρ+e
−z+qeφ(r)/kBT ≈ z+ρ+

(
1− z+qeφ(r)

kBT

)
, (8.30)

z−ρ−(r) = z−ρ−e
−z−qeφ(r)/kBT ≈ z−ρ−

(
1− z−qeφ(r)

kBT

)
, (8.31)

where ρ+ and ρ− are the average density of the positive and negative ions, which
must make the entire solution neutral according to the condition:

0 = z+ρ+ + z−ρ−. (8.32)
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CHAPTER 8. ELECTROLYTE SOLUTIONS 9

Figure 8.3: A charge with positive z at the origin and the screening layer around
it.

The total charge density is the sum of z+ρ+(r) and z−ρ−(r):

ρ(r) = −
(z2

+ρ+ + z2
−ρ−)q2e

kBT
φ(r), (8.33)

and it must obey the Poisson equation −∇2φ = ρ/ε. It is easy to show that the
charge density must be:

ρ(r) = −Cz e
−κr

r
, (8.34)

where

κ2 =
(z2

+ρ+ + z2
−ρ−)q2e

kBTε
. (8.35)

and the multiplicative constant is C = qeκ
2/4π.

Eq.(8.34) is the key result of Debye-Hückel theory. As expected, whereas
the average charge density in the solution is zero, the charge density in the
neighborhood of a positive ion is negative, indicating that there is a screening
layer of excess negative ions around the positive ion. The thickness of the
screening layer is approximately κ−1. At distances large compared to κ−1, the
charge density is little affected by the ion at the origin because of the exponential
function. We can estimate the typical size of the screening length. In a 0.1 M
solution of NaCl in water (εr = 78), the screening length is 9.6 Å. Because κ2 is
proportional to the concentration, the screening length increases as the square
root of decreasing concentration. In a 0.001 M NaCl solution, the screening
length becomes 96 Å. (It is important to point out that these ionic concentration
are actually too large to be inside the range of applicability of Debye-Hückel
theory, as we will see later.)

Finally, we can compute the contribution of the electrostatic interactions
between the ion and the screening layer to the chemical potential of the solution.
Since µdn is the work associated with particle insertion, we can simply compute
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10 8.5. DEBYE-HÜCKEL THEORY

µ by calculating the differential work δw of adding one ion to the solution. To
do this, we slowly turn on the charge z of the ion at the origin, from 0 to z+:

δw =
∫ z+

0

dz
qe

4πε

∫
dr 4πr2

ρ(r)
r
, (8.36)

where we have used Eqs.(8.27) and (8.28). We substitute in ρ(r) from Eq.(8.34)
and find that the differential work of adding a single positive ion of charge z+
to the solution will result in an amount of work

−q
2
eκ

4πε
z2
+

2
. (8.37)

(The same result may be obtained by calculated the extra electrostatic energy
produced by placing a charge z+ at the origin.) The work per mole is this
multiplied by Avogadro’s number, which must then be the correction to the
chemical potential due to the electrostatic interactions per mole of positive ions:

RT ln γ+ = −Na
1

4π
z2
+q

2
eκ

2ε
. (8.38)

There is a similar formula for the negative ions:

RT ln γ− = −Na
1

4π
z2
−q

2
eκ

2ε
. (8.39)

According to Eq.(8.17),

νRT ln γ± = ν+RT ln γ+ + ν−RT ln γ−, (8.40)

so

ν ln γ± = − 1
4π

q2eκ

2εkBT
(ν+z2

+ + ν−z
2
−). (8.41)

We define the ionic strength of an electrolyte solution as:

I =
1
2

∑
i

z2
imi, (8.42)

where zi is the valence of the ion i and mi is its molality, and rewrite Eq.(8.41)
as

ν ln γ± = −A′
√
I(ν+z2

+ + ν−z
2
−), (8.43)

where the coefficient A′ is

A′ = (2πNaρs)
1
2

(
q2e

4πεkBT

) 3
2

, (8.44)

and ρs is the density of the solvent in mass per unit volume. For water at
25◦C, A′ is approximately 1.17 (mol/ky)−

1
2 , when the molality of the ions are

expressed in mole per kilogram of solvent. Using the neutrality condition

ν+z+ + ν−z− = 0, (8.45)
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CHAPTER 8. ELECTROLYTE SOLUTIONS 11

we can get a much more compact expression from Eq.(8.43):

ln γ± = 2.303 log γ± = A′
√
Iz+z−. (8.46)

Fig. 8.4 illustrates the validity of Debye-Hückel theory for several electrolyte
solutions, plotting log γ± = ln γ±/2.303 as a function of

√
I. The dashed lines

are the limiting behaviors predicted by Debye-Hückel theory. The figure shows
that while Debye-Hückel theory provides the correct limiting behavior for the
activity coefficient at infinite dilution, its quickly breaks down for ionic strength
as small as 0.0005 or 0.001.

Figure 8.4: The log of the mean ionic activity for several electrolyte solutions
plotted as a function of the square root of the ionic strength.

8.6 Electrochemistry

An electrochemical cell is where a chemical reaction occurs in connection with
an electric current. An electric current is produced by the flow of electrons
(or another mobile charge carrier). In metals, the dominant charge carriers are
electrons. If a wire is made out of metals, electrons can flow through it with
minimal resistance. Electrons will flow spontaneously from a position of high
potential energy to low potential energy. The potential energy of a charge at a
certain position r is given by Eq.(8.26),

U(r) = zqeφ(r).
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12 8.6. ELECTROCHEMISTRY

For example, if two ends of a metallic wire are hooked up to the terminals of a
battery, a current will flow due to the electric potential difference between the
two terminals, and the current flow can be used to do work.

A galvanic cell is an electrochemical cell where a current flow is produced
spontaneously by an oxidation-reduction couple. An example is the reaction
between Zn and Cu2+. When metallic Zn is put into a solution containing
Cu2+, an oxidation-reduction reaction occurs at the interface between the Zn
metal and the solution, transferring electrons from Zn to the Cu2+ ions and
producing Zn2+ and Cu. This direct reaction between Zn and Cu2+ does not
produce a detectable current, because the electrons transfer directly between
the Zn atoms and the Cu2+ ions. In order to produce an electric current, these
two reactants must be separated from each other, and the electrons that need
to be transferred between them can then be forced to go through a wire. This
requires separating the redox couple into the two half-reactions:

Zn→ Zn2+ + 2e−

2e− + Cu2+ → Cu

as in Fig. 8.5. This device is called a galvanic cell. Notice that the electrons leav-
ing the Zn electrode must travel through the circuit to reach the Cu electrode.
(The salt bridge allows the ions to flow to maintain electric neutrality in the two
half-cells without substantial mixing between the two solutions.) Because the
electron transfer occurs spontaneously between Zn and Cu2+ when they were
together, the electron flow when they are separated should also occur sponta-
neously. This means that there must be an electric potential difference between
the two electrodes – the Zn electrode must have a more negative potential φZn

(higher energy for the electrons) and the Cu electrode a more positive potential
φCu (lower energy for the electrons). A galvance cell produces the same effect
as a battery and can be used as such.

Figure 8.5: A galvanic cell utilizing the reaction Zn + Cu2+ → Zn2+ + Cu.
(X− and Y− are counterions.)

We can now use thermodynamics to analyze a galvanic cell. First, we will
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CHAPTER 8. ELECTROLYTE SOLUTIONS 13

disconnect the wire and consider each half of Fig. 8.5. In the Zn half-cell, the
chemical potentials of the Zn metal and the Zn2+ ions are:

µZn = µ◦Zn, (8.47)
µZn2+ = µ◦Zn2+ +RT ln aZn2+ . (8.48)

In the Cu half-cell, we have

µCu = µ◦Cu, (8.49)
µCu2+ = µ◦Cu2+ +RT ln aCu2+ . (8.50)

With the wire disconnected and the circuit open, there is of course no reaction.
When the circuit is closed, electrons will flow producing a change in the

Gibbs free energy of the cell. Let’s consider an extent of reaction dξ for the
overall reaction:

Zn + Cu2+ → Zn2+ + Cu,

dnZn = dnCu2+ = −dξ and dnCu = dnZn2+ = dξ, (8.51)

where n denotes the number of moles. Corresponding to dξ, the change in G
due to all the dn is

dG1 = (µZn2+ + µCu − µZn − µCu2+) dξ (8.52)

=
(

∆G◦r +RT ln
aZn2+

aCu2+

)
dξ, (8.53)

where following the notation of Ch. 6, ∆G◦r is the standard Gibbs free energy
change of the reaction. Since every time one mole of the reaction occurs, two
moles of electrons must be transferred through the wire, the work done by the
electrons when they travel from the Zn to the Cu electrode (from low electric
potential φZn to high electric potential φCu) must also be included in the change
in G:

dG2 = 2Naqe(φCu − φZn) dξ, (8.54)

where Na is Avogadro’s number and qe is the charge of one electron. The poten-
tial difference φCu − φZn is known as the cell potential or the electromotive
force, E , and the total charge of one mole of electrons is Naqe, which is also
called the Faraday’s constant F . With these,

dG2 = νeFE dξ, (8.55)

where νe = 2 is the number of electrons transferred per mole of this reaction.
Adding dG1 and dG2, the total change is:

dG =
(

∆G◦ +RT ln
aZn2+

aCu2+
+ νeFE

)
dξ. (8.56)

If the reaction is carried out very slowly, e.g. by slowing down the electron
flow, the system would be in equilibrium every step along the way and dG = 0.
This requires:

E = − 1
νeF

(
∆G◦ +RT ln

aZn2+

aCu2+

)
, (8.57)
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14 8.7. EFFECTS OF ACTIVITIES ON AQUEOUS EQUILIBRIA

which relates the cell potential to the ∆G of reaction and the activities of the
ions. One way to slow down the electrons is by putting a very large, almost
infinite, resistive load on the circuit. An infinite resistance would correspond
to an open circuit, so the cell potential given by Eq.(8.57) is sometimes call
the open-circuit voltage. If the electron flow is not slow, the observed cell
potential will be smaller in magnitude because dG < 0.

Eq.(8.57) is usually rewritten in the following way:

E = E◦ − RT

νeF
lnQ, (8.58)

where E◦ = −∆G◦/νeF is called the standard cell potential and Q is the
reaction quotient defined in Ch. 6, which for this reaction is aZn2+/aCu2+ . The
cell potential has units of energy over charge, or volts (V) in SI.

For the standard cell potential E◦, we can define a standard half-cell
potential for the reduction and oxidation half-reactions as:

Zn→ Zn2+ + 2e−, E◦ox = −∆G◦ox/νeF , (8.59)
2e− + Cu2+ → Cu, E◦red = −∆G◦red/νeF . (8.60)

What to use for the standard state of the electrons is unimportant since the
chemical potential for the electrons will always cancel out, and for convenience
we will assume it is zero. The standard cell potential is then E◦ = E◦ox + E◦red.
Notice that since νe is already divided out, you do not need to multiply E◦ by any
stoichiometric coefficient as you would with ∆G. Standard half-cell potentials
are listed for reduction half-reactions in standard tables. To get the oxidation
half-cell potential, simply reverse the direction of the half-reaction and flip the
sign of E◦.

Notice that since the overall cell potential is always the difference between
two half-cell potentials, where the zero is set for each half-cell potential is unim-
portant, as long as the same reference is used for both half-reactions. The
reference that is commonly employed in chemistry is the standard hydrogen
reduction half-potential:

H+(aq) + e− → 1
2

H2(g), E◦ = 0, (8.61)

which is defined to be zero when H+(aq) and H2(g) are in their standard states:
1 molal for H+ and 1 bar for H2.

8.7 Effects of Activities on Aqueous Equilibria

When we discussed the nonideality of electrolyte solutsion earlier, we have al-
ready looked at how the activities may affect acid-base equilibria and colligative
properties. In general, since the activity coefficient of an electrolyte solution can
be significantly different from one, its effect on any equilibrium involving ions
can be very pronounced.
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For example, the equilibrium constant for the dissolution of CaF2

CaF2(s) ⇀↽ Ca2+(aq) + 2F−(aq)

at 25◦C is 4.0× 10−11.

Ksp = aCa2+a2
F− = (mCa2+m2

F−)(γ+γ
2
−) = (mCa2+m2

F−)γ3
± (8.62)

In pure water, the solubility is roughly 2.2× 10−4 mole per kg of water. Using
Fig. 8.4, we can estimate the mean ionic activity of CaF2 for different ionic
strengths using the curve for another +2:-1 electrolyte Ca(NO3)2. At an ionic
strength of 0.1, γ± ≈ 0.6. The solubility becomes 3.6×10−4 which is 60% larger
than in pure water.
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