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The genus Scotophilus is composed of 15 recognized species with 7 species distributed throughout sub-Saharan
Africa, 4 distributed across southern and southeastern Asia, 3 endemic to Madagascar, and 1 endemic to
Reunion Island. Scotophilus is plagued with problems in species definition, and systematic relationships among
members of the genus are poorly understood. We used mitochondrial DNA (mtDNA) and Y-chromosome
sequence data from 11 of the 15 recognized species, which represent the most comprehensive taxonomic
coverage to date, to examine phylogenetic patterns within Scotophilus. All trees have S. kuhlii from Asia as the
most basal species followed by S. nux from Africa. However, S. heathii from Asia is embedded within the other
African Scotophilus, indicating a complex biogeography with multiple continental exchanges. Furthermore, the
Malagasy taxa are most closely related to 2 different African species, suggesting independent colonizations of
Madagascar from the continental mainland. In addition, African S. dinganii did not comprise a monophyletic
group but exhibited at least 2 additional cryptic species based on high levels of genetic divergence in the
cyotchrome-b gene. The large-bodied S. nigrita is closely related to S. dinganii with a similar mtDNA haplotype
but distinct zfy haplotype, suggesting a possible hybridization event in the most recent common ancestor that
potentially represents a mitochondrial capture. Overall measures of interspecific genetic distances ranged from
4.2% to 19.2% for mtDNA data and 0.18% to 2.14% for Y-chromosome data, indicating that members of the

genus Scotophilus are highly divergent from one another.
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Scotophilus occurs throughout sub-Saharan Africa, parts of
southern and southeastern Asia, a majority of the Indomalayan
Islands, Reunion Island, and Madagascar. The genus is in the
family Vespertilionidae, subfamily Vespertilioninae, and tribe
Scotophilini (Hoofer and Van Den Bussche 2003). The type
specimen of the genus (S. kuhlii) was 1st described by Leach
(1821) based on a single immature specimen. However, the
holotype still retained its deciduous milk teeth, which
prompted debate on the validity of the genus. Nonetheless,
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earlier zoologists were applying the name Scotophilus to
almost every bat in the family Vespertilionidae with fewer
than 38 teeth, resulting in taxonomic confusion (Dobson
1875).

Currently, 15 species of Scotophilus are recognized in the
literature. Simmons (2005) recognized 12 species, including S.
borbonicus (E. Geoffroy, 1803), S. celebensis Sody, 1928, S.
collinus Sody, 1936, S. dinganii (A. Smith, 1833), S. heathii
(Horsfield, 1831), S. kuhlii Leach, 1821, S. leucogaster
(Cretzschmar, 1830), S. nigrita (Schreber, 1774), S. nucella
Robbins, 1983, S. nux Thomas, 1904, S. robustus Milne-
Edwards, 1881, and S. viridis (Peters, 1852). Grubb et al.
(1998) recognized S. nigritellus de Winton, 1899, as distinct
from S. viridis based on Koopman’s (1984) treatment of this
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species and its uncertain taxonomic status. In addition, 2
Malagasy species have been recently described: S. tandrefana
Goodman et al., 2005, and S. marovaza Goodman et al., 2006.
Seven species occur in sub-Saharan Africa (S. dinganii, S.
leucogaster, S. nigrita, S. nigritellus, S. nucella, S. nux, and S.
viridis), 3 are endemic to Madagascar (S. robustus, S.
tandrefana, and S. marovaza), 1 is endemic to Reunion Island
and is potentially extinct (S. borbonicus), 1 is endemic to the
Indonesian island of Sulawesi (S. celebensis), 2 occur
throughout India and Southeast Asia (S. heathii and S. kuhlii),
and 1 occurs on the Indonesian islands of Java and Bali (S.
collinus). Of the African species, S. leucogaster is the only one
that has been recorded outside the continent, from extreme
southwestern Saudi Arabia (Gaucher 1993) and Yemen (Al-
Safadi 1991).

Members of Scotophilus have been shown to comprise a
monophyletic group based on several lines of evidence.
Several morphological features are diagnostic for the genus,
including a poorly developed molar cusp pattern (Rosevear
1965), a single pair of large upper incisors with a dental
formula of i 1/3, ¢ 1/1, p 1/2, m 3/3, total 30 (Dobson 1875),
and several distinct features of the baculum (Hill and Harrison
1987). Furthermore, Hill and Harrison (1987) concluded that
Scotophilus and Scotomanes possess several bacular similar-
ities and are sufficiently distinct from all other vespertilionines
to warrant tribal status (Scotophilini). However, a recent study
of family-wide vespertilionid phylogenetics by Hoofer and
Van Den Bussche (2003) based on mitochondrial 12S
ribosomal RNA (rRNA), transfer RNA-valine (tRNAval),
and 16S rRNA sequences did not find any support for a close
relationship between Scotomanes and Scotophilus. They
recovered a monophyletic Scotophilus and the level of
divergence from other vespertilionines was sufficient to
recognize it as the sole member of the tribe Scotophilini.
However, their study did not specifically examine relation-
ships within the genus because only 7 of 15 species were used
and these were only represented by single specimens.

The objectives of our study were to infer a molecular
phylogeny for the genus Scotophilus based on cytochrome-b
and nuclear zinc finger Y (zfy) sequence data, investigate the
level of concordance between a mitochondrial and a Y-
chromosome data set, examine phylogeographic patterns in
Scotophilus, and investigate the taxonomy and systematics of
the genus.

MATERIALS AND METHODS

Specimens examined—In this study, 137 specimens were
examined representing 11 currently recognized species of
Scotophilus from 10 countries and more than 30 geographic
localities (Appendix I). The total number of specimens of each
species is as follows: 56 S. dinganii, 20 S. viridis, 8 S.
nigritellus, 9 S. nux, 2 S. leucogaster, 32 S. kuhlii, 4 S. heathii,
2 S. robustus, 1 S. tandrefana, 2 S. marovaza, and 1 S. nigrita.
All specimens were included in the cytochrome-b data set. The
zfy gene is located on the Y chromosome and is only found in
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males. Of the 137 specimens examined, 68 were males and of
these 49 were included in the zfy data set, representing 8
currently recognized species of Scotophilus. The remaining 19
male samples either did not amplify or the sequencing reaction
was unsuccessful. In the combined data set, 49 specimens
were included, representing 8 currently recognized species of
Scotophilus. Outgroup taxa include Myotis welwitschii and
Eptesicus serotinus for the cytochrome-b data set, E. serotinus
and Myotis tricolor for the Y-chromosome data set, and E.
serotinus for the combined data set. Outgroup taxa were
chosen because they represent bats of the family Vespertilio-
nidae that share close relationships to Scotophilus, which has
been shown to be monophyletic (Hoofer and Van Den Bussche
2003), and because sequences or tissues were readily
available. All animal-handling protocols were in accordance
with guidelines of the American Society of Mammalogists
(Gannon et al. 2007).

Data collection—Tissue samples used for genetic analysis
included heart, kidney, or liver, or a combination of these.
Total genomic DNA was extracted by established protocols
(Maniatis et al. 1982). An approximately 1,260-base pair (bp)
segment of the mitochondrial DNA (mtDNA) was amplified
via the polymerase chain reaction (Saiki et al. 1988) utilizing
primers LGL 765F and LGL 766R that amplify the entire
cytochrome-b gene (Bickham et al. 1995, 2004). To isolate the
Y-chromosome segment of interest, approximately 2,200 bp
of DNA was amplified with primers 33X5YF (5'-GCA GCA
GCT TAT GGT AAG TGA-3") and LGL 331 (Cathey et al.
1998). Amplifications were conducted on a GeneAmp PCR
System 2700 thermal cycler (Applied Biosystems, Foster City,
California) as follows: a hot start of 3 min at 95°C followed by
32 cycles of 95°C for 45 s of denaturing, 50°C for 30 s of
annealing, and 70°C for 2.5 min of extension, with a final
extension of 70°C for 5 min. Amplification reactions consist-
ed of the following: 0.1-0.5 pg of genomic DNA; 5 pl of 10x
PCR buffer (0.1 M Tris-HCI, pH 8.5, 0.025 M MgCl,, 0.5 M
KCl), 5 ul of 8 mM deoxynucleoside triphosphate mix (2 mM
deoxyadenosine triphosphate, deoxythymidine triphosphate,
deoxycytidine triphosphate, deoxyguanosine triphosphate, in
0.1 M Tris-HCI, pH 7.9), 1 pl of a 10-mM solution of each
primer (LGL 765F and LGL 766R for cytochrome b and
33X5YF and LGL 331 for zfy), and 2.5 units Amplitaq Tagq
polymerase (Applied Biosystems), and brought to a volume of
50 pl with deionized water. A Qiagen PCR purification kit
(Qiagen Inc., Valencia, California) was used to clean the
amplified fragments and prepare the templates for sequencing.
Cycle sequencing utilized ABI Prism BigDye Terminators
version 2.0 and version 3.0 (Applied Biosystems) and
sequencing reactions were conducted on a GeneAmp PCR
System 2700 thermal cycler as follows: 25 cycles of 96°C for
30 s of denaturing, 50°C for 15 s of annealing, and 60°C for
4 min of extension. Sequencing primers for the entire (1,140-
bp) cytochrome b were LGL 765F, LGL 766R, and 388F (5'-
GGY TAT GTT CTY CCA TGA GG-3'), an internal primer
designed for complete bidirectional sequencing. Sequencing
primers for zfy included 33X5YF, 33X6R (5'-CCC TCA CCT

9T0Z ‘/ Jequadaq uo 1senb Aq /Blo'sfeulnolploxo’ fewwrew [/7:dny wouy papeojumoq


http://jmammal.oxfordjournals.org/

550 JOURNAL OF MAMMALOGY

GTT TGG TAY TGC-3'), 33X6F (5'-RGC AGT ACC AAA
CAG GTG AGG-3"), LGL 331, Scot zfy 495F (5'-TAG GTA
CAT GGA CTT TCA GC-3'), and Scot zfy 1470F (5'-TTA
GGT GAT AAT TCT GAC GG-3'). Sequence reactions were
then purified using Sephadex (Sigma-Aldrich, St. Louis,
Missouri) spin columns, dehydrated in a vacuum centrifuge,
and frozen until sequence visualization and collection on an
ABI 377 automated sequencer (Applied Biosystems). Raw
sequences were automatically analyzed using Sequencing
Analysis Software (Applied Biosystems).

Sequences were aligned by eye and ambiguities were
corrected in Sequencher version 4.1 (Gene Codes Corporation,
Ann Arbor, Michigan) for the cytochrome-b sequences
through comparison of the -electropherograms. The zfy
sequences were submitted to Clustal X (Thompson et al.
1997) for alignment utilizing the default gap-cost ratio
(15.00:6.66) and again with a gap-cost ratio of 5:4. The use
of 2 gap-cost ratios allowed for verification of the placement
of insertions—deletions (indels) in the alignment of all zfy
sequences. The resultant alignments were refined by eye and
ambiguities corrected in Sequencher version 4.1.

Data analysis —A neighbor-joining tree based on Kimura 2-
parameter distances was constructed for both the cytochrome-
b and the zfy data sets to allow for the determination of unique
haplotypes in each of the 2 data sets. All subsequent
phylogenetic analyses involved data matrices composed of a
single representative of each respective haplotype for each of
the 2 data sets.

A maximum-parsimony analysis was performed on each
data set and the combined data matrix in PAUP* version
4.0b4a (Swofford 1999). A branch-and-bound option was used
for the Y-chromosome data set and the heuristic search option
was used for the cytochrome-b data set with tree-bisection-
reconnection branch swapping. Starting trees were obtained
via stepwise addition. Data were polarized via the outgroup
method, and the outgroup taxa were chosen based on the study
of Hoofer and Van Den Bussche (2003). Phylogenetically
informative characters were unordered and equally weighted
with gaps treated as missing data. Stability of clades was
examined by bootstrap analysis (Felsenstein 1985), which
consisted of 1,000 pseudoreplicates with resampling of all
characters, heuristic searching, and tree-bisection-reconnec-
tion branch swapping.

The best-fit maximum-likelihood (ML) model for each data
set was determined using MODELTEST version 3.06 (Posada
and Crandall 1998). MODELTEST helps choose the model of
DNA substitution that best fits the data set through hierarchical
hypothesis testing with the use of likelihood ratio tests and the
Akaike information criterion (Akaike 1974). ML analysis of
each data set and the combined data matrix was performed in
PAUP*. The ML tree was constructed using a heuristic search.
Bootstrap analysis for all data sets consisted of 100 pseudor-
eplicates with resampling of all characters, fast-heuristic
searching, and tree-bisection-reconnection branch swapping.

A Bayesian analysis under the best-fit model was performed
using MRBAYES (Huelsenbeck and Ronquist 2001). This

Vol. 90, No. 3

program utilizes Markov chain Monte Carlo methods for the
Bayesian inference of phylogeny and is based on the posterior
probability of a phylogenetic tree given an observed aligned
matrix of DNA sequence data. The Bayesian analysis was
implemented for 1 x 10° generations with 1 cold and 3
incrementally heated Markov chains, random starting trees for
each chain, trees sampled every 10 generations, and the
analysis repeated 3 independent times to insure convergence
of the chains to the same posterior probability distribution and
that the likelihoods reached stable values (Huelsenbeck et al.
2002) for each data set. Values for model parameters were not
defined a priori in the analysis but were treated as unknown
variables with uniform priors in each Bayesian analysis
(Leaché and Reeder 2002).

RESsuLTS

Amplification, sequencing, and alignment—The entire
1,140 bp of cytochrome b were sequenced for all samples
amplified except for 3 samples where the 1st several base pairs
were unreadable (FMNH 166186, first 24 bp unreadable;
ROM 110843, first 30 bp unreadable; TK 33266, first 8 bp
unreadable). These unreadable bases were coded as unknown
in the data matrix. In the alignment, there were no indels, the
start codon was ATG, and the stop codon was AGA for all
samples except for those samples in clade 9 (Fig. 1), which
was AGG. Five hundred seven base pairs were variable and of
these, 431 bp were potentially parsimony informative. A
neighbor-joining tree identified 88 unique cytochrome-b
haplotypes, which were used for subsequent phylogenetic
analysis.

A total of 51 individuals were sequenced for the zfy gene,
including 2 outgroup taxa. The total number of base pairs
sequenced per individual ranged from 1,597 bp to 2,100 bp
and averaged 1,963 bp. Ambiguous bases at the beginning
and end of the sequence were coded as missing. The default
gap-cost ratio (15.00:6.66) in Clustal X and a gap-cost ratio
of 5:4 resulted in identical alignments. The aligned data
matrix included 12 indels ranging in size from 1-bp insertions
and deletions to a 152-bp insertion in S. leucogaster (SP
10136 and SP 10137). Indels unique to S. kuhlii contained 4
deletions ranging from 1 bp to 17 bp and 3 insertions ranging
from 1 bp to 7 bp. Indels shared by S. kuhlii and S. nux
included a 3-bp and a 31-bp insertion. A 50-bp deletion was
unique to S. nux. A 152-bp insertion was unique to S.
leucogaster and a 2-bp deletion was unique to S viridis. The
indels were coded as missing data and accounted for 276
characters in the total zfy data matrix of 2,283 aligned
characters, of which 1,997 characters were constant and 132
characters were potentially parsimony informative. Excluding
the outgroup taxa, 93 total characters were variable, with 76
of these characters being potentially parsimony informative.
Construction of a neighbor-joining tree identified 20 unique
zfy haplotypes.

Data-set congruence—An incongruence length difference
test (Farris et al. 1994) as implemented in PAUP* as the
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. M. webwitschit partition homogeneity test was conducted to compare the 2
o data sets. The incongruence length difference test resulted in a
1001100798 test statistic of P = 0.24, thus failing to support the null
1 - 8. kuhlii hypothesis that the 2 data sets are incongruent. Therefore, the
cytochrome-b and the zfy data sets were combined for
phylogenetic analysis. Of the 49 specimens included in the
TEO00 R O combined 'dat? set, 42 had unique sequences. The corpbined
: ’ data matrix included 3,364 total characters (including all
o ‘ 3-S5, leucogaster indels), of which .2,712 (.tharacters were constant, 190
~{, - 8. tandrefana/marovaza characters were uninformative, and 462 characters were
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Fic. 1.—Bayesian phylogram from analysis of cytochrome-b gene
sequences (1,140 base pairs). Myotis welwitschii and Eptesicus
serotinus were designated as outgroup taxa. Numbers in boxes
represent node support (Bayesian posterior probabilities/parsimony
bootstrap percentages/maximum-likelihood bootstrap percentages).
All nodes shown are supported by posterior probability or bootstrap
values > 50 or 0.50 in at least 1 of the analyses. Support values are
only shown for those nodes supported by posterior probability or
bootstrap percent > 70 (0.70 Bayesian posterior probability). Values
designated with (—) are support values > 50 but < 70 (0.50 and 0.70
for Bayesian posterior probability) and those designated (*) are nodes
with support values < 50 and indicate collapsed nodes in that
particular analysis. Clades mentioned in the text are numbered 1-13.

gies with the only differences being in the resolution and
support of the ancestral nodes. Only the Bayesian phylogram
with proportional branch lengths is presented with Bayesian
posterior probabilities, maximum-parsimony bootstrap support
values, and ML bootstrap support values displayed.

An analysis of maximum parsimony of the cytochrome-b
data resulted in 768 equally parsimonious trees of 1,554 steps.
One of the maximum-parsimony trees had the following
description: consistency index (CI) = 0.4408, homoplasy
index (HI) = 0.5592, rescaled consistency index (RC) =
0.3882, and retention index (RI) = 0.8807. The program
MODELTEST selected the GTR + I' + I model as the best fit
of nucleotide substitution for the cytochrome-b data set. The
observed nucleotide frequencies were A = 0.3247, C =
0.2798, G = 0.1080, and T = 0.28750. The gamma shape
parameter was set to oo = 1.4748 and the assumed proportion
of invariable sites was set to 0.4861. The ML tree had a log-
likelihood score of —8,687.99. The 3 independent Bayesian
analyses converged on stable posterior probability values after
a burn-in time of 100,000 generations. The phylogeny inferred
has a log-likelihood score of —8,758.16.

Pairwise genetic distance measures are presented in Table 1
for the identified clades based on the cytochrome-b data.
Genetic distances ranged from 4.2% to 19.2% between and
from 0% to 10.1% within previously identified species.

TaBLE 1.—Pairwise genetic distances (Kimura 2-parameter) expressed as percentages within (diagonal) and between clades of the
cytochrome-b phylogeny for the genus Scotophilus. Scotophilus nigrita is designated as Sn and is within clade 8.

Clade 1 2 3 4 5 6 7 8 Sn 9 10 11A 11B 12 13
1 0.8

2 17.4 1.4

3 17.0 14.6 0

4 16.8 14.4 12.7 0.6

5 17.5 16.7 14.4 13.6 0.4

6 19.2 16.2 13.4 12.8 14.6 0.5

7 16.2 15.0 13.5 12.6 16.0 104 0.1

8 17.4 13.9 14.0 12.2 15.2 12.3 11.2 1.2

Sn 17.8 14.5 15.3 133 159 12.9 9.5 33 0

9 17.5 14.3 13.1 12.6 14.9 12.0 11.4 49 2.4 2.0

10 16.4 14.3 124 12.3 15.3 11.2 10.0 8.7 114 8.3 1.1

11A 17.3 14.7 13.1 12.2 14.7 11.3 11.3 10.1 10.7 9.7 6.3 0.3

11B 17.1 14.6 12.7 124 14.5 11.9 11.0 9.3 9.8 9.7 6.1 2.8 0.2

12 17.3 14.3 12.6 13.0 14.2 12.1 11.5 9.8 10.4 9.7 5.8 5.8 5.5 1.2

13 18.0 14.5 12.0 12.5 14.3 11.4 11.0 9.4 10.1 9.3 53 5.5 52 4.2 0.6
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F1G. 2.—Bayesian phylogram from analysis of partial sequences of
the zfy gene (2,283 base pairs). Myotis tricolor and Eptesicus
serotinus were designated as outgroups. Node support is designated
as in Fig. 1. Clades mentioned in the text are numbered 1-9.

Based on the cytochrome-b data, monophyly of the entire
genus 1is highly supported but basal relationships within
Scotophilus are poorly resolved (Fig. 1). The Bayesian analysis
produced a phylogeny that has more resolution than either the
maximum-parsimony or ML bootstrap consensus trees, includ-
ing weak branch support for a S. heathii + S. tandrefana/
marovaza sister-group relationship. However, all analyses
identified a close phylogenetic relationship and genetic
similarity (0.6% sequence divergence; Table 1) between S.
tandrefana and S. marovaza. Similarly, S. nigrita groups within
and is most similar (1.2% sequence divergence) to a population
of S. dinganii from Ethiopia. Furthermore, S. dinganii and S.
viridis are not each reciprocally monophyletic clades.

Vol. 90, No. 3

Phylogenetic anlysis of the zfy data set using parsimony
resulted in 2 equally parsimonious trees of 315 steps. Both
maximum-parsimony trees had the following description: CI
= 0.9651, HI = 0.0349, RC = 0.9239, and RI = 0.9574. A
bootstrap consensus tree was calculated based on 1,000
pseudoreplicates with resampling of 2,283 characters. The
HKY + I model was selected as the best-fit model of
nucleotide substitution for the zfy data set. The ML analysis
had nucleotide frequencies of A = 0.28890, C = 0.18020, G
= 0.19920, and T = 0.33170. The gamma shape parameter
was oo = 1.1055 and the transition: transversion ratio was
1.7937. The ML analysis resulted in an ML tree with a log-
likelihood score of —4,745.99. The Bayesian analysis of the
zfy data under the HKY + I" model of nucleotide substitution
produced a phylogeny (Fig. 2) with strong posterior probabil-
ity support. The 3 independent analyses converged on stable
posterior probability values after a burn-in time of 30,000
generations. The phylogeny inferred had a log-likelihood
score of —4,768.58.

Pairwise genetic distance measures of the zfy data ranged
from 0.18% to 2.14% between clades and from 0% to 0.16%
within clades (Table 2). These values of zfy divergence are
similar to those reported by Wallner et al. (2003) for Equus
species and by Lawson and Hewitt (2002) for several sheep
and goat species. Genetic distances between Scotophilus and
the outgroup taxa for the zfy data averaged 16.64%. The
absolute number of nucleotide changes ranged from 1 to 41
changes within Scotophilus and from 115 to 178 changes
between Scotophilus and the outgroup taxa.

The zfy tree has a highly supported monophyletic Scoto-
philus, as did the cytochrome-b tree, but better support of
more basal relationships. For example, S. marovaza is sister to
S. leucogaster, which is sister to a clade consisting of S.
nigrita, S. heathii, S. viridis, S. dinganii, and S. nigritellus
(Fig. 2). An interesting result was a nearly identifical
haplotype for S. nigritellus and an individual of S. dinganii.

Phylogenetic analysis of the combined cytochrome-b and
zfy data sets using parsimony resulted in 14 equally
parsimonious trees at 1,305 steps. The tree description for 1
of the 14 trees is as follows: CI = 0.5824, HI = 0.4176, RC =
0.4989, and RI = 0.8567. Bootstrap support values over 70%
are labeled on the appropriate nodes (Fig. 3). The program
MODELTEST selected the GTR + I' + I model as the best-fit

TaBLE 2.—Pairwise genetic distances (Kimura 2-parameter) expressed as percentages within (diagonal) and between clades of the zfy

phylogeny (Fig. 2) for Scotophilus.

Clade 1 2 3 4 5 6 7 8 9

1 0.10

2 2.04 0

3 1.67 1.27 0

4 2.14 1.74 0.66 0.05

5 1.71 1.33 0.50 0.89 0

6 1.93 1.75 0.82 1.30 0.61 0.10

7 1.67 1.43 0.56 1.03 0.28 0.56 0

8 1.86 1.40 0.66 1.08 0.33 0.66 0.18 0.05

9 1.81 1.40 0.73 1.18 0.42 0.73 0.37 0.43 0.16
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N E. serotinus Discussion
Vietnam .
Vietnam Phylogenies produced by the cytochrome-b data set resulted
| in 13 relatively well-supported clades (Fig. 1) with substantial
}Mﬂlaym 1- 5. kuhlii genetic diversity between them (Table 1). Phylogenies based
Malaysia on the zfy data set with a reduced number of specimens
Vietnam resulted in 9 well-supported clades (Fig. 2), and had greater
\ Kenya resolution of ancestral nodes than the cytochrome-b phylog-
C&memﬂn}z's' ux enies. The phylogenies based on the combined data set
3. S. marovaza (Fig. 3) had better support for identified clades, and increased
0.93/977% E|}4 - 8. leucogaster
F=1.00/100/100 China .
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Fic. 3.—Bayesian phylogram from analysis of the combined
cytochrome-b and zfy gene data sets. Eptesicus serotinus was
designated as the outgroup taxon. Node support is designated as in
Fig. 1. Clades mentioned in the text are numbered 1-12.

model of nucleotide substitution for the combined data set.
ML analysis had nucleotide frequencies of A = 0.29740, C =
0.21630, G = 0.17080, and T = 0.31550. The gamma shape
parameter was oo = 0.5120 and the assumed proportion of
invariable sites was 0.6417. The ML analysis resulted in a tree
with a log-likelihood score of —11,030.59.

The Bayesian analysis of the combined data matrix under
the GTR + I' + I model of nucleotide substitution produced a
phylogeny (Fig. 3) that recovered the same clades as the
maximum-parsimony and ML inferred phylogenies but with
greater resolution at the ancestral nodes. The 3 independent
analyses converged on stable posterior probability values after
a burn-in time of 30,000 generations. The phylogeny inferred
has a log-likelihood score of —11,065.86. The topology is
very similar to that recovered using only the cytochrome-b
data set with the exception that there is weak support for a
sister-group relationship between S. marovaza and S. leuco-
gaster, which was recovered in the zfy tree. In the cytochrome-
b phylogeny, there is a weak sister-group relationship between
a clade consisting of S. marovaza and S. tandrefana, and S.
heathii (Fig. 1). The combined phylogeny shows S. kuhlii as
the most basal species of Scotophilus and the African
Scotophilus comprise a monophyletic clade with the inclusion
of Asian S. heathii.

In all analyses, several phylogenetic observations are
supported. The Asian S. kuhlii is found to be the most basal
species. African members of Scotophilus form a paraphyletic
group with the inclusion of S. heathii from Asia, which
suggests several exchanges between these 2 continents. S. nux
is the most basal African species. S. nigritellus is distinct from
S. viridis, as suggested by Grubb et al. (1998). S. viridis is not
monophyletic because it is found in 2 divergent clades;
specimens from Kenya group with S. dinganii from South
Africa, and specimens of S. viridis from South Africa group
with S. robustus from Madagascar. These relationships could
not be corroborated with the zfy data set because there were no
males of S. robustus and no males of S. viridis from Kenya
available for study. The Bayesian analysis of the zfy data
support a sister-group relationship between S. viridis from
South Africa and S. dinganii from Ethiopia, but there was no
support of this relationship in the ML and parsimony analyses
(Fig. 2). Individuals identified as S. dinganii are found in 4
clades (Fig. 1, clades 8, 9, 11, and 13). Specimens from the
Kakamega Forest of Kenya, coastal Ghana, and northeastern
South Africa share a close relationship (Fig. 1, clades 11A,
11B, and 13) with inclusion of S. viridis from Kenya (Fig. 1,
clade 12). This large clade is sister to a grouping of Ethiopian
S. dinganii (Fig. 1, clades 8 and 9) and S. nigrita.

The higher-level relationships among species of the genus
remain unclear. There is weak statistical support for nodes joining
several species and the branch lengths are small, suggesting a
rapid radiation of Scofophilus, or phylogenetically noisy data.
There is saturation in the cytochrome-b data set (Fig. 4), which
explains the more poorly supported basal relationships in
comparison to the zfy tree. Nonetheless, these results corroborate
the distant relationship between the 2 Indomalayan species as
reported by Hoofer and Van Den Bussche (2003) based on 12S
rRNA, 16S rRNA, and tRNAY® data.

The inferred phylogenies provide molecular support for
species previously identified through morphological methods
and recognized in the literature, as well as support for cryptic
species of Scotophilus. However, the inferred phylogenies do not
support the recently described species from Madagascar: S.
marovaza (Goodman et al. 2005) and S. tandrefana (Goodman et
al. 2006). The cyotchrome-b phylogeny groups them (Fig. 1,
clade 4) with a genetic divergence of 0.6%, a level indicative of
within-species divergence (Baker and Bradley 2006; Bradley
and Baker 2001). This indicates that either the cytochrome-b
data are not representative of the evolutionary history of these 2
taxa or that the speciation event that split them may be fairly
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F16. 4.—Plot of pairwise comparisons of genetic distance based on
the cytochrome-b gene and the region of the zfy gene sequenced in
this study. The scales present on the x and y axes account for an
approximately 10-fold difference in mutation rates between the
cytochrome-b gene and the zfy gene as can be seen in the linear
portion of the curve. At around 12-15% divergence, the cytochrome-
b gene becomes saturated, whereas the zfy gene has not yet reached
saturation. This saturation is a potential cause of the loss of resolution
at the basal nodes in the cytochrome-b phylogeny for Scotophilus.

recent and not yet reflected in the cytochrome-b gene.
Unfortunately, we could not obtain sequences from the zfy gene
to test these alternative hypotheses.

Clade 8 (Fig. 1) includes an individual identified as S.
nigrita that clusters with S. dinganii from Ethiopia. The large-
bodied African species S. nigrita, represented by SP 5505
from Kenya, is most similar to an Ethiopian S. dinganii (1.2%
sequence divergence) based on mtDNA but a more distant
relationship to all S. dinganii based on zfy (Fig. 2). The size
difference between S. nigrita and S. dinganii make the 2
species easily identifiable. This association suggests that S.
nigrita shares a cytochrome-b haplotype that is similar to those
found in Ethiopian S. dinganii. This provides some evidence
for a potential mitochondrial capture event in the history of
this species possibly due to a hybridization event with an S.
dinganii-like ancestor. The occurrence of a similar introgres-
sive hybridization has been reported in North American deer
(Cathey et al., 1998). Unfortunately, the sample size of S.
nigrita available for this study is the single individual
sequenced. Additional specimens of S. nigrita are needed to
further investigate this evolutionary scenario.

Robbins et al. (1985) noted that southern African S. viridis
were slightly larger and exhibited greater size variation than
other S. viridis in their study. Individuals that were identified
as S. viridis occur in divergent clades of the cytochrome-b tree
(11% sequence difference), suggesting the occurrence of 2
species. S. viridis was described originally based on material
collected in coastal Mozambique. South African individuals
identified as S. viridis group weakly with S. robustus from
Madagascar. Individuals identified as S. viridis from Kenya
are sister to S. dinganii from South Africa. This implies that
either this sample of S. viridis from Kenya is S. dinganii or it is
a new species of Scotophilus. Preliminary examination of
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voucher material suggests that this group is not S. dinganii but
rather has superficial morphological similarities to S. viridis.
S. viridis from Kenya also differs from S. dinganii from South
Africa by 4.2% sequence divergence, a value that is within the
documented range of sequence divergence for closely related
species (Baker and Bradley 2006; Bradley and Baker 2001).
Therefore, this population from Kenya most likely represents a
new species that has not been described morphologically. All
specimens within this clade were females so no zfy data are
available for comparison to the cytochrome-b data.

The well-supported monophyletic clade of S. nigritellus and
>5% sequence divergence of cytochrome b from other
individuals merit recognition from S. viridis and other species,
as suggested by Grubb et al. (1998). However, an individual
identified as S. nigritellus (SP 11111) has a nearly identical zfy
sequence to that of an individual identified as S. dinganii from
Ghana (SP 10180). This specimen is morphologically similar
to the other S. nigritellus in terms of ventral pelage coloration,
which suggests that there is incomplete lineage sorting.

Individuals identified as S. dinganii appear in several
divergent cytochrome-b lineages, and may represent cryptic
species, such as that reported by Jacobs et al. (2006). The
individuals from Ethiopia and Kenya, excluding the Kaka-
mega Forest specimens, have an average sequence divergence
of 4.9% (Fig. 1, clades 8 and 9). Well-supported monophyetic
clades of S. dinganii from coastal Ghana and the Kakamega
Forest of Kenya differ from each other by 2.8% sequence
divergence (Fig. 1, clades 11A and 11B) but differ from S.
dinganii from Ethiopia and Kenya, excluding the Kakamega
Forest specimens, by a mean sequence divergence of 9.7% and
from S. dinganii from South Africa by 5.5%.

The Malagasy Scotophilus appear to have multiple origins
from Africa because S. robustus and the clade containing S.
tandrefana and S. marovaza do not share a sister-group
relationship in the cytochrome-b tree. In continental Africa,
there appear to be at least 10 species of Scotophilus, including S.
dinganii (southern Africa), S. dinganii (eastern Africa), S.
dinganii (Ghana to Kakamega Forest, Kenya), S. viridis (southern
Africa), S. viridis (eastern Africa), S. nigritellus, S. nux, S.
leucogaster, S. nucella, and S. nigrita. However, our molecular
study did not include 4 of the 15 currently recognized species (S.
nucella from Africa, S. borbonicus from Reunion Island, S.
celebensis from Sulawesi, and S. collinus from Indonesia).
Therefore, no supported conclusion can be made as to an Asian
or African origin of Scofophilus. Continued investigation is
needed to fully understand the origins of the genus and to
elucidate the phylogenetic relationships present. Nonetheless, our
study suggests that S. heathii represents an invasion of Asia from
Africa because it is well embedded in the African clade. One
member of the African Scotophilus, S. leucogaster, occurs in
Yemen and Saudi Arabia, possibly indicating a route between
Africa and Asia used by a Scotophilus-like ancestor.

Based on the phylogenies inferred from mtDNA, zfy, and the
combined data set, there potentially are an additional 3 species
of Scotophilus (Table 3), including 2 previously identified as S.
dinganii and 1 previously identified as S. viridis. The 2 S.
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TaBLE 3.—The 18 species of Scotophilus recognized in this study.
A plus sign (+) indicates support and a minus sign (—) indicates a
lack of support based on morphology, mitochondrial DNA (mtDNA),
or Y-chromosome DNA (zfy).

Species Morphology mtDNA zfy
S. nigrita (Schreber, 1774) + — +
S. borbonicus (E. Geoffroy, 1803) + No data No data
S. kuhlii Leach, 1821 + + +
S. leucogaster (Cretzschmar, 1830) + + +
S. heathii (Horsefield, 1831) + + +
S. dinganii (A. Smith, 1833) + + +
S. viridis (Peters, 1852) + + +
S. robustus Milne-Edwards, 1881 + + No data
S. nigritellus de Winton, 1899 + + No data
S. nux Thomas, 1904 + + +
S. celebensis Sody, 1928 + No data No data
S. collinus Sody, 1936 + No data No data
S. nucella Robbins, 1983 + No data No data
S. tandrefana Goodman et al., 2005 + + +
S. marovaza Goodman et al., 2006 + - No data
S. dinganii-like (eastern Africa) No data + +
S. dinganii-like (Ghana to Kakamega) No data + +
S. viridis-like (eastern Africa) No data + No data

dinganii-like species include eastern populations from Ethiopia
and Kenyan localities other than the Kakamega Forest
specimens and western populations from Ghana to the
Kakamega Forest of Kenya. The S. viridis-like species is from
eastern Africa. We agree with Simmons (2005) and Robbins et
al. (1985) in restricting S. borbonicus to Reunion Island and
Madagascar. These potentially new species and other taxa not
present in this study (S. celebensis, S. collinus, S. borbonicus,
and S. nucella) result in a total of 18 species of Scotophilus.

There is a growing literature on cryptic species and their
identification based on genetic data, including S. dinganii in
South Africa (Jacobs et al. 2006). Other examples exist for the
Onychophora (Trewick 1998), birds (Baker et al. 1995), and
mammals (Kingston et al. 2001; Olson et al. 2004). The use of
mtDNA to define species was investigated by Bradley and
Baker (2001) in relation to mammals and used as a test of the
genetic species concept. The use of mtDNA in conjunction
with nuclear DNA markers allows for a more robust definition
of species based on nucleotide sequences. The results of
Bradley and Baker (2001) indicated that cytochrome-b genetic
distance values between 2% and 11% were indicative of
probable species and that distances above 11% were indicative
of species recognition. In the genus Scotophilus, known
morphological species differ from other known morphological
species by 4% to more than 16% sequence divergence.

The 3 putative new species identified in this study should be
validated with morphology or other ecological data, or both.
Jacobs et al. (20006) report sympatric species of S. dinganii-like
bats in southern Africa based on cytochrome-b sequence data
(3.4% sequence divergence) and echolocation frequency data
(peak echolocation frequencies of 44 kHz for one and 33 kHz for
the other). This result has implications for taxonomy and
systematic of Scotophilus, including the suggestion that call
frequency data may be a useful character for separating species in
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this genus, and that the widespread S. dinganii may be a complex
of several closely related species that deserves further inquiry.

This study has resulted in several testable hypotheses and
questions regarding the systematics of the genus Scotophilus.
For example, is S. nigrita a species that has hybridized with an
S. dinganii-like ancestor? How many cryptic species of S.
dinganii-like bats occur in sub-Saharan Africa? The origin of
Malagasy Scotophilus needs to be further examined with an
increased taxonomic representation. Also, a thorough survey
of the widespread Asian species (S. kuhlii and S. heathii) is
needed to characterize these taxa within the context of
systematics and taxonomy of Scotophilus.
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