Graph Algorithms: Applications

CptS 223 - Advanced Data Structures
Larry Holder
School of Electrical Engineering and Computer Science Washington State University

Applications

- Depth-first search
- Biconnectivity
- Euler circuits
- Strongly-connected components

Depth-First Search

- Recursively visit every vertex in the graph
- Considers every edge in the graph
- Assumes undirected edge (u, v) is in u 's and v's adjacency list
- Visited flag prevents infinite loops
- Running time $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

```
DFS () ;; graph G=(V,E)
    foreach v in V
        if (! v.visited)
        then Visit (v)
```

Visit (vertex v)
v.visited = true
foreach w adjacent to v
if (! w.visited)
then Visit (w)

DFS Applications

- Undirected graph
- Test if graph is connected
- Run DFS from any vertex and then check if any vertices not visited
- Depth-first spanning tree
- Add edge (v, w) to spanning tree if w not yet visited (minimum spanning tree?)
- If graph not connected, then depth-first spanning forest

DFS Applications

- Remembering the DFS traversal order is important for many applications
- Let the edges (v, w) added to the DF spanning tree be directed
- Add a directed back edge (dashed) if
- w is already visited when considering edge (v, w), and
- v is already visited when considering reverse edge (w, v)

Biconnectivity

- A connected, undirected graph is biconnected if the graph is still connected after removing any one vertex

- I.e., when a "node" fails, there is always an alternative route
- If a graph is not biconnected, the disconnecting vertices are called articulation points
- Critical points of interest in many applications

Biconnected?
Articulation points?

DFS Applications: Finding Articulation Points

- From any vertex v, perform DFS and number vertices as they are visited
- Num(v) is the visit number
- Let Low(v) = lowest-numbered vertex reachable from v using 0 or more spanning tree edges and then at most one back edge
- Low(v) = minimum of
- Num(v)
- Lowest Num(w) among all back edges (v,w)
- Lowest Low(w) among all tree edges (v, w)
- Can compute Num(v) and Low(v) in $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$ time

DFS Applications: Finding Articulation Points (Example)

DFS Applications: Finding Articulation Points

- Root is articulation point iff it has more than one child
- Any other vertex v is an articulation point iff v has some child w such that Low(w) $\geq \operatorname{Num}(v)$
- I.e., is there a child w of v that cannot reach a vertex visited before v ?
- If yes, then removing v will disconnect w (and v is an articulation point)

DFS Applications: Finding Articulation Points (Example)

Depth-first tree
starting at C with
Num/Low values:

Original Graph

DFS Applications: Finding Articulation Points

- High-level algorithm
- Perform pre-order traversal to compute Num
- Perform post-order traversal to compute Low
- Perform another post-order traversal to detect articulation points
- Last two post-order traversals can be combined
- In fact, all three traversals can be combined in one recursive algorithm

Implementation

```
/**
    * Assign num and compute parents.
    */
void Graph::assignNum( Vertex v )
{
    v.num = counter++;
    v.visited = true;
    for each Vertex w adjacent to v
        if( !w.visited )
        {
            w.parent = v;
                assignNum( w );
    }
}
```

```
/**
    * Assign low; also check for articulation points.
    */
void Graph::assignLow( Vertex v )
{
    v.low = v.num; // Rule 1
    for each Vertex w adjacent to v
    {
    if( w.num > v.num ) // Forward edge
    {
        assignLow( w );
        if( w.low >= v.num )
            cout << v << " is an articulation point" << endl;
        v.low = min( v.low, w.low ); // Rule 3
    }
    else
    if( v.parent != w ) // Back edge
        v.low = min( v.low, w.num ); // Rule 2
    }
}
```

```
void Graph::findArt( Vertex v )
{
    v.visited = true;
    v.low = v.num = counter++; // Rule 1
    for each Vertex w adjacent to v
    {
    if( !w.visited ) // Forward edge
    {
        w.parent = v;
        findArt( w );
        if( w.low >= v.num )
            cout << v << " is an articulation point" << endl;
        v.low = min( v.low, w.low ); // Rule 3
    }
    else
    if( v.parent != w ) // Back edge
    v.low = min( v.low, w.num ); // Rule 2
    }
}
```


Euler Circuits

- Puzzle challenge
- Can you draw a figure using a pen, drawing each line exactly once, without lifting the pen from the paper?
- And, can you finish where you started?

Euler Circuits

- Solved by Leonhard Euler in 1736 using a graph approach (DFS)
- Also called an "Euler path" or "Euler tour"
- Marked the beginning of graph theory

Euler Circuit Problem

- Assign a vertex to each intersection in the drawing
- Add an undirected edge for each line segment in the drawing
- Find a path in the graph that traverses each edge exactly once, and stops where it started

Euler Circuit Problem

- Necessary and sufficient conditions
- Graph must be connected
- Each vertex must have an even degree
- Graph with two odd-degree vertices can have an Euler tour (not circuit)
- Any other graph has no Euler tour or circuit

Euler Circuit Problem

- Algorithm
- Perform DFS from some vertex v until you return to v along path p
- If some part of graph not included, perform DFS from first vertex v ' on p that has an un-traversed edge (path p^{\prime})
- Splice p' into p
- Continue until all edges traversed

Euler Circuit Example

Start at vertex 5 .
Suppose DFS visits 5, 4, 10, 5.

Euler Circuit Example (cont.)

Graph remaining after $5,4,10,5$:

Start at vertex 4.
Suppose DFS visits 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4.
Splicing into previous path: 5, 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5.

Euler Circuit Example (cont.)

Graph remaining after $5,4,1,3,7,4,11,10,7,9,3,4,10,5$:
(1)

Start at vertex 3.
Suppose DFS visits 3, 2, 8, 9, 6, 3 .
Splicing into previous path: 5, 4, 1, 3, 2, 8, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5.

Euler Circuit Example (cont.)

Graph remaining after $5,4,1,3,2,8,9,6,3,7,4,11,10,7,9,3,4,10,5$:

Start at vertex 9 .
Suppose DFS visits $9,12,10,9$.
Splicing into previous path: $5,4,1,3,2,8,9,12,10,9,6,3,7,4,11,10,7,9,3,4,10,5$. No more un-traversed edges, so above path is an Euler circuit.

Euler Circuit Algorithm

- Implementation details
- Maintain circuit as a linked list to support O(1) splicing
- Maintain index on adjacency lists to avoid repeated searches for un-traversed edges
- Analysis
- Each edge considered only once
- Running time is $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$

DFS on Directed Graphs

- Same algorithm
- Graph may be connected, but not strongly connected
- Still want the DF spanning forest to retain information about the search

```
DFS () ;; graph G=(V,E)
    foreach v in V
        if (! v.visited)
        then Visit (v)
```

Visit (vertex v)
v.visited = true
foreach w adjacent to v
if (! w.visited)
then Visit (w)

DF Spanning Forest

- Three types of edges in DF spanning forest
- Back edges linking a vertex to an ancestor
- Forward edges linking a vertex to a descendant
- Cross edges linking two unrelated vertices

Graph:

DF Spanning Forest:

DF Spanning Forest

Graph
DF Spanning Forest

(Note: DF Spanning Forests usually drawn with children and new trees added from left to right.)

DFS on Directed Graphs

- Applications
- Test if directed graph is acyclic
- Has no back edges
- Topological sort
- Reverse post-order traversal of DF spanning forest

Strongly-Connected Components

- A graph is strongly connected if every vertex can be reached from every other vertex
- A strongly-connected component of a graph is a subgraph that is strongly connected
- Would like to detect if a graph is strongly connected
- Would like to identify strongly-connected components of a graph
- Can be used to identify weaknesses in a network
- General approach: Perform two DFSs

Strongly-Connected Components

- Algorithm
- Perform DFS on graph G
- Number vertices according to a post-order traversal of the DF spanning forest
- Construct graph G_{r} by reversing all edges in G
- Perform DFS on G_{r}
- Always start a new DFS (initial call to Visit) at the highest-numbered vertex
- Each tree in resulting DF spanning forest is a strongly-connected component

Strongly-Connected Components

Graph G

DF Spanning Forest of G_{r} Strongly-connected components: $\{G\},\{H, I, J\},\{B, A, C, F\},\{D\},\{E\}$

Strongly-Connected Components: Analysis

- Correctness
- If v and w are in a strongly-connected component
- Then there is a path from v to w and a path from w to v
- Therefore, there will also be a path between v and w in G and G_{r}
- Running time
- Two executions of DFS
- O(|E|+|V|)

Summary

- Graphs one of the most important data structures
- Studied for centuries
- Numerous applications
- Some of the hardest problems to solve are graph problems
- E.g., Hamiltonian (simple) cycle, Clique

