

DISCLAIMER

THIS DOCUMENTATION IS PROVIDED FOR REFERENCE PURPOSES ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE
COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS DOCUMENTATION, THIS
DOCUMENTATION IS PROVIDED "AS IS" WITHOUT ANY WARRANTY WHATSOEVER AND TO THE MAXIMUM EXTENT
PERMITTED, LOTUS DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION THE IMPLIED
WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE, WITH
RESPECT TO THE SAME. LOTUS SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION,
DIRECT, INDIRECT, CONSEQUENTIAL OR INCIDENTAL DAMAGES, ARISING OUT OF THE USE OF, OR OTHERWISE
RELATED TO, THIS DOCUMENTATION OR ANY OTHER DOCUMENTATION. NOTWITHSTANDING ANYTHING TO THE
CONTRARY, NOTHING CONTAINED IN THIS DOCUMENTATION OR ANY OTHER DOCUMENTATION IS INTENDED TO,
NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR REPRESENTATIONS FROM LOTUS (OR ITS
SUPPLIER OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF THE APPLICABLE LICENSE AGREEMENT
GOVERNING THE USE OF THIS SOFTWARE.

COPYRIGHT

Under the copyright laws, neither the documentation nor the software may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of Lotus
Development Corporation, except in the manner described in the documentation.

© Copyright 2000 Lotus Development Corporation
 55 Cambridge Parkway
 Cambridge, MA 02142

All rights reserved. First edition printed in 2000. Printed in the United States.

LIST OF TRADEMARKS

Domino, Designer, Design Components, Enterprise Integrator, and Notes are trademarks and cc:Mail, Lotus, Lotus Notes,
LotusScript, NotesSQL, Organizer, SmartIcons, and SmartSuite are registered trademarks of Lotus Development Corporation.
IBM, AIX, AS/400, OS/2, OS/390, OS/400, Power PC, RS/6000, and VisualAge are registered trademarks of International
Business Machines Corporation. All other trademarks are the property of their respective owners.

22Directory databases .
22Domains and directories .
22

The Administration Process task and the
Administration Requests database

21
The Domino Administrator and the Domino Web

Administrator .

21How the Administration Process works
20Administration processing flow-of-control
20Administration design .
19Administration design issues .
19Domain administration .
18Overview of database replication .
17Notes in hierarchy .
17Design-element notes .
17Administration notes .
16Data notes .
15Types of notes .
14The "note" in Notes .
14The database header and other internal structures
14The Notes database .
13The Notes remote procedure call client
13The Extension Manager .
12Other NOS services .
12The Notes Storage Facility (NSF)
11The portability layer .
11How NOS is organized .
10NOS is thread safe .
10Overview of Notes Object Services
10

Notes uses its own databases to implement
domain-wide features .

9
Notes uses its own databases to control many of its

own activities .

9
Fundamental support for security and groupware

is built into all Notes software

8
Later releases of Notes support databases created

using earlier releases .

8The note is the basic data structure
8Client programs can run on servers, and vice versa
7

A Notes application can run on any Notes client or
Domino server computer .

6Notes is designed for global use .
5Notes must perform and scale well on all platforms
4Notes is multiplatform .
4Design principles .
3NOS is at the heart of everything
3Fundamental design principles .
3Databases and files .
2Notes Object Services (NOS) .
2Client and server programs .
2Notes and Domino components .
1Critical terms and definitions .
1

1 Overview of Notes and Domino
Architecture .

viiPreface .

42XML support .
42CORBA support .
41Supported Lotus connectors .
41Supported database drivers .
40Supported application toolkits .
40Using toolkits, drivers, and connectors
39Web authoring tools .
39

How Notes/Domino process the built-in interpreted
languages .

38The Domino Designer .
37Revising and refreshing a design
37Editing and viewing the database
37Creating a new database from a template
37Creating a template .
36

Developing, creating, and maintaining Notes
applications .

35Development environments .
35Programmability .
35Table of server tasks that monitor server activity
34Table of server tasks that manage protocols
34

Table of server tasks that manage mail, calendars,
and scheduling .

34
Table of server tasks that manage server and

administration activities .

33
Table of server tasks that maintain Notes

applications .

33Add-in server tasks .
32Table of built-in server tasks .
32Types of built-in tasks .
32Built-in server tasks .
31The Domino Server program .
30The Domino Administrator .
30The Domino Designer .
30The Notes client .
29Common client databases .
29Common client services .
29Common client features .
28Client programs .
28Mail availability .
28Mail performance .
27Domino mail servers .
26Mail clients .
26Messaging components .
26Overview of messaging .
25Security issues .
25Database security .
25Server security .
24Network security .
24User security .
24Overview of security .
23LDAP directories .
23The Directory Catalog (DIRCAT.NSF)
23Directory Assistance (DA.NSF) .
23The Domino Directory (NAMES.NSF)

Contents iii

Contents

71
Tasks that manage server and administration

activities .

69Tasks that maintain Notes applications
69Types of server tasks .
694 Server Tasks .

67Layout of an item .
66Table of item types .
65

How a program decides if an item is a summary or
non-summary item .

65Physical storage of notes in a database
64Layout of a note .
63Identifiers for notes .
63Table of note types .
62Database notes .
62Database replication history .
62Database replication settings .
61Database instance ID .
61Database ID .
61Database information buffer .
61Database class .
60Major and minor version numbers
60Components of the database header
60Database structures .
59Recovery Manager and the Logger
59Directory Manager .
59Database Cache .
58Open Database list .
58Unified Buffer Manager .
58NSF API functions .
57Figure of NSF .
57The Notes Storage Facility .
573 Notes Storage Facility .

55Security services in NOS .
55Time services in NOS .
55Text list services in NOS .
55Message queue services in NOS
55ID table services in NOS .
54Extension Manager services in NOS
54Event services in NOS .
54Distinguished name services in NOS
53Alarm services in NOS .
53Add-in services in NOS .
53Access control list services in NOS
53Other NOS services .
51View architecture .
48High-level database services in NOS
47Notes Storage Facility services in NOS
47NOS database services .
47NOS network services .
46Operating system services in NOS
46On-disk structure services in NOS
46Notes language services in NOS
46NOS portability layer services .
45Table of NOS service groups .
44NOS service groups .
44Figure of NOS architecture .
43NOS is thread-safe .
43Portability .
43Notes Object Services .
432 Notes Object Services .

107LDAP .
107IIOP .
107HTTP .
107Examples of name-and-password authentication
106Session-based name-and-password authentication
106Basic name-and-password authentication
105

Supported authentication methods for Internet
protocols .

104Internet client authentication .
103Cross-certificates .
102Phase 2 -- Authentication .
101Phase 1 -- Public key validation
101Example of Notes/Domino authentication

99Contents of a Notes ID .
99Types of ID files .
99Notes ID files .
99Hierarchical naming .
99Public key certificates .
99Digital signatures .
98Symmetric encryption .
98Public key encryption .
98Notes/Domino authentication .
98Using access control features for security
97Restricting access to documents
94Restricting access to workstation data
92Restricting access to design elements
92Restricting access to files .
89Restricting access to databases .
88Restricting access to servers and ports
88Notes/Domino access control .
88Securing local databases .
88Document .
87Design element .
87Database .
87Server .
87User authentication .
87Network .
87The Notes/Domino security model
876 Security .

85?CreateDocument and ?SaveDocument
85?OpenForm .
85?OpenDocument and ?EditDocument
84How Domino processes a URL .
84HTML emitter and engine .
84Command handlers .
83URL parser .
83HTTP stack .
83Components of the HTTP Server task
82Domino Web server architecture
81Domino Web server object model
80Workflow and page processing
80User interaction .
80Dynamic content .
80The Domino Web server .
79Types of Web servers .
795 Notes and the Web .

76Tasks that monitor server activity
74Overview of statistics and events
73Tasks that manage protocols .
72Tasks that manage mail, calendars, and scheduling

iv Inside Notes: The Architecture of Notes and the Domino Server

129
User and group synchronization between Domino and

Windows NT .

128Directory servers .
128

Notes mail addressing lookups in multiple
directories .

127LDAP searches in multiple directories
127

Group lookups in multiple directories for database
access verification .

126
Name lookups in multiple directories for Web

client authentication .

126Directory search orders .
126Other LDAP features Domino offers
125LDAP service statistics .
125LDAP alternate language searches
125

LDAP service and authentication of clients that use
a third-party server .

125LDAP referrals to other directory servers
125LDAP searches in secondary Domino Directories
124LDAP service authentication and access control
123The LDAP schema .
122The Domino LDAP service .
122

Comparison of directory catalogs and directory
assistance .

121
Notes addressing lookups in a remote LDAP

directory .

121LDAP client referrals to a remote LDAP directory
120

ACL group verification using a remote LDAP
directory .

120
Web client authentication using a remote LDAP

directory .

120Directory assistance for LDAP directories
120

Notes addressing lookups in a secondary Domino
Directory .

119LDAP searches in a secondary Domino Directory
119

Web client authentication in a secondary Domino
Directory .

118
The server directory catalog and directory

assistance .

118
Directory assistance for secondary Domino

Directories .

118Directory assistance .
117Programmatic access to a directory catalog
117Directory catalog configuration options
116How a directory catalog works
116The server directory catalog .
115The mobile directory catalog .
115Directory catalogs .
115The Domino Directory .
114LDAP directory searches .
114Lookups using the NOS Name services
113Databases used for directory lookups
113Directories .
1137 Directories .

111POP3 .
110LDAP .
109IIOP .
108HTTP .
108Examples of SSL authentication .
108SSL authentication .
107POP3 .

152The Cluster Replicator .
152The Cluster Administrator .
152The Cluster Database Directory Manager
151The Cluster Database Directory
150The Cluster Manager .
150Cluster components .
150Cluster requirements .
149The benefits of clusters .
149Domino clusters .
14910 Clusters .

148How cluster replication works
147

How cluster replication differs from standard
replication .

147Clusters and replication .
147Resolving existing conflicts .
146Preventing conflicts .
146Preventing and resolving replication conflicts
144How replication works behind the scenes
144Using the access privileges in replication
143Using the access control list in replication
143Replication formulas .
142The Replicate settings .
142The replication settings .
141Replicating only a portion of a database
141Replication controls .
140

Using Connection documents to set up a replication
schedule .

140Issuing the replication commands
140The Replicator server task .
140The Replicator server task and replication commands . . .
139The benefits of replication .
139Replicas and replication .
1399 Replication .

137
Table of Administration Process scheduling

attributes .

136Worker threads process administration requests
136

The Administration Process checks the Response
documents .

135
How and when the Administration Process uses

formulas .

135
The Administraion Process checks the scheduling

attributes .

135The Administration Requests database is created
135The Administration Process .
1358 The Administration Process

134
Migrating users from the Netscape Messaging

Server .

134Migrating users from Novell GroupWise
134Migrating users from an LDIF file
133Migrating Windows NT users
132Migrating Microsoft Exchange users
132Migrating Microsoft Mail Users
130Migrating cc:Mail users .
130Migrating users to Notes/Domino
130

Linking Windows NT user accounts with Domino
Person documents .

129
Windows NT tasks administrators can complete

from Domino .

129
Domino tasks administrators can complete from

Windows NT .

Contents v

199Index .

173Glossary .

171Message level retry .
171Transfer threads .
171Message-delivery retry algorithm
171Domino Release 5 cluster enhancements
170Cluster algorithm .
170Failover in clustered mail servers
169Compacting MAIL.BOX .
169Daily housekeeping performed by the Router
169Configuration changes .
169Controlling the Router task .
168Message delivery threads .
168

Transferring to a Domino Release 5 server via
SMTP .

167Message transfer over SMTP .
166Message transfer threads .
166Message state .
165Message cleanup .
165Message delivery .
164Message transfer queues .
162Message routing .
162Router initialization .
161How the Router works .
161Mail protocols .
161Components that the Router uses
161The Router .
16112 The Router .

160The Domino Directory and indexing
160The Update task .
159The Updall task .
159The Indexer .
15911 The Indexer .

157Example of failover .
157Managing database availability in a cluster
156Causing failover to occur .
156Setting the maximum number of users on a server
155The server availability index .
155Limiting the workload of a server
155How calendars work in a cluster .
154Mail failover .
154When failover does not occur .
153When failover occurs .
153Workload balancing .
152Failover and workload balancing

vi Inside Notes: The Architecture of Notes and the Domino Server

Preface

In 1989 Lotus Notes® made the world a little smaller.

Since its first release, Notes™ has enabled teams of people to work together, even when separated
by great distances or when individual contributions are made at different times. Notes was the
world’s first viable groupware product, and it remains today the world’s best groupware product.
Release after release, Notes continues to evolve innovative, new capabilities that support its initial
core concept: Collaboration made possible through shared, secure, online databases.

Much of what has been written about Notes over the years does not contain enough information
about how Notes works to satisfy the needs of IT managers, application developers, and other
technical individuals who are responsible for purchasing equipment, integrating Notes into their
organizations, and designing appropriate, efficient applications. The purpose of Inside Notes: The
Architecture of Notes and the Domino Server is to describe the internal architecture of Notes and
Domino™ in sufficient detail to enable you to make optimal deployment and programming
decisions.

Inside Notes provides a single place where you can quickly learn about the overall architecture of
Notes. It clearly presents gist of Notes design, without getting bogged down in details. While some
of the information included here has appeared elsewhere, other information has never before been
published.

vii

Chapter 1
Overview of Notes and Domino Architecture

This chapter describes the technology that forms the basis of Notes and Domino architecture up to
and including Release 5.

Critical terms and definitions
Within the software industry, the use and meaning of certain terms varies widely. To ensure that
you understand the use of these terms within the context of Inside Notes, the following is a small list
of the terms and definitions that are essential for your understanding this book. A complete glossary
appears at the end of this book.

Program
A program is written in C or C++, complied into machine code, and then distributed as an
executable (EXE file). Examples of Notes programs include the Notes Client, the Domino
Designer, the Domino Administrator, the Domino Server program, and Domino server tasks.

Program component
A program component is written in C or C++, complied into machine code, and then
distributed as a dynamic link library (DLL file). Program components contain reusable code
and/or resources — for example, text strings — that can be used by one or more running
programs. An example of a Notes program component is the Notes Object Services (NOS).

Notes application developer
An application developer designs Notes databases.

Notes application
A Notes application is the design of a Notes database. A complex Notes application may
consist of several individual database designs that work together to perform a specific task. A
typical Notes application consists of a set of design elements that specify, among other things,
the following:

�� The type of documents (data notes) in the database.

�� The way that documents can be indexed and viewed.

�� The application’s logic, which is written in one of four interpreted languages — Notes
Formula Language, LotusScript®, Java, or JavaScript — and which can be activated based on
an event, such as a button click, and/or based on schedules. Because logic written in any of
these languages is interpreted the same way on all Notes and Domino platforms, a Notes
application runs on all platforms to which Notes and Domino have been ported.

Notes database
A Notes database is a single file that physically contains both a set of documents and a copy
of the application design elements that control the creation and modification of those
documents.

1

Notes and Domino components
The following figure shows the key Notes and Domino hardware and software components. The
hardware components are Notes client computers, Domino server computers, and the network that
connects them. The software components reside on the client and server computers.

The same three-level software architecture is used on both client and server computers, and each
key software component belongs to one of the levels:

�� Client and server programs

�� Notes Object Services (NOS)

�� Databases and files

Notes Clients

Domino Servers

network

Notes Client
Domino Designer
Domino Administrator

network

Client/Server level

NOS level

Database/File level
Local Databases
Local Files

Notes Object Services

Domino Server
Server Tasks

Shared Databases
Local Files

Notes Object Services

function calls function calls

read / write read / write

Client and server programs
Client and server programs use NOS to create, modify, read, and maintain databases and files.

Client programs
On client computers, the Notes Client, the Domino Designer™, and the Domino Administrator give
interactive, window-based access to databases and files local to the client computer and to shared
databases.

Server programs
On server computers, the Domino Server program supports the connection between clients and the
server and also manages a set of server tasks, which are programs that either perform schedule-
driven database chores — such as routing messages to mailboxes and updating user accounts — or
connect various types of clients — for example, Notes, Web browser, and CORBA — to the server.

Notes Object Services (NOS)
The Notes Object Services (NOS) is a set of portable C/C++ functions that create and access
information in databases and files, compile and interpret formulas and scripts, and interface to
operating system services in a consistent, portable way. Using C-language callback functions, you
can customize many NOS functions.

2 Inside Notes: The Architecture of Notes and the Domino Server

Databases and files
Server computers have shared databases; client computers have local databases; and both have local
files.

A database is shared if it can be accessed over the network by a program running on another
computer. The Domino Server program is the only program that contains the logic to respond to
incoming requests from another computer on the network for access to a database. Because the
Domino Server program runs only on server computers, only databases that are on Domino server
computers are shared. Because NOS implements the logic that posts requests to access a shared
database and because NOS runs on all client and server computers, programs running on any client
or server computer can request access to a shared server database. The server may deny specific
requests, however, if the requester lacks the proper access rights. When a program running on one
computer accesses a shared database residing on another computer, the shared database is
considered to be a remote database, with respect to the program accessing it.

A database or file is local if it can be accessed only by programs running on the same computer.
Databases on client computers are local because client programs lack the logic implemented in the
Domino Server program to respond to incoming database requests. Only programs running on a
client computer can access databases on the client computer.

While databases contain most of the data in a Notes network, some data is kept in non-database
files, such as ID files and the NOTES.INI file. These files exist on client and server computers and
are always local because neither the client nor the server program contains the logic required to
request or provide shared access to non-database files.

Fundamental design principles
A software design principle is a rule or a goal that guides decisions made when designing software.
For example, if performance is the main goal of a software product and you have a choice between
one design that results in better performance and another that results in a system that is easier to
use, you would choose the better performing design.

Notes software designers had some very specific goals in mind prior to designing and developing
any code. Understanding those principles is key to understanding the design of Notes. This section
describes those principles as well as some of the more important design features derived from those
principles.

NOS is at the heart of everything
To understand the fundamental design principles, you need to know that the Notes Object Services
(NOS) is the common thread that ties the entire Notes architecture together. NOS implements the
services that create and maintain Notes databases, which are the foundation of the Notes
architecture. NOS functions implement a secure, note-oriented data model and contain the
groupware logic that allows many programs to access notes simultaneously and resolve conflicts
that occur when two or more programs try to change the same note at the same time.

NOS is the key to the multiplatform capabilities of Notes. NOS itself is portable — that is, it runs on
many operating systems, thereby providing a foundation that supports portable client and server
programs. In addition, NOS enforces a common database structure, regardless of the platform on
which a database is created or resides. NOS contains the compilers and interpreters for the portable
interpreted languages that Notes supports: the Notes Formula Language, LotusScript®, Java, and
JavaScript. Programs written in these languages run on every Notes platform because NOS has been
ported to all those platforms. Finally, NOS contains globalization services that enable client and
server programs to input, display, and print textual information in dozens of languages used
throughout the world.

Chapter 1: Overview of Notes and Domino Architecture 3

Design principles
Notes software architecture relies on a combination of principles all working in concert to provide
its unique groupware capabilities. Each separate design principle contributes to a whole that is
greater than the sum of the individual parts:

�� Notes is multiplatform.

�� Notes is designed for global use.

�� Notes must perform well on different platforms and at different scales.

�� A Notes application can run on any Notes client or Domino server computer.

�� Client programs can run on servers, and vice versa.

�� The note is the basic data structure.

�� Later releases of Notes support databases created using earlier releases.

�� Fundamental support for security and groupware support is built into all Notes software.

�� Notes uses its own databases to control many of its own activities.

�� Notes uses its own databases to implement domain-wide features.

Notes is multiplatform
A software product is multiplatform if it runs on many different platforms. A platform is a specific
operating system running on a specific computer — for example, four different platforms are IBM®
OS/400® running on an AS/400®, AIX® running on an RS/6000®, Microsoft Windows NT running
on an Intel Pentium processor, and Microsoft Windows NT running on a DEC Alpha.

As a groupware product, Notes was designed from the very start to be multiplatform. A groupware
product should be multiplatform because groups can be large or small and each group requires a
choice of platforms to match its technical and budgetary needs. Also, because many companies
employ a mix of platforms, it is easier and more economical to deploy a multiplatform product such
as Notes, rather than deploy a variety of single-platform products.

How Notes supports multiple platforms
There are a number of ways to write multiplatform software:

�� The classic model involves writing a program in a portable language, such as C or C++, and
then compiling it to run on different platforms.

�� The virtual-machine model, used by Java, implements a common runtime environment that
runs on many different operating systems, and therefore hides their differences from the
interpreted programs that run on the virtual machine.

�� The network-brokered model, used by CORBA, enables a program that runs on only one
platform to serve clients that run on many different platforms and that use a standard
network-based interface to communicate with it.

Notes uses a combination of the classic model and the virtual-machine model. Notes client programs,
server programs, and NOS use the classic approach. All are written in C and C++ and are compiled
to run on many different platforms. Notes applications, which comprise a large part of the Notes and
Domino product, use the virtual-machine approach. They contain design elements and logic (written
in Notes Formula Language, LotusScript, Java, and/or JavaScript) that are processed in an identical
manner, regardless of the computer on which the application resides. Because all access to an
application is through NOS functions, applications work on all platforms to which NOS has been
ported.

The classic model used by the client programs, server programs, and NOS is the most difficult way to
create multiplatform software. There is a large initial investment in writing a common set of sources
that compile and run on many different platforms. Some parts of the code make extensive use of
C/C++ conditional statements, so that a single set of source modules can be used to build Notes and
Domino software for many platforms. However, the investment reaps dividends because a common
code base is easy to maintain and is easy to port to new operating systems that rise in popularity and

4 Inside Notes: The Architecture of Notes and the Domino Server

use — for example, Linux. The classic model also produces software that runs much faster than
software interpreted by the other models. In fact, the only way to achieve both goals of excellent
performance and multiplatform support was to write the core client, server, and NOS programs in a
portable language that can be compiled into fast, native machine code for all platforms.

Further support for portability comes from the OS portability services in NOS, which allocate
memory, read and write files, launch programs, and perform other OS-like functions. These services
interface directly to and hide the details of the specific operating systems on which Notes runs. It is
easier to port programs that call NOS portability functions than to port programs that directly call the
services of any one particular operating system.

This approach to providing multiplatform support ensures that Notes provides superior
performance, runs seamlessly and is scalable on many of the most popular operating systems in use
today and in the future.

The following table describes the operating systems to which NOS, Notes client programs, and
Domino server programs have been ported. Note that because all client and server programs require
NOS, NOS runs on all platforms. The table represents what is supported in Notes Release 5, as well
as in releases prior to Notes Release 5 (even if no longer supported in Notes Release 5).

YesYesIntel x-86Linux

YesYesIBM 390OS/390®

YesYesIBM AS/400OS/400

YesYesYesHP-PAHP-UX

YesYesYesIBM RS/6000AIX

YesYesYesSunSparc

YesYesYesIntel x-86Solaris

YesYesYesDEC Alpha

YesYesYesIntel x-86Windows NT

YesYesYesIntel x-86Windows 95/98

YesYesYesIntel x-86OS/2®
YesYesPower PCMAC OS

Server programsClient programsNOSProcessorOperating system
Programs ported to the platformPlatform

Notes must perform and scale well on all platforms
Performing well and scaling well are two closely related and very important design goals for Notes
and Domino. While the exact definition of these goals is often the subject of fierce debate, especially
when trying to quantify them, the absence of these goals is quickly noted. Defined subjectively and
qualitatively:

�� Performing well. A product must complete its work in a timely manner in the view of the
people who use it.

�� Scaling well. A product scales well if it works well on a range of computers, from small to
large.

In general, people want instant response from their computer applications and are frustrated with
delays of even a few seconds, so making a product that performs according to the definition above
can be difficult. Also, organizations, as well as the groups within them that need groupware
products, come in a range of sizes. If Notes/Domino worked for only certain sizes of groups, large
organizations would not be able to deploy them.

The goals of performing and scaling well are often at odds with all other design goals in a product.
They can complicate the product development, installation, and ease of use. Despite these issues,
performing and scaling well rank very high in the list of design principles. From the very beginning,
attention to performance and scale issues has permeated the design of nearly every component of

Chapter 1: Overview of Notes and Domino Architecture 5

Notes/Domino. Sometimes attention to these design goals has negatively affected the design of a
feature — for example, by complicating its use or appearance — but even so, development decisions
favor improving how the product performs and scales, whenever possible.

Writing software that performs well across a range of scales is very difficult. And achieving both
goals across a variety of platforms, each with different memory-management services, network and
I/O capabilities, display features, and so on, can seem impossible sometimes. For example, features
that need to search and sort data are generally easier to develop for platforms that offer large
amounts of memory because the algorithms that take advantage of large amounts of memory are
easier to understand, program, and test. However, if the code must work on smaller platforms too,
then using simple algorithms is often not an option. Given such a choice, the more complicated
algorithm is almost always chosen so that the product scales well — that is, it works well on both
memory-limited and memory-rich computers. An alternative is to use two or more algorithms to
implement a feature — some algorithms that run best on memory-limited environments and some
that run best on memory-rich ones — and pick the one that yields the best performance, depending
on the runtime environment.

Notes is designed for global use
As a groupware product, Notes was designed from the very start for global use, since its users are
likely to be anywhere in the world. A product that is designed for global use can input, manipulate,
and display text information — that is, menu choices, file names, and so on — in different
languages. It can also resolve issues that arise when users in different time zones interact with each
other — for example, when scheduling meetings or corresponding via mail.

Lotus Multibyte Character Set (LMBCS)
A number of different character sets — that is, binary codes that represent specific text characters —
are used throughout the world. The character set used on any given computer depends on the
operating system running on the computer and the location of the computer.

The multitude of character sets used throughout the world creates problems for multiplatform
software such as Notes. For example, how does the software convert all lowercase characters in a
text string into uppercase characters? The lowercase-to-uppercase conversion rule can be different
depending on the character set used to encode the string. To resolve this and other similar problems,
Notes uses a single character set, the Lotus® Multibyte Character Set (LMBCS), to encode all text
data used internally by its programs. Whenever Notes first inputs text encoded in a character set
other than LMBCS, it translates the text into a LMBCS string, and whenever it must output text in a
character set other than LMBCS, it translates the internal LMBCS string into the appropriate
character set. Because all text is internally formatted by LMBCS, all text-processing operations — for
example, converting lowercase characters to uppercase characters — are done in only one way.

LMBCS uses up to three bytes in memory to represent a single text character — for example, the
Roman letter “a” or a German umlauted “o.” The LMBCS specification defines hundreds of
characters — for example, Latin, Cyrillic, Japanese, and so on — and can represent just about any
character used by any language in the world.

The functions that translate text to and from LMBCS format are in NOS. These functions are called
directly by client and server programs, as needed. They are also called by other NOS functions that
work with text strings. For example, when a client program calls the NOS function OpenDatabase,
the program file name is encoded in LMBCS. The function that opens a database, in turn, calls the
NOS function that converts the LMBCS file name into one encoded in the platform-specific character
set before passing it to the platform function that opens the database file.

Because NOS manages most text translation, the majority of Notes client and Domino server
programs do not have to do so. There are exceptions, however. For example, if after opening a file, a
client program finds that its contents are encoded in a platform-specific character set, the client
program calls the NOS translation functions to convert the contents into LMBCS text.

6 Inside Notes: The Architecture of Notes and the Domino Server

Time and date stamps
Like text, data representing time and/or date values can also be problematic for multiplatform
software used on a global scale. To resolve platform-specific differences in how time and date values
are represented, Notes stores time and date information in one consistent way on all Notes/Domino
computers. It defines a TIMEDATE structure and stores within it both absolute time and date values
— that is, a time value represented as standard Greenwich Mean Time (GMT) and a date value
represented as a Julian date — as well as some locale-specific time and date values — for example,
the time zone of the computer that creates the TIMEDATE structure. The absolute time and date
values guarantee that when comparing two TIMEDATE values, Notes can always resolve whether
one time is before, is the same, or is after the other. The locale-specific values make it possible for
Notes to present a TIMEDATE value to a user in a meaningful local time format, rather than in GMT
format.

A Notes application can run on any Notes client or Domino server computer
A Notes database is a single file that contains documents (data notes), a copy of the application
design elements that control the creation and modification of the documents, and administrative
information. In particular, a Notes database contains some, if not all, of the following:

�� A header, which contains information about the database, such as its creation time

�� Documents (data notes), which hold user data

�� Form notes, which control how users create, edit, and view the documents

�� Code (filter notes), which validate user input, generate data, and control the flow and states
of the application

�� Indexes (view notes), which organize data within a database into relevant subsets

�� Security information (ACL notes), which control who can create, edit, and/or see data
documents and design elements (form notes, view notes, and so on)

�� Other types of notes which hold miscellaneous administrative and design information (help
information, the database’s icon, and so on)

Because NOS contains all the services needed to run a Notes application and because NOS has been
ported to run on any client or server computer, a Notes application can run on any Notes client or
Domino server computer.

By combining all design, data, and administrative information in one database file, and by
guaranteeing that an application runs equally well on both client and server computers, Notes
makes it easy to share an application in a groupware environment, easy to deploy an application
across a network, easy to balance application loads between servers, and easy to let a mobile user
run the application when disconnected from the network. This is in stark contrast to other, more
traditional databases that use multiple files to hold all the different types of information that
comprise and/or support a database and that, as a result, require complicated, error-prone
procedures to enable minimal groupware support.

Note There are some exceptions to the model in which everything relevant to a database is
included in a single database file. For example, a complex application may use two or more
databases to store its data. Or if a mail message is sent to multiple mail databases on the same
Domino mail server, it can optionally be stored just once in a special Single Common Object
Store (SCOS) database rather than in each mail database so that disk space can be saved on the
mail server. While this latter example technically violates the convention that everything
relevant to a database is included in the database’s file, Notes and Domino software hide this
message-sharing feature from the user and make it appear as if each mail database has its own
copy of the message. In fact, a copy of the message will indeed be copied into the mail database
if the mail database is copied to a client computer or to another server.

Chapter 1: Overview of Notes and Domino Architecture 7

Client programs can run on servers, and vice versa
Because NOS runs on every Notes client and every Domino server, it is possible to run client
programs on servers and run server programs on clients. This, of course, is true only for those
platforms to which both client and server software have been ported — for example, Windows NT,
Windows 95, and Windows 98.

While it makes neither practical nor economic sense to configure every computer in a
Notes/Domino network as both a client and a server, this client-server duality is a design feature
that provides benefits that are unavailable in a traditional client-server architecture, where clients
run only client software and servers run only server software. For example, you can conveniently
design and test a new database application on a client computer before you deploy it on a server.
Alternatively, there are many platforms to which client programs and server programs have been
ported, making it possible, for example, to run the Notes client on a Domino server without needing
an extra computer.

The note is the basic data structure
One pillar of Notes/Domino design is the use of a single and simple data structure, called a note, to
store all information — including design elements such as forms and views, as well as standard user
documents — within a Notes database. This simple design feature leads to an incredibly powerful
benefit: NOS implements a single set of note-oriented services to create and manage all the different
types of information that can be in a database. Competitive products use distinct programs to create,
manage, and disseminate different types of important data in the system. Developing a program to
run in a multiplatform, multinetwork environment is hard enough without having to worry about
multiple data structures, too. Using one simple note-oriented data model allows Notes developers to
concentrate on making one small set of efficient, bug-free programs.

Later releases of Notes support databases created using earlier releases
Each new release of Notes has new features; therefore, new types of information must be stored in a
Notes database. This creates a classic programming problem — what should a new release of the
program do when it encounters a database created using an earlier release? There are many options,
ranging from handling the older databases in stride to requiring the use of conversion tools to
upgrade old databases to the latest release so that day-to-day production software has to deal only
with files in the latest release.

Notes handles databases created in an earlier release in stride. This means, for example, that Notes
Release 5 can work with a database created using Release 3 and that it will not add Release 4 or
Release 5 information that could later prevent Release 3 from accessing the database.

The inverse, however, is not true. Earlier releases of Notes cannot work directly with databases
created using later releases of Notes — but they can work indirectly with them. What does this
mean? Say, for example, a database created using Release 5 is copied onto a Domino server running
Release 3. The Release 3 software will not open a local copy of a database created using a later
release of Notes. However, when using the network to access a database on a remote server, an
earlier release of Notes can indirectly operate on databases created and maintained by later releases
of Notes. So, for example, Notes Release 3 can access a database created using Notes Release 5 by
asking the Release 5 software on the server to access the database on its behalf.

While the convention that later releases of Notes are compatible with databases created using earlier
releases makes it difficult to develop new versions of Notes, customers benefit because they can run
different releases of Notes in different parts of their company at the same time. For example, if a
Notes Release 5 user adds a document to a Release 3 database, Release 3 users will continue to be
able to work with that Release 3 database.

That multiple releases can coexist simplifies the process of upgrading to new releases. An upgrade
can be staged at a pace most suitable to the customer. A company does not need to redeploy a new
release to all users at once, nor does it need to upgrade all databases to the new release
simultaneously. In fact, an entire company does not need to switch to a new release of Notes; some
parts of a company may upgrade, while others may choose not to.

8 Inside Notes: The Architecture of Notes and the Domino Server

Fundamental support for security and groupware is built into all Notes software
Fundamental support for security and groupware features can be found in all Notes software — in
client and server programs, as well as in the NOS functions that support them.

Regarding security, for example, the Notes Client program and the Domino Server program work
together to authenticate a user prior to letting the user access a database, and the NOS function used
to update a note in a database first checks the user’s rights to do so against information in the
database ACL note.

A large portion of support for groupware features is implemented in NOS because many Notes
groupware capabilities are tightly linked to the note-oriented data model, and all of the low-level
note-oriented functions are implemented in the NOS. For example, NOS contains the logic that
updates a newly edited note in a database. If NOS detects that two users are trying to update the
same note at the same time, NOS accepts the first update and rejects the second.

Notes uses its own databases to control many of its own activities
Virtually every computer program uses files that contain configuration and runtime information.
These files do not contain user data; instead, they contain information that controls the operation of
the program. Although Notes needs such files, too, it most often uses its own databases to store this
information.

There are several reasons to use database files — that is, NSF files — rather than text or binary files,
to hold program data. First, a database contains structured information in the form of notes that
different programs can simultaneously read from and write to. These notes can be copied and then
later replicated. These characteristics are critical in a networked environment where to coordinate
their activities, several Notes programs often need to share data. Second, many Notes and Domino
features are actually implemented as Notes databases, which are easier to understand, upgrade,
port, and deploy than the core Notes and Domino programs, which are written in C and C++. Third,
it implicitly makes many configuration databases accessible over the network, for the simple reason
that Notes databases are transparent and easily accessible over a network connection. This makes
the system that much easier to administer remotely.

For example, every server in a domain has a replica of the domain’s Domino Directory
(NAMES.NSF), a database that controls the user name space and contains Person documents, Group
documents, public encryption keys, Connection documents that enable and schedule mail routing
and replication, Server documents that contain configuration and restriction settings, and so on.
How Notes works depends on the Domino Directory, which is an NSF file that you can modify and
extend if you have the appropriate access rights. The same is true for several other directory-related
databases that, together with the Domino Directory, give Domino a rich and capable directory
mechanism.

Almost all of the Notes server tasks — for example, Router, Replicator, Indexer, and so on — read
from and write to one or more Notes databases. In addition to NSF files, other databases play an
important role in how Notes works. The following are a few examples of important client and server
databases that do not have an NSF extension but that do have the same underlying file structure as
an NSF file:

�� Design templates contain design elements, security information, and computational logic and
have the extension NTF.

�� The MAIL.BOX file is on both a mobile client and a server. On a mobile client, the file holds
outgoing mail messages. On a server, the file temporarily stores a message until the Router
moves it to the next stop on the route to its destination.

�� The DESKTOP.DSK file maintains the Notes client workspace — namely, the workspace
pages and the databases on each page.

Chapter 1: Overview of Notes and Domino Architecture 9

Notes uses its own databases to implement domain-wide features
A Notes domain is a network of client and server computers whose users, servers, connections, and
access control information are described in a single database called the Domino Directory.

For groupware to work, some features require coordinating data and/or programs spread across an
entire domain. For example, messaging is done by Router tasks, several of which may have to work
together to route mail successfully from a source to a destination. Other features that Notes
implements across a domain include administration and security.

It is often extremely difficult to implement domain-wide features in a client-server network.
However, Notes builds upon its core groupware capabilities to implement some of these complex
domain-wide features. To facilitate coordination between servers, Notes uses the most basic of all
groupware capabilities: replication. For example, Domino administration processes depend on
replication to synchronize directory information across all servers in a domain. By using replication
as a design foundation, Notes developers more easily implemented domain-wide features, such as
administration and security.

Overview of Notes Object Services
The Notes Object Services (NOS), which are written as a library of C functions and grouped into
distinct service areas, are at the heart of all Notes software. Client and server programs — the Notes
Client, the Domino Designer, the Domino Administrator, the Domino Server program, and server
tasks — call NOS to create and modify Notes databases, access the network, run formulas
embedded in a database, allocate memory, get time-date information, and so on.

You can create stand-alone applications — such as menu add-ins, server add-in tasks, and
client/server extensions — that call into NOS. To do so, you need the Lotus C API Toolkit for
Domino and Notes. The Lotus C API Toolkit is a set of include files, libraries, and documentation
that you use along with a development environment, such as IBM VisualAge® for C++ or Microsoft
Visual C++, to write client and server programs that call NOS C functions directly. Although not all
NOS functions are available through the Lotus C API Toolkit, the toolkit does expose hundreds of
the most useful NOS functions as the C API.

Programs that you write and that call NOS functions directly can manipulate Notes databases in
ways that cannot be done by using only the Notes and Domino product programs. In addition, you
can use Extension Manager (EM) service in NOS to “hook” hundreds of NOS functions — for
example, the NSFDbOpen function — into your own code to customize its runtime behavior. Using
the Extension Manager makes it easy and efficient to implement some Notes and Domino
applications. Your custom EM code could, for example, cause NSFDbOpen to signal when certain
databases are opened, or it could prevent the opening of certain databases.

NOS is thread safe
Notes is used on multiprocessing/multitasking systems, where two or more processes — for
example, the Domino Server and the Replicator server task — can simultaneously call the same NOS
function. NOS is written so that if multiple processes call into it, the processes serialize their access
to shared data. Serializing the access ensures that only one process at a time can access the shared
data, while the others wait their turn. Programs written to work this way are called thread safe.

Because NOS itself is thread safe, programs that call into it do not have to serialize their calls. With
NOS handling call serialization, programs that call into NOS operate efficiently, perform well, and
do not corrupt NOS program data or Notes databases.

10 Inside Notes: The Architecture of Notes and the Domino Server

How NOS is organized
The following figure illustrates at a high level how NOS is organized. NOS services are grouped into
a few distinct categories. Within a service, each function has a prefix that identifies the service to
which it belongs. For example, the Notes Storage Facility (NSF) functions create, read, and write the
contents of an NSF (database) file. Client and server programs can call any NOS services. Many
NOS services, in turn, are layered relative to each other. For example, NSF functions use Portability
services to accomplish their own jobs.

Operating System

Notes
Object Services

NRPC Client

Portability Services
(e.g., OS..., ODS, nti, etc.)

Numerous NOS Services
(e.g., FT, NIF, etc.)

Client or Server Programs

NSF

Note: Client and server
programs can use NOS's

Extension Manager to
"hook" callback functions
into many NOS services

The portability layer
The portability layer is key to the portability of the entire Notes/Domino product. Portability
services are specifically designed to isolate high level NOS services and client and server programs
from the underlying hardware and operating systems and to facilitate the development of portable
applications. The services in the NOS portability layer fall into these groups:

�� Operating system services

�� On-disk structure (ODS) services

�� Network transport services

Operating system services
These services provide a uniform API on the most common operating system services found across
all Notes and Domino platforms — for example, memory-management services, file services,
character-translation services, and so on.

On-disk structure (ODS) services
ODS services solve a classic portability problem that arises when programs written in C/C++ —
such as, the Notes Client program and the Domino Server program — run on different operating
systems and try to exchange data structures through a network or in a shared data file. Because of
structure-size and byte-order differences between in-memory C/C++ data structures, a program
running on one system cannot simply transfer a byte-by-byte copy of an in-memory structure to a
program running on another system and expect the other program to understand it.

This problem is based primarily on differences between computer processors, not on differences
between operating systems. Some processors require alignment of in-memory multibyte variables —
for example, C/C++ int and long variables — to 2-, 4-, or 8-byte memory boundaries; and others do

Chapter 1: Overview of Notes and Domino Architecture 11

not. A C/C++ compiler adds padding bytes between structure elements to force alignment on those
processors that require it. Also, processors differ in how they store the bytes of a multibyte variable
in memory. On some processors, the low byte comes first; on others, the high byte comes first. These
alignment and byte-order differences are the source of the problem.

Notes resolves this problem by defining a standard, or canonical, format for structures stored on
disk or sent across a network. The ODS services in NOS transfer structures from a platform-specific
in-memory format, which is also called host format, to canonical format, and vice versa. As a result,
Notes databases are completely portable. For example, a Notes client that runs Windows or
Macintosh can use a database that is on a Domino server that runs UNIX. Similarly, a Domino server
that runs UNIX can use a database that is on a Domino server that runs NT.

Network transport services
Network transport services provide a single interface to drivers for different network protocols and
to higher level protocols — such as, NRPC, POP3, IMAP, and so on. NOS network transport services
include:

�� NETBIOS, which is a peer-to-peer communication service used by clients and servers in IBM
Token Ring and PC LAN networks

�� SPX/IPX, which is a Novell Netware protocol used by clients and servers in PC LAN
networks

�� TCP/IP, which is the standard Internet LAN protocol

�� XPC, which is a Lotus serial-port communication protocol

�� VINES

The Notes Storage Facility (NSF)
NSF is one of the largest, most complicated pieces of NOS. NSF manages all of the databases that are
active on one computer. On a large server, NSF may track operations being performed
simultaneously on hundreds of databases.

NSF implements the most basic, universal, low-level database operations — such as, creating a
database, creating a note, adding an item to a note, and so on. To perform these operations
efficiently and maintain the integrity of databases, NSF uses buffer caching and provides for
transaction logging and recovery.

Other NOS services
There are many higher level NOS services layered on top of the NOS portability and NSF services,
as depicted in the diagram.

A number of these services implement most of the type-by-type differences between notes. For
example, the Notes Index Facility (NIF) uses NSF to read formula items from a view note, use those
formulas to select the database notes to include in the index, and then write the index back to the
view note. NIF is very aware of the items that are in a view note, while NSF itself is less aware of the
particular items that should be in a view note — or in any other type of note for that matter.

Other services do not use databases at all. Although these services have a portability “feel,” they do
not fall into the category of basic portability services because they are clearly layered on top of those
basic services. For example, included in this category are services that compile and/or interpret
programs written in one of the four interpreted programming languages supported by
Notes/Domino: Notes Formula Language, LotusScript, Java, and JavaScript.

Some of these language services — for example, services that compile and interpret programs
written in the Notes Formula Language — are accessible through the Lotus C API Toolkit; other
language services are available only for internal use by the Notes Client and Domino Server
programs. Whether available through the Lotus C API Toolkit or not, these services are key to the
universal portability of Notes applications. Because these services are part of NOS and because NOS
runs on every Notes client and Domino server platform, application logic written in any of these
languages works the same, regardless of where the application resides.

12 Inside Notes: The Architecture of Notes and the Domino Server

The Extension Manager
Some NSF and high-level database services are designed to call application-provided callback
functions at the start and end of their operations. These callbacks may affect the operation of the
participating routines — for example, by doing additional work or by stopping operations for
various reasons.

Application callback functions, or extensions, are managed by the NOS Extension Manager (EM).
An application registers its extensions with EM. During registration, the application indicates, for
each extension, which NOS function is being extended and whether to make the callback at the start
or end of the function. Registration is initiated by using information in the NOTES.INI file to
identify extension DLLs to Notes. At startup and before any potentially extensible NOS functions
are called, the names of the extension DLLs are fetched from the NOTES.INI file, and the extension
DLLs are loaded into memory and given a chance to register themselves with the EM. Several
extensions can be registered for the same function.

The Notes remote procedure call client
The Notes remote procedure call (NRPC) client is an internal service within NOS. Therefore, client
and server programs cannot directly call NRPC functions. Other functions — namely, those that
open, close, read, and write databases — use the NRPC client to “project” their operation onto a
database that is on a remote Domino server or, in other words, onto a database that is on a Domino
server that is connected to the local computer by a network.

Because of the NRPC client, a program that uses NOS can access a local database as easily as it can
access a remote database. For example, a program that uses NOS to open a database, count the
number of notes in it, and then close it, works whether the database is local or remote. NOS and the
NRPC client shield the calling program from any difficulty involved in accessing a remote database.

How the NRPC client works
An NRPC-enabled function is a NOS function that uses the NRPC client to project its action onto a
remote database. Each NRPC-enabled function first tests whether the database on which it should
operate is local or remote. If the database is local, the function calls other NOS services — for example,
file I/O services in the NOS portability layer — to perform the operation on the local database. If the
database is remote, however, the function calls an NRPC client function to construct a request message
that describes the operation to perform, to send the request to the Domino server that has the remote
database, and then to wait for the result.

The Domino server has a built-in server task called Dbserver. Dbserver listens for NRPC request
messages, reads them after they arrive, and then uses them to call the exact same NRPC-enabled NOS
function as was called on the requesting computer. As before, the NRPC-enabled function first tests if
the target database is local or remote. This time the database is considered local — that is, it is a local
database with respect to the Dbserver task running on the remote server — so the operation is
performed locally. After the NOS function returns to the Dbserver task, Dbserver constructs a response
message that contains the results of the operation and sends the response over the network to the
requester. On the local computer that originated the request, the NRPC client function that made the
request receives the response message, decodes it, and returns the results of the operation to the
original caller. The net result is that the original caller cannot tell the difference between operations
performed locally or remotely.

Many client and server programs rely on the hidden mechanisms implemented by the NRPC client
and its partner, the Dbserver task on the Domino server, to simplify their design and coding. For
example, the Replicator task simply reads and writes from two databases: a source database and a
destination database. Because of NRPC, the Replicator does not care which database is local to it and
which database is remote.

Chapter 1: Overview of Notes and Domino Architecture 13

The Notes database
The Notes database is the cornerstone of Notes architecture. The majority of the Notes program is
concerned with creating, maintaining, editing, viewing, accessing, copying, and replicating Notes
databases. Each Notes database contains:

�� A database header and other internal structures

�� Notes, which fall into three categories: design elements, administrative notes, and documents

�� (Optional) Replication history

�� (Optional) Objects attached to notes — for example, file attachments

The database header and other internal structures
The database header and other internal structures keep track of key database information, such as
database creation time, and of notes and their attached objects.

The database header
The database header stores a time stamp that indicates when the database was first created or when
it was last fixed-up — that is, when notes that were corrupted as a result of a server crash were
purged. This time stamp also serves as the database ID (DBID). In addition, the database header
holds the unique replica ID, as well as links to the database replication history and to other internal
structures that track database notes, attached objects, and free space in the database file.

Identifiers
Each note in a database has two identifiers — the note ID and the universal ID (UNID). The note ID
is a 4-byte value that is assigned when the note is first created. Every database has a record
relocation vector (RRV) table that maps a note’s note ID to the position of the note within the
database file. This table simplifies relocating a note within a database — when a note changes
location, the RRV table updates to reflect the new location.

The UNID is a 16-byte value that is assigned to the note when the note is first created. A UNID
uniquely identifies a note relative to all other notes in the universe, except for special copies that
have the identical UNID so that they can be identified as being the same note as the original one for
special purposes — for example, when replicating, or synchronizing, the notes in replica databases.
Every database has a UNID table that maps the note UNID to its note ID, which in turn can be
mapped through the database RRV table to the note’s position within the database file. UNIDs are
used when replicating database notes and when replacing or refreshing a database design notes.

The named-object table maps names to associated notes and objects. For example, this table manages
per-user views, which are also known as personal or private views, and per-user unread lists. The
names assigned to these views and unread lists are composed, in part, of the user’s name.

The "note" in Notes
A note is a simple data structure that stores database design elements (forms, views, and so on),
user-created data (documents), and administrative information, such as the database access control
list (ACL). Because the same note data structure stores all these types of information, Notes requires
only a single a set of NOS services to create, read, update, and replicate most of the information in a
Notes database.

The following figure illustrates the logical structure of a note. Each note has a small header followed
by a list of variable-length items, which are also known as fields. The header holds general
information about the note, including a value that indicates the note’s class — for example,
document, form, or view — and its originator ID (OID). The OID contains the note’s unique,
universal ID (UNID), which is essential for replication. Within the item list, each item has a name,
attribute flags, a value, and a value type — for example, text or number.

14 Inside Notes: The Architecture of Notes and the Domino Server

Class
OID (used by replicator)
Item count
etc.

Note
header

List of variable-
length items

First item

Second item

Last item

Note items
Every note contains a set of items that is determined by the class of note. For example, all form notes
contain the same set of items, although the item values differ from form note to form note. Similarly,
all view notes contain the same set of items, although the item values differ from view note to view
note. Document notes are different, however, because all documents do not contain the same set of
items. Because the set of items in a document depends on the form used to create the document, two
document notes may have vastly different item lists.

Some items appear in almost every note, regardless of its class. For example, many notes have an
item named $Revisions, which contains a list of time stamps that indicate when revisions to the items
in the note occurred. Notes uses these time stamps during replication when it checks for revision
conflicts.

A note may include additional, optional items, too. For example, a note might include an item
containing a readers list, which contains the names of only those users who are allowed to read the
document. Also, a note can have several items that have the same name. For example, one note may
contain three items named $FILE (for three file attachments), and another note may contain none.

Types of notes
There are many types of notes. For some, the note class, which is a value stored in each note’s
header, determines the type. Other notes, however, are variations within a class. For these, Notes
distinguishes the type by the presence or absence of a specific item or item value within the note. For
example, agents, scripts, and script libraries are variations of the FILTER class and differ based on
the value in an item called $Flags, which each of them contains.

Membership in a class group is determined solely by a note’s class, which is referred to by the
C-language symbol used in Notes code — for example, NOTE_CLASS_DOCUMENT,
NOTE_CLASS_FORM, and so on. A word (a 2-byte value) in the header of each note contains the
note’s NOTE_CLASS_xxx value. Each NOTE_CLASS_xxx symbol maps to a single bit, making it
easy to obtain sets of particular types of notes in a database — for example, all design elements —
by using OR statements to join NOTE_CLASS_xxx symbols when you specify note-selection criteria.

The following table lists the 12 basic note classes and the types of notes belonging to each class. It
also organizes the classes by class group.

continued

Shared fieldFIELD

Replication formulaREPLFORMULA

Access control listACL*Administration

DocumentDOCUMENTData
Note typesNOTE_CLASS_ ...Class group

Chapter 1: Overview of Notes and Domino Architecture 15

Index for HelpHELP_INDEX*

Using This Database document for HelpHELP

About This Database document for HelpINFO*

IconICON*

Design collection (structured like a view)DESIGN*Design-element

Folder, navigator, viewVIEW

Form, frameset, page, subformFORM

Agent, database script, outline, script libraryFILTER

Note typesNOTE_CLASS_ ...Class group

* Each database contains only a single occurrence of this class.

In addition to the 12 NOTE_CLASS_xxx symbols listed in the table, there are two other symbols,
NOTE_CLASS_DEFAULT and NOTE_CLASS_PRIVATE, which you can join with an OR statement
to the class word in the note header. NOTE_CLASS_DEFAULT identifies one note as the default note
of that class. You can use an OR statement to join NOTE_CLASS_PRIVATE to any of the design-
element classes. It indicates that the design-element note belongs to a particular user and, among
other things, should not be changed when the database is refreshed with a newer version of its initial
design elements.

Data notes
Data notes, or documents, typically comprise the bulk of a Notes database. Each document can be
associated with the form note that was used to create the document and that is used by default to
view or modify the document. For example, many users can use a Main Topic form to create main
topic documents in a database. Each main topic document contains the items defined by the Main
Topic form. In addition, the main topic document is associated with the name of the form used to
create it. This association ensures that the correct form will later be used to present the document
when users want to view or modify it.

When presenting a document, Notes uses a late-binding model to apply a form to the document.
This approach provides more flexibility than does a model that tightly binds a document to one
specific form. For example, although each document has a default form associated with it,
alternative forms can be applied to the document so that the contents is presented in many different
ways. In addition, through the use of field values and/or the result of a formula computation, Notes
can dynamically control which form to use. Both the Notes client and Web browsers support this
unique late-binding model of presenting information.

Although forms and documents are usually stored separately, a document’s form may be stored
within the document itself. The form is actually stored as a set of items that belong to the document.
Storing a form this way makes it possible to copy a document from one database to another
database that does not contain the form necessary to view and edit the document. This option,
however, has a drawback in that if used too frequently, it can significantly increase the size of a
database.

A document is the only type of note where the designer has some say in the fields that comprise the
note. For all other types of notes — for example, view notes — Notes determines the fields. Even for
documents, Notes adds some of its own fields to the list of fields specified by the form used to create
the document. For example, Notes adds a field that contains the name of the form used to create the
document, and when the document is a response linked in a response hierarchy, Notes adds a field
called $Ref which contains the UNID of the document’s “parent” document.

16 Inside Notes: The Architecture of Notes and the Domino Server

Administration notes
There are two types of notes that are created and managed by the database manager: the access
control list note and the replication formula note. Each database has only one access control list note,
which lists the access rights that various users, servers, and groups have to other notes in the
database. Replication formula notes, which are optional, specify, on a server-by-server basis, which
subset of notes to replicate when the database replicates with replicas stored on other servers.

Design-element notes
The database designer can create any of these design-element notes:

�� Field notes define shared fields or fields that can be in more than one form.

�� Filter notes hold the code of an application — that is, event handlers, agents, and so on.

�� Form notes control creating, viewing, and modifying individual documents.

�� View notes specify how to index the documents in a database and provide access to a specific
subset of documents.

�� The design-collection note, which is similar to a view, indexes the design elements,
replication formula notes, and the help-index note.

�� The icon note contains the database icon.

�� The info note contains the About This Database document that appears the first time a user
opens a database.

�� Help notes contain help information about the application.

�� The help-index note indexes the help notes.

�� Private design-element notes contain the design elements that individual users add to a
database. Each of these notes contains a field that indicates the “real” class — for example,
form, view, and so on — of the note. When the Designer task refreshes design elements in a
database, private design-element notes do not change.

Notes in hierarchy
To support an application that categorizes and subcategorizes documents, individual data notes can
be arranged hierarchically. A note can be a main note, a response to a main note, or a response to a
response note. There is a limit of up to 32 levels between a main note and its “deepest” response.

To maintain the linkage in a note hierarchy, Notes puts information into a note’s header and its item
list. Each document in a Notes database is uniquely identified by its UNID. Response and
response-to-response documents contain a special field named $Ref, which contains the UNID of the
“parent” document. This field serves to maintain the linkage of the response hierarchy.

Response notes support two important groupware features: the threaded discussion and
replication-conflict identification.

Threaded discussions
One of the most common groupware applications is a threaded discussion, into which individuals
can publicly share ideas, comment on ideas, comment on comments, and so on. In a threaded
discussion, the large topics under discussion are usually main topics. Users comment on these topics
by adding response documents. Still other users can respond to the responses, and so on.

For example, these documents are in a response hierarchy:

1.0 What is your favorite color? (2 responses)

 1.1 Mine is blue.

1.2 So is mine.

If the UNID for document 1.0 is FF863D8A:CB6E2210-852561BD:005867C7, the $Ref item on
response document 1.1 contains the same number. The $Ref item on response document 1.2 contains
the UNID of response document 1.1, which is its “parent” document.

Chapter 1: Overview of Notes and Domino Architecture 17

Replication-conflict identification
Replication uses response notes to identify replication conflicts. A replication conflict occurs when
the same note has changed in both database replicas that are being synchronized. Replication picks
one note be the “winner,” makes the other note the “loser,” and makes the loser a response note of
the winner.

Overview of database replication
Replication is the process of resynchronizing the contents of one database replica with another
database replica. Core replication functions in NOS make it possible for both client and server
programs — such as, the Notes Client program or the Replicator server task running on a Domino
server — to initiate database replication. Replication can be between a local computer and a server
computer or between two servers. Replication can be unidirectional or bi-directional. If you edit one
replica, you can use replication to merge the edits into another replica of the same database.

Replication resolves the most difficult problem that arises in a distributed, real-time groupware
product: how to keep multiple copies of databases synchronized while multiple users and programs
work on them. Notes replication was designed to do just that in a secure, reliable, and flexible way.
Although there may be a lag between the time when a note changes in one database replica and
when the change is replicated to another database replica, replication ensures that the information
never gets lost.

The note is the unit of replication. Through replication, new notes added to one replica are easily
added to another replica. Similarly, notes deleted from one replica are easily deleted from another
replica. When a note is modified in one replica and not the other, the modified note replaces the
unmodified note. When the same note has changed in two replicas, replication merges the fields,
provided different fields have changed and provided field replication is enabled. If there is no way
to merge fields, replication adds one of the notes as a “conflict response” note to the other, thus
preserving both sets of changes in a way that lets a user later examine them and resolve how to
merge the conflicting fields.

Replication compares note originator ID (OID) values and $Revisions values to determine which
notes have remained the same, which have been added, and which have been updated and/or
deleted. The note OID is stored in the note header. The OID contains a UNID, which uniquely
identifies the note and all replicas of the note. In addition, the OID contains a sequence number and
a time stamp that together indicate how often the note has been modified and when it was last
modified. Replication uses all three OID values to synchronize changes between replicas of the note.

For two databases to replicate, they must share the same replica ID. A replica ID is a unique number
that is generated when you first create a database. When you make a replica of the database, the
replica inherits the replica ID, the OID values, and the $Revisions values of the original database. If
you make a copy of a database, the copy gets a new replica ID, and every note in the copy gets a
new OID. Because a copy of a database is assigned a new replica ID, the copy is not recognized as a
replica of the original database and, therefore, the original and the copy cannot replicate.

Replication can be “selective,” meaning you can specify programmatically — for example, by time
or by note type — which notes to replicate. Selective replication increases overall system efficiency,
especially when you want to synchronize only a subset of the data. Consider how note format and
efficient note- and field-level replication together define the meaning of groupware:

�� A mobile user can “take the office along” by creating a local database replica. For efficiency,
the user need replicate only the relevant notes.

�� A domain administrator can propagate employee move-and-change information, including
the critical security information, almost instantly.

18 Inside Notes: The Architecture of Notes and the Domino Server

�� A corporation can use clustered Domino servers to enhance Web site access, performance,
reliability, and availability. In a cluster configuration, each server stores replicas of selected
databases. As updates occur, the servers replicate the databases among themselves. Different
users can access different replicas on different servers in the cluster. If one server experiences
trouble, Notes fails over to another server that is in the cluster and that stores a replica of the
database.

Domain administration
This section presents an overview of domain administration, the process that is used to create and
maintain a Notes domain. Additional domain-oriented features, such as messaging and security, are
described in more detail in the sections that follow.

Administration design issues
Several requirements guide the design of Domino administration software:

�� Implement distributed processing

�� Associate a database with the server that administers it

�� Manage the Domino Directory

Implement distributed processing
Early versions of Notes implemented all administration functions in the Notes client. It became clear
over time, however, that using a client-based administration program was time-consuming, tedious,
and error-prone. For example, to delete a user from an early version of Notes, the administrator had
to do more than simply delete the user’s Person document from the Domino Directory. The
administrator had to locate every database that listed the user in its ACL and manually delete the
user’s name from each ACL.

By implementing distributed processing, the server, rather than the administrator, manages deleting
a user, as well as many other administration functions.

Associate a database with the server that administers it
Using server-based administration requires associating each database with the server that
administers it. The reason has to do with replication. Consider the situation where many servers
have a replica of a database. Unless only one server is responsible for making administrative
updates to a database, two or more servers might apply the same administrative changes to the
replicas, and there would be many conflicts when the databases replicate at a later time.

To avoid replication conflicts, each database is assigned to an administration server. Then updates
made to the database on that server — the so-called primary replica — will replicate without
conflicts to other replicas on other servers. In practice, this means that the assigned administration
server must store a local copy of the database and that the database ACL must designate the server
as its administration server.

The term “administration server” is often a source of confusion because it implies that a domain
contains some special servers that are specifically configured to perform administration functions.
But in fact, every server in a Notes domain performs administration functions on some of the
databases it stores — that is, on those that are local to it and that designate it as the administration
server. It makes no sense to say “Server A is an administration server.” Better would be to say,
“Server A is the administration server for database B,” and even this is just a shorter, but less
precise, way of stating “The primary replica of database B is on Server A; therefore, Server A is
responsible for applying server-based administration updates to it.”

Manage the Domino Directory
Most client and server programs reference and/or modify documents in the Domino Directory.
Therefore, it is important that updates to the directory are reliable and universally available. As for
all other databases, one server is designated to administer updates to the primary replica of the

Chapter 1: Overview of Notes and Domino Architecture 19

Domino Directory. Unlike other databases, though, which may or may not have replicas on other
servers in the domain, every server in the domain stores a replica of the Domino Directory.

The Domino Directory is also special in that administration programs that modify it must often do
more than update a field in a document to complete an administrative task. For example, after
deleting a user’s Person document, it is necessary to purge references to the user from the ACLs of
all databases in the domain. Administration programs must be aware when they are modifying a
Domino Directory and may have to perform some additional work as well.

Administration design
As the following figure illustrates, the software components used to administer a Notes domain are
distributed throughout the domain.

�� Any client computer can run the Domino Administrator, which the administrator uses to
make administrative updates. Not shown but also available is the Domino Web
Administrator, which the administrator accesses by using a Web browser and which
implements a subset of the features in the Domino Administrator. In addition, the
administrator can use the Notes client to initiate some administration operations. Finally, the
action of updating a server can also initiate some administrative requests.

�� All Domino servers should run the Administration Process server task, which processes the
administration requests that are posted to a local replica of the Administration Requests
database (ADMIN4.NSF).

�� Every database has a server designated to administer it — that is, to update its ACL, set its
size quota, and so on — and no other server will administer it or any of its replicas.

�� One Domino server administers the domain’s Domino Directory (NAMES.NSF), and all other
servers have a replica of the Domino Directory.

This server administers
the main Domino Directory
for the domain

Domino
Servers

Notes
Workstations

 replicas of

databases from
other servers

ADMINP
server task

 databases

administered by
this server

replica of
Domino Directory

 replicas of

databases from
other servers

main
Domino Directory

ADMINP
server task

Domino
Administrator

Program

Domino
Administrator

Program

Domino
Administrator

Program

network

ADMINP
requests

direct
updates

direct
updates

ADMINP
requests

ADMIN4.NSF

 databases

administered by
this server

ADMIN4.NSF

Administration processing flow-of-control
Administrators use one of two programs — the Domino Administrator or the Domino Web
Administrator — to specify administration tasks, such as registering users and modifying database
ACLs. Administration tasks fall into three categories:

�� Tasks that are simple and can be done immediately without involvement of any server
processing — such as, adding a name to a database ACL

20 Inside Notes: The Architecture of Notes and the Domino Server

�� Tasks performed by one specific server — such as, creating many replicas of a database that
the server administers

�� Tasks that trigger domain-wide activities — such as, deleting a user from the Domino
Directory

Because some administration processing must be done on every server, every Domino server in a
domain runs the Administration Process and
has an Administration Requests database (ADMIN4.NSF), which the Administration Process uses as
a job-request queue: administration clients post requests in the database, and the Administration
Process periodically reads the requests and acts on them.

How the Administration Process works
The Administration Process requires the replication of the Administration Requests database to
distribute its activities across the domain. The following sequence of steps is typical of how an
administration task is accomplished:

1. The administrator, as required by the Domino Administrator, selects a server to administer —
for example, Server A.

2. The administrator specifies a task — for example, make three replicas of a database stored on
Server B and put them on Servers C, D, and E. Note that none of these servers is the currently
selected one, Server A.

3. Because Server A is the selected server, the Domino Administrator posts the replication request
to the replica of ADMIN4.NSF on Server A.

4. Over time, the replication request in ADMIN4.NSF on Server A replicates to all ADMIN4.NSF
databases on all of the servers in the domain. (Note that the administrators must specifically
configure replication to do this.) Eventually, the Administration Process on Server B recognizes
that it is responsible for processing the request that replicated into its local copy of
ADMIN4.NSF, and it performs the task. The Administration Process that runs on each of the
other servers ignores the request.

Tasks that require domain-wide processing are complicated and typically involve modifying the
Domino Directory. For example, consider the case of deleting a user. Assume that Server A is the
currently selected server and that Server E is the server designated to administer the Domino
Directory.

1. In the ADMIN4.NSF database on Server A, the Domino Administrator posts a request to delete
a user from the Domino Directory.

2. The request eventually replicates to ADMIN4.NSF on Server E, which administers the Domino
Directory. Server E deletes the entry and then posts a secondary request in its own
ADMIN4.NSF database to remove the user’s name from all ACLs on all databases.

3. Over time, the deletion of the user’s Person document from the Domino Directory replicates to
all other servers.

4. Over time, the secondary request to purge the user name from all ACLs replicates to all
ADMIN4.NSF databases on all servers. This time, each server responds to the request by
scanning and removing the user’s name from the ACL of all of the local databases that the
server administers.

5. Over time, the databases replicate, and eventually no ACLs contain the name of the deleted
user.

The Domino Administrator and the Domino Web Administrator
Administrators can use the Domino Administrator, which runs on any Notes workstation, to
perform all administration tasks — register users, create user mail files, specify database ACLs,
specify replication settings, define connections to other domains, and so on.

The Web Administrator is run by an administrator using a Web browser and implements a subset of
the administration features available through the Domino Administrator. The HTTP server task,

Chapter 1: Overview of Notes and Domino Architecture 21

which transforms a simple Domino server into a Domino Web server, automatically creates the Web
Administrator database (WEBADMIN.NSF) and assigns to it a unique replica ID so that the
database cannot replicate.

The Administration Process task and the Administration Requests database
The Administration Process automates routine and/or time-consuming administrative tasks — such
as purging the name of a deleted user from ACLs, modifying Readers and Authors fields in
database documents, moving mail files, and so on.

The Administration Process acts on administration requests that are posted to its local replica of the
Administration Requests database (ADMIN4.NSF). All servers run the Administration Process, and
all servers in the domain have a replica of ADMIN4.NSF.

The Administration Process operates only on databases local to the server on which the AdminP
server task is running, and performs name-management only on the subset of local databases that
designate the server as the administration server. The latter restriction keeps the Administration
Process from operating on local replicas of a database whose primary replica — that is, the one
replica that should have administrative updates applied to it — resides on another server.
Administrative updates made to the primary replica of a database eventually replicate to other
replicas if replication is properly scheduled and if database ACLs specify the appropriate access
rights.

Domains and directories
A Notes domain is a collection of users, servers, and other entities that share a common Domino
Directory. Or, conversely, a Domino Directory is a list of users, servers, groups, and other assets —
for example, printers — that comprise a domain.

A domain is used to organize related entities — for example, a domain might describe the
employees in the Marketing division of a company and the hardware and software assets they use
to do their job. The design and operation of certain features of Notes and Domino — in particular,
messaging (mail), security, cluster and database replication, and administration — are centered
around domains. In other words, to do their jobs, these features create, access, and/or modify
information in the Domino Directory.

Directory databases
This section briefly describes the databases that hold directory information. The following figure
illustrates the databases used to store directory information and the templates used to create them.
The figure uses default database names.

22 Inside Notes: The Architecture of Notes and the Domino Server

 Remote

Secondary Domino
Directories

PUBNAMES.NTF
creates

creates

creates DA.NSF
(Directory Assistance)

Directory Databases
in a

Domino Server

starting point for
all name
lookups

references

references

references

references
 Remote

LDAP Directories

 Local

Secondary Domino
Directories

DIRCAT.NSF
(Directory Catalog)

NAMES.NSF
(Domino

Directories)

DIRCAT5.NTF

DA50.NTF

The Domino Directory (NAMES.NSF)
By default there is a single Domino Directory that has the default name NAMES.NSF. The Domino
Directory inherits its design from PUBNAMES.NTF. You can change the name of this directory
and/or create additional Domino Directories from the template. The Domino Directory is where
clients and servers first look for information about a user, server, group, or other asset in a Notes
domain. Each Domino Directory contains many entries itself, and each may contain the name of two
additional databases — namely, the Directory Assistance database and the Directory Catalog
database — which contain or lead to information about additional users and assets.

Directory Assistance (DA.NSF)

The Directory Assistance database, which inherits its design from DA50.NTF, lists the names of
directories that store information about local or remote secondary Domino Directories and remote
LDAP directories. Secondary Domino Directories inherit their design from PUBNAMES.NTF and
usually contain directory information about other Notes domains.

The Directory Catalog (DIRCAT.NSF)
The Directory Catalog, which inherits its design from DIRCAT5.NTF, is used as an extension to
NAMES.NSF to store a compact version of some user information. Mail-oriented applications use a
directory catalog because it can present, in a very small database file, basic directory information
about a huge community of users.

LDAP directories

Lightweight Directory Access Protocol (LDAP) is a protocol for accessing information directories
over the Internet. Domino supports LDAP in two ways. First, the Domino server can run the LDAP
server task, thus making information from the Domino Directory available to other computers that
are on the Internet and that use the LDAP protocol to request directory information. Second, by
referencing LDAP servers in the Directory Assistance database, both the Notes client and the
Domino server can be LDAP clients and retrieve directory information from an LDAP server that is
located elsewhere on the Internet.

Chapter 1: Overview of Notes and Domino Architecture 23

Overview of security
Notes/Domino has a layered security model that both system administrators and application
developers can tailor to meet specific organizational requirements. This layered security model is
similar to a home security system. In a home security system, a visitor cannot enter the grounds of
the house without access to the front gate. A visitor cannot get into the house without the front-door
key, and so on. The idea is that no one can gain entry to specific parts of the house without passing
through each layer of security.

Notes/Domino has security features that protect its primary components — the users, network,
servers, databases, design elements, and documents. Security spans the system vertically, from the
user level to the document level, and horizontally, across each component. Each component has a
security mechanism that applies consistently across all components at that level. For example, all
users who try to use Notes clients must be authenticated. All databases have an ACL to prevent
unwanted access to data. All documents can restrict who can read and write them.

The following figure the levels of Notes/Domino security.

Notes
Client

Notes
Client

Notes
Client

Notes
Server

Notes
Server

UserUserUser

LAN/WAN
Internet

User Authentication

Network Security

Server Security

Database
Security

�� ����������������

�� ����������������

�� ����������������

�� ����������������

�� ����������������

Design Element Security

Document Security

User security
To prevent someone from impersonating a user and gaining unauthorized access to the user’s data,
Notes/Domino provides each user with an ID file. An ID file contains encryption keys and
certificates that Domino servers use to verify the authenticity of the file and, indirectly, the
authenticity of the person who has the file. To provide additional security, Notes/Domino allows
the use of a password to encrypt sensitive portions of an ID file. It is unlikely that an unauthorized
user can obtain an ID file and the password that encrypts it.

It is very important that users never divulge the password that encrypts their ID files. If an
unauthorized user gets the password and a copy of an ID file, changing the password on the original
ID file does not repair the compromise that has taken place. The unauthorized user can still use the
ID to read encrypted mail and to access a server, unless password-checking has been enabled on the
server.

Network security
 Notes/Domino provides some network security by encrypting messages sent between client and
server computers. Notes/Domino cannot enforce other types of network security, such as
preventing unauthorized users from breaking into or eavesdropping on a network. The best
protection against eavesdropping is to encrypt network traffic.

24 Inside Notes: The Architecture of Notes and the Domino Server

Server security
Server security is primarily controlled by information stored in the Domino Directory. The Domino
Directory specifies which users, servers, and groups of users and servers are given or denied access
to a server and/or to specific server ports. In addition, each server can specify exactly which users,
servers, and groups can use passthru connections, create new databases, and/or can create database
replicas on the server. Note, though, that the database ACL may restrict who can create a database
replica.

Database security
Each database has its own ACL that specifies which users and servers can access the database and
which tasks they can perform.

Document security
Although many users may have access to read and/or edit the documents in a database, individual
documents can restrict user access. Restricting access can be achieved by the use of Readers,
Authors, and Signers fields; hide-when formulas; and encryption keys that are attached to specific
fields in a document. In addition, an encryption key can encrypt an entire document.

Security issues
In any computer system, many features that appear to secure data provide merely the illusion of
security. In addition, even true security features have limitations. Someone who is clever and
determined and who has enough time and resources can bypass every defense. As someone once
said, “When it comes to security, only the paranoid survive.” To use Notes/Domino to secure data,
you should:

�� Use encryption

�� Limit access to data by providing physical security

Use encryption
Encryption is the best mechanism for protecting data in a database and data transmitted across a
network. Often the easiest way to breach security is to obtain a copy of a database or to eavesdrop
on a network. However, after stealing encrypted data, the work of decrypting is very daunting. You
should always encrypt sensitive data.

Limit access to data by providing physical security
A database ACL provides the security you expect from it when the database is on a Domino server
and access to the database is through a network. Security is enforced by the Domino Server
program, which authenticates network users and then enforces database ACLs. If you can bypass
the Domino Server program, either by gaining physical access to the server computer or by
obtaining a copy of a database, then you can bypass ACL security.

In addition to using the built-in Notes/Domino security features, you should provide physical
security for all Domino servers. Whenever possible, locate a Domino server in a ventilated, locked
room. Also consider password-protecting the server console. If servers are not secure, unauthorized
users might circumvent other security features — for example, ACL settings — and access
applications on the server, use the operating system to copy or delete files, or physically damage the
server hardware itself.

Security tradeoffs
Notes/Domino is a groupware product, meaning it has features that make it easy to share data
between members of a group. Its security features, however, serve to restrict sharing. Each
organization has to find a balance between sharing data and restricting access to data.

Chapter 1: Overview of Notes and Domino Architecture 25

Overview of messaging
Messaging provides the foundation for secure mail communication and workflow applications. This
section describes the software components that implement messaging and presents a high-level
overview of how those components work together. Messaging leverages all of the strengths of the
Notes/Domino architecture.

Messaging components
The following figure illustrates mail clients, a Domino mail server, and the key messaging software
components:

�� Mail clients: Notes, IMAP, and POP3

�� Server tasks that enable mail clients to read mail: Dbserver, IMAP, and POP3

�� Server tasks that enable mail clients to send mail: Dbserver and SMTP

�� The Router server task, which deposits mail into user mail files or transfers mail to another
Domino server or SMTP router

�� The MAIL.BOX database, which holds mail that the Router server task delivers or forwards

NRPC
Routing

SMTP
Routing

submit mail retrieve mail

Servers

IMAP Client
or

Notes Client behaving
like an IMAP Client

Notes Client
behaving like a
Notes Client

POP3 Client
or

Notes Client behaving
like a POP3 Client

POP3
Server Task

A Dbserver
Server Task

IMAP
Server Task

A Dbserver
Server Task

SMTP Listener
Server Task

MAIL.BOX

 User Mail

Databases

Submission

Delivery

ServersRouter
Server Task

NRPC
Routing

SMTP
Routing

Domino Server

retrieve mail retrieve mail

NRPC

read read
read

Mail clients
A mail client is used to compose, reply to, forward, and receive mail messages. Domino messaging
supports three types of mail clients: Notes, IMAP, and POP3. Each client uses one or more network
protocols to send and/or receive mail and one or more formats to represent mail.

The Notes client
The Notes client is a “universal” mail client, meaning it can be used equally well in a Notes domain
or on the Internet. Stated another way, you do not need a Domino server in order to use the Notes
client as a mail client.

When a user composes a mail message, the Notes client has its own method of representing text
internally, and it can convert its internal text into and out of two external text formats equally well:
Notes rich text format (NRTF) and Internet MIME format. When a user sends a message, the Notes

26 Inside Notes: The Architecture of Notes and the Domino Server

client examines the list of addressees and determines, on a case-by-case basis, whether to send the
message in NRTF or MIME format. For an addressee whose name is in the Domino Directory, the
Notes client uses the addressee’s preferred mail format, which is listed in the addressee’s Person
document. For others — for example, an Internet addressee — the format depends on preferences
specified in a Location document in the Personal Address Book or Domino Directory.

The Notes client supports three mail-retrieval protocols: Notes remote procedure calls (NRPC),
IMAP, and POP3. It uses NRPC to access mail in a user’s mail file on a Domino mail server. IMAP,
which stands for Internet Message Access Protocol, allows the Notes client to operate wherever
IMAP mail clients can be used. POP3, which stands for Post Office Protocol Version 3, allows the
Notes client to operate wherever POP3 mail clients can be used. Examples of mail clients that also
support IMAP and POP3 are Microsoft Outlook Express and Netscape Communicator. The Notes
client can receive messages formatted in either NRTF or in MIME format. The Notes client
recognizes the format of the messages it receives and generates messages in its own internal format
from them.

The Notes client supports two mail-submission protocols: NRPC and SMTP. It uses NRPC to deposit
a mail message directly into a MAIL.BOX database on the user’s mail server. SMTP, which stands
for Simple Mail Transfer Protocol, is used by Internet mail clients and mail servers to transfer mail
on the Internet.

The IMAP mail client
An IMAP mail client uses IMAP to retrieve mail and uses SMTP to send MIME-formatted mail.
Examples of IMAP clients are Microsoft Outlook Express, Netscape Communicator, and a Notes
client that is configured for IMAP.

The Domino server runs the IMAP server task, which implements IMAP and allows users of IMAP
clients to retrieve mail messages from their mail files. Messages delivered to a user’s mail file are
stored in the text format specified as the “preferred” format in the user’s Person document in the
Domino Directory — either NRTF or MIME format — with the Router translating the original
message from one to the other if necessary. For a Notes client that is configured for IMAP, it is either
format. For other IMAP clients, it is typically MIME format.

The Domino server runs the SMTP server task to accept MIME-formatted mail submittals from
IMAP clients. SMTP deposits the mail into a MAIL.BOX file for later routing or delivery by the
Router server task.

The POP3 mail client
A POP3 mail client uses POP3 to retrieve mail and uses SMTP to send MIME-formatted mail.
Examples of POP3 clients are Microsoft Outlook Express, Netscape Communicator, or a Notes client
behaving like a POP3 client.

The Domino server runs the POP3 server task, which implements the POP3 protocol and allows
users of POP3 clients to retrieve mail messages from their mail files. Messages delivered into a user’s
mail file are stored in the user’s preferred text format, as specified in the user’s Person document in
the Domino Directory — either Notes rich-text format or MIME format. The Router translates the
original message from one format to the other if necessary. This could be either format for a Notes
client behaving like a POP3 client, and it would typically be MIME for other POP3 clients.

The Domino server runs the SMTP server task to accept MIME-formatted mail submittals from
POP3 clients. SMTP deposits the mail into a MAIL.BOX file for later routing or delivery by the
Router server task.

Domino mail servers
Each mail user in a Notes domain has an assigned mail file on a Domino mail server. Each Domino
mail server is responsible for receiving messages and doing one of two things with them: either
depositing them into a user’s mail file on that server or routing them to or toward the user’s mail
server.

Chapter 1: Overview of Notes and Domino Architecture 27

Mail sent to a Domino mail server is first deposited into a MAIL.BOX file, a file structured and
accessed as a Notes database file (NSF) despite its file extension BOX. To reduce the contention that
could occur if a busy mail server had only a single mailbox file, a Domino mail server can have
several MAIL.BOX files.

The Router, which runs as a Domino server task on a mail server, creates and controls the
MAIL.BOX file(s); users should never make copies or replicas of MAIL.BOX files. The Router reads
mail messages deposited into MAIL.BOX files, examines the addressees, and either deposits the
messages into local user mail files if they are for mail users whose mail files are on that server or
routes them to the target mail server.

A Domino mail server receives incoming mail via NRPC or SMTP, an Internet standard used by
Internet mail servers to route Internet mail and by IMAP and POP3 mail clients to send mail. A
Domino mail server runs two server tasks to receive mail, Dbserver and SMTP, one for each type of
routing protocol, NRPC and SMTP, respectively. Each Domino server runs a pool of Dbserver server
tasks, which process requests from Notes client computers and Domino servers by implementing the
“server side” of the NRPC mechanism. Notes clients and other Domino Routers use NRPC to
deposit mail directly into one of the mail server’s MAIL.BOX databases. The SMTP server task
manages Internet mail and deposits mail from the Internet into one of the mail server’s MAIL.BOX
databases.

A Domino mail server uses NRPC or SMTP to route outgoing mail. When using NRPC routing to a
server that runs a release that is earlier that Release 5, the Router translates MIME messages to
NRTF. When using NRPC routing to other Domino servers (Release 5 and later), no translation is
required because those servers support both message formats.

A Domino mail server can run two server tasks, IMAP and/or POP3, to retrieve mail messages by
IMAP mail clients and POP3 mail clients, respectively.

Mail performance
Using multiple MAIL.BOX databases and implementing shared mail enhances messaging
performance. Using multiple mailbox databases lets clients or other servers deposit messages into
different mailboxes simultaneously.

Shared mail stores a single copy of a message addressed to multiple recipients on one server in a
shared mail database on the server. Each recipient receives a header for the message, but to save
space in users’ mail files, the body of the message is stored in the shared mail database. Users can
still forward and reply to mail as usual.

Mail availability
To improve mail availability, the Router can take advantage of clustering. The Router can detect if a
target mail server is down and, if configured to do so, will deposit a message into another mail
server in the same cluster as the intended target mail server. Similarly, it will detect if a mail server
through which a message would be routed is down and, if configured to do so, will route the
message through another mail server in the same cluster as the one that is down.

Client programs
There are three client programs shipped in the product family:

�� The Notes Client, which is for Notes users, provides interactive access to user data.

�� The Domino Designer, which is for application developers, provides access to design
elements.

�� The Domino Administrator, which is for system administrators, provides access to
administration data.

28 Inside Notes: The Architecture of Notes and the Domino Server

The following figure shows the client programs and software components they use. Although not
shown, NOS is used by the client programs and by the common client services that support them to
read and write databases and to access system services, such as memory-management and time-date
services.

HEADLINE.NSF
USER.DIC
MAIL\username.NSF

Programs and Functions Databases

DOMADMIN.NSF
USERREG.NSF

common client
databasesNAMES.NSF

BOOKMARK.NSF
CACHE.DSK
DESKTOP5.DSK
MAIL.BOX
SMTP.BOX

read/write

read/write

call
functions

Common Client Services

Notes Client

Domino Designer

Domino Administrator

read/write

Common client features

While different in the basic services they provide, the three client programs also share some
common traits. For example, the clients display a similar “look and feel” by using Lotus
SmartIcons® and common UI controls, and they present a common editor to the user whenever
editing is required. To facilitate development and testing of client programs, features common to all
of them are implemented in a library of C/C++ functions and in several common databases.

Common client services

The common client services are a set of C/C++ functions that have been ported to the platforms on
which the client programs run. Included are services that create and manage windows, process
keyboard and mouse input, manipulate UI resources such as menus and dialog boxes, interface to
the Lotus SmartIcons and Properties box services, read and write common databases, and so on.

Common client databases

All three client programs use these common databases, which reside locally and support
functionality that is not meant to be manipulated by the user:

�� BOOKMARK.NSF contains bookmarks that point to both Notes and Internet elements,
including databases, views, documents, Web pages, and newsgroups.

�� CACHE.DSK contains design elements — forms, subforms, scripts, and so on — used in
server-based databases, as well as an Unread Journal log. Storing design elements in this file
improves performance because design elements are stored locally so that the client does not
have to go back to the server to get them. The Unread Journal log keeps unread lists
synchronized between various replicas of a database. The log records when a document’s
status changes from read to unread and vice verse.

�� DESKTOP5.DSK stores the settings and the layout of the workspace. It contains the names of
the Notes databases that the user adds to the workspace, and for each database it stores
private views and an index of unread marks.

Chapter 1: Overview of Notes and Domino Architecture 29

�� MAIL.BOX is a database that temporarily holds outgoing Notes mail messages that a user
creates when not connected to the server. When the user connects to the server, the outgoing
mail moves to the server’s MAIL.BOX, where it awaits further routing to its destination.

�� NAMES.NSF is the user’s Personal Address Book, which contains Location documents,
Connection documents, and information that is required to send mail to specific people.

�� SMTP.BOX is a database that temporarily stores any outgoing SMTP mail messages that the
user might create when not connected to the network. When the user connects to the SMTP
server, the outgoing mail will be sent.

The Notes client
The Notes client includes an interface to Domino servers and a Web browser; therefore, the client
can be used to connect to Domino servers or Web servers. A user can interact with Notes databases,
as well as read mail on and send mail to Internet mail servers, read and post topics to Internet
newsgroups, search Internet directories, view HTML from any Web server, and use X.509
certificates for security.

In addition to the common files and databases shared by all clients, these databases provide specific
functionality to the Notes client:

�� HEADLINE.NSF maintains subscriptions to Notes databases. After setting up database
subscriptions, users are automatically notified when changes to the databases occur.

�� MAIL\username.NSF is the user’s mail file. To facilitate mail, this file is usually stored on both
the user’s workstation and on the user’s home mail server.

�� USER.DIC is a personal directory that contains the words that the user adds to the dictionary
when using the spelling checker.

The Domino Designer
Domino Designer provides a stand-alone integrated development environment (IDE) that Notes
application developers use to build and deploy secure applications. Using either a Notes client or a
Web browser, users can view these applications. The IDE gives the Notes application developer
access to:

�� Notes design elements, such as forms and views

�� Web design elements, such as framesets, pages, and outlines

�� The Notes Formula Language, which includes @commands and @functions

�� LotusScript, JavaScript, and Java

The Domino Administrator
The Domino Administrator provides an integrated administration interface that system
administrators use to manage and monitor users, databases, and servers.

The Domino Administrator provides an integrated administration interface that system
administrators use to manage and monitor users, databases, and servers.

In addition to the common files and databases shared by all clients, these databases provide specific
functionality to the Domino Administrator:

�� DOMADMIN.NSF is the Domino Administrator database, which contains the functionality
required to run the Domino Administrator.

�� USERREG.NSF is the User Registration Queue database, which stores information about
Notes users who are pending registration.

30 Inside Notes: The Architecture of Notes and the Domino Server

The Domino Server program
To start the Domino server software, you run one server program that, in turn, starts a series of
other programs that are known as Domino server tasks. (The specific name of the server program is
different on different platforms.) The Domino Server program and the server tasks collectively
implement all of the functions that the Domino server performs.

Each server task performs a specific job — for example, responding to an NRPC request from a
Notes client, responding to a Web request from a browser, replicating a file, refreshing or replacing
a database design, and so on. While some server tasks coordinate their activities with each other,
many work independently and focus on performing one specific, narrowly defined job. At any given
time, there may be hundreds, if not thousands, of server tasks running on a Domino server.

A server task is written in C/C++ and uses NOS to access the data and programs residing in server
databases. The Domino Server program includes many server tasks — for example, Router, Indexer,
Replicator, and so on. Some of the server tasks — namely, Server, Router, Indexer, Replicator,
Administration Process, and Cluster Replicator — are described in detail elsewhere in this book.

The logic of a server task can be packaged as a stand-alone executable program — for example, the
Router or the Replicator — or can be linked directly into the Domino Server program itself. Those
packaged as stand-alone executable programs are always run as operating system processes. The
server program decides how to run those linked directly into it — the so-called “built-in” server
tasks. The server program runs some as distinct operating system processes and runs others as
threads under its own operating system process.

When the server program first starts, it automatically starts several built-in tasks, including the
Console task, and then checks the NOTES.INI file for settings that direct it to start other server tasks.
For example, the server program evaluates the ServerTasks setting in the NOTES.INI file to
determine which tasks to start immediately. Only server tasks packaged as stand-alone executable
programs may appear in the ServerTasks setting. Other settings in the NOTES.INI file may direct
the server program to start additional server tasks as well. If Domino doesn’t provide a server task
for some functionality that you need, you can use the Lotus C++ API Toolkit and the Lotus C API
Toolkit to write your own custom server task.

The following figure illustrates the Domino Server program and Domino server tasks.

load

monitor

Server Program

network

Domino
Server

Notes DatabasesNotes.ini File

Notes Object Services (NOS)

Server Tasks
(processes)

Update

Replica

HTTP

etc.

Builtin Server Tasks
(many run as threads)

Console task

NRPC server tasks:
 TCP listener, dbserver, and user
tasks
 Others depending on port configs
 (e. g., LAN0)

Miscellaneous builtin server tasks:
 See accompanying table

Chapter 1: Overview of Notes and Domino Architecture 31

Built-in server tasks
The logic for many server tasks is directly linked to the server program. These built-in tasks perform
many essential server operations, such as running the server console. For optimal performance, on
operating systems that support multithreading, the Server program runs many of its built-in server
tasks as threads. Otherwise, the server program runs the tasks as processes. Some built-in tasks run
only if a specific Domino feature is enabled. For example, if you enable transaction logging, the
server program runs RM Checkpoint, which creates checkpoint records, and RM Flush, which clears
transaction log records.

Whether built-in or not, each server task is a peer of every other server task; each plays a role as one
of many tasks that collectively implement Domino server functionality. When you enter the Show
Tasks command at the server console, Domino lists the built-in tasks first and indicates that they are
running under the Database Server program.

Types of built-in tasks
Built-in server tasks fall into one of these categories: console, miscellaneous, and Notes remote
procedure call (NRPC). Console and miscellaneous tasks are fairly simple. The Console server task
manages the server console. Miscellaneous server tasks perform housekeeping chores on the server.

NRPC server tasks respond to NRPC requests that come from programs running on any Notes client
or Domino server computer — for example, the Notes Client program, the Domino Designer
program, the Domino Server program, and Domino server tasks or any program that calls NOS
functions that generate an NRPC request, even programs written by customers who use the Lotus C
API Toolkit to link to the Notes API in NOS.

For each configured server port, the Domino Server program starts a single Listener server task that
“listens” for new NRPC clients that are trying to establish a connection to the server on that port.
The Listener, in turn, starts Dbserver user tasks to serve NRPC requests from connected users. For
all ports except the TCP/IP port, the Domino Server program runs the port’s Listener task and its
Dbserver tasks as operating system processes, and it creates one Dbserver task for each user
connected through the port. To get the best performance on the TCP/IP port, the Domino Server
program runs its Listener task and Dbserver tasks as threads under the Domino Server program’s
own operating system process. In addition, because there can be literally thousands of users
connected to the Domino server through the TCP/IP port, the Domino Server program creates a
fixed-size pool of Dbserver tasks for the TCP/IP port. This pool of Dbserver tasks acts like a set of
checkout counters at the front of a supermarket: each task is capable of handling any individual
NRPC request that comes in over the TCP/IP port. The pool of Dbserver tasks is made large enough
to handle the number of connections expected to be active at any given time. This number is much
smaller than the total number of users connected to the server at a given time. The result is a
high-performing Domino server that scales well.

Table of built-in server tasks
The following table describes the built-in server tasks.

continued

Listens for connection requests by NRPC clients (one per NRPC port)Listener

Manages a user’s connection to the server (one per NRPC user)Db User

Fixes inconsistent and/or bad data in databases listed in the fixup queueDb Fixup

Reopens cached databases and closes fully aged databasesDb Cache Processor

Ages cached databases (those pended for closing)Db Cache Ager

Manages server console input and displayConsole

Probes availability of cluster members and updates cluster statisticsCluster Manager

DescriptionTask

32 Inside Notes: The Architecture of Notes and the Domino Server

“Cleans” modified database information cached in Unified Buffer Manager by writing
it to databases

UBMIO

Ages modified database information in the Unified Buffer Manager and schedules its
cleaning

UBM Cleaner

Flushes cached database information in order to free up space in transaction logRM Flush

Prepares the checkpoint record for the transaction logRM Checkpoint

Performs periodic housekeeping — for example, scheduling other tasks to runPoll

Maintains list of networked servers and the services they provideName Server

Updates server load-balancing statisticsLoadmon

DescriptionTask

Add-in server tasks
Add-in server tasks are grouped into five categories:

�� Tasks that maintain Notes applications

�� Tasks that monitor server and administration activities

�� Tasks that manage mail, calendars, and scheduling

�� Tasks that manage protocols

�� Tasks that monitor server activity

Table of server tasks that maintain Notes applications
These tasks maintain the integrity of Notes applications and ensure that applications perform
efficiently when users use them.

Runs continuously and updates view indexes and full-text indexes
that have been tagged to be updated immediately. Also detects and
attempts to rebuild corrupted view indexes and full-text indexes.

UPDATEUpdate

Updates view indexes and full-text indexes daily. Purges deletion
stubs from databases and discards view indexes for views that have
not been used for a specified period of time.

UPDALLUpdall

Replicates databases with other servers.REPLICAReplicator

Creates a full-text index of all databases in a domain.DOMIDXDomain Indexer

Populates directory catalogs and keeps the catalogs up to date.DIRCATDirectory Cataloger

Updates all databases to reflect changes to templates.DESIGNDesigner

Compacts all databases on the server to free up disk space.COMPACTDatabase compactor

Updates the database catalog, which users use to find databases and
add them to their desktop.

CATALOGCataloger

Runs agents on one or more databases.AMGRAgent Manager

DescriptionExecutableTask

Chapter 1: Overview of Notes and Domino Architecture 33

Table of server tasks that manage server and administration activities
Basic server administration tasks automate routine tasks and ensure that changes are properly
coordinated and updated.

Examines domain server topology and deposits it into the
Domino Directory (NAMES.NSF) for display by the Domino
Administrator.

MAPSMap Generator

Performs database replication in a cluster.CLREPLCluster Replicator

Updates the cluster database directory and manages databases
with cluster-specific attributes.

CLDBDIRCluster Database
Directory Manager

Oversees the correct operation of all components of a cluster.CLADMINCluster Administration
Process

Automates routine administrative requests, such as renaming,
deleting, or moving a user, and other minor, repetitive tasks. Uses
the Administration Requests database (ADMIN4.NSF).

ADMINPAdministration Process

DescriptionExecutableTask

Table of server tasks that manage mail, calendars, and scheduling
These tasks enable the connectivity necessary to allow users of various mail protocols to access their
mail on a Domino server and to schedule meetings with other users.

Receives mail transmitted in SMTP from IMAP clients, POP3 clients,
and Domino and non-Domino mail servers

SMTPSMTP Listener

Returns meeting times and dates and available invitees from
information stored in the Free Time database (BUSYTIME.NSF)

SCHEDSchedule Manager

Uses either NRPC or SMTP routing to route mail from MAIL.BOX
to a user’s mail file or to another mail server

ROUTERRouter

Enables a Domino server to act as a mail drop for POP3 clientsPOP3POP3 Service

Enables a Domino server to act as a mail drop for IMAP clientsIMAPIMAP Service

Processes requests for free-time information from another serverCCALCONCalendar Connector

DescriptionExecutableTask

Table of server tasks that manage protocols
When running on the Domino server, these tasks enable clients who use various Internet protocols
to access applications on the server and enable applications running on the server to access data
sources over the Internet.

Enables a Domino server to act as a news server to NNTP clientsNNTPNNTP

Enables a Domino server to provide LDAP directory services to LDAP clientsLDAPLDAP

Enables a Domino server to act as a Web server so browser clients can access
databases on the server

HTTPHTTP

Allows Domino and the browser client to use the Domino Internet Inter-ORB
Protocol (DIIOP) server program

DIIOPDIIOP

Provides a real-time forms-based interface to enterprise dataDECSDECS

DescriptionExecutableTask

34 Inside Notes: The Architecture of Notes and the Domino Server

Table of server tasks that monitor server activity
Tasks that monitor server activity collect data and then store it in specific databases. Domino system
administrators can then analyze the collected data.

Provides statistics for a remote computer on demand.STATSStats

Collects statistics for multiple servers. Stores the statistics in
STATREP.NSF.

COLLECTStatistics Collector

Reports statistics for a server. Stores the statistics in the REPORTS.NSF.REPORTReporter

Tracks a message to its final destination.MTCMail Tracking

Sends server and mail probes and stores the statistics. RUNJAVA
ISPY

ISpy

Monitors events on a server. Stores event definitions in EVENTS4.NSF.EVENTEvent Monitor

Records database activity in the log file (LOG.NSF).STATLOGDatabase Statistics

Collects billing information about agents, database access, document
creation and retrieval, Web access, mail, replication and server sessions.
Stores this information in BILLING.NSF.

BILLINGBilling

DescriptionExecutableTask Name

Programmability
This section covers those sections of Notes that:

�� Allow you to program Notes applications, server add-in tasks, and LotusScript extensions
(LSXs)

�� Allow other programs, such as Microsoft Visual Basic applications and Java applets, to access
data in a Notes database

�� Allow you to connect Domino to enterprise databases

You can use a variety of development environments and products to achieve these goals.

Development environments

Domino Designer
Domino Designer is an integrated programming environment for developing applications written in
Notes Formula Language, LotusScript, Java, and JavaScript. Use Domino Designer to develop
applications that take advantage of all Domino services and that both the Notes Client and a Web
browser can use.

Other Web authoring tools
In addition to Domino Designer, you can use many commercially available Web application
development tools to create Domino Web applications. You can also use Domino Design
Components™, a set of Java applets that emulate Domino Designer design elements, to develop
Web applications that enhance the Web browser experience.

COM development environments
Use COM-enabled tools — such as, Microsoft Visual Basic — to access the Domino objects through
the Component Object Model (COM) interface.

C and C++ development environments
When native Domino programmability cannot accomplish the task, you can call a C DLL from
within LotusScript. The DLL may be a custom-built DLL or an already existing operating system
DLL. Alternatively, you can use the LotusScript Extension Toolkit to create LotusScript extensions
(LSXs). LSXs are custom classes that are written in C++, are exposed to Domino, and can be scripted

Chapter 1: Overview of Notes and Domino Architecture 35

just like native Domino classes. You typically use an LSX to integrate Domino with other data
sources and systems. Use C or C++ development environments with the Lotus C API Toolkit and
the Lotus C++ API Toolkit.

Java integrated development environments
Use any integrated development environment, including IBM VisualAge® for C++, Symantec
Visual Cafe, and Borland Inprise JBuilder, to develop Java applets for use in Domino applications; to
write Java servlets that integrate with Domino applications; to write, test, and debug Java-based
Domino agents; and to build Common Object Request Broker Architecture (CORBA) applications
that remotely access Domino objects and services.

Developing, creating, and maintaining Notes applications
The following figure illustrates the steps most often used to develop and deploy a Notes application.
While typical, the operations described here do not represent every way to create and maintain a
Notes database. For example, while the most common way to create a database template is to use
the Domino Designer, you can alternatively write a C program that uses the Lotus C API Toolkit to
create one.

Original Design Elements

Personal Design Elements

Personal Unread Lists

DataDomino
Designer

Updated Design Elements

Personal Design Elements

Personal Unread Lists

Data

Original Design Elements

Personal Design Elements

Personal Unread Lists

Data

Designer
Server
Task

Original
Design Elements

Indexer
Server
Task

Updated
Design Elements

Name.NTF
(template)

Name.NSF
(database)

1

2

3
4

5

6

Original
Design Elements

Editor

Create
new

Database

updates
views

updates
views

1. Create a template.

2. Create a new database from the template.

3. Edit and view the database.

4. Revise an existing template and refresh the design.

36 Inside Notes: The Architecture of Notes and the Domino Server

Creating a template
A Notes application developer typically creates a template and then uses the template to create
many instances of the Notes application. A template is, in essence, an application without data.
A template contains all of the design elements and computational logic that support the application.
In addition, the database administrator, working in conjunction with the application developer, can
seed a template with default security information before the template is used to create databases.

There is no difference between the internal structure and content of a template and that of a working
database derived from it. You can, for example, use the Notes Client to open a template and add
documents to it, although doing so might ruin its usefulness as a template. Despite structural
similarities, templates and working databases have different roles. Therefore, to distinguish a
template from a database, Notes uses different file extensions. Template databases have the file
extension NTF, while the working databases derived from them have the extension NSF.

Notes itself comes with a collection of ready-to-use templates. These include a discussion template,
a mail template, and a room-reservation template, to name just a few. You can use these templates
as is, or you can customize them or customize a copy of them.

Creating a new database from a template
Creating a database from a template is almost exactly the same as creating a replica of a database.
In particular, the originator ID (OID) of each database design element is the same as the OID in the
template note from which the design element was created. The OID makes it possible to later update
only a subset of the design elements with newer ones from an enhanced version of the template,
even though documents have been added to the database since its creation.

In other regards, the new database is different from the template from which it inherits its design.
For example, the new database has its own database ID, and its extension is NSF rather than NTF.

Editing and viewing the database
Over time many users edit a database — for example, they add documents, unread lists, and
personal design elements.

The content of a document depends on the form used to create it.

Notes can create an unread list for each database user. Each unread list enumerates all of the
database documents that a particular user has not yet read. The Notes client uses the unread list to
highlight unread documents listed in a view and to aid the user’s navigation through the
documents.

A personal design element is one that is available to only the user who created it. Using personal
design elements, a user can customize a shared database. The most common way to create a
personal design element is to use a private-on-first-use view or folder that the application developer
designed into the application’s source template. Then, for example, if 100 users open such a view,
Notes creates 100 personal view notes in the document. A typical personal view might be named
“Show My Documents.”

Revising and refreshing a design
Applications evolve and improve over time. As application developers receive suggestions for new
features and reports about problems, they use the Domino Designer and other application-authoring
tools to enhance and fix templates. Then, after testing the changes, the application developers
redistribute the new version of the template.

The Designer server task is used to redeploy an updated version of a Notes template. This task
removes all original design elements from a database and then copies into the database a revised set
of design elements from the updated template.

Chapter 1: Overview of Notes and Domino Architecture 37

The Domino Designer
The primary way to develop a Notes application is to use the Domino Designer, Domino’s native
integrated development environment (IDE). Using a group of graphical editing tools, you can
quickly create a design, construct forms and views, and use one of several supported programming
languages to add application logic and control. Using a special “preview in browser” feature, you
can preview how your application will look on the Web.

The Domino Designer is closely integrated with additional development tools. For example, using
the Domino Global WorkBench you can create databases in multiple languages so that users can
choose a preferred language from a list of available languages. In addition, you can assign a specific
language attribute to design elements and automatically serve the application in that language.

Notes applications use an event-driven programming model, meaning that code runs in response to
events that occur in objects. The objects are databases, agents, actions, views, folders, forms,
subforms, pages, fields, hotspot buttons, and hotspot actions. Using Domino Designer, you can
attach code to various objects. For example, if you create a computed field in a form, you attach a
formula to compute the value of the field. If you attach JavaScript code to the onFocus event of a
field, the code runs whenever a user selects the field. Or you might decide to create an agent in the
formula language, LotusScript, or in Java to perform scheduled updates of all documents in a
database.

Domino Designer supports programming in four portable, interpreted languages: Notes Formula
Language, LotusScript, JavaScript, and Java. The following table summarizes these languages.

�� Automate menu commands, views, forms,
agents, actions, buttons, and fields

�� Write selection formulas for views
�� Retrieve data from other sources
�� Calculate field values

Provides @functions and @commands Notes Formula
Language

�� Program applications that the Notes client,
Domino server, or SmartSuite® products
host

An embedded BASIC scripting
language with a set of language
extensions that enable object-oriented
application development for Lotus
products

LotusScript

�� Program events in forms
�� Create graphical user interfaces for both

Notes and Web clients

Interactive programmability in a
browser

JavaScript

�� Create Java agents and applications
�� Create servlets that read and write

Domino data
�� Develop CORBA applications that use

Domino data

Full support for Java, with a Java
interface to the Domino objects and a
means to store Java applets and agents
in a Notes/Domino database

Java

Use toProvidesLanguage

All four languages are interpreted languages, meaning that each has a program called an
“interpreter” that reads and executes the logic of the program. In particular, the languages do not
produce programs that must be compiled, or converted to native machine code and then executed
directly on the computer’s processor. While interpreted programs run slower than compiled ones,
they have one big advantage: they run on any computer to which their interpreter has been ported.
Consequently, an application developed in the Domino Designer on one platform will run on any
Notes client or Domino server because NOS runs on all those platforms. In other words, the
application is multiplatform: after creating and testing an application once on one platform, the
developer can be assured that the application will run on any Notes client or Domino server.

38 Inside Notes: The Architecture of Notes and the Domino Server

How Notes/Domino process the built-in interpreted languages
With respect to storing and running interpreted programs, three major elements of Notes
architecture come into play: the client and server programs, NOS, and databases. Notes stores and
runs all programs written in its interpreted languages in a similar way. The following steps describe
how Notes/Domino process the built-in interpreted languages.

1. The developer uses Domino Designer to write a program in the Notes Formula Language,
LotusScript, Java, or JavaScript.

2. For each language, NOS checks program syntax and compacts the original program into a
smaller format that is easier and faster to interpret. Domino Designer applies the appropriate
compiler to the program (depending on the language) and uses other NOS functions to save the
compacted program as data within an item of the note being designed.

3. NOS has interpreter services for each language. These services are called by client and server
programs, such as the editor in the Notes client or the Agent Manager server task on a Domino
server. To interpret, or run, a program, NOS reads the compacted program from the note item
into an internal buffer and then applies the appropriate interpreter to the program in the buffer.
Running a program usually results in modifications to the database.

4. After interpreting one of these programs, the client or server program uses NOS functions to
read, process, and/or display updated database information

The following figure illustrates a database that was developed and is accessed on one client.

Program
Development

Program
Interpretation

Domino
Designer

Databases
(hold compiled programs)

Notes Object Services (NOS)
(has compilers and interpreters)

Designer is used to
enter program source

Designer uses NOS to
compile and save program

Client shows results of
program interpretation

Client uses NOS to read,
interpret, and store results
of programs

Example of a client "running" a program (formula,
LotusScript, Java, JavaScript) created using Domino
Designer

1

2

4

3

Notes
Client

read/write

Web authoring tools
In addition to using the Domino Designer to develop Domino Web applications, you can use
commercially available Web development environments, such as NetObjects Fusion and Microsoft
FrontPage, as well.

Using Domino Designer or other Web development tools, you can include Domino Design
Components in your Web applications. Domino Design Components are Java versions of a
significant subset of the design elements available in Domino Designer. The Domino Design
Components work with the Domino Import Service task. When you publish an application from a
third-party Web authoring tool to the Domino server, the Domino Import Service task creates a
document for each HTML page and stores the documents in a Domino database. The Import Service
stores HTML as native HTML and marks it as passthru HTML. Storing HTML this way allows you
to use cutting-edge Web design features — such as DHTML, cascading style sheets, and layered

Chapter 1: Overview of Notes and Domino Architecture 39

objects — without losing fidelity when the design is rendered to the browser. Site assets — such as,
GIFs, applets, Shockwave files, JavaScript files, and so on — are stored as attachments to documents
in the database. The Import Service uses the $File argument to convert URLs that reference these
assets into Domino URLs.

While you should always use the original third-party authoring tool to edit the user interface of a
Web site, you can use Domino Designer to edit any Domino design elements that you used the Web
authoring tool to create. When you publish, any views or forms you created in a third-party tool are
created as native Domino views and forms, as if you created them using Domino Designer. You can
modify the views; add security restrictions; add agents, formulas and script to the forms; and so on.
Republishing from the HTML authoring tool does not overwrite these types of changes.

Using toolkits, drivers, and connectors
Domino provides support for:

�� Toolkits

�� Drivers

�� Connectors

Using these products, developers can access a variety of Domino services and external data sources,
including:

�� Access data, other than Notes databases, from within portable Notes applications — for
example, data available from proprietary or special-purpose interfaces, files, and devices

�� Write Domino server add-ins and NOS extensions to customize the behavior of Domino
servers for particular business applications

�� Develop Java programs that create and access Domino databases

�� Access relational databases from Notes applications

Supported application toolkits
A toolkit is a collection of developer tools for building software components that customize or
extend a specific base software product. For example, in the general software market there are
toolkits for building UNIX device drivers, Netscape plug-ins, Windows printer drivers, and so on.
Components developed from toolkits can be anything from a small device driver for a simple input
device to a complete application built as a Java applet. Toolkits contain definition files, object
libraries, build procedures, test harnesses, example code, and documentation — all of which
collectively specify the application programming interface (API) between the base software product
and the components developed from the toolkit.

Developers use Lotus toolkits to build applications that:

�� Access Domino data programmatically, without using the Domino Designer

�� Extend the LotusScript language, usually to add interfaces to special-purpose subsystems

40 Inside Notes: The Architecture of Notes and the Domino Server

�� Write custom modules tightly integrated with
both the Notes/Domino and SmartSuite
environments

Expands the functionality
of the Domino object
classes (LotusScript and
Java)

LotusScript Extension
Toolkit (LSX)

�� Deploy local and remote (CORBA) Notes/Domino
Java agents, applications, servlets, and applets for
Notes and browser clients

Contains sample
programs, documentation,
and library files

Lotus Domino Toolkit for
Java/CORBA

�� Create, access, and manage Domino databases,
database design elements, and data

�� Perform session-level tasks, such as user
registration

Provides a set of C++
classes and data types

Lotus C++ API Toolkit for
Domino and Notes

�� Write C programs that perform most of the
operations available through the Notes UI

�� Write custom server tasks that extend the
capabilities of the Domino server

Provides subroutines and
data structures

Lotus C API Toolkit for
Domino and Notes

Use toFunctionalityToolkit

Supported database drivers
Database drivers enable users to use industry-standard APIs — namely, ODBC (Open Database
Connectivity) and JDBC (Java Database Connectivity) — to access Notes/Domino data.

Gain read/write access to Notes/Domino
data using any JDBC-enabled application
— for example, servlets on an HTTP server

A Type II JDBC driver that makes
Domino databases resemble another
relational back-end source to an SQL
tool or application interface

Lotus Domino Driver
for JDBC

Gain read/write access to Notes/Domino
data using any application that supports
ODBC — for example, use Seagate’s
Crystal Reports or Microsoft Access to
produce reports from Notes/Domino data

An ODBC driver that makes Domino
databases resemble another relational
back-end source to an SQL tool or
application interface

Lotus NotesSQL®

Use toFunctionalityDatabase driver

Supported Lotus connectors
Lotus connectors permit access to external data sources from Domino for relational
database-management systems, enterprise resource-planning systems, transaction-processing
systems, directory services, and other services.

On the Lotus Enterprise Integration Web site*C/C++ access to enterprise
systems

Lotus Connector API

On the Lotus Enterprise Integration Web site*
or included with LEI 3.0

Java access to enterprise
systems

Lotus Connector Java Classes

On the Lotus Enterprise Integration Web site*
or included with Domino Release 5 and LEI 3.0

LotusScript access to
enterprise systems

Lotus Connector LotusScript
Extension (LC LSX)

As a separate product, formerly known as
NotesPump

Schedule- and event-driven
high-speed data-transfer
capabilities between Domino
and enterprise systems

Lotus Enterprise
Integrator™ (LEI)

As an add-in task included with the Domino
Release 5 server

A real-time, forms-based
interface to enterprise data

Domino Enterprise
Connection Services (DECS)

AvailableProvidesConnector

* The Lotus Enterprise Integration Web site is www.lotus.com/dominoei

Chapter 1: Overview of Notes and Domino Architecture 41

CORBA support
CORBA (Common Object Request Broker Architecture) is an open standard defined by the Object
Management Group (OMG), an industry standards body that includes IBM. CORBA allows
applications to communicate with each other, regardless of location or platform. The transport
protocol for CORBA communication over a TCP/IP network is IIOP (Internet Inter-ORB Protocol).
CORBA is supported by IBM, Netscape, Oracle, and Sun and is promoted as an alternative to
Microsoft’s DCOM (Distributed Component Object Model).

CORBA CORBA

CLIENT
SERVER API

SERVER
OBJECTS

IIOP

With respect to Domino, CORBA allows Java programs on remote clients — for example, applets in
browsers and stand-alone Java applications — to access Domino objects on the Domino server. From
an implementation standpoint, a remote client instantiates and references Domino objects as if they
were resident on the client. In fact these objects are instantiated at the Domino server. When the
client is referencing these objects, it is actually communicating with the objects on the server. This is
invisible to the programmer.

The same CORBA-enabled applet will use remote calls to the server within a browser. The most
compelling example of this technology is the ability to place a custom applet on a form and have
that applet access Domino objects in the Notes client or a browser.

Stand-alone Java applications can use CORBA to access the Domino server directly. A client does
not need to be installed locally.

Java is just one of many languages that have been used to implement CORBA architecture. Domino
Release 5 implements a CORBA interface for Java clients, allowing remote Java applications and
Java applets to use the server side C++ Domino object model via a C++ CORBA server interface.
A Domino CORBA client interface could be implemented in C, C++, SmallTalk, Ada, or COBOL.

XML support
While XML provides the resources required to describe and share data across a network, Domino
provides the tools needed to make data sharing secure, reliable, and efficient. In addition to
providing a medium for writing and serving XML data to an XML parser, Domino Designer
provides:

�� Programming tools for building collaborative applications

�� Security mechanisms that protect data at many levels

�� Search capabilities that enable users to locate data

�� Messaging services that facilitate workflow operations such as order confirmation, mail
notification, and document review

�� Connectivity services that you can use to connect a Notes/Domino application with major
back-end systems

42 Inside Notes: The Architecture of Notes and the Domino Server

Chapter 2
Notes Object Services

This chapter describes the Notes Object Services (NOS), a set of core functions that are part of the
Notes client and the Domino server.

Notes Object Services
The Notes Object Services (NOS) consist of a large collection of functions. To access these functions,
programmers use the Notes application programming interface (API). NOS functions perform all of
the basic, portable, thread-safe services that the client and server use.

NOS functions are organized into groups of related functions. Within a group, function names start
with a specific string that represents the group — for example, the string “EM” represents the group
of Extension Manager functions. Groups of functions may also be layered with respect to each other
— for example, some groups use services in other groups, and those groups may call the services of
yet another group, and so on.

Portability
Portability is one of the primary strengths of Notes. A large organization often requires a
combination of operating systems to manage its enterprises. For example, the human resources
department may use a benefits package that runs on Windows, while the engineering department
may run a CAD/CAM package that requires UNIX. Because Notes runs on multiple operating
systems, these departments can use their department-specific software packages and use Notes.

To achieve this portability, Notes implements just one set of NOS source code that works the same
on every operating system on which Notes runs. From the architecture design perspective, this
portability is the result of extensive use of conditional compilations within the portability layer of
NOS — that is, the layer within Notes that interacts with the operating system. Ported to interact
directly with the native operating system, common service functions dynamically take advantage of
extra memory or I/O features that are available on some operating systems but not on others.

Implementing NOS as a kind of virtual operating system restricts direct interaction with underlying
platforms and effectively isolates much of the Notes-specific functionality from inherent differences
in the hardware and software.

NOS is thread-safe
A multiprocessing operating system can run several processes simultaneously. Multiprocessing
systems do this in several ways. Some use multiprocessor hardware — that is, the computer has
multiple processors, each of which runs one or more processes. Other single-processor
multiprocessing operating systems use process-scheduling software, which rapidly switches the
single hardware processor from software process to software process, giving the appearance that
several programs are running at the same time.

On a multiprocessing system, two or more Notes applications could try to use NOS functions
simultaneously. Moreover, because of the Notes groupware features, those applications might try to
access the same data simultaneously — for example, both might try to open the same document in a
Notes database. If Notes allowed this behavior, data could become corrupted as two or more
programs intermix their reading and writing of the document. To prevent such corruption, Notes
programs serialize their access to shared data.

43

Serialization prevents multiple processes, which are sometimes called “threads,” from corrupting
data. Code that has serialization built into its logic is sometimes called “thread-safe.”

NOS functions have built-in serialization; therefore, they are thread-safe and have all the necessary
logic to prevent the corruption of shared data. The services ensure the safety of threads in the most
efficient way possible for the platform on which the functions run. Therefore, because the services
are thread-safe already, applications that use them do not need to implement their own serialization
logic

Figure of NOS architecture
The following figure illustrates layering between functional groups in the NOS.

Operating System

Notes
Object Services

NRPC Client

Font ID Net NLS ODS OS List Time Miscellaneous

NSF

Note: Client and server
programs can use NOS's

Extension Manager to
"hook" callback functions
into many NOS services

NOS
portability layer

ACL
Addin
DN
Event
SECFM MQ

Alarm

Client or Server Programs

AdminREQ Mail
Agent NAME
CompoundText NIF
ConvertItem REG
EnumComposite Replicate
Folder Sch
FT Subform
Log

NOS service groups
Most services are in one of the following service groups:

�� Portability layer is the level at which Notes interacts with the underlying platform and where
you find those Notes components that handle all interaction with the underlying system.

�� Network services allow an application to use its own protocol to connect to and communicate
with a foreign system.

�� Database services provide access to the contents of Notes database files. Low-level database
services provide functionality for tasks such as, creating, backing up, deleting, and so on.
High-level database services provide functionality for tasks such as full-text indexing,
mailing, and scheduling.

�� Other NOS services allow you to create and manage ID tables, customize Notes behavior by
creating user-written callback functions, manipulate an in-memory copy of an ACL, and so
on.

44 Inside Notes: The Architecture of Notes and the Domino Server

Table of NOS service groups
The following table describes the service groups in NOS.

Includes these services: Abstract, Billing, Convert, IntlTextCompare, Map, Soundex,
and Stat. For more information, see the most current version of the Lotus C API
Toolkit.

Miscellaneous
Manages users, public keys, and certificates.SECKFM
Uses the Notes API to manage user schedules.Sch
Uses date/time information.Time
Registers clients, servers, and IDs.REG
Allocates memory, get environment information, and so on.OS,
Translates data in NSF files to or from a usable in-memory format for portability.ODS
Accesses the contents of Notes database files.NSF, Folder, Subform
Manages character-set conversions.NLS
Creates and manages indexes onto one or more documents within a Notes database. NIF

Provides a portable way for applications to access networks and network transport
drivers.

Net, NTI

Locates Domino Directories and address books and retrieves information from
them.

Name
Handles items — such as, header fields and attachments — within mail messages. Mail

Enables Notes applications to respond to service requests from other Notes
applications.

MQ
Manages logging.Log
Manages in-memory text lists, which are a common type of item in a database note.List
Manages compressed lists of note IDs for notes that are in the same database.ID

Creates full-text indexes of local databases and searches for documents that match a
given query.

FT
Manages events and event queues.Event

Customizes Notes functionality by “hooking” a well-specified set of Notes activities
— for example, opening or closing a database — with user-written callback
functions.

EM

Processes names that are made up of distinguished-name fields — for example,
“CN=....”

DN

Manages in-memory rich text objects and converts rich text objects into plain text
objects.

CompoundText,
ConvertItem,
EnumComposite

Manages Notes alarms.Alarm
Loads and runs “agent” notes in a database.Agent
Facilitates logging within Domino add-in applications.Add-in
Submits requests to the Administration Process (Adminp).AdminReq

Manages the contents of an in-memory ACL. These services are usually used in
conjunction with NSFDbReadACL and NSFDbWriteACL.

ACL
DescriptionService group

Chapter 2: Notes Object Services 45

NOS portability layer services
The portability layer contains Notes components that are responsible for handling all interaction
with the underlying operating system. To interact with a host operating system, software must
correctly use the services and resources of the operating system. In particular, there are three
primary interactions with the host system:

�� Transfer of data from memory and disk

�� Transmission of data over the network

�� Use of host O/S services

Routines in the portability layer hide these differences from higher level applications and services.
Underlying systems may manage and process data differently on each system, but higher level
components are unaffected by these differences.

The following table describes the portability layer services.

Allocates memory, gets environment information, and so onOperating system services (OS)

Translates NSF file data to or from a usable in-memory formatOn-disk structure (ODS)

Works with text stringsNotes language services (NLS)

DescriptionPortability layer service

Notes language services in NOS
Notes language services, which all begin with the prefix NLS, manage character strings. These
services:

�� Search a string for a given substring

�� Find the first instance of a character in a string

�� Retrieve a character (given a pointer to it) and advance the pointer

�� Determine the type of character (uppercase, lowercase, numeric, arithmetic, punctuation, and
so on)

�� Load a given character set

�� Copy a character from one buffer to another

�� Return the number of bytes in a string

�� Return the number of characters in a string

On-disk structure services in NOS
On-disk structure services, which all begin with the prefix ODS, translate data in an NSF file to or
from a usable in-memory format. These services:

�� Get the length of a data structure

�� Convert a structure from canonical format to machine-specific format

�� Convert a structure from machine-specific format to canonical format

Operating system services in NOS
Operating system services, which all begin with the prefix OS, collect environment variables
associated with the local operating system. These services:

�� Get system information — such as time/date

�� Create and work with a dynamic array

�� Get or set the string value of an environment variable

�� Load and run an external program

�� Allocate and de-allocate a block of memory from the Notes/Domino system

46 Inside Notes: The Architecture of Notes and the Domino Server

NOS network services
Some network services support the Notes remote procedure call (NRPC) mechanism. These services
permit clients and servers to access shared server databases over several types of networks,
including dialup networks and LANs. Those particular network services are not available through
the Lotus C API Toolkit for Domino and Notes, except indirectly through the use of remote Notes
API functions.

Other network services, which are available through the Lotus C API Toolkit, provide network send
and receive routines that let you connect over a serial port to a remote system and exchange data in
character mode with that system. Using NOS network services, an application can connect to and
use its own protocol to communicate with a foreign system.

Network services:

�� Provide a portable way for applications to access networks and network transport drivers

�� Provide a single interface to drivers from many networking protocols

�� Can initiate and receive phone calls or create LAN protocol sessions for communication over
ports that are defined by Connection documents in the Domino Directory

These routines provide two advantages over directly using the operating system serial driver. First,
they allow the application to share the same serial devices that Notes/Domino use. Second, they
allow the application to take advantage of the modem support built into Notes/Domino.

An application should use these routines in the following sequence:

1. Call NetLink to dial out to the remote system and establish a session to use to communicate with
that system.

2. Call NetSetSessionMode to set the operating parameters for the session.

3. Call NetSend and NetReceive to communicate over the session in a manner required by the
protocol of the application.

4. Call NetCloseSession to hang up the phone, release the serial device, and close the session.
Because these are important steps, you should never omit them once a call to NetLink returns
successfully, even if any subsequent calls to any of the other routines fail.

NOS database services
Notes database services provide access to the contents of Notes database files. A Notes database is a
collection of documents, each of which is a collection of fields. Documents and fields are also known
as notes and items, respectively. Notes databases also contain header information that describes, for
example, the date the database was created and last modified and the universal ID (UNID).

Notes database services fall into two major groups:

�� Notes Storage Facility (NSF) services, which provide low-level database services — such as,
creating, backing up, and deleting

�� High-level database services, which include services such as searching, mailing, and
scheduling

Notes Storage Facility services in NOS
Notes storage facility services, which all have the prefix NSF, provide low-level database services.
These services, which are extensible through the Extension Manager, include:

�� Create, open, or close a database

�� Work with database maintenance functions, such as compacting and replicating

�� Copy all or some of the database contents

�� Work with ACLs

Chapter 2: Notes Object Services 47

�� Back up a local database

�� Access the database header, selectively

�� Copy or delete every type of note

�� Read, write, and modify data notes and all of their fields

�� Read, write, and modify form and view notes

�� Work with Notes @functions

High-level database services in NOS
High-level database services include services such as searching, mailing, and scheduling. Some of
these are extensible through the Extension Manager; others are not. The non-extensible database
services are:

�� AdminReq

�� Agent

�� Calendar and scheduling

�� Composite text, including ConvertItem and Enum Composite

�� Folder

�� Full text

�� Log

�� Mail

�� Name

�� Notes Index Facility

�� Registration

�� Subform

AdminReq services in NOS
AdminReq services create requests for the Administration Process. These services let you create the
following requests:

�� Check Access for Move Replica Creation

�� Check Access for New Replica Creation

�� Delete in Access Control List

�� Delete in Address Book

�� Initiate Rename in Address Book

�� Move Person in Hierarchy

�� Recertify Person in Address Book

�� Rename Person in Address Book

Agent services in NOS
Agent services let you load and run “agent” notes in a database. Like form and view notes, agent
notes are design notes that are of class NOTE_CLASS_FILTER and that reside in databases. Domino
application developers design agents to automate operations on documents in a database.

Agent notes consist of a document-selection formula, a trigger, and one or more actions. An action
may be a Domino action, an @function formula, a LotusScript program, or a Java program. A
predetermined time or event triggers each action, and each action works on a preselected set of
documents.

Using agent services, you can create, test, run, and view the results of agents that work on a
particular database. These services introduce several on-disk structures that the C API requires to
manage the note. When you inspect these include files, be aware that the terms “assistant” and

48 Inside Notes: The Architecture of Notes and the Domino Server

“agent” are synonymous. Notes/Domino also provides a set of C API functions that support the
running of agent notes.

These services:

�� Open a note containing an agent

�� Run an agent

�� Set time limit for agent execution

�� Determine whether the agent is enabled

�� Close the agent

Calendar and scheduling services in NOS
Calendar and scheduling services, which all have the prefix Sch, use the Notes API to manage user
schedules. These services are extensible through the Extension Manager. These services:

�� Add an appointment or a meeting invitation to a user’s schedule

�� Delete a scheduled event from a user’s schedule

�� Query a user’s busy- and free-time information

�� Search the schedule database (on the local computer or on a specified server) for free-time
periods that are common to a specified list of people

Composite-text services in NOS
Using composite-text services, you can work with in-memory rich text objects and convert rich text
objects into plain text objects. These services include:

�� CompoundText

�� ConvertItem

�� EnumComposite

Folder services in NOS
Just as you access documents in a view, you can access documents in a folder. In fact, a folder is a
type of view note. You can create and access private and shared database folders. However, you
cannot create folders that are “Personal on first use,” nor can you create private folders that are
stored in the desktop file. In the Notes user interface, newly created private folders are generally
stored in a specified database. However, if the user does not have permission in the database ACL
to create private folders, the folder is created in the user’s desktop file. In a C API program, you
cannot create a folder if the user does not have permission in the database ACL to create private
folders. Also, a C API program cannot access private folders that are stored in the desktop file.

To access a private folder that is stored in the database, use NIFFindPrivateDesignNote and set the
class parameter to NOTE_CLASS_VIEW. To access a shared folder, use NIFFindView. Then use
NIFOpenCollection and NIFReadEntries to obtain the documents in the folder. For more
information about these and other view-related functions, see the latest Lotus C API Toolkit.

These services:

�� Create a new folder

�� Add or delete documents in a folder

�� Move a folder under a parent folder

�� Rename a folder

�� Determine the number of entries in the index of a specified folder

�� Delete a folder

Chapter 2: Notes Object Services 49

Full-text search services in NOS
Full-text search services, which all have the prefix FT, create full-text indexes of local databases and
search for documents that match a given query specification. These services are extensible through
the Extension Manager. These services:

�� Create a new full-text index for a local database.

Note that the C API does not support full-text indexing of a remote database.

�� Determine the last time a database was full-text indexed

�� Examine the result of a full-text search

�� Delete a full-text index of a database

Log services in NOS
The log file (LOG.NSF) is a special database that is automatically created when you set up
Notes/Domino. The log file records information about all types of Notes/Domino activities.

On a Domino server, the log’s ACL gives the server Manager access, by default. Immediately after
the log is created, the server administrator should edit the ACL to give him/herself Manager access.
Reader is the default access. The administrator maintains the ACL and may change the default
access or add additional managers.

On a workstation, the person whose ID is active during Notes setup gets Manager access in the log
file ACL.

Look at the log to check:

�� Database replication

�� Disk space

�� Available memory

�� Phone communications

Programs can use the Log services to add entries to the log. These services:

�� Create a new log entry

�� Add items — for example, text, date/time, number — to a log entry

�� Write the log entry to disk

�� Log an add-in event in the log file

�� De-allocate a log entry

Mail services in NOS
Mail services handle items — for example, header fields and attachments — within mail messages.
These services are extensible through the Extension Manager. These services:

�� Create a mail message

�� Add items — such as, a header, recipients, body text, attachments, and so on — to the
message

�� Add content to one or more message items

�� Copy one or more message items to a file

�� Determine information — for example, author, recipients, message size, date/time — about
the message

�� Determine message status — that is, sent, unsent, or returned

�� Send a delivery report to the sender

�� Close or delete a message

50 Inside Notes: The Architecture of Notes and the Domino Server

Name services in NOS
Name services locate Domino Directories and local address books and retrieve information from
them. These services are extensible through the Extension Manager. These services:

�� Get the list of address books in use on the local computer or get the Domino Directories on a
server

�� Look up names in the address books or Domino Directory

�� Obtain the latest modified time/date of all the address books in the process’s list

Notes Index Facility services in NOS
The Notes Index Facility (NIF) is a set of functions that handle requests to update view indexes. NIF
updates the view to display the most up-to-date view information and to reflect changes made by
users. When a user switches to a different view, NIF immediately updates the view so that the user
sees the most recent changes. In addition, NIF updates full-text indexes, opens and closes view
collections, and locates index entries.

Notes Index Facility services, which all have the prefix NIF, create and manage indexes of
documents in a Notes database. Using indexes, users and servers can quickly process and/or view
related documents. These services are extensible through the Extension Manager:

�� Open a collection of notes

�� Scan a collection and return information about the entries in the collection

�� View detailed information about the collection — for example, the total number of documents
and the total size

�� Use various search criteria to search through a collection for specific notes

�� Find the note ID of a form, view, shared folder, macro, or field note

�� Locate the specified note ID in the collection and update the collection position

�� Update an open collection

�� Close a collection

View architecture
Views display documents in an order that is determined by certain criteria, such as creation date or
subject. In a database, a view is built as a special item: the view note. Every view has a view note
that stores all of the information necessary to build the view. The following table describes this
information.

The appearance of the view columns — for example, font size. This information is created
if it does not already exist when the view is opened.

$Collection

The formula that defines how to sort the documents in the view.$Collation

The class type — for example, View Note — of the selected documents.$Formula Class

The selection formula that defines the documents to include in the view.$Formula

The name of the view.$Title

DescriptionField in note

In addition, the view note includes a collection that stores three indexes: an index sorted by unique
document ID (UNID), an index of parent-child documents — that is, documents and the response
documents associated with them — and a collation index that describes how to sort the view. Before
users, servers, or applications can access a view, the server must build the view. This requires
building the indexes in the collection, which are then stored in a B-tree structure to allow quick
access.

Chapter 2: Notes Object Services 51

Determining which views to update
To determine if a view needs to be updated, NIF compares two times.
The DataModifiedTime represents the last time data in the database was modified, and the
ModifiedTime represents the last time NIF started working on the view. If ModifiedTime is older
than DataModifiedTime,
NIF refreshes the view; if ModifiedTime is as recent or more recent, NIF processes the next view in
the database.

Opening a view
When a view is opened, a call is made to NIFOpenCollection. Depending
on a flag passed with this call, the function checks if the view is up to date.
If the view is out of date, NIFOpenCollection calls NIFUpdateCollection, which forces a view
update. NIFOpenCollection is called frequently, and the flag to check whether the view is up to date
is usually passed. When the flag is not passed — for example, when the view refresh frequency is set
to Manual — NIFUpdateCollection is not called and the view collection is not refreshed
automatically.

NIF pool
The memory pool allotted to NIF is divided into 384 subpools that control the maximum amount of
memory allowed for views.

Prior to Domino Release 4.5.3, the server setting “Optimize for speed” caused the server to search
the NIF pool for a contiguous block of memory large enough to hold the necessary information.
While fast, this process caused the fragmentation of the NIF pool and led to reaching the 24MB limit
faster, since smaller unused blocks were ignored even if they could be combined. After Domino
Release 4.5.3, the server setting “Optimize for space” causes the server to clean up the NIF memory
pool as soon as a subpool reaches 75 percent of its maximum value.

Registration services in NOS
Notes registration services, which all have the prefix Reg, register new Notes clients and Domino
servers and manage Notes IDs. These services:

�� Register a Notes client or Domino server

�� Create a new certifier ID

�� Find the Notes ID of a certifier, server, or user

�� Recertify an ID

�� Cross-certify an ID

�� Obtain information about an ID file

Subform services in NOS
Forms are notes of class NOTE_CLASS_FORM. Subforms, which are also forms of class
NOTES_CLASS_FORM, may be inserted into a form. A form note contains a $TITLE item, an $INFO
item, and one or more $Body items. A subform note contains a $TITLE item, an $INFO item, a
$Flags item, and one or more $Body items.

These services:

�� Insert a subform into a form or subform design note

�� Remove a subform from a form or subform design note

52 Inside Notes: The Architecture of Notes and the Domino Server

Other NOS services
The C API provides access to these additional services:

�� Access control list services

�� Add-in services

�� Alarm services

�� Distinguished name services

�� Event services

�� Extension Manager services

�� ID Table services

�� Message queue services

�� Text list services

�� Time services

�� Security services

Access control list services in NOS
All Domino databases contain an access control list (ACL). Use the access control list services, which
all have the prefix ACL, to access and modify the ACL for a database. Use the function
NSFDbReadACL to access and modify the ACL. If you use the function NSFDbCreate to create a
database, you must use the function ACLCreate to create an ACL for the new database. The handle
that by NSFDbReadACL or ACLCreate return is to an in-memory copy of an ACL. Use
NSFDbStoreACL to store the in-memory copy of the ACL in the database.

These services:

�� Create an ACL

�� Add, update, and delete entries in the ACL

�� Assign privileges to names in the ACL

�� Determine the administration server for the ACL and change it

Add-in services in NOS
Add-in services are used by a Domino add-in program to post status information to the server
console, to format and add messages to the log file, and to check if the add-in program has
terminated. Add-in services:

�� Create a new status line for an add-in server task and return a descriptor handle

�� Delete an add-in server task status line

�� Format and write error messages to the log file

�� Get the module handle and default status line for the add-in task

�� Set the string for the default status line of an add-in server task

�� Check for termination condition

Alarm services in NOS
Using alarm services, you can work with alarms. These services:

�� Register interest in receiving alarms

�� Reread location for the new user

�� Indicate alarm has been processed

�� Refresh the alarms list

�� De-register interest in alarms

Chapter 2: Notes Object Services 53

Distinguished name services in NOS
Distinguished name services, which all have the prefix DN, process addresses that are made up of
distinguished name fields — for example, “CN=...”.

To specify a hierarchical user name in a call to an ACL function, use the fully distinguished name. A
fully distinguished name is in canonical format — that is, it contains all possible naming
components. For example, Mary Lee/Sales/Acme is an abbreviated name, while CN=Mary
Lee/OU=Sales/O=Acme is a fully distinguished name.

These services:

�� Abbreviate a distinguished name

�� Convert an abbreviated distinguished name to canonical format

�� Parse a distinguished name into standard components

Event services in NOS
User-defined events allow one add-in server task to notify another task that something has
happened. These services:

�� Create an event queue

�� Place an event in an event queue

�� Discontinue notification of particular events

�� Retrieve the user name or database name associated with an event

�� Specify the type and severity of events to process

�� Remove an event from an event queue

�� Delete an event queue

Extension Manager services in NOS
Extension Manager services, which all have the prefix EM, hook a well-specified set of operations —
for example, opening or closing a database — with user-written callback functions.

Using the Extension Manager, an executable program library in an application can register a
callback routine. The callback routine will be called before, after, or before and after Notes/Domino
performs specified internal operations.

You build an Extension Manager application as an executable program library — for example, as a
dynamic link library (DLL) for Windows and OS/2 or shared object libraries for Macintosh and
UNIX operating systems. After building the application, you identify the executable program library
by editing the NOTES.INI file to include the ExtMgr_Addins setting. On the Macintosh, you modify
the Notes preferences file, which is in the Preferences folder within the System Folder.

You can install Extension Manager hooks on either a Notes client workstation or a Domino server.
Extensions are registered on a per-process basis. After an extension is registered, all threads in a
process invoke that extension. If desired, individual extensions can obtain and use a recursion ID to
prevent themselves from being called recursively — for example, an extension to NSFDbOpen
would want to use a recursion ID if it needs to call NSFDbOpen itself as part of its own operation.
For more information about recursion IDs, see the Lotus C API Toolkit.

The following services are extensible through Extension Manager:

�� Calendar and scheduling services

�� Full-text search services

�� Name

�� Notes Index Facility

�� Notes Storage Facility

54 Inside Notes: The Architecture of Notes and the Domino Server

ID table services in NOS
ID table services manage compressed lists of note IDs. These services:

�� Copy an ID table

�� Insert a note ID in an ID table

�� Delete some or all IDs from an ID table

�� Determine if two ID tables contain the same contents

�� Determine if an ID is present in an ID table

Message queue services in NOS
Using the message queue services, which all have the prefix MQ, you can send information from
one Notes/Domino application to another. These services:

�� Create a message queue

�� Open a message queue

�� Add a message to the specified message queue

�� Read and remove a message from a message queue

�� Get the number of messages in the message queue

�� Test if the specified message queue is in a QUIT state

�� Call action routine for each message in a message queue

�� Close a message queue

Text list services in NOS
Text list services, which all begin with the prefix List, manage in-memory text lists, which are a
common type of item in a database note. These services:

�� Create a text list

�� Add a string to a text list

�� Duplicate a text list

�� Determine the number of entries in a text list

�� Determine the size of a text list

�� Remove one or more entries from a text list

Time services in NOS
Time services, which all begin with the prefix Time, manage time-related environment variables.
These services:

�� Create, set, or clear a TimeDate value

�� Compare two TimeDate values and determine the difference between them

�� Increment a TimeDate value

�� Extract the date from a TimeDate value

�� Convert a TimeDate value to local time

Security services in NOS
Using security services, which all have the prefix SECKFM, you can manage users, public keys, and
certificate contexts. These services:

�� Change the password in the specified ID file

�� Return the encoded password, given a non-encoded password

�� Free a certifier context

Chapter 2: Notes Object Services 55

�� Get the certifier context

�� Get the public key for a user

�� Get the current user name

�� Set the certificate expiration date

�� Get current user name and/or license ID

56 Inside Notes: The Architecture of Notes and the Domino Server

Chapter 3
Notes Storage Facility

The Notes Storage Facility (NSF), one of the largest and most complicated parts of Notes Object
Services (NOS), is a library of C functions that implement the most basic database-creation and
database-management operations.

The Notes Storage Facility
The Notes Storage Facility (NSF) is a key component of Notes Object Services (NOS). Notes client
and Domino server programs use NSF to create and manage Notes databases. When a program calls
on NSF to access a local database — that is, one that resides on the same client or server computer
on which the program is running — NSF calls file-system services of the local operating system to
create and manage the Notes database file directly. When a program calls on NSF to access a remote
database — that is, one that resides on a Domino server that is accessible over the network — NSF
uses the Notes remote procedure call (NRPC) service within NOS to ask the remote Domino server
to perform the NSF operation on its behalf.

Only NSF functions can create a Notes database from scratch and create, access, modify, and delete
individual objects — such as, the database header, notes, and so on — that are in a Notes database.
In other words, no functions outside of NSF can create a Notes database from scratch or directly
access individual objects within a Notes database. Programs that need to perform these tasks must
call NSF functions to do so. For example, Update task, which rebuilds all views in a database, uses
the Notes Index Facility (NIF) in NOS to create the list of documents that appear in each view. NIF,
in turn, uses NSF functions to read the selection formula from each view, to search the database for
documents that match the selection formula, and to build and save in the database the “collection”
information that comprises the index.

This document presents a high-level description of the software components of NSF and the
database structures that NSF maintains. For more detailed information about NSF functions, see the
Lotus C API Toolkit for Domino and Notes.

Figure of NSF
The following figure shows the primary software components of NSF, which are the:

�� NSF API functions

�� Unified Buffer Manager

�� Open Database list

�� Database Cache

�� Directory Manager

�� Recovery Manager and the Logger

While the primary components are large, complicated pieces of software with many
subcomponents, this discussion does not delve into how they, in turn, are constructed. Furthermore,
to simplify the figure, many secondary NSF components are neither shown nor discussed, nor is the
NOS portability layer shown, although all NSF components use it to access disk files, allocate
memory, synchronize access to shared data, and so on.

57

Slower Random-Access IO

Databases

Fast Sequential IO

Notes Storage
Facility (NSF)

Database Cache
(DB's being closed)

Recovery
Manager (RM)

Programs that use NSF functions

Directory Manager
(DB's being closed)

Unified Buffer Manager (UBM)
(DB information cached in memory)

Open DB List

NSF API functions

Logger
Process

Recovery
Log

Use of
 transaction
logging is
optional

NSF API functions

The NSF API functions encapsulate the rest of NSF, meaning all programs that create and/or use
Notes databases do so by calling these API functions. Many of the API functions are available to
third-party developers who use the Lotus C API Toolkit for Domino and Notes to write C/C++
programs. For detailed information about NSF functions, see the Lotus C API Toolkit.

Unified Buffer Manager
The Unified Buffer Manager (UBM) caches information about databases that NSF is accessing. In
general, about one-third of a machine’s memory is assigned to the UBM. On a large server the UBM
memory cache often holds tens of thousands of data structures belonging to hundreds, and even
thousands, of open databases.

The UBM is largely responsible for how well Domino performs and scales. First, the UBM
implements rules to guarantee maximum use of its large memory cache. These rules keep memory
fragmentation to a minimum and balance memory usage across all NSF activities so that no
individual database or NSF process gains more than its fair share of memory relative to other
databases and processes. Second, the UBM implements rules to increase the likelihood that database
information needed by NSF is already available in its cache and does not have to be read from disk.
Therefore, the UBM serves database information to the rest of NSF with an almost negligible
contribution to overall server overhead. In addition, enabling optional transaction logging reduces
the need to flush cached information from the UBM to database files simply for the sake of
maintaining database integrity, and this can also improve the performance of the server.

Open Database list

The Open Database List tracks all databases in active use on a client or server computer. NSF adds
an entry to the Open Database List whenever a database is first opened. Each entry contains, among
other things, a list of users that have opened the database, and each entry in the database’s users list,
in turn, contains information about the user’s authentication state and access rights, a flag indicating
if the user is a person or a server, and other user-specific information. When a program opens a
database, NSF returns a DBHANDLE to be used on all subsequent accesses to the database. A
DBHANDLE identifies an entry in a database’s users list, which in turn leads to the database’s entry

58 Inside Notes: The Architecture of Notes and the Domino Server

in the Open Database List. This design facilitates enforcement of per-user access rights — each
database operation is done in the context of the user who opened the database, and so an operation
that one user may be permitted to do may not be permitted for another user.

When a user closes a database, the user’s entry in the database’s users list is removed. On client
computers, when the last user of a database closes it, the database is closed immediately — any
unwritten database information still in memory is flushed out to the database file, the database file
is closed, and the database’s entry in the Open Database list is removed. On server computers, when
the last user of a database closes it, the Database Cache postpones closing the database for a while.
NSF removes the database’s entry on the Open Database list and moves it to the Database Cache list.
This optimization improves performance by taking advantage of the fact that many server databases
are often reopened shortly after being closed.

Database Cache
The Database Cache is responsible for closing databases after their last user is done with them.
Because many databases are reopened shortly after being closed, the database cache keeps a
database open for a period of time before actually closing it. When a user tries to open a database,
NSF first checks the database cache and, if an entry is there for the database, then NSF removes the
entry from the cache and moves it back to the Open Database list. This technique saves the time it
takes to flush database information out to a file, free the memory that held the database information,
close the file, reopen the file, reallocate memory to hold database information, and read the
information from the file back into memory.

Client computers do not use the Database Cache. A client database is fully closed when its last user
closes it. This is because the aging and closing of databases listed in the Database Cache is done by
two built-in server tasks, which are not available on a client computer.

The Database Cache is enabled by default on server computers.

Directory Manager
The Directory Manager keeps critical information in memory about every database in the Domino
data directory and its subdirectories. When Domino first starts, Directory Manager information is
compiled and then kept current as databases are created, deleted, opened, modified, and closed.
Like the UBM, the Directory Manager boosts server performance by keeping database information
readily available in memory. Therefore, there is no need to incur the high overhead of opening and
reading databases just to get a few items of information from them. For example, tracking the last
time each database was modified helps a program such as the Replicator to determine quickly
which databases need replication — those that have been modified since their last replication.

Recovery Manager and the Logger
The Recovery Manager (RM) and the Logger are optional NSF services that implement transaction
logging, a feature designed to improve database integrity and the performance of database I/O
operations. The Logger records information passed to it by the Recovery Manager. The Recovery
Manager:

�� Is the sole NSF component that interfaces to the Logger

�� Writes transaction-undo records to the Logger

�� Writes database-recovery records to the Logger

�� Reconstructs databases after a server has crashed by replaying database-recovery records
from the log and undoing partially-completed database transactions using transaction-undo
from the log

Transaction logging uses write-ahead-logging (WAL) to log a sequential record of every
modification to every database before the changes are made to the database itself. Unlike database
update operations, which cache database modifications in memory and then later write them to
database files, logging operations are synchronous, meaning they guarantee that logged data is
immediately recorded in the log file. Then if the server crashes, the Recovery Manager uses the log

Chapter 3: Notes Storage Facility 59

when the server restarts to reconstruct all databases with 100 percent data integrity. Even databases
for which some cached data was written to the transaction log but never recorded in database files
will be recovered. All completed API operations will be reflected in logged databases after recovery
is complete.

While the primary job of transaction logging is to guarantee data integrity, using RM and the Logger
also can improve the performance of database recovery. Should a server crash, the Recovery
Manager can rapidly “replay” log records and recover all data. It, therefore, is faster and more
reliable to use a log to recover data than to use the Fixup task, which first examines the content of
databases for inconsistencies and then attempts to resolve the inconsistencies, a process that may
result in loss of data.

Database structures
Each database always contains a header, and it may also contain notes and/or replication-history
information. In addition, a database always contains other internal structures that track notes and
replication-history information in the database.

A shared database residing on a Domino server typically contains all four types of components: a
database header, notes, replication-history information, and internal structures. The bulk of such
database files, especially of large ones, is typically dedicated to the storage of notes. Each note has its
own header structure, a collection of fields (also called items) and, optionally, a list of “response”
notes.

The organization of a Notes database is different from that of a relational database, which contains
tables of same-type “records,” or sets of fields, and is optimized for rapid access by table-oriented
operations. A Notes database can contain any number of notes, and a note can contain any number
and type of fields. In addition, there is information in the database header and in each note header
that supports simultaneous access and replication between databases.

Components of the database header
Each Notes database always has a header that contains:

�� Major and minor version numbers

�� The database class

�� An information buffer

�� The database ID (DBID)

�� A meaningful database instance ID (DBIID), if transaction logging is enabled

�� Replication settings, which include the database replica ID

Header information can be accessed programmatically through the Notes API; consult the Lotus C
API Toolkit for Domino and Notes for details.

Major and minor version numbers
Major and minor version numbers indicate which version of Notes was used to create the database
file. Only Notes Releases 1 and 2 used the minor version number. The major version number
indicates the level of on-disk structures (ODS) that can appear within the database. It is an
ever-growing number which is incremented whenever a new version of Notes can store ODS that
could not be created by any previous versions of Notes. Whenever a specific version of Notes creates
a database, it stamps the header with a major version number so that other versions of Notes that
may read the file know what types of ODS can be in it. The major version number is actually
incremented many times during the development of a major release of Notes. For example, Notes
Release 4 creates databases stamped with a major version number of 20, and because of the series of
internal versions that were created as the code base evolved from Release 4 to Release 5, Notes
Release 5 creates databases stamped with major version number 41. The following table lists the
major version numbers for all releases of Notes.

60 Inside Notes: The Architecture of Notes and the Domino Server

41Release 5

20Release 4

17Release 3

16Release 1 and Release 2

< 16Prehistory

Major version numberVersion of Notes

Version numbers are used by Notes to control version-to-version software compatibility. A newer
version of Notes can always work with a database created by an older version of Notes, but not vice
versa. For example, a Notes Release 4 can open and access local databases stamped with a major
version of 20 or lower but will never open and access databases stamped with a major version
greater than 20.

Note It is possible for Notes Release 4 to open a remote database that has a major version
greater than 20 — for example, a database stamped with a version of 41 by Notes Release 5 —
provided that Notes Release 5 is running on the remote server and can respond to NRPCs to
open and access the remote database on behalf of the Release 4 requester.

Database class
The class of a database determines the default size of some internal database structures; therefore,
assigning the appropriate class to a database can positively affect its operational performance and
size. Most databases use the recommended default database class setting of DBCLASS_NOTEFILE.
Special databases — for example, the database that stores single copies of messages sent to multiple
users — use other, predefined class settings designed specifically to take advantage of the
specialized ways in which they are accessed. Database class is set when the database is first created,
and it cannot change after that.

Database information buffer
Every database header has a 128-byte information buffer that contains the:

�� Database title

�� Database categories

�� Template name (if it’s a template)

�� Name of the database’s “inherit from” design template (if applicable)

The information in this buffer is visible through the Basics and Design tabs of the Database
Properties box. In addition, several API functions provide access to the database information buffer.

Database ID
Every database has a database ID (DBID), which is a TIMEDATE value that indicates either the time
when the database was first created or the time when the Fixup task last ran on it. Fixup changes a
DBID so that the Replicator task knows that data has been removed from the database and needs to
be restored. Replication, which normally replicates only information that has changed since the last
replication, will notice that the DBID has changed and will do a full replication instead, which
restores the missing data.

Database instance ID
Every database has a database instance ID (DBIID) that is meaningful only if the database resides
on a server on which transaction logging is enabled. A unique DBIID is initially generated for a
database when the database is first created, and it is changed later whenever the database is
compacted. Because compacting temporarily disables transaction logging for a database (in order to
prevent a large amount of logging data from being spewed out to the recovery log due to the large
amount of I/O done during database compacting), old recovery data in the log should then never
be applied to the compacted database. To indicate this, compacting changes the database’s DBIID.

Chapter 3: Notes Storage Facility 61

The Recovery Manager will not replay recovery information from a log into a database unless the
DBIID value stamped on the recovery records matches the database’s DBIID. It is recommended that
you back up a database immediately after compacting it.

Database replication settings
Database replication settings — for example, “Remove documents not modified in the last x days”
and “Do not send deletions made in this replica to other replicas” — are stored in a
DBREPLICAINFO structure in the database header. Using the Notes API, you can access the
DBPEPLICAINFO structure.

One member of the structure, named ID, is a TIMEDATE value that serves as the database’s replica
ID. When a database is first created from scratch, its replica ID stores the database creation time.
When you create a replica of the database, the replica assumes the replica ID of the source database.
Replication checks if two databases have the same replica ID — indicating that they are replicas of
each other — before replicating their contents. Once set, a database’s replica ID never changes.

Database replication history
Replication logs within a database store a history of all of the database’s replication activity. The
history is used to optimize replication, so that replication only looks for information modified since
the last time the database was replicated to that destination. For each replication, it creates a
REPLHIST_SUMMARY structure (time, direction, and so on) as well as the name of the database
that was replicated and the server on which that database resides. All of this information can be
accessed programmatically through the Notes API. Not all databases have replication history
information — if a database has never been replicated, it does not have a replication history.

Database notes
All user, design, and administrative data pertaining to a database is stored in the database in notes.
NSF has a common set of routines for creating and working with notes, regardless of the type of
data they contain.

Each note has a header, zero or more items that store note data, and a list of zero or more notes that
are “children” of the note, which is the “parent.” This parent-child information is essential for
implementing the topic-response relationship between notes.

After it is created, a note can be removed from a database in one of two ways — fully removed or
marked as a deletion stub. A deletion stub can be further categorized as hard deleted or soft deleted.
(The soft deletion became available in Notes Release 5.) A hard-deleted stub contains only enough
information to indicate that a note has been deleted and is kept in the database so that replication of
deletion information occurs properly between databases — there is no way to recover any
information originally attached to a hard-deleted note. Like a hard-deleted stub, a soft-deleted stub
is marked as deleted for replication purposes, but it also retains its data so that the data can be
recovered later, if desired.

NSF itself does not require that a database contain any notes at all, although programs that use NSF
to create and maintain databases sometimes require a minimum set of notes so that their own
specific operations work. For example, the Notes Client program requires that a database have an
ACL note and at least one view note.

 There are two major categories of notes: data notes and non-data notes. Data notes, which are also
called documents, store the content of a database. Non-data notes are further categorized into
administration notes (ACL and replication-history notes), which control how a database can be
accessed and record how it has been replicated, and design elements (forms, views, and notes, for
example), which control how data notes are created and viewed, how notes are indexed, and so on.

A note can also be classified as single- or multiple-instance. A single-instance note — for example, a
database ACL note — can occur only one time in a database. A multiple-instance note — for
example, a view note — can occur many times.

62 Inside Notes: The Architecture of Notes and the Domino Server

Database notes can be arranged in a hierarchy — that is, a note can be a parent of other notes, which
in turn can be parents of other notes, and so on. NSF does not limit the depth of parent-child
relationships, although some programs that use NSF enforce a limit of 32 levels. Notes in
parent-child relationship form the basis for databases that implement threaded discussions — with
main-topic notes, response notes, and response-to-response notes — and also for the handling of
replication conflict errors, in which the “loser” document becomes a child of the “winner”
document.

Table of note types
The following table summarizes the types of notes that can be in a database.

MultipleUsing a formula you specify, selects sets of data notes for viewing. Views can
include a hierarchy of parents and response documents and columns that
display summary items. Columns can include categories of information to
group particular documents together in collapsible sections and can be sorted
in ascending or descending order. Folders and navigators are also
represented as view notes with a flag that identifies the view type.

View

MultipleSpecifies a replication formula for the database.ReplFormula

SingleSpecifies the index of Help information.Help Index

SingleSpecifies Help Using This Database document.Help

SingleSpecifies the Help About This Database document.Info

SingleSpecifies the database icon, database title, and database category. Icon

MultipleProvides the structure for creating, editing, and viewing a data note. Data
notes create their items from the form note’s specifications. Subforms, pages,
framesets, image resources, Java resources, and shared actions are also
represented as form notes with a flag that identifies the form type. All shared
actions in a database are represented by a single form note.

Form

MultipleRepresents agents in a database. Outlines, agent data, script libraries, and
database scripts are also represented as filter notes with a flag that identifies
the filter type.

Filter

MultipleStores the definition of a field that can be shared between forms and
subforms.

Field

MultipleDocuments in a database, for example a mail message or To do document.
Different types of data notes can be in the same database, and there can be as
many instances of each type of data note as you want. For example, a database
could have 1000 mail notes, 0 appointment notes, and 50 ToDo notes.

Document

SingleSpecifies a special view that indexes all form, view, filter, field, replformula,
and help-index notes in a database.

Design Collection

SingleSpecifies who may access the database and in what ways. ACL

InstanceDescriptionNote type

Identifiers for notes
Every note has two identifiers: an originator ID and a note ID.

The originator ID
The originator ID (OID) is a 28-byte identifier that contains a universal ID (UNID) that uniquely
identifies an instance of a note and contains additional information used to resolve replication
conflicts. An OID contains these three elements:

�� A 16-byte universal ID (UNID).

�� A 2-byte sequence number that indicates the number of times the note has been updated. This
is used by replication conflict-detection.

�� An 8-byte time stamp that indicates when the note was last updated. This is used by
replication conflict-detection.

Chapter 3: Notes Storage Facility 63

The universal ID (UNID) in a note’s OID is the same across all replicas of a database, meaning that if
a note has a specific UNID in a database and a replica copy of the database is made, then the copy of
the note in the replica will preserve the original note’s UNID; replication keys off of identical UNID
values to determine which notes are new (no matching UNIDs between replicas), which are deleted,
and which are the same between the replicas.

Except for notes in replica copies of a database, no two notes in any databases anywhere in the
world should ever have the same UNID. A UNID is a structure which has two 8-byte elements,
called “File” and “Note” respectively. Different formulas have been used over time to generate the
values that go into these UNID elements for a newly created note. Originally, the File element of a
note’s UNID consisted of the 8-byte DBID of the note’s database, and the “Note” element of a note’s
UNID consisted of the 8-byte time stamp of when the note was created. Even though the two UNID
elements retain their original names for historical reasons, the current formula calculates an 8-byte
random value for the File element; the Note element is still the 8-byte note-creation time stamp.

Each database contains a UNID “map,” a list of all the UNIDs of all the notes within it and,
associated with each UNID in the list, the note’s note ID, which can be mapped to the location of the
note within the database. Many NSF functions are passed to a UNID to identify the note on which
the function should operate. These functions use the UNID map to locate the note within the
database.

The note ID
In addition to an OID, every note is assigned a 4-byte note ID when it is first created. A note ID is
unique within a database but not across replicas of the database, meaning the same note in two
replicas can (and probably do) have different note IDs, even though they have identical UNIDs.

It is much faster and more convenient for programs to use a note’s 4-byte note ID to identify it rather
than its 28-byte ID or its 16-byte UNID. Many NSF functions return note IDs and/or expect note IDs
to be passed to them as input arguments. Lists of note IDs can also be kept in a compressed form
called an IDTABLE (note ID table), which is often used within Notes — for example, to specify a list
of unread documents or the documents that comprise a view.

Layout of a note
Notes in a database are composed of a logical sequence of structures:

�� Note header

�� Item descriptors

�� Summary-item values

�� Response entries or overhead

�� Non-summary-item values

Note header
The note header is a structure that contains, among other things, the note’s originator ID
(OID), which includes its universal ID (UNID); the note ID; the note’s parent note (if any, and
only if note hierarchy is not disabled in the database); a count of the number of items in the
note; an indication about the location of non-summary items within the database; and
information about the number and location of the note’s children (if any). While a note’s
header is not directly accessible, the Lotus C API Toolkit for Domino and Notes does let you
get and set some of its individual elements.

Item descriptors
Item descriptions are stored in an array of fixed-size structures, each of which describes one
note item. Each structure has information describing the item name; the item type — for
example, the format of the item’s value; the size of the item’s value; and some flags, one of
which indicates if the item is a summary or non-summary item. Summary-item values are
always stored with the note header and item descriptors, while non-summary-item values
may be elsewhere within the database.

64 Inside Notes: The Architecture of Notes and the Domino Server

Summary item values
Summary item values are the values (text strings, numbers, time/date stamps, and so on) that
are associated with items that the item-descriptor array flags as summary items. For example,
if the fourth and ninth items are flagged as summary items and if their respective lengths are
36 and 94 bytes, then the number of summary-item bytes is 130; the first 34 will contain the
value associated with the fourth item, which is followed by 94 bytes containing the value
associated with the ninth item. All other items are considered non-summary items.

Response entries or overhead
The response-entries list specifies the children of a note. Provided that response information
is not disabled for the database, information in the note header indicates if there are response
entries and, if so, where they are located. Response entries are located after the note header,
item descriptors, and summary-item values; or an indicator called the response-overhead
structure appears in that location in the note and indicates the location of the response-entry
list within the database.

Non-summary item values
Non-summary item values are associated with all the items flagged as non-summary items in
the note’s item descriptor list. Like summary values, non-summary item values are
variable-length structures that are placed one after the other. The length of each structure is
specified in the corresponding item-descriptor.

Physical storage of notes in a database
For performance reasons, the individual parts of a note are often physically stored in different
sections of a Notes database. For example, a view shows information that summarizes the notes that
it indexes. Called summary data, this information comes directly from items in the notes or is
calculated using items in the notes. Performance improves when note summary items are stored
near each other. If summary items and non-summary items were mixed together, constructing a
view would require a high level of I/O.

NSF stores a note header, the item descriptors, and the values of those items whose descriptors are
marked as summary items in internal structures called summary buckets. The class of a database
determines the size of the summary buckets, which are typically big enough to hold the summary
information for many notes. If a note has small response entries and/or non-summary-item values,
they can be stored with the summary parts of the note in the summary bucket; otherwise, the entries
and values are stored in other parts of the database file.

Because a note’s summary data must fit within a summary bucket, NSF limits individual summary
item values to be no more than 32K. Also, the total summary data of a note — that is, its header, list
of items, and all summary-item values — cannot exceed 64K , minus a little overhead needed to
manage the summary bucket.

A note’s total non-summary data can be large. While no individual non-summary item can be large
(typically limited to 64K), the total size of all non-summary items can be much bigger. In addition,
NSF treats two or more rich text items that are in the same note and have the same item name as if
they are parts of one large item with that name. In this manner, a mail message can have a rich text
Body field, for example, that is much bigger than 64K. The same convention also applies to large
HTML items.

How a program decides if an item is a summary or non-summary item
For non-data notes, a predetermined set of items are programmatically created as summary items.
The same is true for items that Notes adds to data notes (documents) in order to manage them. For
other document items — in particular, for user fields specified in the forms used to create
documents by the application developer who designs the database — Notes uses two simple rules to
decide if an item should be classified as summary or non-summary:

Chapter 3: Notes Storage Facility 65

�� Items categorized as TYPE_NOCOMPUTE (as defined in the nsfdata.h header file included in
the Notes Software Development Kit) are always non-summary — for example, Compound
Document (CD) items, which hold rich text and file attachments, are always non-summary
items.

�� Other items are classified based on their size. Normal size items are summary items, and very
large items — that is, those greater than 60K — are non-summary items. The exact definition
of “normal size” is built into the programs that use NSF — for example, the Notes Client —
and not into NSF itself. These programs typically use a value that is large enough that simple
items — such as text, short text lists, dates, and numbers — are usually classified as summary
items.

Table of item types
Items store the content of a note — for example, a text field on a form or a view selection formula.
Items are the basic unit of Notes data. Every note in a database can contain one or more items. Each
item has a name, a type, one or more flags, a length, and a value.

The following table describes the item types that can be in a note.

continued

An electronic signature affixed to the note.Signature

The bulk key, encrypted for each member of a list, used to encrypt the contents of
an associated sealdata item.

SealList

An encrypted itemSealData

The encrypted bulk key used to encrypt the contents of the associated sealdata item.
Used only in Notes Release 1.

Seal

List of busy times.SchedList

Saved query CD records.Query

A BLOB (binary large object). Specific types of objects — such as, file attachments —
can be made using the Lotus C API Toolkit for Domino and Notes.

Object

A list of floating-point numbers.NumberRange

A single floating-point number.Number

An array of NOTELINK structures, each of which identifies a note in another
database by specifying the database’s DBID and the UNID of the note within the
database.

NoteLinkList

LotusScript “object” code.LSObject

None of the other, valid item types listed in this table.InvalidorUnknown

Bitmap of the database icon.Icon

LMBCS-encoded HTML.HTML

Full-text (FT) highlights (or “hits”) in a note.Highlights

A compiled Notes @function or @command.Formula

A sequence of composite-data (CD) records, specifying rich text and embedded
objects.

Composite

The sorting rule for each of the collation columns of a view.Collation

Calendar view-format information.CalendarFormat

Agent parameters.AssistantInfo

Saved actions formated as a sequence of composite-data (CD) records.Action

ContentItem type

66 Inside Notes: The Architecture of Notes and the Domino Server

Information used only by the Chronicle product.WorksheetData

Navigator format information.ViewMapLayout

Navigator format information.ViewMapDataset

Tabular view format information.ViewFormat

Authors field. Used in Notes Release 2.UserID

A user-formated BLOB (binary large object)UserData

A list of dates and times.TimeRange

An 8-byte value that stores the date and time. Either the date or time can be
omitted. The time is recorded in milliseconds, and the date includes the time zone.

Time

A list of plain text. The exact number depends on whether the list contains many
short strings or a few long strings.

TextList

Plain text.Text

ContentItem type

Layout of an item
Each item value in a note starts with a word containing the item’s type — for example, TYPE_TEXT
or TYPE_NUMBER — as defined in the API header file called nsfdata.h. The type word is followed
by one or more structures packed together one after the other. All the individual elements of an
item’s value are stored in canonical format in a database file. The API has functions that you can use
to read and write individual items and, depending on the item’s type, convert the elements to/from
the host format. Comments in the nsfdata.h header file indicate which ones are converted and which
are not. If NSF does not convert the elements of an item’s value for you, then you must call the API’s
on-disk structure (ODS) functions to do so.

The following figure illustrates the elements of the most commonly used item types.

Name Length
DWORD

Datatype
WORD

Value

TYPE_TEXT

TYPE_TEXT_LIST

TYPE_NUMBER

TYPE_NUMBER_RANGE

TYPE_TIMEDATE

TYPE_TIMEDATE_RANGE

TYPE_COMPOSITE

plaintext (LMBCS, not terminated)

WORD elements element lengths elements (plaintext)...

value (IEEE 64-bit)

list_elem range_elem value value... value pair value pair...

value (QWORD)

list_elem range_elem value value... value pair value pair...

CD record CD record CD record...

CD
signature

CD
record
length

CD
record
struct

additional
data...

Chapter 3: Notes Storage Facility 67

Chapter 4
Server Tasks

This chapter describes the Domino server tasks, which collectively implement all the functions that
the Domino server performs.

Types of server tasks
Server tasks are grouped into five categories:

�� Tasks that maintain Notes applications

�� Tasks that monitor server and administration activities

�� Tasks that manage mail, calendars, and scheduling

�� Tasks that manage protocols

�� Tasks that monitor server activity

Tasks that maintain Notes applications

Agent Manager
Agents are programs that are available as part of an application and are stored in a Notes database.
An agent can be run on demand by a user when the application runs on a Notes client machine. An
agent can also be run on a scheduled basis by means of the Agent Manager, which is a program that
can be operated both as a server task or as a program running in the background on a Notes client.

Cataloger
The Cataloger maintains the domain catalog (CATALOG.NSF), a central list of all databases in an
organization. When the Cataloger runs, all databases, except mail databases, are included and
updated by default. However, a database designer can use a special property to prevent a database
from being included in the catalog. By default, the Cataloger runs daily at 1 AM.

Catalogs provide useful information about databases. They contain views that list databases by
category, manager, replica ID, server, and title. For each database in a view, the catalog document
provides the server name; file name; replica ID; the names of servers, groups, and users that have
Manager access to the database; and information from the About This Database document.

Domain Indexer
The Domain Indexer updates the full-text index of one or more databases listed in the Domain
Catalog (CATALOG.NSF). By default, the Domain Indexer updates the full-text index for all
databases listed in the catalog although, if desired, the set of databases can be limited to those
residing on specific servers and/or to databases not specifically excluded from full-text indexing by
the Indexer.

How frequently the Indexer runs varies from organization to organization. Each organization must
evaluate its needs and schedule the Indexer accordingly.

Database Compactor
The Database Compactor cleans up the free space created when a database is updated, new data is
added, or documents are deleted. This task is never run by default. It is an optional task you can run
if you wish.

69

Designer
To use a consistent design for multiple databases, database designers can associate an entire
database or individual database design elements with a master template. When the design of a
master template changes, the Designer task updates all databases that inherit their designs from the
master template. A database designer can manually synchronize a database with a master template,
but most designers rely on the Designer task, which runs daily at 1 AM by default, to perform
synchronization.

Directory Cataloger
A directory catalog consolidates entries for users, groups, mail-in databases, and resources from one
or more Domino Directories into a single, lightweight, quick-access database.

Notes clients can store a replica of the directory catalog, which is known as the mobile directory
catalog. This catalog allows Notes users who are disconnected from the network to address mail to
other users. Rather than searching Domino directories on a server, type-ahead addressing searches
the mobile directory catalog. Therefore, network traffic is kept to a minimum.

A directory catalog on a server enables servers to search one database for names that appear in
multiple Domino Directories. The directory catalog (DIRCAT.NSF) is based on the template
DIRCAT5.NTF. The Directory Cataloger summarizes and combines directory entries into a source
directory catalog. Subsequently running the Directory Cataloger keeps the source directory catalog
synchronized with the directories combined in it.

Scheduling of the Directory Cataloger varies from organization to organization because it depends
on specific organizational needs. For example, some organizations may schedule the Directory
Cataloger to run every hour, while others may schedule it on a daily basis.

Replicator
For server-to-server replication, the Replicator on one server calls another Domino server at
scheduled times. To schedule replication between servers, you create Connection documents that
describe when servers connect to update replicas. As users add, edit, and delete documents in a
database, the replicas contain slightly different information until the next time the servers replicate.
Because replication transfers only changes to a database, the network traffic, server time, and
connection costs are kept to a minimum.

During scheduled replication, by default, the initiating server first pulls changes from the
destination server and then pushes changes to the destination server. As an alternative, you can
schedule replication so that the initiating server and destination server each pull changes or so that
the initiating server only pulls changes or only pushes changes.

Update and Updall
 On a server, Update and Updall can run as server tasks; on a Notes client these tasks can run in the
background. The tasks use the Notes Index Facility (NIF) in NOS to update database views and
folders. This can reduce delays for users who visit the views and folders at a later time because they
may not have to wait for the views and folders to be updated before seeing them.

On a server, Update is loaded at startup by default and runs continually, checking its work queue
for views and folders that require updating. When a view or folder change is recorded in the queue,
Update waits approximately 15 minutes before updating all view indexes in the database. The
waiting period ensures that the update can include any other database changes made during the
15-minute period. After updating view indexes in a database, Update then updates all databases
that have full-text search indexes set for immediate or hourly updates. Upon finding a corrupted
view index or full-text index, Update attempts to correct the problem by rebuilding the index. In
effect, Update deletes the index and then rebuilds it.

Updall is similar to Update; however, Updall doesn’t run continually or work from a queue. On a
server, Updall runs daily at 4 AM by default, but you can also run Updall as needed. By default,
Updall updates every index that requires updating, but you can use optional parameters with the
command to change its default behavior. Also by default, Updall discards view indexes of views

70 Inside Notes: The Architecture of Notes and the Domino Server

that have been unused for 45 days in order to save disk space, but the database designer can specify
different criteria, if desired.

Tasks that manage server and administration activities

Administration Process
The Administration Process automates many routine administrative tasks. For example, if the
system administrator deletes a user, the Administration Process locates that user’s name in the
Domino Directory and removes it, locates and removes the user’s name from ACLs, and makes any
other necessary deletions for that user. The Administration Process automates these tasks:

�� Name-management tasks, such as rename person, rename group, delete person, delete group,
delete server name, recertify users, and store Internet certificate

�� Mail-file-management tasks, such as delete mail file and move a mail file

�� Server-document-management tasks, such as store CPU count, store server’s platform, and
place network protocol information in Server document

The Administration Process primarily interacts with the Administration Requests database
(ADMIN4.NSF), which is automatically created on the first server in a domain or replicated from the
registration server during additional server setup. To complete tasks, the Administration Process
posts and responds to requests in the Administration Requests database. Domino servers use
replicas of this database to distribute requests made on one server to other servers in the domain.

Cluster Administration Process
The Cluster Administration Process performs many housekeeping tasks associated with a cluster.
For example, when you add a server to a cluster, the Cluster Administration Process starts the
Cluster Database Directory Manager and the Cluster Replicator server tasks, and it adds the task
names — Cldbdir and Clrepl — to the ServerTasks setting in the NOTES.INI file so that these tasks
start each time you start the server. When you remove a server from a cluster, the Cluster
Administration Process removes these commands from the NOTES.INI file, stops the tasks, deletes
the Cluster Database Directory on that server, and cleans up records of the server in the Cluster
Database Directory on other servers.

Cluster Database Directory Manager
The Cluster Database Directory Manager resides on every server in a cluster. It creates the Cluster
Database Directory (CLDBDIR.NSF) and keeps it up to date with the most current database
information.

The Cluster Database Directory resides on every server in a cluster. It contains a document about
each database and replica in the cluster. This document contains such information as the database
name, server, path, replica ID, and other replication and access information. The cluster components
use this information to perform their functions, such as determining failover paths, controlling
access to databases, and determining which events to replicate and where to create the replicas.

When you first add a server to a cluster, the Cluster Database Directory Manager creates the Cluster
Database Directory on that server. When you add a database to a clustered server, it creates a
document in the Cluster Database Directory that contains information about the new database.
When you delete a database from a clustered server, it deletes this document. It also tracks the status
of each database, such as databases marked “out of service” or “pending delete.”

When there is a change to the Cluster Database Directory, the Cluster Replicator immediately
replicates the change to the Cluster Database Directory on each server in the cluster. This ensures
that each cluster member has up-to-date information about the databases in the cluster.

Cluster Replicator
The Cluster Replicator constantly synchronizes data among replicas and Cluster Database
Directories in a cluster. Whenever a change occurs to a database in the cluster, it immediately
pushes the change to the other replicas in the cluster. This ensures that each time users access a
database, they see the most up-to-date version. The Cluster Replicator also replicates changes to

Chapter 4: Server Tasks 71

private folders that are stored in a database. Each server in a cluster runs one Cluster Replicator by
default, although you can run more cluster replicators to improve performance.

The Cluster Replicator looks in the Cluster Database Directory (CLDBDIR.NSF) to determine which
databases have replicas on other cluster members. It stores this information in memory and uses it
when replicating changes to other servers. When it detects changes in the Cluster Database
Directory, it updates the information in memory — for example, adding or deleting a database or
disabling replication for a database.

The Cluster Replicator task pushes changes to servers in the cluster only. The standard Replicator
replicates changes to and from servers outside the cluster.

Map Generator
The Map Generator examines the domain server topology and records it in the Domino Directory
(NAMES.NSF) for display by the Domino Administrator.

Tasks that manage mail, calendars, and scheduling

Calendar Connector and Schedule Manager
The calendar and scheduling features allow users to check the free time of other users, schedule
meetings with them, and reserve resources, such as conference rooms and equipment. These
features use the Schedule Manager (SCHED), the Calendar Connector (CALCONN), and the Free
Time system, which uses a combination of the SCHED and CALCONN tasks to operate. When you
install Domino on a server (any server except a directory-only server), the Schedule Manager and
Calendar Connector tasks are automatically added to the ServerTasks setting in the NOTES.INI file.
When you start the server for the first time, the Schedule Manager creates a Free Time database
(BUSYTIME.NSF for non-clustered mail servers and CLUBUSY.NSF for clustered mail servers) and
creates an entry in the database for each user who has completed a Calendar Profile and whose mail
file is on that server or on one of the clustered servers. Each user can keep a personal calendar and
create a Calendar Profile that identifies who is allowed to access the user’s free time information and
specifies when the user is available for meetings.

When users schedule appointments in their calendars and reserve resources, the Schedule Manager
task collects and updates that information in the Free Time database. It opens the calendar
information for each mail database on the server and computes the free time for each user and stores
that data in BUSYTIME.NSF. Calendar functions in the mail template can look in the
BUSYTIME.NSF database on the server of a user for free time of users or facilities.

When users invite other users to meetings, the Free Time system performs the free-time lookups.
The Free Time system also searches for and returns information on the availability of resources.

When a user is in another domain, the Free Time system uses the Calendar Connector to interact
with the Calendar Connector on a server in the other domain to obtain the free time information

IMAP
The Domino server supports the IMAP (Internet Message Access Protocol) service, defined in RFC
2060, for reading mail. After you set up a Domino server to run the IMAP service, IMAP users can:

�� Retrieve messages from a Domino mail server that runs the IMAP service and store the
messages locally

�� Access messages directly from the server

�� Copy messages for off-line use and then later synchronize with mail on the server

�� Share mailboxes, which is a crude way to implement online discussions

POP3
POP3 (Post Office Protocol, Version 3) defined in RFC 1081, is an Internet mail protocol that allows a
user of a POP3 client — for example, Netscape Communicator, Eudora Pro, or Microsoft Outlook —
to retrieve mail from a server that runs the POP3 service. Users may use only a POP3 client or both a
POP3 client and the Notes mail client to access mail. For each POP3-only user, you create a Person

72 Inside Notes: The Architecture of Notes and the Domino Server

document and a mail file. Before they can access their mail files, POP3 users must authenticate with
the Domino server.

Router
The Router constantly scans the MAIL.BOX database on a server for messages to deliver. To
determine the destination server for each message, the Router checks the Domino Directory. For a
recipient on the same server as the sender, the Router moves the message directly to the recipient’s
mail database. For a recipient on another server in the domain, the Router moves the message to the
MAIL.BOX on that other server. If the Router does not have access to the destination server — for
example, if the destination server is in another domain — the Router moves the message to the
MAIL.BOX on an intermediate server. The Router on the intermediate server subsequently moves
the message to the destination server and into the recipient’s mail database.

SMTP Listener
The SMTP Listener receives mail transmitted in the Simple Message Transfer Protocol (SMTP) from
IMAP clients, POP3 clients, and Domino and non-Domino servers and deposits it into the
MAIL.BOX database for subsequent delivery or routing by the Router.

Tasks that manage protocols

Domino Enterprise Connection Server (DECS)
The Domino Enterprise Connection Server provides real-time access to external (non-Notes)
database data. External data sources supported by DECS are DB2, EDA/SQL, ODBC, Oracle, and
Sybase.

You use the DECS Administrator, which is created from the file DECSADM.NTF, to configure DECS
connections and realtime activities. Each DECS connection includes information that specifies the
external data: the external system, a database on the external system, and a table within the
database. Each realtime activity specifies a connection, a Notes database to associate with the
connection, a form in the Notes database, a description of how fields in the form correspond to fields
in the external source, and actions to take before or after a predefined event occurs in the external
database. The realtime activity may also specify options that modify and/or extend the meaning of
the basic information.

Documents in the Notes database relate to records in the external source based on values in the
fields designated as “key” fields by the realtime activity. A change to a data field in a Notes
document is reflected as a change to the corresponding data field in the external source in real time,
and vice versa.

Examples of actions that can be specified as part of a realtime activity include a Notes formula that
runs prior to the creation of a new record in the external database or a stored procedure that runs in
the external database after data is updated.

For more information about DECS, see the Domino Enterprise Integration Guide.

Domino Internet Inter-ORB Protocol (DIIOP)
There are many ways for a program to request that another program on the same or on a different
computer perform certain tasks. For example, a Notes client uses a Notes remote procedure call
(NRPC) to request a remote server to run code on the client’s behalf to create or access a database
residing on the remote server. Another way to do this is to use the Common Object Request Broker
Architecture (CORBA), an industry standard that defines how service-providing programs — for
example, database managers — use Object Request Brokers (ORBs) to make their services available
to other programs that need them.

The DIIOP server task implements CORBA’s Inter-ORB Protocol (IIOP) so that CORBA-compliant
client programs — for example, Java applets running in a browser — can access Domino services
across a network.

Chapter 4: Server Tasks 73

For more information about creating Java programs that use DIIOP and Domino ORB to instantiate
and use Domino back-end classes, see the Domino Designer Programming Guide, Volume 3: Java
Classes.

HTTP service
The HTTP task enables Domino to become a Web application server. As a Web application server,
Domino can host Web sites and serve pages that are stored in either the file system or in a Domino
database.

When a Web browser requests a page that is stored in a Domino database, Domino translates a
document into HTML. When a Web browser requests a page that is stored in an HTML file, Domino
reads the file directly from the file system. Then the Web server uses HTTP to transfer the
information to the Web browser. Using Domino to store Web pages as documents in a database has
a major advantage over storing static HTML pages: any changes to the database are automatically
reflected on the Web server.

LDAP service
LDAP (Lightweight Directory Access Protocol) is a protocol that uses TCP/IP to allow clients to
access directory information. LDAP defines a standard way to search for and manage entries in a
directory, where an entry is one or more groups of attributes that are associated with a
distinguished name. A distinguished name — for example, cn=Phyllis
Spera,ou=Sales,ou=East,o=Acme — is a name that uniquely identifies an entry within the directory
tree. A directory can contain many types of entries — for example, entries for users, groups, devices,
and application data. The LDAP service responds to incoming LDAP requests and returns
information stored in the Domino Directory (NAMES.NSF).

NNTP service
NNTP (Network News Transfer Protocol) uses TCP/IP to provide a reliable connection for
newsfeeds, which are the periodic transfer of newly posted newsgroup articles from one server to
another. With the NNTP service, you can push or pull newsfeeds, as well as read news articles
remotely. A newsfeed push occurs when a server contacts the client and indicates it has news; a
newsfeed pull occurs when the client contacts the server and requests news. Because newsfeeds are
stored in Notes databases, users can use a Notes client or any news reader (NNTP) client to access
them.

Overview of statistics and events
There are a number of server tasks that support the monitoring of server activity. Four of them —
ISpy (ISPY), Statistics (STAT), Statistic Collector (COLLECT), and Event Monitor (EVENT) — all
work together to report key server statistics and/or to signal significant server events. This section
gives an overview of these four tasks and describes how they work together.

The following figure illustrates the Statistics and Event Monitor tasks. It also illustrates the data they
use to perform their duties — the in-memory statistics table, the EVENTS4.NSF database, and the
STATREP.NSF database — and it shows how other programs that run on a Domino server create
statistics and/or signal events.

74 Inside Notes: The Architecture of Notes and the Domino Server

network

STATS
(returns stats
on demand)

In-memory
statistics

mail
requests

mail
responses

EVENTS4.NSF
(configuration data)

statistics from
other servers

stats available
to others on net

STATREP.NSF

Domino
Server

COLLECT
(saves stats)

EVENT
(signals events)

Events can ...
Be broadcast to users
Be logged to a database
Be mailed
Be logged to an NT event viewer
Beep a pager
Run a program
Be relayed to another server
Trigger an SNMP trap
Be logged to a Unix System Log

 Domino
programs

ISPY
(probes mail and

TCP/IP ports)

 event

queue

Domino programs use the Stat service in NOS to record statistics in an in-memory table (shown on
the left side of the diagram). Statistics describes how long it takes to do a specific activity, how many
times an activity occurs during a period of time, and so on. Many statistics are generated by server
programs as a byproduct of their activities. Others are generated by the ISpy server task, which
actively gathers statistics about Router performance by periodically generating test mail and about
the status of TCP/IP ports on servers in the domain by probing them to see if they are active.

Information from the in-memory statistics table can be retrieved in several ways. First, the Statistics
task provides it on demand, if desired, through the use of Domino’s mail features. Second, the
Statistic Collector task stores it in a shared database (STATREP.NSF) which anyone who has the
appropriate access can view. The Statistic Collector can be viewed by anyone having the appropriate
access rights. The Statistic Collect task always saves statistics generated on servers in the local
Domino server, but it can also be configured to save statistics generated on the Domino servers in
the domain so that administrators need to visit only one STATREP.NSF database to view the
statistics generated by many servers. Third, you can use the Domino Administrator to retrieve and
examine the statistics. Fourth, you can use the Show Stat command at the console to examine some
or all statistics.

In addition to maintaining statistics, Domino server programs can use the Log, Addin, and Event
services in NOS to generate events. An event is a realtime indication that something significant
happened. The list of what is an event and what to do when an event occurs is in the EVENTS4.NSF
database. The ISpy task signals an event whenever a mail probe or port probe fails. If the probe
succeeds, then the ISpy task records information about the probe in the in-memory statistics table
and does not signal an event. When the Statistic Collector notices that a statistics has crossed a
significant threshold, as defined by information in EVENTS4.NSF, it signals an event. In addition to
events that the administrator specifies, Domino programs generate events.

The Event Monitor manages the queue of event requests. Using information in EVENTS4.NSF, the
Event Monitor determines how to signal the event. There are many ways to signal the occurrence of
an event — from broadcasting it to one or more users to beeping a pager.

Chapter 4: Server Tasks 75

Tasks that monitor server activity

Billing
When you enable billing, Domino collects information about client and server activity and places
this information in the billing message queue. Periodically, the Billing task polls the message queue
and moves the billing information to a destination that you specify — a Notes database
(BILLING.NSF), a binary file, or both.

To create billing reports, you write an application to access the billing information. If you collect the
information in a Notes database, you can write a Notes API program to create billing reports. If you
collect the information in a binary file, you use a third-party program to analyze the data and create
billing reports. Using the information that billing collects, you can charge users for the amount they
use the system, monitor usage trends, conduct resource planning, and determine if clustering would
improve the efficiency of the system.

Event
The Event task receives events from an event queue that stores the events that occur in the Domino
Server program. Based on information in the EVENTS4.NSF, the Event Monitor uses one of these
methods to notify the administrator that a specific event has occurred:

�� Broadcast a message

�� Log a message in a database

�� Send mail

�� Log an event to an NT event viewer

�� Initiate a page

�� Run a program

�� Relay the event to another Domino server

�� Triggering an SNMP trap

�� Log a message to a Unix system log

ISpy
The ISpy task, which is written in Java, sends server and mail probes as specified by information in
EVENTS4.NSF. For those probes that succeed, ISpy records information about the performance of
the probe in the server’s in-memory statistics table. For those that fail, ISpy generates an event, and
then the Event Monitor task uses the method specified in EVENTS4.NSF to notify the administrator.

Mail Tracking
System administrators and users can track mail. An administrator can track mail sent by any user,
while users can track only the messages that they sent. The Mail Tracking task first reads log files
that the Router produces and then writes summary data about message traffic to the Mail Tracking
Store database (MTSTORE.NSF). When an administrator or user searches for a particular message,
Domino searches the Mail Tracking Store database, which is created automatically when mail
tracking is enabled on the server.

Reporter
The Reporter task is used on servers that run Domino Release 4.x and earlier releases. In Domino
Release 5, the Statistic Collector task replaced the Reporter task. The Reporter task saves statistics in
REPORTS.NSF. Each Domino server runs a copy of the Reporter task and has a copy of
REPORTS.NSF. To gather statistics about all of the servers in the domain, the Domino administrator
must look at each REPORTS.NSF database on each server.

Stats
The Stats task provides on-demand access to current server statistics that are stored in the
in-memory statistics table. To request information, you send mail to a mail-in database, and Stats
returns the requested information in a mail message.

76 Inside Notes: The Architecture of Notes and the Domino Server

Statistics
The Statistics task runs by default once daily at 5 AM when it collects database activity information
from databases on the server and records it in the server’s log file (LOG.NSF). To view the statistics,
open the Database - Usage and Database - Sizes views of the log file or view the User Activity dialog
box of individual databases.

Statistic Collector
 Starting with Domino Release 5, the Statistic Collector task replaced the Reporter task. The Statistic
Collector task is a multiserver version of the Reporter task. Using information in EVENTS4.NSF, one
Statistic Collector task running on one server can gather statistics from many servers in the domain
and put all the statistics in the Statistics & Events database (STATREP.NSF) so that administrators
can view statistics about all participating servers in a single database file.

In addition, the Statistic Collector can be instructed by means of threshold values in EVENTS4.NSF
to generate events, which are in turn signaled by the Event task.

Chapter 4: Server Tasks 77

Chapter 5
Notes and the Web

This chapter describes the architecture that Notes uses to provide its services on the Web and
discusses how components of the Internet are integrated into the Notes client.

Types of Web servers
The World Wide Web revolutionized computing by making it easy for people to access and publish
information in a way that defies geographic and organizational boundaries. However, there was
nothing revolutionary about the underlying software technology, at least not in the early days of the
Web. People were retrieving files and browsing hypertext documents long before the Web caught
on. Notes is a good example of this kind of technology. The Web has gradually added features and
defined standards for groupware-like capabilities that have been available in Notes since 1989. For
example, Notes has many core features — for example, security that relies on certification
procedures and encryption technologies and structured data standards (XML) for storing and
exchanging information — that the Web is now adopting.

Early Web servers established the following standards that make the entire Internet resemble one
big document store:

�� A URL (Uniform Resource Locator) is a naming convention that refers to the location of a
document on the Internet.

�� HTTP (Hypertext Transfer Protocol) is a communications protocol for retrieving remote
documents.

�� HTML (Hypertext Markup Language) is a standard for creating and displaying formatted
text documents.

From the point of view of software design, first-generation Web servers are basically file servers that
received file requests over a network connection and responded by fetching a file from a hard disk
and copying it to the network. These servers also provided the Common Gateway Interface (CGI), a
crude mechanism for running a program, rather than sending a file, in response to a URL request.
However, the majority of the traffic for these servers consisted of file download requests.

The next generation of Web servers were application servers that dynamically generated Web client
content based on user requests. These Web servers could provide information from sources — such
as, databases — and did not require that the data already be encoded in HTML. Web application
servers could filter a document and customize it, based on the authenticated user who requested the
document.

To customize a document, a server can:

�� Change the appearance of the document.

For example, each user can set preferences for a site’s background pattern. Alternately, an
information provider might need to present identical data under different brand names and
then use the identities of the users to determine which logo to display with the content.

�� Restrict access to some of the content of the document.

A user can see only the data that relates to him, although all users can use the same URL to
refer to that data.

�� Alter what the user can do with document.

79

For example, the server can allow or deny users the access to view or modify a page element.
One user might see a particular field as static text, while another sees a box that allows for
user input.

�� Adjust to the user’s software.

The server can substitute a more sophisticated or better looking capability — such as, a
specialized Java applet if the user’s browser supports it — and substitute suitable
work-arounds or gracious apologies in relevant parts of the document if the user’s browser
does not support the required functionality.

That the Web can be used for more than simply transferring files drives the current development in
Web application server technology. If you think of your Web browser as a facility for implementing
a general-purpose remote user interface, the Web server’s role changes from serving files to
implementing an application. The Web server responds to user input, updates the user interface,
and updates its own internal state, as required by the semantics of the application.

The Domino Web server
Lotus Domino is a Web application server that provides an integrated set of services that developers
use to create secure, interactive Internet and intranet applications. The Domino Server program runs
server tasks. One task — HTTP — transforms the Domino server into a true Web application server.
However, Domino is different from a traditional Web file server in three important ways.

Dynamic content
Domino automatically generates custom HTML pages from the object store based on time, user
identity, user preference, client type, and data input. Different than a file store, the object separates
form from content — that is, page layout from page data. When a user requests a document or page,
Domino dynamically combines form and content. At the time of the request, Domino can also
integrate information from other sources such as relational databases. Developers use this efficient
storage and rendering method to design applications that customize content based on, for example,
user identity and user profile. Domino uses a directory to manage user information and authenticate
users. After a user is authenticated, an ACL authorizes user access to information.

User interaction
Domino not only serves custom information but also lets users interact with applications. Using
URL syntax, Web users can issue commands to the Domino server. These commands might create,
edit, or delete information or run agents on the server. Since this syntax is of little consequence to
the end user, the application developer can create a point-and-click UI for the application and
program its capabilities with simple @functions, instead of creating CGI or Perl programs. The
editing capabilities differ from other solutions because they don’t require the end user to know
where the information is stored in the file system. The access levels are No Access, Depositor,
Reader, Author, and Editor. The developer can define access roles that further refine the access that
certain classes of users have. Just as Domino can deliver dynamic content based on class of user, it
can also define application functionality, based on the class of user. This flexibility is useful in
business applications that are used by a variety of users who must participate in a distinct way.

Workflow and page processing
When a user submits information changes or clicks a button to run an agent, numerous Domino
services can be called into action to gather more information, process information, or push
information through a serial or parallel workflow process. Enterprise integration services can submit
information to relational, host, and transaction-processing systems. Agent services can act on the
information to automate routine application maintenance — for example, the addition of new users.
Messaging services can route information from individual to individual or department to
department until the work process is completed. Other devices such as faxes and pagers can be used

80 Inside Notes: The Architecture of Notes and the Domino Server

in the processing of information. These features are useful when developing transactive business
applications that leverage existing systems and automate everyday business activities.

What distinguishes Domino from a Web application server and a Web file server are the services
that allow it to present content dynamically and to manage content as it flows through a defined
process. These include object stores, directory, security, workflow, agents, enterprise integration,
and messaging services.

Domino Web server object model
The architecture that makes Domino an efficient, service-rich, Web application server is based on a
concept consistent throughout Domino: the object-oriented design. The Domino Web server is built
around a series of objects that model elements of the Notes database and document structure, and
define the presentation of this data. It is also a runtime environment for the applications, providing
methods that implement the necessary conversions and computations that allow a browser — which
has little intelligence of its own — to “run” an application. Other Web servers have no built-in data
model, presentation paradigm, or application execution environment, so programmers must build
data models, decide how to present information, and adapt their architecture to the limited
capabilities of the Common Gateway Interface (CGI) specification or Web server vendor API.
Domino excels as a Web application environment because it removes these distractions and lets
developers concentrate on modeling the problem at hand.

The Domino Web server object model closely follows the user experience of a Notes user. It includes
objects that represent top-level objects — for example, servers, databases, navigators, forms, views,
and documents — and all the low-level elements that make up these things, such as, rows and
columns in views; items in documents; rich text and fields in forms; and paragraphs, tables and even
colors and fonts in rich text. In response to a URL request, the server locates the target specified by
the URL, which could be any top-level object, and builds the object in memory along with any
low-level objects that it includes, and then activates the GenerateHTML method associated with
each object. This method specifies a read/edit argument that determines whether the method
should generate HTML pages or HTML forms. This kind of intelligent HTML engine frees the
individual object’s methods from having waste processing time with the syntactic and semantic
rules of HTML.

In many cases, the objects that represent Domino design elements must be generated as anchor tags.
Operations such as creating a response document, navigating to the next document, or expanding a
view category are context dependent. The server is stateless. The HTML generated by these objects
always contains whatever information the server needs to determine the context. For example, the
anchor tag for the triangle that controls the expansion of a category in a view specifies a URL that
contains the view name, the ?OpenView command, an &Start argument indicating the position in
the view of the first document to display, an &Count argument indicating how many documents to
display, and an &Expand or &Collapse argument.

Chapter 5: Notes and the Web 81

Domino Web server architecture
The following figure illustrates the architecture of the Domino Web server:

Domino Server

HTTP
Server Task

use NOS'
NET

services

use NOS'
NSF

services

 Domino

Applications

Read / Write / Run

Notes Object Services
network

HTTP Stack

Command Handler

HTML Engine

URL Parser

HTTP Emitter

browser

The Domino Web server is a TCP/IP application that implements the HTTP protocol. Domino
answers URL requests from Web clients by sending back pages of data in HTML. It also handles
URL requests and HTML forms that trigger executable programs according to the Common
Gateway Interface (CGI) specification. In these respects, the Domino server behaves just like any
other HTTP server, responding in the standard way to standard URL requests. Domino however, is
more than a typical HTTP server.

At the heart of the Domino Web application server is the HTTP server task. Requests from Web
clients go directly to the HTTP task to be processed. The task has all the usual facilities for accessing
HTML pages stored in the file system of the host platform and running CGI programs. Written in
C/C++, the HTTP task uses the Notes Object Services (NOS) to integrate with the rest of the Domino
server.

On rare occasions the HTTP task bypasses NOS. The HTTP task is multithreaded. The task listens
for Web client requests and sends responses, and normal server tasks run with the identity of an ID
file that resides somewhere on the host file system. However, to implement security for Web clients,
the thread servicing a request must assume the identity of the logged-in user.

The preceding figure illustrates the core components of the HTTP task. The HTTP stack includes all
the code that deals with both inbound and outbound HTTP communications. The URL parser
handles the incoming Domino URL calls. The HTML emitter prepares the outgoing flow of
information that results from URL calls. The HTML emitter uses the HTML engine, which acts as a
source for standards that define the proper format of any information translated into HTML.

In the center is the command handler, which is the direct link between the HTTP task and NOS. This
layer translates commands into a format that is equivalent to the format of commands made from a
Notes client or called from the Dbserver task.

82 Inside Notes: The Architecture of Notes and the Domino Server

Let us look at the process in more detail:

When the HTTP task receives a request from a Web browser, a connection is made to the HTTP
stack, which manages the connection between the Web client and server. It is at this point where
secure socket layer (SSL) may be implemented.

The default action for the HTTP stack is to send the request directly to the URL parser, which
determines if it’s a standard URL or a special Domino URL. If it is a standard URL, the parser sends
the information to the HTTP stack which processes it as simple HTTP commands. If it is a Domino
URL, the parser breaks the URL into different parts, performs a series of checks, provides implicit
commands when necessary, and then invokes the appropriate command handlers. These handlers
manage of all the details associated with each command by establishing the correct identity for
security purposes, accessing NOS, executing formulas and scripts, and retrieving information.

The HTTP task can be considered a Notes client emulator written with a tight integration with the
NOS and running within the Domino server. The resulting information sent back to the HTTP server
from its performed actions are returned through the command handler. These results are passed to
the HTML emitter, which uses the HTML engine to translate the information into HTML pages.
Then the pages are sent to the HTTP stack, which establishes a connection to the client and sends the
data out properly.

Components of the HTTP Server task
Let us look at the components of the HTTP task in more detail.

HTTP stack
The HTTP stack is written in C and is the gateway to the HTTP task. All information coming into
Domino from the Web and going out from Domino to the Web goes through this layer. The HTTP
stack has four major functions:

�� Connection management

This establishes the TCP/IP connection to the Web and maintains all the HTTP interactions
for the connection.

�� URL dispatch

This uses the HTTP protocol to send HTML text to the browser.

�� HTTP command redirection

This task executes plain URL commands for tasks such as displaying an HTML file, running a
servlet, or performing any other action that does not deal with the Domino server. This
service starts when the parser rejects a URL as a non-Domino URL.

�� SSL implementation

URL parser
The URL parser distinguishes a Domino URL from a standard URL and translates Domino URLs
into commands that the command handlers can understand. A Domino URL specifies a path to or
the replica ID of a Notes database (NSF) or is a server command such as ?OpenServer. The entire
Notes object path doesn’t have to be found to be considered a valid Domino URL. An example could
be a reference to a nonexistent form in an NSF file.

First, the parser breaks the URL into up to three parts: a mandatory object identifier, an optional
command, and arguments.

Chapter 5: Notes and the Web 83

Second, the parser translates Domino URLs into commands that the command handlers can
understand. To do this, the parser associates the recognized object with the proper commands
allowed for that object. The following is an example of a typical Domino URL:

http://www.xyz.com/site/app.nsf/f34a868d3e2aa2a385256345006edae6?OpenView
&start=100

This sample URL references a view in the database site/app.nsf on the www.xyz.com server. This
view is identified by the UNID of its design document — the long string of hexadecimal digits. The
rest of the URL, the command portion, is syntactically optional, but when it is left out, the URL
parser determines the type of the object and supplies an implicit command appropriate for that
object type. The specific command in this sample is ?OpenView and has an argument called &start
that specifies that the Domino server should start at the 100th document in the view collection.

Command handlers
The command handlers use four caches to improve efficiency: the database cache, the design cache,
the HTML cache, and the static cache.

Command cache
There are some specific situations in which caching HTML makes sense, but because most Web
browsers locally cache pages, there is little point in the server caching HTML that is likely to be
accessed by only one user. This assumes that users don’t frequently access the same server with two
browsers, which is usually a good assumption.

Documents that contain Readers fields are considered to represent a view that is specific to a user.
However, the Web server would have to go around the security enforced by the Notes API to
determine that there are no documents with Readers fields that meet the selection criteria of that
view. Since this would be terribly inefficient, HTML for view displays is not cached and shared
between users.

However, if an application allows unauthenticated user access, many users will access it with the
same identity — that is, “Anonymous.” Since these browsers can share the HTML for views, the
HTML cache is used to store the output of ?OpenView commands. The HTML generated in
response to an ?OpenDatabase command may also be cached.

If formulas are dependent on @UserName or @UserRoles or if section security is used, that HTML is
considered to represent a document that is specific to a user and is not cached. Caching is also
inappropriate if formulas are time-dependent. Technically, all Domino URL commands are
candidates for caching. Commands are discarded only after being proved uncacheable. Commands
based on authentication or POST data are immediately discarded, as are commands that encounter
@functions that are themselves dependent on information residing outside the cache’s control.

HTML emitter and engine
The Domino Web server process ends with the production of HTML to send back to browsers. An
intelligent HTML emitter is used by all the command handlers. The emitter uses a table-driven
HTML engine that has knowledge of the syntax and semantics of HTML which ensures that the
output conforms to HTML standards. For example, the emitter keeps state information to ensure
that termination tags are inserted as required. This dramatically reduces the complexity of the
command handlers. The result is that the HTML translation is remarkably efficient.

How Domino processes a URL
Each URL request sent to the Domino Web server specifies a top-level object. The server then
activates the methods needed to carry out a request and generate HTML output. The Domino Web
server implements many commands. The commands related to the display and modification of
documents are worth a closer look. These are the commands that enable interactive applications, so
the similarities and differences in their implementation are of particular interest.

84 Inside Notes: The Architecture of Notes and the Domino Server

Three commands display the contents of a document:

�� ?OpenDocument opens an existing document in read mode

�� ?EditDocument opens an existing document in edit mode

�� ?OpenForm opens a new document in edit mode.

?OpenDocument and ?EditDocument
The implementations of ?OpenDocument and ?EditDocument are very similar. Both execute the
following sequence of steps:

1. Open the existing document.

2. Read all items from document into memory.

3. Load the form referenced by the document.

4. Scan the form, calculate default-value formulas for any items that are not yet in memory,
calculate all computed-field formulas, and add/update items to the in-memory document.

5. Run the appropriate agent if an item named $$QueryOpenAgent exists.

6. Use the item values from the in-memory document to render the form into an HTML page or
HTML form.

7. Free the in-memory document and all items it contains.

The only significant difference between the ?OpenDocument and the ?EditDocument command is in
Step 6. ?OpenDocument instructs the GenerateHTML methods to respect read-mode hide attributes
contained within the form and to create HTML for a read-only page. ?EditDocument instructs the
GenerateHTML methods to respect edit-mode hide attributes on the form and to create an HTML
form.

?OpenForm
The ?OpenForm command executes this sequence of steps:

1. Create a new document in memory.

2. Load the form referenced in the URL.

3. Scan the form, calculate all default-value formulas and computed-field formulas, and add items
to the in-memory document.

4. Run the appropriate agent if an item named $$QueryOpenAgent exists.

5. Render the form into an HTML form, respecting edit-mode hide attributes and using item
values from the in-memory document.

6. Free the in-memory document and all items it contains.

The last step of the procedure for all three commands frees the in-memory document and its
associated items. The ?EditDocument and ?OpenForm commands do not cache the documents for
later use because that would violate the stateless nature of a Web server. If and when the browser
sends edited information back, the Domino Web server re-establishes all the data structures
necessary to handle the updates.

?CreateDocument and ?SaveDocument
?CreateDocument and ?SaveDocument are the two commands that receive HTTP POST data that is
generated when a user presses the Submit button on an HTML form and saves the data in a Notes
document. Submit buttons that are generated by the ?OpenForm command send the
?CreateDocument command. Submit buttons that are generated by the ?EditDocument command
send the ?SaveDocument command. These two commands follow a similar sequence of steps.

?CreateDocument
1. Create a new document in-memory.

2. Open the form referenced in the URL.

Chapter 5: Notes and the Web 85

3. Scan the form, calculate all default-field formulas and computed-value formulas, and add items
to the in-memory document.

?SaveDocument
1. Read the existing document referenced in the HTTP POST data.

2. Open the form referenced in the URL.

3. Scan the form, calculate all default-field formulas and computed-value formulas, and add items
to the in-memory document.

Then both ?CreateDocument and ?SaveDocument continue on essentially the same path:

4. Create items for all data sent in the POST data.

5. Scan the form; calculate all translation, validation and computed-value formulas; update items
in the in-memory document; and return validation errors as HTML.

6. Scan the form and delete any computed-for-display items from the in-memory document.

7. Run the appropriate agent if an item named $$QuerySaveAgent exists.

8. Save the in-memory document to the appropriate database file.

9. If the $$Return item exists, run the appropriate formula from the form. If there is no output from
a QuerySave agent, send the result of this formula back to the browser.

10. Delete the in-memory document and all associated items.

Formulas that calculate at the time that an HTML form is sent by either the ?EditDocument or
?OpenForm command calculate again when ?CreateDocument or ?SaveDocument commands
process. This can cause some confusion if these formulas have time-dependent values or are based
on lookups of constantly changing information.

86 Inside Notes: The Architecture of Notes and the Domino Server

Chapter 6
Security

This chapter describes the mechanisms that Notes and Domino use to secure applications.

The Notes/Domino security model
Notes/Domino provides a robust security model that you can tailor to meet your organization’s
requirements. You can think of the Notes/Domino security model in terms of an everyday example:
protecting a home. You can’t gain entry to the grounds of the house, unless you have access to the
front gate; you can’t get into the house unless you have a key to the front door; and so on. Basically,
you cannot enter specific parts of the house until you pass through each layer of security.
Notes/Domino has a six-layer security system.

Network
Network security protects against unauthorized access to the network on which the Domino servers
reside. If you block access at the network layer, unauthorized users do not have access to any
Domino servers. Network access is typically controlled using the network hardware and software,
but you can further secure network access by encrypting data from the port on the Domino server.
Encrypting a network port prevents unauthorized users from using a network protocol analyzer to
read data. To encrypt network traffic, you use port encryption or SSL.

User authentication
User authentication is the process the Notes client and Domino server use to validate and
authenticate each other when a client tries to access a Domino server. Notes and Domino use
certificates stored in the Notes ID file for validation and authentication. When using Internet
protocols, authentication can be based on X.509 certificates or the user’s name and password.

Server
Server security controls access to the Domino server. Users must first be authenticated before server
security is checked. Server access is controlled using a server access list in the Domino Directory.

Database
Database security controls access to databases on the Domino server. Users must first have access to
the server and be authenticated before database security is checked. Database access is controlled
using database access control lists (ACL). A local database can also be encrypted so that only a user
who has the correct password to the ID file can access the database.

Design element
Design element security controls access to forms, views, and folders. Users must first have access to
the database before design element security takes effect. Using design element security, you can
allow users to view some types of documents in the database and block access to other types. To
control form access, you use form access lists and encryption keys. To control view and folder
access, you use view and folder access lists. You can also use design element security to limit the
actions of formulas and scripts when they run on a Notes workstation. To control workstation
access, you use an execution control list (ECL).

87

Document
Document security controls access to the fields, sections, and paragraphs in a document or to the
entire document. This is the most granular form of security. You use Readers and Authors fields to
control document access. To control access to sections and paragraphs, you use hide-when formulas.
To control access to fields, you use encryption keys.

Securing local databases
The above six layers of security apply to databases that are stored on Domino servers and that are
accessed by users who use a network connection. If someone has unauthorized access to a user’s
machine or to the server, he can bypass the security and read local databases. To prevent
unauthorized access, Notes lets you encrypt a database and enforce an ACL on a local database.

Notes/Domino access control
To protect critical data, Notes and Domino provide access control mechanisms that you use to
restrict the access that authenticated users have to:

�� Servers and ports

�� Databases

�� Files

�� Design elements , such as forms, views, and folders

�� Workstation data

�� Documents

Parts of this section are abstracted from the IBM Redbook, Lotus Notes and Domino R5.0 Security
Infrastructure Revealed, which can be viewed in its entirety and/or ordered in hard copy by visiting
the Web site www.redbooks.ibm.com/booklist.html.

Restricting access to servers and ports
The port access list is stored in the server’s NOTES.INI file and is checked whenever a user tries to
use that port to access the server. The server access list is stored in the Server document, which is in
the Domino Directory, and is checked when the client or server performs a task that may be
restricted.

Port access list
Use a port access list to allow or deny users and servers access to a specific network port. If you use
a port access list and a server access list, users and servers must be listed on both to gain access to
the server.

To control access to a specific port, use these NOTES.INI settings:

�� Allow_Access_portname = names

�� Deny_Access_portname = names

where portname is the name of the port, and names is a list of users, servers, and groups to whom you
want to deny or allow access. These names must be contained in the Domino Directory.

For more information about these NOTES.INI settings, see Administering the Domino System.

Server access list
Administrators use the server access list to restrict the access that groups of users have to a server. In
addition, administrators can further refine access by allowing only certain users to perform specific
tasks on the server. On the Security tab in the Server document, you can specify these server access
settings:

88 Inside Notes: The Architecture of Notes and the Domino Server

�� Who is allowed access to the server using Notes protocols (there are separate controls for
HTTP, IMAP, POP3, and LDAP)

�� Who can create new or replica databases

�� Who can use headline monitors

�� Who can use this server for passthru and what servers the passthru server will route to, as
well as additional options for passthru

�� Who can run agents on the server

�� Which authenticated Internet clients can use the Web Administrator to administer the server

�� Which authenticated Internet clients can use the IIOP protocol to run Java or JavaScript on
the server

On the Security tab, you can specify additional security checks to make it more difficult for a user to
impersonate another user:

�� Compare Notes public keys against those stored in the Domino Directory

�� Allow users to connect to the server anonymously

�� Compare the password on the Notes ID against the Domino Directory

The following example shows how Bob (the client) gains access to ServerA when Bob uses the File -
Database - Open command to request a list of databases available on the server. First, Bob must
authenticate with the server and establish a session; then server access control takes effect.

1. ServerA checks the Group documents in the Domino Directory to establish which groups Bob
belongs to. ServerA builds a list of Bob’s group memberships and stores this list in memory for
quick access.

2. ServerA checks the NOTES.INI file to see if Bob is allowed access on the port that he requested.

3. ServerA checks the Server document for ServerA to see if Bob is allowed access to the server.

Restricting access to databases
Every database has an access control list (ACL) that specifies the level of access that users and
servers have to the database. The ACL is stored as a note in the database. Although the types of
access levels are the same for clients and servers, those assigned to clients determine the tasks that
they can perform in a database, while those assigned to servers determine what information within
the database the servers can replicate.

An ACL contains two special names: Anonymous and -Default-. Anonymous specifies the default
database access for unauthenticated users. -Default- specifies the default database access for
authenticated users and unauthenticated users if the Anonymous entry does not exist. While every
database ACL must specify -Default- access, the Anonymous entry is optional.

To control the access that each client and server has to a database, the database manager specifies an
access level, access privileges, and user type.

Access levels
The following table describes the database access levels.

continued

Create documents and edit all documents, including those created by others. Read all
documents unless there is a Readers field in the form. You must be able to read a
document in order to edit it.

Editor

Modify all database design elements, create a full-text index, and perform all tasks
allowed by lower access levels

Designer

Modify the database ACL, encrypt the database, modify replication settings, delete
the database, and perform all tasks allowed by lower access levels.

Manager

Allows users and servers toAccess level

Chapter 6: Security 89

None, with the exception of options to “Read public documents” and “Write public
documents.”

No Access

Create documents.Depositor

Read documents. However, when the document contains a Readers field, only users
whose names are listed in that field can read that document.

Reader

Create documents only if the access privilege “Create documents” is selected. Edit
the documents where there is an Authors field in the document and the user is
specified in the Authors field. Read all documents unless there is a Readers field in
the form.

Author

Allows users and servers toAccess level

Access privileges
A database manager selects the access level for each user, group, and server, and then enhances or
restricts this level as needed by selecting or deselecting additional privileges within an access level.
For some access levels, the default access privileges are hard-coded; that is, they can’t be changed
for that access level. The following table describes the database access privileges.

continued

Determines whether a user can create LotusScript and Java agents in a database.
Since LotusScript and Java agents on server databases can take up significant
server processing time, database managers may want to restrict which users can
create them. Whether or not a user can run agents is dependent on the access set
by the Domino administrator in the Agent Restrictions section of the Server
document in the Domino Directory.
This privilege is automatic for Managers. It’s optional for Designers, Editors,
Authors, and Readers.

Create LotusScript/
Java agents

Determines whether a user can create shared folders and views in a database.
Deselect this option to maintain tighter control over database design. Otherwise,
users can create views visible to others.
This privilege is automatic for Managers and Designers. It’s optional for Editors.

Create shared
folders/views

Determines whether a user can create personal folders and views in a database on
a server. Personal folders and views created in a database on a server are more
secure than those created locally, and they are available on multiple servers. If the
“Create personal folders/views” privilege is not selected, users can create
personal folders and views and store them on their local workstations.
This privilege is automatic for Managers and Designers. It’s optional for Editors,
Authors, and Readers.

Create personal
folders/views

Determines whether a user can create personal agents in the database. Once
created, a personal agent can perform only those tasks allowed by the user’s
assigned access level in the ACL. If the user creates an agent that runs on the
server, the Agent Restrictions section of the Server document in the Domino
Directory determines whether the agent can run.
This privilege is automatic for Managers and Designers. It’s optional for Editors,
Readers, and Authors.

Create personal
agents

Determines whether a user can delete documents in the database. If this privilege
is deselected, a user can’t delete documents, no matter what the access level.
Authors can delete only documents they create. If the document contains an
Authors field, an author can delete documents only if his user name is specified in
the Authors field.
This privilege is optional for Managers, Designers, Editors, and Authors.

Delete documents

Determines whether a user can create documents in the database. If a user is listed
in an Authors field of a document, the user can still modify that document.
This privilege is automatic for Managers, Designers, Editors, and Depositors. It’s
optional for Authors.

Create documents
DescriptionAccess privilege

90 Inside Notes: The Architecture of Notes and the Domino Server

Determines whether a user can write public documents. This option allows users
to create and modify documents with forms designed to allow public access. This
option lets you give users create and edit access to specific documents without
giving them Author access.
Note A document is public if it has a $PublicAccess field with a text value of “1.”
Documents are not normally public; however, some specific documents — such as,
calendar and scheduling documents in a user’s mail file — are marked for public
access.
This privilege is automatic for Managers, Designers, and Editors. It’s optional for
Readers, Depositors, Authors and No access.

Write public
documents

Determines whether a user can read public documents. This option lets you give
users with no access the ability to view specific documents without giving them
full reader access to the database.
Note A document is public if it has a $PublicAccess field with a text value of “1.”
Documents are not normally public; however, some specific documents — such as,
calendar and scheduling documents in a user’s mail file — are marked for public
access.
This privilege is automatic for Managers, Designers, Editors, Authors, and
Readers. It’s optional for Depositors and No Access.

Read public
documents

DescriptionAccess privilege

User types
A user type identifies whether a name in the ACL is for a person, server, or group. Assigning a user
type to a name specifies the type of ID that is required to access the database with that name. The
user types are Person, Server, Mixed Group, Person Group, Server Group, and Unspecified.

User types provide additional security for a database. For example, assigning the Person user type
instead of “unspecified” to a name prevents an unauthorized user from creating a Group document
with the same person name, adding his or her name to the group, and then using the group name to
access the database.

Designating a name as a Server or Server Group prevents a user from using the server ID at a
workstation to access a database on the server. Be aware, though, that designating a name as a
Server or Server Group is not a foolproof security method. It is possible for a user to create an add-in
program that acts like a server and uses a server ID to access the server database from a
workstation.

Instead of assigning a user type to each name, a database manager can automatically assign a user
type to all unassigned names in the ACL. The user type assigned to each name is determined by the
Domino Directory entry for that name. Using this method, a group is always designated as mixed
Group, not as a Person Group or a Server Group. To assign a Person Group or Server Group to a
name, the database manager must select the name and manually assign that user type.

Additional ACL options
To further control database access, a database manager can enforce a consistent ACL and/or specify
a maximum Internet name and password.

Enforcing a consistent ACL ensures that an ACL remains identical on all database replicas on
servers and on all local replicas that users make on workstations or laptops. If you don’t enforce a
consistent database ACL, a user who has restricted access to the database — for example, Author
access — can create a local replica of the database and automatically gain Manager access to the
local replica. Although the user can’t replicate this change in access back to the server (the server
copy won’t allow a change in the ACL because the user only has author access in the ACL of the
replica on the server), the user still has access to all the information in the database.

Specifying a maximum Internet name and password applies to clients who use name-and-password
authentication or who access the server anonymously and use the TCP/IP or SSL port to connect to
servers. This option limits the access level that a client may have been explicitly given in the
database ACL.

Chapter 6: Security 91

Restricting access to files
File Protection documents control the access that Web browser clients have to files — for example,
HTML, JPEG, and GIF — on the server. In addition, File Protection documents control access to CI
scripts, servlets, and agents. File protection does not, however, extend to other files accessed by the
scripts, servlets, or agents. For example, you can apply file protection to a CI script that restricts
access to a group named Web Admins. However, if the CI script runs and opens other files or causes
other scripts to run, the File Protection document is not checked to determine whether Web Admins
has access to these files.

File protection does apply, however, to files that access other files — for example, to an HTML file
that opens an image file. If a user has access to the HTML file but does not have access to the JPEG
file that the HTML file uses, Domino does not display the JPEG file when the user opens the HTML
file.

By default, the Domino Directory contains a File Protection document for the domino\adm-bin
directory. This File Protection document, which is created when the server starts for the first time
after installation, gives administrators Write/Read/Execute access to the directory and gives all
other users No Access.

Restricting access to design elements
Design element security controls access to specific features of a database. For example, a database
manager might want to restrict a user who has Author access to being able to create only specific
types of documents.

Use of ACL roles in design-element access control
To assign special access to users, groups, and/or servers listed in a database ACL, the database
manager creates a role, which is a subset of the ACL. A group formed by using a role is similar to a
group in the Domino Directory because you can refer to all members of the group by a single name.
However, a role differs from a group in the Domino Directory because it has meaning only within
the database where it’s created. Role names, like any other ACL name, can be used to refine, or
restrict, access to particular views, forms, sections, or fields of a database. Roles are especially useful
when the members of a group change frequently.

Roles simplify the job of database designers. For example, a designer can restrict specific users from
creating a certain type of document in a database. To do this without using roles, the designer must
add all the names of those users to the form’s access list. Using roles, however, the designer can
associate all those users in the ACL with a role name — for example, Employees — and add
Employees to the form access list in place of a long list of names.

Roles have the following advantages:

�� Provide a flexible method of restricting document access to a specific set of users

�� Can be used in formulas

�� Provide group control if you do not have the authority to create groups in the Domino
Directory or if you want to create groups just for the database

�� Make it easy to modify access when users leave or new users join

Form access control
Form access lists control user access to forms in the database. If users cannot access forms, they
cannot read or create documents in the database. Using form access lists refines the database ACL,
allowing more flexibility in the database security design. For example, if you assign users Author
access in the ACL, you can restrict which forms they can use to create documents. To set form access
control, you use the Security tab of the Forms Properties box.

92 Inside Notes: The Architecture of Notes and the Domino Server

The following table describes the available form access control options.

Give users with No Access or Depositor access the ability to view and
modify specific documents created with this form without giving them
Reader access or above in the ACL. In addition, documents that you
want available to public access users must contain a field called
$PublicAccess that is a text field with a default value of 1 and have the
ACL option to Read public documents or Write public documents.

Available to Public Access Users

Prevent accidental distribution of confidential information. This
feature is not a true security feature since users can circumvent it by
using screen capture programs and does not apply to Web users
accessing the form.

Disable
printing/forwarding/copying to the
clipboard

Encrypt all fields for which encryption has been enabled with the
specified key. This allows only users who have the encryption key to
read documents created with this form. Since Internet users do not
have Notes encryption keys, Internet users cannot access encrypted
fields. Do not, however, rely on encrypted fields to hide information
from Internet users.

Default encryption keys

Allow only a subset of users with Author access or above in the
database ACL to use this form to create documents.

Who can create documents with this
form

Allow only a subset of users in the database ACL to read documents
created with a specific form. This option is also known as the form
reader access list. Documents created with this form have these users
as the default document reader access list. Notes creates an internal
field named $Readers when you create a reader access list.

Default read access for documents
created with this form

Use toSecurity option

View access control
To allow some users and not others to see the contents of a view, database managers create a view
read access list. Users who are excluded from the access list do not see the view on the View menu.
A read access list is not a true security measure; it only prevents access to the view, not to the
underlying documents. Users can create private views that display the documents shown in the
restricted view, unless the documents are otherwise protected. To protect the documents, use a read
access list on a form.

Users listed in the read access list have access to a view as long as they already have at least Reader
access in the database ACL.

The following table describes the available view access control options.

Give users with No Access or Depositor access the ability to access the
view without giving them Reader access in the ACL

Available to Public Access Users

Allow only a subset of users in the database ACL to access this viewMay be used by

Use toSecurity option

Folder access control
Folders have the same access control options as views. In addition, database managers can create a
write access list for the folder to allow some users and not others to update the contents of a folder.
Database managers can add users to a write access list for a folder as long as the users already have
at least Author access in the database ACL. Users specified in the write access list for the folder can
move and copy documents into the folder and can remove documents from the folder. They cannot
update the documents themselves unless the database managers give them access to do so.

Chapter 6: Security 93

Outline access control
Database managers can control whether users have access to each entry in an outline. Database
managers can hide the outline entry from the user, but doing so does not prevent users from
accessing the document. For greater security, use a read access list for a form to prevent others from
accessing the document.

Restricting access to workstation data
Workstation ECLs impose security restrictions on Notes @functions, @commands, and LotusScript
formulas. The database manager and system administrator can protect users’ workstations and
databases from unauthorized access by creating an ECL for each workstation and by signing
templates and databases. ECLs determine the tasks that a procedure embedded in a database can
perform in the database and on the workstation according to who signed the procedure. For
example, you may give limited execution access to your Domino system administrator, but allow no
execution access to unsigned scripts or formulas.

Individual users can edit their ECL. Administrators should create an Administration ECL that is
stored in the Domino Directory and gets copied to the user’s workstation when the system
administrator registers a new user.

Workstation ECL
By default, scripts and formulas, whether signed or unsigned, cannot run on a workstation without
displaying a warning message. However, scripts and formulas can run from any database created
with a template that ships with Notes, and are signed “Lotus Notes Template Development/Lotus
Notes.” This signature has complete execution access by default.

A workstation ECL can limit access to the following:

Modify the ECLAccess to Workstation
Security ECL

Print, copy to the clipboard, import, and export dataAbility to export data

Modify information in databases other than the current databaseAbility to modify other
databases

Read information in databases other than the current databaseAbility to read other
databases

Use functions such as @MailSend to send mailAbility to send mail

Access other applications, including activating any OLE objectAccess to external programs

Run LotusScript classes and DLLs that are unknown to NotesAccess to external code

Use @DBLookup, @DBColumn, and @DBCommand to access databases when
the first parameter for these @functions is a database driver of another
application

Access to non-Notes
databases

Use the @SetEnvironment and @GetEnvironment variables and LotusScript®
methods to access the NOTES.INI file

Access to environment
variables

Read and modify the current databaseAccess to current database

Attach, detach, read to, and write from workstation filesAccess to the file system

Allows formulas and code toAccess option

Java applet ECL
When a Java applet runs within Notes, certain security restrictions are imposed on that applet. This
is sometimes referred to as the “Java security sandbox.” This security model protects against
malicious code by determining what operations an applet can perform and what system resources it
can access. These restrictions can be customized on a per-signature basis.

Java applets are signed when the user inserts them in to a Notes document. The user can also insert
them without a signature by not providing a password when prompted. Java applets created by
using the Web Navigator are not signed.

94 Inside Notes: The Architecture of Notes and the Domino Server

By default, templates that are signed by Lotus Notes Template Development/Lotus Notes are
allowed complete execution access. All others have no access.

Create threads and threadgroups, fork and execute external processes, load
and link external libraries, access non-public members of classes using Java
core reflection, and access the AWT event queue

Process-level access

Access the system Clipboard and display the “security banner” in top-level
windows. The security banner is a visual indication (usually a message such
as “Java Applet Window”) that this window was created by a Java applet.
This is done to ensure that a user does not inadvertently enter
security-sensitive information into a dialog box that is masquerading as a
password dialog box, for example. Choosing this option prevents the
security banner from being displayed.

Dialog and clipboard access

Read system properties, such as color settings and environment variablesAccess to system properties

Submit print jobsPrinting

Bind to and accept connections on a privileged port (a port outside the
range 0 to 1024) and establish connections with other servers

Access to network addresses

Load and call the Domino back-end object classesAccess to Notes Java classes

Read and write files on the local file systemAccess to file system

Allows the applet toAccess option

JavaScript ECL
The JavaScript ECL options control security for JavaScript that runs within the Notes client, either
on a Notes form or on a Web page rendered by the Notes browser. These options do not control
JavaScript that other browsers, including the Microsoft Internet Explorer browser, run, even when
the JavaScript is embedded within the Notes client.

The read and write options (under the general categories “Allow Read Data Access From” and
“Allow Write Data Access To,” respectively) control whether JavaScript code can read or modify
JavaScript properties of the Window object. The Window object is the top-level object in the
JavaScript document object model. It has properties that apply to the entire window. Securing access
to the Window object secures access to other objects on the page since the JavaScript program cannot
access the objects lower in the object model without first traversing the Window object.

By default, templates that are signed by Lotus Notes Template Development/Lotus Notes have
complete execution access.

Chapter 6: Security 95

You can control the security for these read and write options independently for three different
classes of Window objects:

This is similar to “Other window from same host,” except it enables access to the
Window object on a different page within a frameset that uses a different host. For
example, JavaScript code on a page on www.lotus.com can access the Window
object on a page on any other server. This is the highest security threat because
someone could design a frameset containing a page performing malicious actions
accessing data on another page in the same frameset that you “trust,” where you
might type a password or some other sensitive information.
The default template and templates with no signature do not allow read and write
access.

Other window from
different host

Controls JavaScript access to the Window object on a different page from the
JavaScript code, but from a page using the same host. For example, JavaScript code
on a page on www.lotus.com can access the Window object on another page on
www.lotus.com. This allows two pages to interact if they are within the same
frameset. This is a slightly higher security threat.
The default templates and templates with no signature do not allow read and write
access.

Other window from
same host

Controls JavaScript access to the Window object on the same page as the JavaScript
code. Typically this is a very low security threat. Selecting this option does not
prevent JavaScript calls if the call is made directly to the object on the source
window. Doing so circumvents the Window object; therefore, this ECL option is not
enforced.
The default templates and templates with no signature do not allow read and write
access.

Source window

DescriptionWindow object class

There are two additional ECL options that control whether JavaScript executing in the Notes client is
authorized to open a new Web page or Notes document.

The following options are available in the “Allow Open Access To” category.

Controls access for opening a Web page or Notes document on a different host as
the JavaScript code.
The default template and templates with no signature do not allow open access.

URL on different host

Controls access for opening a Web page or Notes document on the same host as
the JavaScript code.
The default template and templates with no signature allow open access.

URL on same host

DescriptionOption

96 Inside Notes: The Architecture of Notes and the Domino Server

Restricting access to documents
The author of a document can determine who can read the entire document or only specific sections
of a document. Documents inherit the read access property from the form; however, the author of a
document can further refine the read access list of the form or of specific sections of a document.

The following table describes the document access options.

Sign-enabled fields on a form allow a digital signature to be attached when a document
is saved or mailed. Digital signatures verify that authors are who they say they are and
guarantee that the information in the document has not been tampered with. The
private key in a user ID file generates the signature. When a user opens the document
containing the signed field, Notes verifies the signature by comparing it with the
author’s public key in the Domino Directory.

Sign-enabled field

Layout regions are areas of grouped objects that can be easily moved and displayed in
ways that are not possible with the use of forms and subforms. A layout region can be
hidden based on the user’s current mode (reading, editing, and so on) or a formula.
Hiding a layout region does not protect it from updates by agents, actions, or access by
another form.

Layout region

Paragraphs of text can be hidden based on the user’s current mode (Read, Edit, and so
on), the type of client a user has (browser or Notes), or a formula. This hides the
paragraph from viewing. It does not protect the paragraph from updates by agents,
actions, or access by another form.

Paragraph

Fields on the form can be encrypted with one or more keys. To decrypt and read the
contents of the field, the user must have one of the keys.
Application developers can specify that a field be changed only by users who have
Editor access or above in the ACL. This prevents users with Author or Depositor access
from changing the field on the form.
Field encryption does not hide information in the full-text index files created by
someone who has access to the field. In addition, full-text search returns hits on the
encrypted fields, even if the user cannot access the contents of the field.

Field

Collapses or expands information in and controls access to parts of a document. The
section can be hidden based on the user’s current mode (Read, Edit, and so on), the type
of client a user has (browser or Notes), or a formula. Hiding a section does not protect
the section from updates by agents, actions, or access by another form.

Section

Lets users who have Author access in the ACL edit a document that they didn’t create.
An Authors field often includes the name of the creator. If you create a document and
don’t list yourself as author, you can’t subsequently modify the document. Authors
fields contain names of users and are created in the same way as Readers fields. Users
with Editor access or above can edit a document even if they are not in the Authors
field. Users with No access, Depositor access, or Reader access cannot edit a document,
even if they are listed in the Authors field, unless it’s a public document.

Authors field

Restricts read access to documents that are created with the form that contains the
Readers field. A Readers field contains a list of users who are allowed to have read
access to the document.
If a Readers field is editable, the author of a document can specify who can read the
document.

Readers field

Encrypts the document using the specified private and/or public keys. This allows only
users who have the encryption key to read the document. Since Internet users do not
have Notes encryption keys, Internet users cannot access encrypted fields.

Encryption key

Allows only a subset of users in the database ACL and form reader access list to read
this document. This option is also known as the document reader access list. A
document inherits the reader access list from the form. This option refines the document
reader access list.

Who can read this
document

DescriptionOption

Chapter 6: Security 97

Using access control features for security
It is important to distinguish between true security features and access control features that it make
it difficult for users to access information. Some access control features can be circumvented by
experienced users and should not be used as true security measures. These features are useful,
however, because they can make an application easier to use by preventing accidental operations.

The following table describes the security abilities of different access control features.

YesNoView access lists

Not applicableYesSigning

YesYesReader access lists and
Readers fields

YesYesPublic access to documents

Not applicableNoPrevent copying and
forwarding

No when “Generate HTML for all fields” is
selected. Otherwise, Yes.

NoHide-when formulas

No when “Generate HTML for all fields” is
selected. Otherwise, Yes.

NoForm access lists

Not applicableYesField encryption

Not applicableNoEnforce consistent ACLs

Not applicableYesECL

NoNoControlled access sections

Yes, for users who have Author access in the
ACL.

Yes, for users who have Author
access in the ACL.

Authors fields

YesYesACL

Provides security on the WebProvides security in NotesFeature

Notes/Domino authentication
The basis on which all Notes/Domino security is built is user authentication. Authentication is
important because it allows you to differentiate one user from another; without it, you could not
identify whether users are who they claim to be. It is, therefore, the key to providing restricted
access to Notes and Domino resources.

The Notes authentication procedure depends on a certificate, which is an electronic stamp added by
a certifier to a Notes ID file. Every Notes client uses a Notes ID file for identification.

Certification and authentication are complex processes. Familiarizing yourself with the following
terms will help you further understand these processes.

Public key encryption
Public key encryption is also referred to as asymmetric encryption. With public key encryption, a
user has a key pair — private and public. The public key is distributed to everyone with whom you
want to communicate. In Domino, the public key is published in the Domino Directory.

Symmetric encryption
Symmetric encryption, often referred to as secret key encryption, uses a common key and the same
mathematical algorithm to encrypt and decrypt a message. If two people want to communicate
securely with each other, both need to agree on the same mathematical algorithm to use for
encrypting and decrypting data. They also need to have a common key, the secret key.

98 Inside Notes: The Architecture of Notes and the Domino Server

Digital signatures
A digital signature is the electronic equivalent of a handwritten signature — a unique block of text
that verifies your identity — that is appended to a message. It can be used to confirm the identity of
the sender and the integrity of the message. The block of text is encrypted and decrypted using
public and private keys.

Public key certificates
A certificate is a unique electronic stamp stored in a Notes or Domino ID file that associates a name
with a public key. Certificates permit users and servers to access specific Domino servers. An ID
may have many certificates.

SSL certificates let servers with certificates created by Domino certificate applications exchange
certificates easily between Domino and other applications. SSL certificates contain a public key, a
name, an expiration date, and a digital signature, and are stored in files called key ring files. Key
ring files are password protected and store one or more certificates on the client and server hard
drives. Public and private keys are a unique pair of mathematically-related keys that are used to
initiate SSL-encrypted transactions.

Hierarchical naming
Hierarchical naming is a system of naming associated with Notes IDs that reflects the relationship of
names to the certifiers in an organization. The format of a hierarchical name is:

common name/organizational unit/organization/country code

For example, Sarah Forbes/ Toronto/Acme/CA

All hierarchical names include common name and organization components. An organizational unit
(of which there can be a maximum of four) and country code components are optional.

Hierarchical naming helps distinguish users with the same common name for added security and
allows for decentralized management of certification.

Notes ID files
When registering a user, the administrator specifies the user name, password, expiration date, and
other default options. The registration process creates an ID for the user or server and places it in the
Domino Directory and/or in a file that must be given to the user to reside on the user’s workstation.

Types of ID files
Essentially, Notes IDs store certificates and encryption keys. There are three different types of Notes
IDs: user, server, and certifier. A user ID is the Notes ID for a Notes client, and a server ID is the
Notes ID for a Domino server. A certifier ID is treated differently because it is only used for
certifying other Notes IDs and cannot be used to run a workstation or server. Therefore, a certifier
ID is more important than other IDs for the organization because so much of Notes security is based
on signatures and authentication, and both use certificates. The certifier ID should be stored on a
disk in a safe place, not on a server hard disk where unauthorized users may be able to access it.
Any untrustworthy person that gains access to the certifier ID can easily access any system set up to
trust that certifier.

Contents of a Notes ID
When an administrator attempts to register a new user or server, the Domino Administrator
generates two RSA key pairs (public-private keys) for that entity. One 512-bit key length pair is used
for data encryption in countries outside the US and Canada. Another 630-bit key length pair is used
for data encryption within US and Canada and for signatures and authentication worldwide. The
Domino Administrator then builds a certificate using the certifier’s private key to sign the certificate.
The signed certificate is then placed in the Notes ID file.

Chapter 6: Security 99

After the registration process, the ID file contains:

�� The user’s name and Notes license number

�� Two public and private key pairs

�� Two certificates for the user

�� A certificate for each ancestor certifier

�� (Optional) Recovery information for the ID file

Public and private keys are mathematically related and uniquely identify a user. Information
encrypted with a public key can be decrypted only with the private key of the pair. The big
advantage to public key encryption is that it does not matter who has access to the public key
because it is useless without the private key. Therefore, you can make the public key available
without compromising security.

Notes stores recovery information in the Notes ID file. Using the recovery information, the
administrator can recover an ID file if the user forgets the password or to restore an ID file from an
encrypted backup if the ID file becomes corrupted.

After registration, encryption keys distributed by application developers may be added to the ID file
to allow encryption and decryption of fields in documents. The private key and the encryption keys
in the ID file are encrypted using a key computed from the user’s password, so that only the owner
can use the ID file. Public information such as the user’s name and public key are not encrypted.

The following figure shows the ID files for Bob and ServerA.

Bob's ID File
Bob Smith/East/Acme

East

Bob

Acme

East

Acme

Acme

Private/Public Key Pair

Recovery Information

Certificate
Issued To: Acme
Issued By: Acme

Certificate
Issued To: East
Issued By: Acme

Certificate
Issued To: Bob
Issued By: East

Private/Public Key Pair

Recovery Information

ServerA's ID File
ServerA/West/Acme

West

Server

Acme

West

Acme

Acme Certificate
Issued To: Acme
Issued By: Acme

Certificate
Issued To: West
Issued By: Acme

Certificate
Issued To: ServerA
Issued By: West

Private/Public Key Pair

Recovery Information

Certificates
A certificate contains:

�� The certificate owner’s name

�� The certificate owner’s public key

�� The certifier’s name

�� The certifier’s public key

�� The certificate expiration date

�� A digital signature by the certifier using the certifier’s private key. This signature proves the
certificate’s authenticity.

100 Inside Notes: The Architecture of Notes and the Domino Server

The certificate is stored in a Notes ID file and the Domino Directory. The certificates registered to the
Domino Directory are referred to by all users and servers belonging to the Domino domain when
they attempt to encrypt or sign mail messages or document data. Note that the certificate itself does
not contain any secret information; it is therefore open to the public and can be distributed
anywhere.

The following figure shows how certificates are placed in ID files and the Domino Directory.

Certifier

Bob

Certify

Certifier

Certifier

Certifier

Certifier

Certifier

 Bob
Certifie

r

Certifie
r

Bob

Bob's Notes ID
(User ID) Domino Directory

Certifier's Notes ID
(Certifier ID)

Certifier's
Private Key Certificate

Issued to Bob

name: "Bob",
company: "Acme"
exp. date: 2001/12/31
...

Bob's Public KeySign

Signature by
Certifier

Example of Notes/Domino authentication

Authentication is a two-step process: before a Domino server can authenticate a Notes client or
Domino server, it must validate the client or server. Validation is the process of reliably determining
the sender’s public key. Domino uses the following rules when deciding to trust a public key:

Rule 1
Trust the public key of any of the validating server’s ancestors in the hierarchical name tree
because they are stored in your ID file.

Rule 2
Trust any public key obtained from a valid certificate issued by any of your ancestors in the
hierarchical name tree.

Rule 3
Trust any public key certified by any trusted certifier and belonging to one of the certifier’s
descendants.

If the public key is not certified by one of your ancestors, then Domino establishes trust using a
cross-certificate .

Phase 1 -- Public key validation

Let us now see how these rules are applied in the validation process. The user ID file for Bob Smith
contains everything he needs to identify himself and establish his credentials. When he requests a
session with a server, the first step is to send to the server all of the certificates from the ID file (both
the user’s own certificate and the chain of certifiers’ certificates that support it). The figure below

Chapter 6: Security 101

illustrates the validation process that follows. Note that Acme is a common ancestor for both Bob
and Server A.

East

Bob

Acme

East

Acme

Acme

East

Bob

Acme

East

Bob's
Notes ID

Bob ServerA

1

6

5

3 2

ServerA's
Notes ID

Acme's
Public Key

Bob's Public
Key "Trusted"

Verify

Verify4

The numbered steps in the figure are described as follows:

Step 1
ServerA reads the East certificate that Bob Smith sent from his ID file. This was signed by
Acme. ServerA is interested in it because East is the certifier of Bob’s certificate.

Step 2
ServerA reads the Acme public key from its own ID file. (According to Rule 1, ServerA will
trust the public key of any ancestor that is stored in its ID file.)

Step 3
ServerA uses the public key of Acme (which is trusted because it is in the server’s ID file) to
verify that the certificate of East/Acme is valid. (According to Rule 2, you trust your
ancestor’s authority to issue certificates to anyone.)

Step 4
ServerA reads the certificate that was sent from Bob Smith’s ID file. This was signed by East.

Step 5
ServerA uses the public key of East/Acme, which now is trusted, to verify that the Bob
Smith/East/Acme certificate is valid. (According to Rule 3, trust any public key certified by
any trusted certifier and belonging to one of the certifier’s descendants.)

Step 6
ServerA has now reliably learned Bob Smith’s public key.

The same process is followed in reverse so that Bob can reliably learn ServerA’s public key.

Phase 2 -- Authentication

After the validation process finishes, the authentication process begins. Authentication is a proof of
identity. The validation process described above has not completely proved who each of the session
partners is because all they have presented so far is certificates. A certificate associates the user with
a public key and tells the recipient that the public key can be trusted, but in order to prove that user
is really who they claim to be, they must show that they hold the private key that matches the public
key in the certificate. The authentication process achieves this with a challenge/response dialog
between a workstation and a server, or between two servers when either is running database
replication or mail routing.

102 Inside Notes: The Architecture of Notes and the Domino Server

To continue the previous example of Bob Smith accessing ServerA, see the following figure.
Although the actual implementation is complex, a simplified description follows.

Alice's public key and random number challenge

ServerB's public key and random number challenge

Alice's certificate list

ServerB's certificate list

Alice's random number challenge encrypted with ServerB's private key

ServerB's signature on previous message

ServerB's random number challenge encrypted with Alice's private key

Long-term secret (Alice's random number challenge, session key)

1

2

3

4

5

6

7

8

A
lic

e

S
er

ve
rB

Steps 1 and 2
Alice and ServerB exchange public keys and give each other a random number challenge.

Steps 3 and 4
Alice and ServerB exchange the complete set of certificates from their root down.

Steps 5 and 6
ServerB sends Alice their long-term shared secret key, encrypted with Alice’s public key and
signed with ServerB’s private key, to prove it’s ServerB sending the message (Alice takes
ServerB’s word for it on their shared secret key.)

Step 7
Alice proves its identity. Alice needed to know its private key in order to extract the
long-term secret, which it then uses to encrypt ServerB’s challenge.

Step 8
ServerB proves his identity and securely sends Alice a session key they will share for this one
conversation.

To summarize, there are three key points to remember about Notes authentication:

1. Notes authentication is a two-way procedure.

2. Notes authentication avoids some operations on subsequent authentications. That is, if the
parties have exchanged and verified each other’s certificates during a previous connection, then
some steps in the authentication process — namely, Steps 3 — 6 in the example — do not occur.
This speeds up processing time on subsequent authentications.

3. Notes authentication establishes a session key that can be used to encrypt the messages that
follow authentication.

Cross-certificates
Cross-certificates are used to establish trust between different hierarchically certified organizations.
Typically, users establish trust by determining that they have an ancestor in common. In different
hierarchically certified organizations, users do not have a common ancestor; therefore, users need
cross-certificates to establish trust.

Chapter 6: Security 103

Cross-certificates are stored in documents in the user’s Personal Address Book and the server’s
Domino Directory. Cross-certificates have “Issued by” and “Issued to” fields. “Issued by” indicates
who trusts this certificate. If the certificate is issued by Bob Smith/East/Acme, only the user with
this Notes ID name will trust this certificate. “Issued to” indicates the certificate that Notes should
trust. A certificate that is issued to /Acme trusts all users and servers in the hierarchy that includes
/Acme — for example, /East/Acme and /West/Acme. A certificate that is issued to /East/Acme
trusts a smaller scope of users and servers — for example, /East/Acme and /Sales/East/Acme, but
not /West/Acme.

For example, user Bob Smith/East/Acme wants to access ServerA/Central/Widgets. /East/Acme
and /Central/Widgets are not in the same hierarchy and, therefore, cannot be trusted. The server
establishes trust by obtaining a cross-certificate for /Acme, and Bob establishes trust by obtaining a
cross-certificate for /Widgets. ServerA could also establish trust by obtaining a cross-certificate
issued to /East/Acme, and Bob could establish trust by obtaining a cross-certificate issued to
/Central/Widgets; however, doing so may limit the scope of other servers and users that can be
trusted with that cross-certificate.

Domino Directory

Cross-certificate

Issued to: Widgits

Issued by: Bob
Smith/East/Acme

Personal Address Book

Bob Smith/East/Acme ServerA/Central/Widgits

Bob Smith/East/Acme

Widgits
Cross-certificate

Issued to: Acme

Issued by:
ServerA/Central/Widgits

ServerA/Central/Widgits

Acme

Cross-certificates are also used to establish trust for digital signatures and for encrypted S/MIME
messages that are sent over the Internet. In the case of digital signatures, only the recipient of the
document with the digital signature needs to have a cross-certificate for the signer. In the case of
encrypted Internet messages, the user who sends the message needs the cross-certificate in order to
encrypt the message.

Internet client authentication

There are two authentication methods for Internet clients: name-and-password and SSL.

Name-and-password authentication
There are two types of name-and-password authentication:

�� Basic name-and-password authentication

�� Session-based name-and-password authentication

Name-and-password authentication, also known as basic password authentication, uses a basic
challenge/response protocol. Whenever users try to access restricted information, they are
prompted for a name and password. Name-and-password authentication on a TCP/IP port is not
very secure, however. Information, including the name and password, passes between the client and
server unencrypted. Anyone who has access to a network sniffer or trace tool can capture the
information anywhere along the session path. To prevent this type of attack, name-and-password
authentication can be used on an SSL port.

When setting up name-and-password authentication for an HTTP server, the administrator can use
session-based name-and-password authentication. Session-based name-and-password
authentication offers greater control over user interaction than basic name-and-password

104 Inside Notes: The Architecture of Notes and the Domino Server

authentication. The administrator can customize the form in which users enter their name and
password information, and users can log out of the session without closing down the browser.

SSL authentication
SSL authentication is similar to Notes authentication. The SSL client presents a certificate to a
Domino server. Then the server uses that certificate to authenticate the client, and vice versa. Unlike
Notes and Domino, SSL does not require that both the server and client authenticate each other. If
SSL is enabled, Domino requires that the client authenticate the server; however, it is optional for
the server to authenticate the client.

SSL uses an Internet certificate in X.509 format, which is an industry standard format that most
applications, including Domino, understand.

An Internet certificate typically consists of the following fields:

�� Version of certificate format

�� Certificate serial number

�� Digital signature algorithm identifier (for issuer’s digital signature)

�� Issuer name (that is, the name of the Certification Authority)

�� Validity period

�� Subject name — that is, user or server

�� Subject public-key information: algorithm identifier and public-key value

�� Issuer unique identifier

�� Subject unique identifier

�� Extensions

�� Digital signature by issuer on the above fields

Internet certificates can be issued by a third-party certificate authority (CA), such as VeriSign, or the
administrator can use the Domino Certificate Authority application to set up a CA.

For more information on X.509 certificates, see the IBM Redbook, Lotus Notes and Domino R5.0
Security Infrastructure Revealed, which can be viewed in its entirety and/or ordered in hardcopy by
visiting the Web site /www.redbooks.ibm.com/booklist.html.

Supported authentication methods for Internet protocols
The following table lists the Internet protocols that Domino supports and the type of authentication
that can be used for each protocol.

NoNoNoNoNoSMTP Outbound
NoYesNoYesYesSMTP Inbound
YesYesNoYesNoPOP
YesYesNoYesYesNNTP
YesYesNoYesYesLDAP
YesYesNoYesNoIMAP
NoYesNoYesYesIIOP
YesYesYesYesYesHTTP

SSL client
certificates

SSLSession
name-and-password

Basic name-and-
password

Anonymous

Chapter 6: Security 105

Basic name-and-password authentication
Name-and-password authentication, also known as basic password authentication, uses a basic
challenge/response protocol to ask users for their names and passwords and then verifies the
accuracy of the passwords by checking them against those stored in Person documents in the
Domino Directory. When set up for this, Domino asks for a name and password only when an
Internet/intranet client tries to perform a task for which access is restricted. Internet/intranet access
differs from Notes client and Domino server access in that a Domino server asks a Notes client or
Domino server for a name and password when the client or server initially attempts to access the
server.

Before a database manager can use Domino security to assign database access to an
Internet/intranet client, the system administrator must create a Person document for that client in
the Domino Directory. Clients who do not have Person documents are considered Anonymous and
can access only those servers and databases that allow Anonymous access.

Name-and-password authentication allows Domino to locate the Person document for the client
accessing the server (if one exists). Domino uses the Person document to identify the client. After the
client is identified, access to databases can be determined.

Some Internet protocols can use name-and-password authentication with SSL. Then the system
prompts the user for a name and password before using SSL to secure the session.

Session-based name-and-password authentication
A session is the time during which a Web client is actively logged onto a server. Session-based
name-and-password authentication includes additional functionality that is not available with basic
name-and-password authentication. The Server document in the Domino Directory contains settings
that enable and control session authentication.

Customized HTML log-in form
An HTML log-in form allows a user to enter a name and password and then use that name and
password for the entire user session. The browser sends the name and password to the server in the
server’s character set; therefore, users can enter a name and password in character sets other than
ASCII or Latin-1.

Domino provides a default HTML form, which is created and configured in the Domino
Configuration database (DOMCFG.NSF) and which can be customized to contain additional
information.

Default log-out time period
A default log-out time period logs the Web client off the server after a specified period of inactivity.
Automatically logging a user off the server prevents others from using the Web client to
impersonate a user if a Web client leaves the workstation before logging off. Users can also append
?logout at the end of a URL to log off a session.

Maximum user sessions
To manage performance, the administrator can adjust the maximum number of user sessions
allowed on the server at the same time

106 Inside Notes: The Architecture of Notes and the Domino Server

Examples of name-and-password authentication
The following example shows how a client (Bob) authenticates with a server (ServerA) using a name
and password on a TCP/IP port.

HTTP
1. Bob attempts a task for which access is restricted.

2. ServerA checks whether anonymous access is allowed on the server for the protocol. If it is, the
following happens:

a. The server checks whether there is an entry named Anonymous in the database ACL. If there
is, then Bob is allowed anonymous access to the database using the Anonymous access level.

b. If there is no entry named Anonymous, the server checks the -Default- access.

c. If the -Default- access is Reader or higher, then Bob is allowed anonymous access to the
database using the -Default- access level.

3. If anonymous access is not allowed and name-and-password access is enabled, the client
displays a request for a user name and password.

4. Bob enters his name and password.

5. The server checks for a Person document in the Domino Directory for Bob and verifies that the
name entered is in the User name field and the password presented is in the Internet password
field.

6. If the name and password are verified, Domino uses the first name listed in the User name field
to identify Bob.

IIOP
1. The Java applet that Bob is using attempts a task and passes to the server either a name and

password or tries to connect anonymously.

2. ServerA checks whether name-and-password or anonymous access are allowed on the server,
depending on what the Java applet passed to the server.

3. If access is allowed, the Java applet connects. If it is not allowed, the Java applet does not make
the connection and Bob receives an error.

Unlike HTTP, IIOP does not fail over to another type of connection. For example, if an applet
tries to connect using name-and-password and name and password connections are not allowed
on the server for that protocol, the applet is not allowed access using anonymous access.

LDAP
1. Bob has configured his LDAP client to connect to ServerA using name-and-password

authentication.

2. Bob’s name and password are retrieved from the LDAP client’s configuration settings — for
example, the account record in the case of the Domino client — and sent on the LDAP bind
request.

3. The server checks for a Person document in the Domino Directory for Bob and verifies that the
name entered is in the User name field and the password presented is in the Internet password
field.

4. If the name and password are verified, Domino uses the first name listed in the User name field
to identify Bob.

POP3
1. The client establishes a connection to the POP3 server on the port.

2. ServerA checks whether name-and-password access is enabled. If so, ServerA puts the client
into the POP3 “greeting” state.

Chapter 6: Security 107

3. ServerA waits for Bob to enter his name and password. After Bob sends his name and
password, ServerA checks the User name field in the Person document for the name Bob
entered and makes sure the password entered matches the password in the Internet password
field. The server also checks secondary address books and LDAP directories if Domino is
configured to search secondary address books and LDAP directories. If the password matches,
ServerA opens the database specified in the Mail File field of Bob’s Person document.

SSL authentication
If SSL is enabled for a protocol, clients must authenticate the server. Optionally, servers can
authenticate the clients. Domino lets you set up SSL on a protocol-by-protocol basis. For example,
you can require SSL for clients that use HTTP to connect to the server, but not require SSL for LDAP
sessions.

Server authentication
If the Internet client that connects to a server has a trusted certificate in common with the server,
then the Internet client can be confident that the server is who it says it is. Only the server requires
an Internet certificate. The client needs to establish trust for that certificate but does not require an
Internet certificate. To control what a user can see on a secure site, however, the administrator must
manage user names and passwords for each user or require users to use client authentication to
connect.

Clients obtain trusted certificates from a Certificate Authority (CA). The CA serves as a third party
that indicates that the server certificate can be trusted.

From the point of view of an Internet client that is using SSL to connect to a server, the whole
negotiation and authentication process is transparent. For example, for a Web client to establish an
SSL connection, the URL prefix must change from http:// to https://. After the SSL connection is
established, the browser gives the user a visual indication — for example, in Netscape Navigator a
closed padlock appears in the lower left corner of the screen.

Client authentication
With client authentication, Notes and Domino take authentication one step further. Client
authentication lets administrators authenticate Internet clients accessing the server and control
access based on the client identity. To authenticate with the server, the Internet client uses an
Internet certificate that is signed by a CA. Using client authentication, administrators do not need to
manage passwords for these users because the CA vouches for their authenticity.

Examples of SSL authentication
The following example shows how a client (Bob) authenticates with a server (ServerA) on an SSL
port.

HTTP
1. Bob attempts a task for which access is restricted.

2. The client sends a request to ServerA specifying information about the SSL connection, such as
supported encryption algorithms and certificate expiration date.

3. ServerA sends the client the certificate that contains ServerA’s public key.

4. The client checks the CA’s digital signature on ServerA’s certificate against a trusted certificate
on the client to validate the identity of ServerA.

5. If ServerA’s CA certificate is trusted, Bob uses an algorithm to create a session key, uses the
public key stored in ServerA’s certificate to encrypt the key, and sends it to ServerA. To ensure
security and prevent an unauthorized user from tracing the key, the session key changes for
each session.

108 Inside Notes: The Architecture of Notes and the Domino Server

6. ServerA uses ServerA’s private key to decrypt the session key and uses the session key to
encrypt data passed between Bob and ServerA after this point.

7. If client authentication is enabled, the following happens:

a. ServerA requests Bob’s certificate.

b. The client sends ServerA Bob’s certificate.

c. ServerA checks the CA’s digital signature on Bob’s certificate to verify the identity of Bob. If
ServerA has Bob’s CA certificate marked as a trusted root in the server certificate, then
ServerA knows that Bob’s certificate is valid.

d. ServerA checks the User name field in the Person document for the common name on Bob’s
certificate and verifies that the public key in Bob’s certificate matches the public key in his
Person document. ServerA checks the primary address book for the Person document.
ServerA also checks secondary address books and LDAP directories if the user is a Web client
and Domino is configured to search secondary address books and LDAP directories.

8. If ServerA cannot validate Bob for client authentication, ServerA checks whether anonymous
access is allowed on the server for the protocol. If it is, the following happens:

a. The server checks whether there is an entry named Anonymous in the database ACL. If there
is, then Bob is allowed anonymous access to the database using the Anonymous access level.

b. If there is no entry named Anonymous, the server checks the -Default- access.

c. If the -Default- access is Reader or higher, then Bob is allowed anonymous access to the
database using the -Default- access level.

9. If anonymous access is disabled for the protocol or if the database ACL does not allow
anonymous access, the server checks whether name-and-password access is allowed on the
server for the protocol. If name-and-password access is enabled, the following happens:

a. The server asks Bob to enter his user name and password.

b. The server checks the User name field in the Person document for the user name Bob entered
and verifies that the password that Bob entered matches the password in the Internet
password field. The server also checks secondary address books and LDAP directories if
Domino is configured to search secondary address books and LDAP directories.

c. If the password matches, the server checks the database ACL for the first entry listed in the
User name field in Bob’s Person document and Bob gains access to the database using the
access provided for that user name.

IIOP
1. When a user visits a Web page that contains an applet that uses IIOP for access to the Domino

objects, the applet, the lotus.domino classes (ncso.jar), and ServerA’s root certificate are loaded
into the browser (using http or https).

2. The applet sends a request to ServerA specifying information about the SSL connection, such as
supported encryption algorithms and certificate expiration date.

3. The applet uses an algorithm to create a session key, uses the public key stored in ServerA’s
certificate to encrypt the key, and sends it to ServerA. To ensure security and prevent an
unauthorized user from tracing the key, the session key changes for each session.

4. ServerA uses its private key to decrypt the session key and uses the session key to encrypt data
passed between the applet and ServerA after this point.

5. If access is allowed, the Java applet connects. If it is not allowed, the Java applet does not make
the connection and Bob receives an error.

6. After the SSL connection is made with the server, the applet passes to the server either a name
and password or tries to connect anonymously.

7. ServerA checks whether name-and-password or anonymous access is allowed on the server,
depending on what the Java applet passed to the server.

Chapter 6: Security 109

LDAP
1. Bob has configured his LDAP client to connect to ServerA using an SSL encrypted port (636).

2. The client sends a request to ServerA specifying information about the SSL connection, such as
supported encryption algorithms and certificate expiration date.

3. ServerA sends the client the certificate that contains ServerA’s public key.

4. The client checks the CA’s digital signature on ServerA’s certificate against a trusted certificate
on the client to validate the identity of ServerA.

5. If ServerA’s CA certificate is trusted, Bob uses an algorithm to create a session key, uses the
public key stored in ServerA’s certificate to encrypt the key, and sends it to ServerA. To ensure
security and prevent an unauthorized user from tracing the key, the session key changes for
each session.

6. ServerA uses ServerA’s private key to decrypt the session key and uses the session key to
encrypt data passed between Bob and ServerA after this point.

7. If client authentication is enabled, the following happens:

a. ServerA requests Bob’s certificate.

b. The client sends ServerA Bob’s certificate.

c. ServerA checks the CA’s digital signature on Bob’s certificate to verify the identity of Bob. If
ServerA has Bob’s CA certificate marked as a trusted root in the server certificate, then
ServerA knows that Bob’s certificate is valid.

8. The client sends an LDAP bind request to ServerA. The client can specify both the mechanism of
bind and a set of credentials to use with that mechanism. The mechanism can be simple — that
is, name and password — SASL, or unsupported.

a. Simple

�� If the client did not specify any credentials, then he is identified as “anonymous.” ServerA
checks whether anonymous access is allowed on the LDAP SSL port. If anonymous access is
allowed, clients who want to modify the database are restricted to access privileges granted
by “Anonymous” in database ACLs. For search operations, the client is restricted to the set
of attributes selected in the Domain Configuration document under the “Anonymous users
can query” section. If anonymous access is not allowed on the port, ServerA returns an
“Invalid credentials” response and discontinues the bind process.

�� If the client specifies a name and password, the server checks the User name field in the
Person document for the user name Bob entered and verifies that the password that Bob
entered matches the password in the Internet password field. The server also checks
secondary address books and LDAP directories if Domino is configured to search
secondary address books and LDAP directories. If the password matches, the server checks
the database ACL for the first entry listed in the User name field in Bob’s Person document,
and Bob gains access to the database using the access provided for that user name. If
name-and-password access is not allowed on the port, ServerA returns an “Invalid
credentials” response and discontinues the bind process. If the client does not provide a
password, ServerA returns an “Inappropriate authentication” response and discontinues
the bind process.

b. Simple Authentication and Security Layer (SASL)

SASL describes a method of adding authentication support to connection-based protocols.
Each protocol that uses SASL includes a command for identifying and authorizing a user to a
server and for optionally negotiating a security layer for subsequent protocol interactions.

�� If the client specifies a SASL mechanism other than “EXTERNAL,” ServerA returns the
LDAP response “Unsupported SASL mechanism” and discontinues the bind process.

�� If the client specifies the “EXTERNAL” SASL mechanism, ServerA confirms that the client
is using an SSL connection. If not, ServerA returns the LDAP response “SASL EXTERNAL
requires a secure connection be previously established” and discontinues the bind process.

110 Inside Notes: The Architecture of Notes and the Domino Server

�� If the client specifies the “EXTERNAL” SASL mechanism on a secure connection, ServerA
checks the User name field in the Person document for the common name on Bob’s
certificate and verifies that the public key in Bob’s certificate matches the public key in his
Person document. The server also checks secondary address books and LDAP directories if
Domino is configured to search secondary address books and LDAP directories. If his
certificate is not found or it does not match the one Bob provided, then Bob is treated as an
anonymous user (see Step 8a above). Otherwise, ServerA uses the name from the certificate
for database ACLs.

c. Unsupported

�� If the client specifies a Berbers or other unsupported or unknown mechanism, ServerA
returns the LDAP response “Authentication method not supported” and discontinues the
bind process.

POP3
1. The client establishes a connection to the POP3 server on the SSL port.

2. The client sends a request to ServerA specifying information about the SSL connection, such as
supported encryption algorithms and certificate expiration date.

3. ServerA sends the client the certificate that contains ServerA’s public key.

4. The client checks the CA’s digital signature on ServerA’s certificate against a trusted certificate
on the client to validate the identity of ServerA.

5. If ServerA’s CA certificate is trusted, Bob uses an algorithm to create a session key, uses the
public key stored in ServerA’s certificate to encrypt the key, and sends it to ServerA. To ensure
security and prevent an unauthorized user from tracing the key, the session key changes for
each session.

6. ServerA uses ServerA’s private key to decrypt the session key and uses the session key to
encrypt data passed between Bob and ServerA after this point.

7. If client authentication is enabled, the following happens:

d. ServerA requests Bob’s certificate.

e. The client sends ServerA Bob’s certificate.

f. ServerA checks the CA’s digital signature on Bob’s certificate to verify the identity of Bob. If
ServerA has Bob’s CA certificate marked as a trusted root in the server certificate, then
ServerA knows that Bob’s certificate is valid.

8. If client certificates are enabled, then ServerA checks the User name field in the Person
document for the common name on Bob’s certificate. ServerA verifies that the public key in
Bob’s certificate matches the public key in his Person document. The server also checks
secondary address books and LDAP directories if Domino is configured to search secondary
address books and LDAP directories. If Bob’s certificate is found and is valid, then the client
enters the POP3 “greeting” state. If Bob’s certificate is not found or is not valid, then the client
enters the “terminal” state and the connection is dropped from the server.

9. If name-and-password access is enabled, the client enters the POP3 “greeting” state.

10. If client certificates and name-and-password access are not enabled, ServerA does not accept the
client’s connection, and the client enters the “terminal” state. Anonymous access is not allowed
on POP3.

If the client is in the “greeting” state, ServerA waits for Bob to enter his name and password. After
Bob sends his name and password, ServerA checks the User name field in the Person document for
the name Bob entered and makes sure the password entered matches the password in the Internet
password field. The server also checks secondary address books and LDAP directories if Domino is
configured to search secondary address books and LDAP directories. If the password matches,
ServerA opens the database specified in the Mail File field of Bob’s Person document.

Chapter 6: Security 111

Chapter 7
Directories

This chapter describes, in technical detail, how Domino creates and uses directories.

Directories
Domino can process requests for directory information received through NRPC Name service calls
and through Lightweight Directory Access Protocol (LDAP) operations. The following figure shows
the server tasks, services, and databases involved with processing these requests.

network

NOS

Miscellaneous
Server Tasks

listen on
TCP port 389 and
on SSL port 639

Domino
Server

Domino
Server Program

Network functions to access remote
secondary Domino directories and
LDAP servers listed in the directory
assistance database

NAME services

NIF

NSF

LDAP
Server Task

FT

 Local

Secondary Domino
Directories

DA.NSF
(Directory Assistance)

PUBNAMES.NTF

DA50.NTF

DIRCAT5.NTF

Databases

network

DIRCAT.NSF
(Directory Catalog)

NAMES.NSF
(Domino Directory)

creates

creates

creates

reads/writes
databases

Databases used for directory lookups
Domino can look up directory information in three databases: the Domino Directory database, a
directory catalog, and a directory assistance database. The first Domino server installed in a Notes
domain automatically creates the Domino Directory database (NAMES.NSF) from the
PUBNAMES.NTF template. A replica of the Domino Directory is automatically created on each
additional server added to the domain. NAMES.NSF stores information about users and groups in
the domain and about Domino configuration. When looking up directory entries, a server always
searches its NAMES.NSF database before searching the other databases.

A directory catalog is a database created manually from the template DIRCAT5.NTF and populated
by the Directory Cataloger (Dircat) server task. A directory catalog contains abbreviated user,
group, mail-in database, and resource directory entries from one or multiple Domino Directories in
a single, lightweight, quick-access directory. A directory catalog is small enough for mobile Notes
users to store locally so they can address mail to anyone in an organization when disconnected from
the network. A directory catalog also makes it easy to do directory lookups in organizations that use
multiple Notes domains. A server can locate its directory catalog by looking up the directory catalog
file name in NAMES.NSF, as the bottom box in the above figure illustrates.

113

A directory assistance database is created manually from the DA50.NTF template. A directory
assistance database acts as a directory of secondary directories — directories other than a server’s
primary Domino Directory (NAMES.NSF). Directory assistance can point to secondary Domino
Directories, for example Domino Directories from other Notes domains, stored locally or on remote
Domino servers. Directory assistance can also point to LDAP directories on remote LDAP servers,
for example, third-party LDAP directories. A server locates its directory assistance database by
looking up the directory assistance database file name in NAMES.NSF, as the bottom box in the
above figure illustrates.

Lookups using the NOS Name services
As the top box in the figure above illustrates, Domino server tasks other than the LDAP task and the
Domino Server program call Name services functions to access directory information. To look up
directory entries, they call NAMELookup and related functions, which in turn call NIF functions to
locate directory entries and NSF functions to open, and optionally, modify, the entries. The same
calls are used for lookups to the primary Domino Directory and to secondary Domino Directories.
The calls are essentially the same for lookups to a directory catalog except that for certain types of
directory catalog lookups — for example, Soundex lookups — the FT functions, rather than NIF
functions, are used.

When using directory assistance o look up names on a remote LDAP server, NAMELookup calls are
converted to LDAP search requests.

The following table describes the available Name services functions.

Looks up name(s) in a Domino Directory or directory catalog.NAMELookup

Returns next batch of matches (less than 64K) from a NAMELookup buffer.NAMELocateNextName

Returns the next match of a given name from a NAMELookup buffer.NAMELocateNextMatch

Finds a matching name in a NAMELookup buffer and returns a specified
item from it.

NAMELocateMatchAndItem

Returns a specific item of a specified match of a name in a NAMELookup
buffer.

NAMELocateItem

Finds a matching name in a NAMELookup buffer and returns a specified
item from it.

NAMEGetTextItem

Gets the last modified time of a Domino Directory. Doesn’t apply to a
directory catalog.

NAMEGetModifiedTime

Gets the list of Domino Directories used locally or on a specified server.
Requires the NOTES.INI setting Name_Include_Ed=1 to include a directory
catalog.

NAMEGetAddressBooks

DescriptionName services function

LDAP directory searches
LDAP searches are similar to NAMELookup calls in that their purpose is to retrieve or manipulate
entries in a directory. However, LDAP searches offer richer directory search capabilities. While
NAMELookup can locate entries solely based on name, LDAP supports the use of sophisticated
search filters. For example, LDAP can be used to search for all entries containing a specific attribute
or attributes. In addition, LDAP supports searches based on a directory scope. For example, LDAP
can be used to search only entries directly below the branch of the directory tree ou=west.

As the figure above illustrates, the LDAP server task listens for LDAP search requests over a
designated TCP/IP port (by default, 389) and/or SSL port (by default, 639). The LDAP task calls FT
and NIF functions to locate directory entries defined in an LDAP search operation then calls NSF
functions to locate and, optionally, modify attributes (fields).

114 Inside Notes: The Architecture of Notes and the Domino Server

The LDAP service searches its primary Domino Directory (NAMES.NSF), a directory catalog, and
secondary Domino Directories configured in its directory assistance database. The LDAP service
always calls FT functions to locate entries in a directory catalog.

The Domino Directory
The Domino Directory is a database (NAMES.NSF) that Domino automatically creates from the
PUBNAMES.NTF template on the first server in a Notes domain. Additional servers in a domain
automatically store a replica of this database. The Domino Directory is directory of information
about users, servers, groups, and other objects that administrators might add to the directory
themselves — for example, printers. It is also a tool that administrators use to manage the Domino
system. For example, administrators create documents in the Domino Directory to connect servers
for replication or mail routing, to register users and servers, to schedule server tasks, and so on.

NAMELookup and related functions are used to access a Domino Directory. A Domino Directory is
also accessible via LDAP. To process LDAP operations, the LDAP operations are translated into FT,
NIF, and NSF function calls.

Directory catalogs
A directory catalog is a database that combines abbreviated user, group, mail-in database, and
resource directory entries from one or more Domino Directories into a single, lightweight,
quick-access directory so that users and servers can easily look up names and addresses of people
throughout an organization. A directory catalog stores only the information that is important for
end-user directory services and excludes other information, such as server configuration settings,
that are part of a full Domino Directory.

A directory catalog is generally 80 to 100 times smaller than the combined size of the secondary
Domino Directories represented in the directory catalog. For example, if the combined size of all the
individual secondary Domino Directories is 3GB, the size of a directory catalog that aggregates those
directories is likely to be only 30MB.

Typically an organization uses two directory catalogs, a mobile directory catalog and a server
directory catalog, each of which is configured using somewhat different options. A mobile directory
is replicated to Notes clients and it is used by Notes users to quickly address mail to anyone in an
organization even when disconnected from the network. A server directory catalog is a directory
catalog set up for use by servers so that servers in multiple-domain organizations can search for
names and addresses in a single database, rather than in multiple secondary Domino Directories.

To minimize the size of a directory catalog, entries in the directory catalog include only the fields
required to resolve mail addresses, although administrators can add fields. A directory catalog
supplements rather than replaces the Domino Directory and the Personal Address Book.

The mobile directory catalog
Notes users that have a mobile directory catalog set up gain these benefits:

�� Users who do not have a server connection can quickly look up the address of anyone in an
organization.

�� Laptop users can send encrypted mail. User entries in a directory catalog contain a flag
indicating whether users have certificates. When a laptop user encrypts a memo, the memo is
marked in the local MAIL.BOX file for “just-in-time encryption.” When the user later
connects to the network and sends the mail, the client looks up the public key on a server and
encrypts the mail.

�� Users can address mail to groups because group names are included in a directory catalog.
By default users can’t see the members of a group as they address mail however, because, by
default, the group field “members” isn’t included in the directory catalog

Chapter 7: Directories 115

�� Users can see instantaneous address resolution when addressing a memo because type-ahead
addressing — which resolves addresses as users enter names — searches a mobile directory
catalog rather than a directory on a server.

�� Users can search the directory catalog using Boolean search queries the way they can search a
Personal Address Book. For example, if a user wants to send mail to someone by the name of
Robin at the Los Angeles location but doesn’t remember Robin’s last name, the user can
search for “First name” Robin and “Location” Los Angeles to retrieve the name from the
catalog. The LDAP protocol is used for these searches.

�� Users can browse and open entries in the directory catalog the way they can in their Personal
Address Books.

�� Users can enter the phonetic spelling of a name and use Soundex to find the exact spelling of
the name.

A mobile directory catalog is a benefit to administrators because network traffic is reduced when
names are searched for locally rather than on servers.

The server directory catalog
If an organization uses multiple Domino Directories — for example, if it has multiple Notes domains
— servers can use the server directory catalog to look up names from these directories rather than
search each full directory individually.

After searching its primary Domino Directory, a server can search a server directory catalog to:

�� Look up the names of users in secondary Domino Directories on behalf of Notes users who
don’t use mobile directory catalogs.

�� Process LDAP client search requests, if the server runs the LDAP service.

�� Quickly authenticate Web browser clients who are registered in secondary Domino
Directories if the server is a Domino Web server and if directory assistance is set up on the
server to allow the authentication.

Although directory assistance alone can provide all of these services, typically a server uses both
directory assistance and the directory catalog. A server directory catalog is not useful in
organizations that use only a primary Domino Directory because the primary Domino Directory is
always searched before a server directory catalog.

How a directory catalog works
Administrators create a directory catalog database manually from the Directory Catalog template
(DIRCAT5.NTF) and create a configuration document in it to indicate, among other things, which
secondary Domino Directories to build into the directory catalog. The Directory Cataloger (the
Dircat server task) populates a directory catalog and keeps the entries in a directory catalog
synchronized with the corresponding entries in the full secondary Domino Directories. When the
task runs, it replicates a limited number of fields from Person, Group, Mail-in Database, and
Resource documents from each secondary Domino Directory and then combines on average 200 of
these abbreviated documents into a single directory catalog aggregate document. Consequently, the
directory catalog uses approximately 1,000 aggregate documents to store 200,000 entries. Since the
directory catalog stores fewer documents than the Domino Directory, Notes performs operations
against the directory catalog very efficiently.

Databases typically use views that sort documents by a particular field to expedite searching of the
field. In a directory catalog no view sorts the aggregate documents; instead, to keep the directory
catalog small, the aggregate documents themselves are sorted. By default, the aggregate documents
sort entries by first name then by last name. Therefore, when Notes users look up names by entering
first name followed by last name, the names are very quickly located. Administrators can specify a
different sort format.

116 Inside Notes: The Architecture of Notes and the Domino Server

When Notes users look up names without using the selected sort format or look up names using
Soundex searches and when LDAP is used to search a directory catalog, full-text searching is used to
locate the names. When administrators first create a directory catalog, they create the full-text index
on it; but when they later replicate it for server or mobile use, the full-text index is automatically
created on the replicas.

A directory catalog has three small hidden views. The $Users view contains the aggregate
documents and is used for name lookups. The $Unid view contains information that the Dircat task
needs to replicate the secondary directory entries to the directory catalog. The $Unid view isn’t
created on replicas of the directory catalog, which further reduces the directory catalog size. The
$PeopleGroupsFlat view is used to display directory names when Notes users click the Address
button to browse directories.

There is one visible view called Configuration that shows the document used to configure the
directory catalog. There is also a “virtual” view called Users that users can open and programs can
access to see the names included in the directory catalog. This view is not stored on disk but is
instead created as needed.

Directory catalog configuration options
When administrators set up a directory catalog they decide:

�� Which secondary Domino Directories to include in the directory catalog.

�� Which entry fields to include in the directory catalog. The default field configuration includes
the minimum fields required for mail addressing.

�� Which sort format to use to sort entries in aggregate documents.

�� Whether to allow Soundex searches. Allowing Soundex searches increases the size of the
directory catalog by about 4 bytes for each entry.

�� Whether to remove duplicate entries.

�� Which types of group entries to include

�� Whether to change the default of 255 maximum entries allowed in an aggregate document —
for example, to decrease the amount to improve full-text searches of the directory catalog.

�� Whether the Dircat task makes any field changes directly in the fields or stores field changes
in a temporary location to reduce replication overhead.

�� When to schedule the Dircat task.

�� Whether to enable an agent that regularly mails status reports about the directory catalog.

Programmatic access to a directory catalog
Developers can use these methods to access a directory catalog programmatically:

�� NAMELookup calls, without any modification required

�� NAMEGetAddressBooks calls, if you use the NOTES.INI setting Name_Include_Ed=1.

�� NIFFindByKey, NIFReadEntries, and NIFOpenNote calls.* You can’t use NSFNoteOpen to
open notes passed back from NIFReadEntries; you must call NIFOpenNote instead.

�� LotusScript methods*

�� @NameLookup function*

*Can access the Users view but not the $Users view.

Index “LDAP service” # “directory catalog”In addition, LDAP operations work against a directory
catalog located on a server that runs the LDAP service.

Chapter 7: Directories 117

Directory assistance
A server’s primary Domino Directory is the directory in which an administrator registers the server
and which is associated with the server’s Notes domain. Each server stores its own primary Domino
Directory under the file name NAMES.NSF. Directory assistance is a feature that enables users and
servers to locate information in a directory that is not a server’s primary Domino Directory.
Administrators can set up directory assistance for secondary Domino Directories and for remote
LDAP directories — for example, for third-party LDAP directories.

To configure directory assistance, administrators create a Directory Assistance database from the
template DA50.NTF and then create Directory Assistance documents for individual directories. A
Directory Assistance document defines the hierarchical naming rules that reflect the names in a
directory, specifies if a directory is used for authentication, and provides the location of a directory.

Administrators replicate the Directory Assistance database to servers that should use it and enter
the Directory Assistance database file name in the Domino Directory Server documents. Servers
load directory information configured in the Directory Assistance database into memory.

Directory assistance for secondary Domino Directories
From the standpoint of a given server, any Domino Directory that is not the server’s primary
Domino Directory is considered a secondary Domino Directory. A secondary Domino Directory
may be associated with another Notes domain, or it may be created manually and unaffiliated with
any Notes domain.

To set up directory assistance for a secondary Domino Directory, administrators create a Directory
Assistance document with “Notes” selected in the “Domain Type” field. Setting up a “Notes”
Directory Assistance document allows servers to do any of the following, depending on the options
chosen in the Directory Assistance document:

�� Use security credentials in the directory to authenticate Web clients that use the Domino Web
server

�� Extend LDAP client searches to the directory

�� Allow Notes users to easily address mail to users registered in the directory

One Directory Assistance document provides any of these capabilities for a specific secondary
Domino Directory.

The server directory catalog and directory assistance
A server always searches its primary Domino Directory and then the directory catalog, if a directory
catalog is set up on the server, before it uses directory assistance. In general, it’s best to configure a
secondary Domino directory in both a server directory catalog and in the directory assistance
database.

The server directory catalog can often satisfy requests — for example, mail addressing requests — so
that a server needs to search only the directory catalog and not individual secondary Domino
Directories.

In the cases where the directory catalog doesn’t store the requested information — for example, if it
doesn’t store all the fields required to process specific LDAP searches — a server can use
information in both the directory catalog and the directory assistance database to quickly locate the
complete entries in the secondary directories. Each entry in a directory catalog includes the replica
ID of the Domino Directory from which the entry was derived and the unique ID (UNID) for the
entry. To locate a complete secondary directory, the server matches the replica ID for the directory
stored in the directory catalog with the same replica ID in the directory assistance database. To
locate an entry within the directory, the server uses an entry’s UNID specified in the directory
catalog; this process is similar to that used to locate a document referenced by a document link. A
search of a secondary directory using directory assistance alone without the directory catalog
usually takes longer.

118 Inside Notes: The Architecture of Notes and the Domino Server

It’s not necessary to configure the same secondary Domino Directories in the server directory
catalog and in the directory assistance database, although as mentioned above it’s often beneficial to
do so. If a secondary Domino Directory is configured in the directory catalog but not in the directory
assistance database and if a search occurs for a field not configured in the directory catalog, the
search can’t extend to the complete entries in the secondary Domino Directory. If a secondary
Domino Directory is configured in the directory assistance database but not in the directory catalog,
a server uses directory assistance alone to search the secondary directory after searching the
directory catalog.

Web client authentication in a secondary Domino Directory
When Web clients connect to a Domino Web server, the server can look up security credentials in a
secondary Domino Directory to authenticate the clients. The Directory Assistance document for the
secondary Domino Directory must contain at least one naming rule that is trusted for authentication.
Domino authenticates only those Web clients who have Person documents that contain a
hierarchical name that corresponds to a trusted naming rule.

To authenticate Web clients registered in a secondary Domino Directory, the Web server can use
either an X.509 certificate or name-and-password authentication.

A server cannot authenticate other types of Internet clients — for example IMAP, NNTP, and LDAP
— registered in a secondary Domino Directory, only Web (HTTP) clients.

The server directory catalog can work with directory assistance to facilitate Web client
authentication. Using the server directory catalog is beneficial because Domino can quickly locate
names from secondary directories in one database — the directory catalog — rather than search for
names in multiple directories.

If the Web server uses name-and-password authentication, the directory catalog can store the
passwords if the administrator adds the HTTPPassword field to the directory catalog configuration.
Then, although the directory assistance database is required to define which names in the directory
can be authenticated, password lookups occur directly in the catalog, so there is no need for servers
to use directory assistance to access a full replica of a secondary Domino Directory to look up
passwords.

Even if passwords aren’t stored in a server directory catalog, using a server directory catalog along
with directory assistance is helpful because the Web server can use the replica ID and UNID
information sorted in the directory catalog to look up the password in the secondary directory.

Although it is possible to store X.509 certificates in the server directory catalog, doing so
significantly increases the size of the directory catalog; therefore, this configuration isn’t
recommended.

LDAP searches in a secondary Domino Directory
When an LDAP client sends a search request, the LDAP service can use directory assistance to
extend the search to a secondary Domino Directory. To do this, there must be a Directory Assistance
document for the directory in the directory assistance database on the server that runs the LDAP
service.

Again, it’s often beneficial to configure the secondary Domino Directory in the directory catalog as
well as in the directory assistance database. If the server directory catalog configuration includes the
fields that LDAP clients most frequently search, then in most cases the LDAP service has to search
only the server directory catalog, not the full secondary Domino Directory.

When LDAP users search for fields not configured in the directory catalog, the server uses the
replica ID and UNID information in the directory catalog along with replica ID specified in the
Directory Assistance document to access the full entries from the secondary Domino Directory.

Chapter 7: Directories 119

Notes addressing lookups in a secondary Domino Directory
When a Notes user enters a name in the To, cc, or bcc field of a Notes memo, the user’s mail server
or directory server can look up the address for the name in a secondary Domino Directory if there’s
a Directory Assistance document for the directory in the directory assistance database on the server.
The Directory Assistance document also allows a Notes user to address mail by browsing and
selecting names from the secondary directory.

If the secondary directory is configured in a mobile directory catalog on the client or in a server
directory catalog on the user’s mail server or directory server, creating the Directory Assistance
document solely for mail addressing isn’t necessary. Because the default directory catalog
configuration includes the fields necessary for mail addressing, directory assistance isn’t needed to
look up this information in the full secondary Domino Directory.

Directory assistance for LDAP directories
LDAP is a standard protocol used for accessing directory services over TCP/IP. Directory assistance
allows a server to access or refer to a remote, LDAP-compliant directory — for example, a
third-party LDAP directory. To set up directory assistance for an LDAP directory, administrators
create a Directory Assistance document with “LDAP” selected in the “Domain Type” field. Setting
up an “LDAP” Directory Assistance document allows servers to do any of the following, depending
on the options chosen in the Directory Assistance document:

�� Use security credentials in the LDAP directory to authenticate Web clients that use the
Domino Web server

�� Verify membership in groups registered in one LDAP directory for Notes ACL verification

�� Refer LDAP clients that connect to the Domino LDAP service to the directory

�� Allow Notes users to verify mail addresses of users in the LDAP directory

Administrators use one Directory Assistance document to enable any of these options for a specific
LDAP directory.

Web client authentication using a remote LDAP directory
When Web clients attempt to access a database on a Web server, the server can authenticate the
clients by looking up security credentials in a remote LDAP directory. For example, if an
organization registers users in a remote third-party LDAP directory, when the users connect to a
Domino Web server, the server can connect to the directory server and look up the users’ names and
passwords or client certificates in the LDAP directory. There must be an “LDAP” Directory
Assistance document for the remote directory server with a naming rule that is trusted for
authentication. The Web server authenticates only those Web clients who are registered in the LDAP
directory with hierarchical names that correspond to a trusted naming rule.

The Web server doesn’t also have to run the Domino LDAP service; it just has to be able to connect
to the LDAP directory server. Administrators are given the option, which is recommended, to use
X.509 certificate authentication to authenticate the LDAP directory server. A server cannot
authenticate other types of Internet clients — for example, IMAP, NNTP, and LDAP — that are
registered in an LDAP directory.

ACL group verification using a remote LDAP directory
A database ACL can include the names of one or more groups from a remote LDAP directory. When
a Notes or Web user attempts to access a database on a Domino server or Web server, the server can
connect to the LDAP directory server to look up the members of the LDAP groups included in the
database ACL to determine if the user’s name is included in the groups. For this to occur, there must
be an “LDAP” Directory Assistance document enabled for “Group expansion” in the directory
assistance database on the server. This document must contain at least one naming rule trusted for
authentication that corresponds to the names of the LDAP groups. The Domino or Web server will
only look up LDAP groups with names that correspond to a trusted rule.

120 Inside Notes: The Architecture of Notes and the Domino Server

The Domino or Web server doesn’t also have to run the Domino LDAP service; it just has to be able
to connect to the LDAP directory server. Administrators are given the option, which is
recommended, to use X.509 certificate authentication to authenticate the LDAP directory server.

There is a configuration option in the Directory Assistance document that lets administrators choose
whether to look up nested groups (groups within groups).

Administrators can set up group lookups for the purpose of ACL verification in only one LDAP
directory; this limitation doesn’t apply to group lookups for mail addressing.

LDAP client referrals to a remote LDAP directory
The Domino LDAP service can refer LDAP clients to a remote LDAP directory server if an LDAP
search is not successful in the primary Domino Directory, the directory catalog, or secondary
Domino Directories configured in the directory assistance database. For this to occur, there must be
an “LDAP” Directory Assistance document for the LDAP directory enabled for LDAP users. To
return a referral, the Domino LDAP service never connects to and searches the LDAP directory.
Instead, the service uses information provided in the Directory Assistance document to return a
referral. The referral is compliant with LDAP v3 and includes:

�� The URL host name for the LDAP directory server

�� The base distinguished name configured for the directory in the Directory Assistance
document

�� The port the LDAP directory server uses

By default, for a given search, the LDAP service can refer an LDAP client to only one LDAP
directory. Administrators can use the LDAPReferrals setting in the NOTES.INI file to increase the
number of referrals that the LDAP service can return.

Notes addressing lookups in a remote LDAP directory
If a Notes user addresses mail to a person registered in an LDAP directory, the Notes user’s mail
server or directory server can use directory assistance to look up the person’s address in a remote
LDAP directory. For this to occur, there must be an “LDAP” Directory Assistance document for the
LDAP directory server in the directory assistance database that’s enabled for Notes use. Address
lookups occur only when a Notes user presses F9 or as the Notes client sends the mail. Domino
doesn’t use Notes type-ahead addressing to resolve the addresses of users in LDAP directories, and
Notes users cannot address mail by browsing and selecting names from the LDAP directory.

The Notes users’ mail servers or directory servers must be able to establish a network connection to
the LDAP directory server, but the servers don’t have to run the Domino LDAP service.

A Notes Release 5 user can create LDAP directory accounts in the Personal Address Book. These
accounts allow the Notes client to use LDAP to connect to and search LDAP directories. Configuring
directory assistance to allow Notes users to use an LDAP directory for addressing provides more
limited functionality to Notes users who don’t create LDAP directory accounts or who use Notes
Release 4.5 or 4.6.

Chapter 7: Directories 121

Comparison of directory catalogs and directory assistance
The mobile directory catalog, server directory catalog, and directory assistance provide similar
functionality. This table compares the features that each directory supports.

YesYesYes“Recipient name type ahead” addressing

YesNoNoAuthenticate Web clients using entries from LDAP
directories

YesYes*NoAuthenticate Web clients using entries from
secondary Domino Directories

YesNoNoRefer LDAP clients to LDAP directories

YesYesNoFind entries in secondary Domino Directories on
behalf of LDAP clients

YesNoNoFind entries in LDAP directories on behalf of Notes
users for mail addressing

YesYesYesFind entries in secondary Domino Directories on
behalf of Notes users for mail addressing

Directory
assistance

Server directory
catalog

Mobile directory
catalog

Feature

*Requires directory assistance to define the names that can be authenticated.

The Domino LDAP service
Domino supports the ability to set up a Domino server to provide LDAP services. LDAP is a
standard protocol for directory services and is defined in RFCs 2251—2256. LDAP is a simplified
version of the X.500 DAP protocol. Unlike DAP, LDAP can use the TCP/IP protocol stack and is
“lightweight” enough to run on PCs.

LDAP uses a small but comprehensive set of protocol operations that allow it to perform the
following tasks:

�� Initiate and terminate client/server sessions

�� Process complex search queries using search filters

�� Search a specific scope of the directory

�� Return only requested attributes

�� Add, change, and delete attributes

�� Add and delete entries

�� Change the name of entries

�� Abandon requests

Running the LDAP server task on a Domino server enables the server to provide LDAP directory
services. The LDAP server task enables a listener process over port 389. Port 389 is the
industry-standard port for LDAP connections over TCP/IP, but the LDAP service can use a
different port. The LDAP service can also use a port for SSL connections.

The LDAP server task loads into memory a list of directory locations to search. The LDAP service
always searches its primary Domino Directory first, then the directory catalog if one is set up on the
server, and finally any secondary Domino Directories that are configured in the Directory Assistance
database but that are not also configured in the directory catalog. If a search is unsuccessful in any
of these directories, the LDAP service can refer LDAP clients to an LDAP directory on a remote
server, if the Directory Assistance database is configured to do this.

The Domino LDAP service is compliant with LDAP v3 and v2.

122 Inside Notes: The Architecture of Notes and the Domino Server

The LDAP schema
Each entry in an LDAP directory consists of one or more attributes. Each attribute has a name and a
value. For example, the standard LDAP attribute cn typically is given an entry’s common name —
for example, Phyllis Spera — as its value. Each attribute has associated syntax that determines the
format for the attribute value. Attributes can be required or optional.

A group of related attributes that collectively define an object that a particular type of entry
represents is called an object class and is defined by the special attribute, objectClass. For example,
Person is a standard object class associated with entries for people. Multiple object classes can
collectively represent an object class structure, with object classes lower in the structure inheriting
attributes from object classes higher in the structure.

The set of objectClass attributes defined for a particular LDAP server make up the schema.

The default Domino LDAP service schema includes many standard LDAP attributes and object
classes as well as some that are specific to Domino.

Domino LDAP schema attributes
LDAP attributes defined in the Domino LDAP schema usually correlate to fields in the Domino
Directory. The name of a field and the name of the attribute to which the field correlates are not
necessarily the same. Some attributes in the default schema don’t have a field correlation and are
accessible from LDAP, but not from Notes/Domino.

Domino LDAP schema object classes
LDAP object classes defined by the Domino LDAP schema usually correlate to forms in the Domino
Directory. The default Domino LDAP schema defines the object class structures that are described in
the following tables.

DominodominoPerson

inetOrgPerson draftinetOrgPerson

RFC 2256organizationalPerson

RFC 2256person

RFC 2256top

Schema sourceObject class structure

Domino$PersonGeneralInfo*

RFC 2256top

Schema sourceObject class structure

* Extends the dominoPerson object class, by default.

DominodominoGroup

RFC 2256groupOfNames

RFC 2256top

Schema sourceObject class structure

RFC 2256locality

RFC 2256top

Schema sourceObject class structure

DominodominoServer

RFC 2256top

Schema sourceObject class structure

Chapter 7: Directories 123

DominodominoOrganization

RFC 2256organization

RFC 2256top

Schema sourceObject class structure

DominodominoOrganizationalUnit

RFC 2256organizationalUnit

RFC 2256top

Schema sourceObject class structure

Schema extensions
To extend the directory schema, you add attributes or object classes to the schema. to extend the
standard Domino LDAP schema, you use the Domino Designer to add forms or subforms to the
Domino Directory. New forms and subforms added following specific procedures create,
respectively, new object classes and new auxiliary object classes, which are object classes that extend
one or more structural object classes. After extending the schema, administrators can use the server
command tell ldap reloadschema to update the schema in memory, or they can wait for the
Designer server task to do this.

Schema checking
There is a NOTES.INI setting that administrators can use to enforce schema checking. Enforcing
schema checking ensures that entries in the directory contain all the attributes required by the object
class(es) associated with those entries and that all attributes contained in the entries are allowed by
the object classes.

Schema information
There are two ways to find out about the directory schema. The administrator can use LDAP search
commands to search the schema entry in the Domino Directory. In addition, the Domino LDAP
Schema database (SCHEMA50.NSF) presents schema information in an easy-to-understand format.
Administrators can use the server command tell ldap exportschema on the server that runs the
LDAP service to build and update this database or they can wait for the Designer server task to do
this.

LDAP service authentication and access control

Authentication
The LDAP service supports anonymous LDAP client connections, name-and-password
authentication, and SSL certificate authentication. SSL certificate authentication occurs using the
Simple Authentication and Security Layer (SASL) EXTERNAL method. Administrators control
which combination of these client authentication methods to use.

Access control
The Domino Directory ACL and LDAP configuration options control the extent to which LDAP
users can search and modify attributes in the Domino Directory. LDAP users can never access
directory information that is not part of the directory schema.

Search access
Administrators use an LDAP service configuration option to define the fields in the Domino
Directory that anonymous LDAP users can search. The Domino Directory ACL does not control
search access for anonymous LDAP users. Anonymous LDAP users can search the fields the
administrator defines for anonymous LDAP access even when the Anonymous entry in the Domino
Directory ACL has “No Access.”

The Domino Directory ACL does, however, control search access for authenticated LDAP users;
authenticated LDAP users can search all attributes in the directory schema if they have at least
Reader access in the Domino Directory ACL.

124 Inside Notes: The Architecture of Notes and the Domino Server

Write access
Administrators use an LDAP service configuration option to enable LDAP write access to the
Domino Directory. By default LDAP write access is not allowed. If write access is enabled, the
Domino Directory ACL controls the extent to which both authenticated and anonymous LDAP users
can modify entries in the Domino Directory. For example, an LDAP user with Editor access can
modify all attributes defined by the schema, whereas an LDAP user with Author access and the
UserModifer role can modify only attributes associated with Person documents.

By default, the Domino Directory gives anonymous users No Access, so by default, anonymous
LDAP users can’t make changes to the directory if write access is enabled.

LDAP searches in secondary Domino Directories
The LDAP service can use directory assistance to search secondary Domino directories in addition
to the primary Domino Directory. When processing an LDAP client request, the LDAP service can
then search for information in these secondary directories, even when the search is successful in the
primary Domino Directory.

If a server directory catalog is configured on a server running the LDAP service, the LDAP service
searches the directory catalog before using directory assistance.

LDAP referrals to other directory servers
The LDAP service can use directory assistance to refer LDAP clients that connect to the LDAP
service to another LDAP directory on a remote server. A referral can occur only if a search is not
successful in the Domino LDAP service’s primary Domino Directory, a server directory catalog, and
secondary Domino Directories configured in directory assistance. To return a referral, the Domino
LDAP service doesn’t connect to and search the LDAP directory. Instead, it uses information in the
Directory Assistance database to return a referral, and the clients then connect themselves.

By default, for a given search, the LDAP service can refer an LDAP client to only one LDAP
directory. However, you can configure the LDAP service to return more than one referral.

LDAP service and authentication of clients that use a third-party server
A third-party, LDAP-compliant server, such as a Netscape Enterprise Server, can use passwords or
X.509 certificates stored in the Domino LDAP service’s directory to authenticate its clients.

LDAP alternate language searches
The LDAP service can be configured so that LDAP users can use their native languages to create
search queries and display the results. For any Person document in the Domino Directory, the
administrator can create an Alternate Language Information document for each alternate language
needed. An Alternate Language Information document includes fields that also appear in a Person
document, but the administrator uses the alternate language to enter values for the fields. This
feature is compliant with RFC 2596.

To derive an attribute for a field in an Alternate Language Information document, the LDAP service
tags the attribute derived from the Person document with an alternate language subattribute. For
example, the LDAP attribute sn maps to the last name in a Person document, and the attribute
sn;lang-ja maps to a Japanese last name in a Japanese Alternate Language Information document.

Note that this feature is different from the alternate certified names feature used by Notes users.
Alternate certified names allow Notes users to use their native languages to address mail and to
view names in Notes databases. In contrast, the alternate language support discussed here is useful
only in the context of LDAP searches.

LDAP service statistics
The server command show stat ldap generates a variety of LDAP service statistics, including
statistics about LDAP connections, searches, operations, and sessions.

Chapter 7: Directories 125

Other LDAP features Domino offers
Domino provides several LDAP features that are independent of the Domino LDAP service and that
the administrator can use with any LDAP directory server.

Domino Web client authentication using a remote LDAP directory
When Web clients connect to a Domino Web server, the Web server can look up passwords or X.509
certificates in an LDAP directory on another server — for example, on a third-party LDAP directory.

Group lookups in an LDAP directory for database access control
Database ACLs can contain groups stored in an LDAP directory on another server. When Web or
Notes users attempt to access these databases, the server can search for their names in these to
determine their database access.

LDAPSEARCH utility
Domino and Notes come with the utility LDAPSEARCH, which is useful for searching any LDAP
directory.

User migration from a foreign LDAP directory to the Domino Directory
The migration tool available in the Domino registration program can migrate LDAP directory
entries stored in an LDAP Data Interchange Format (LDIF) file into the Domino Directory. The
LDAPSEARCH utility can be used to create the LDIF file.

LDAP accounts for Notes users
Notes users can create accounts in their Personal Address Books for LDAP servers that they want to
search or administrators can use User Setup Profiles to set up these accounts for users automatically.
Then using Boolean operators, Notes users can search for information about people. In addition,
Notes users can do LDAP-style searches on directories stored locally on the clients.

Directory search orders
In an environment with multiple directories, the order in which the directories are searched depends
in part on the nature of the search.

�� Name lookups in multiple directories for Web client authentication

�� Group lookups in multiple directories for database access verification

�� LDAP searches in multiple directories

�� Notes mail addressing lookups in multiple directories

Name lookups in multiple directories for Web client authentication
To authenticate a Web user connecting to a Domino Web server, the server searches directories for
the Web user name in the following order.

1. The primary Domino Directory on the Web server.

2. Directory catalog on the server. If the server finds the name, it refers to its Directory Assistance
database to determine if the Domino Directory from which the name came is configured with a
naming rule that is trusted for authentication and that matches the user name. The server won’t
authenticate the client if it doesn’t find such a naming rule.

3. All directories* defined in the Directory Assistance database that are not Domino Directories
already configured in the directory catalog and have a naming rule that is trusted for
authentication and that matches the Web user name.

If there is more than one directory assigned a trusted naming rule that matches the user name,
the directory with the most specific matching rule is searched first. If directories have identical
trusted naming rules that match the Web user name, search orders assigned to these directories
determine the order in which the directories are searched.

* LDAP directories are searched only if their Directory Assistance documents allows Notes/Web
searches.

126 Inside Notes: The Architecture of Notes and the Domino Server

Group lookups in multiple directories for database access verification
When a Web or Notes user attempts to access a database on a server, if the database ACL includes a
group name, the server looks for the group as follows to determine if the user’s name is included the
group:

1. Primary Domino Directory.

2. One LDAP directory configured in the server’s Directory Assistance database with:

�� The “Group Expansion” option selected

�� A trusted naming rule that matches the group name specified in the database ACL

Group lookups for ACL verification don’t occur in a server’s directory catalog or in any secondary
Domino Directories. In addition, the lookup can occur in only one remote LDAP directory. Note that
these restrictions don’t apply to group lookups for mail addressing.

LDAP searches in multiple directories
A server running the LDAP service searches directories in the following order to process LDAP
search requests:

1. The primary Domino Directory on the server.

2. Directory catalog on the server. If the LDAP user searches for an attribute that maps to a field
that is not configured in the directory catalog, if a secondary Domino Directory is configured in
the Directory Assistance database as well as in the directory catalog, the search continues to the
complete entries in the secondary Domino Directory itself. For each entry, the directory catalog
stores the replica ID of the Domino Directory from which the entry comes as well as the UNID for
the entry. This information ensures that the LDAP service can quickly locate the complete entries.

3. Domino Directories defined in the server’s Directory Assistance database that are not included in
the directory catalog.

If an LDAP user doesn’t specify a search base*, the server searches all Domino Directories
according to the search orders assigned to the directories. The server searches Domino Directories
with no assigned search order alphabetically according to their specified domain names.

If an LDAP user specifies a search base, only Domino Directories assigned naming rules that
correspond to the search base are searched. If there is more than one directory assigned a naming
rule that matches, the directory with the most specific matching rule is searched first. For
example, if a user specifies the search base “ou=Sales,o=Acme,” the server first searches a
directory with the rule /Sales/Acme, before searching a directory with the rule */Acme. If
directories have identical naming rules that match the search base specified by the user, search
orders assigned to these directories determine the order in which the directories are searched.

4. If the search is not successful in any Domino Directory, the server can pick an LDAP directory
enabled for LDAP clients in the Directory Assistance database to refer clients to and the clients
can then connect to the directory server themselves.

If an LDAP user doesn’t specify a search base, the LDAP service uses search orders assigned to
LDAP directories that are enabled for LDAP users to determine the order in which to refer clients
to these directories.

Note By default, for a given search request the LDAP service can return only one referral, but
administrators can use the NOTES.INI setting LDAPReferrals to change the number allowed.

If an LDAP user specifies a search base, the server picks an LDAP directory enabled for LDAP
users with a naming rule that matches the specified search base. If there is no such directory, the
server doesn’t return a referral. If there is more than one such directory, the server picks the one
with the most specific matching rule before picking one with a less-specific rule. If directories have
identical naming rules that match the search base specified by the user, search orders assigned to
these directories determine the order in which the LDAP service picks them for referrals.

* A search base is a distinguished name used to represent the location in the directory tree at which
to begin a search.

Chapter 7: Directories 127

Notes mail addressing lookups in multiple directories
When a Notes user enters a user or group name in an address field of a Notes memo, directories are
searched in the following order. If a name is found during any step, searches only continue for the
name if the “Recipient name lookup” field in the Notes user’s current Location document is set to
“Exhaustively check all address books.”

1. The user’s Personal Address Book.

2. A local mobile directory catalog.

For searching to continue to a server, the “Mail file location” field in the active Location
document must be set to “On server.”

3. The primary Domino Directoryon the user’s mail server or directory server.

4. Directory catalog on the server.

5. Directories defined in the server’s Directory Assistance database that are not included in the
directory catalog.

If the user enters a common name rather than a hierarchical one, the server searches all Domino
Directories and LDAP directories* according to the search order specified for the directories.

If the user enters a hierarchical name, only directories assigned naming rules that correspond to
the hierarchical name the user entered are searched. If there is more than one directory assigned
a naming rule that matches, the directory with the most specific matching rule is searched first.
For example, if a user enters the name Phyllis Spera/Sales/Acme, the server first searches a
directory with the rule /Sales/Acme, before searching a directory with the rule */Acme. If
directories have identical naming rules that match the name entered by the user, search orders
assigned to the directories determine the order in which the directories are searched.

* LDAP directories are searched only if their Directory Assistance documents allow Notes/Web
searches.

Directory servers
A directory server is a Domino server that administrators configure and dedicate to providing
directory services. A directory server reduces the workload of servers — for example, mail servers
— that you might ordinarily configure to also provide directory services.

Notes users can set up a directory server in their Location documents so that name lookups occur on
the directory server rather than on their mail servers. Administrators can also use User Setup Profile
documents to “push” a directory server configuration to Notes clients.

Typically, a directory server is configured as follows:

�� Replicas of any secondary Domino Directories are created on the directory server and
directory assistance points to these replicas.

�� The Dircat task builds and updates source directory catalogs on the directory server.

�� The LDAP service runs on a directory server.

128 Inside Notes: The Architecture of Notes and the Domino Server

User and group synchronization between Domino and Windows NT
Administrators can synchronize user and group information between Domino and Windows NT
and then use either product to perform many user and group management tasks. Domino adds
Notes-specific menu choices to the Windows NT User Manager. The Notes User Manager Extension
(NUME) communicates the administrator’s choices to Domino.

Domino tasks administrators can complete from Windows NT
Administrators can perform these Domino administration tasks from Windows NT:

Register Domino users from Windows NT
As administrators create new Windows NT user accounts or if they have existing Windows
NT user accounts, they can also register the accounts as either Notes or Internet users in the
Domino Directory. These options are available: use Windows NT full names to create
Domino user first names, middle initials, and last names; share passwords between Windows
NT and Domino; use the Windows NT user name and host domain as the Internet Address in
Domino Person documents.

Create Domino groups from Windows NT
As administrators create new Windows NT group accounts or if they have existing Windows
NT group accounts, they can also register the accounts as groups in the Domino Directory.
These options are available: register members of the groups as users in the Domino Directory;
customize the members of the group for the Domino Directory; if a local groups include
global groups as members, add the global groups to the Domino Directory too.

Delete Domino users and groups from Windows NT
Administrators can delete a user or group account from Windows NT and simultaneously
delete the corresponding Person or Group document from the Domino Directory. To delete a
Person document, the Domino Administration Process deletes all other references to the user
from the Domino Directory and from database ACLs. In addition, administrators can choose
to delete a user’s mail file.

Administrators can simultaneously delete a Windows NT user and a Domino user only if the
two accounts are linking Windows NT user accounts with Domino Person documents — that
is, the Windows NT user names matches the “Network account name” field in the Person
document.

Windows NT tasks administrators can complete from Domino
Administrators can perform these Windows NT administration tasks from Domino:

�� Create Windows NT user accounts from Domino

As administrators register users in Domino, they can create Windows NT accounts for the
users with common passwords used between Windows NT and Domino. In addition, they
can add the users to a Windows NT group.

�� Rename Windows NT user accounts from Domino

If administrators change a Domino user’s common name, they can add the new name as the
Windows NT user’s full name. The Domino and Windows NT user records must be linked.

�� Delete Windows NT user accounts from Domino

When administrators delete a Notes user, they can delete the corresponding NT account. The
Domino and Windows NT user records must be linked.

�� Delete Windows NT groups from Domino

When administrators delete a Domino group, they can delete the corresponding Windows
NT group account.

Chapter 7: Directories 129

Linking Windows NT user accounts with Domino Person documents
To delete or rename a user account in Windows NT and have the change occur in Domino (and vice
versa) the entry in the “Network account name” field in the Domino Person document must match
the Windows NT user account name. When administrators register Domino users from Windows
NT and when they create Windows NT user accounts as they register users in Domino, this linking
occurs automatically.

If Windows NT users and Domino users already exist independently, administrators can use a
synchronization option available in User Manager for Domains to link the two types of user records.
Using this option causes the User Manager to attempt to unambiguously match one of a user’s
Windows NT names with one of the names in a Person document. If it’s able to do this, the User
Manager updates the “Network account name” field in the Person document with the Windows NT
user name and adds the Windows NT full name to the list of names in the User name field in the
Person document. In addition, administrators can specify one password as both the Windows NT
user password and the Domino user’s Internet password. After running synchronization,
administrators can rename and delete user records from either Windows NT or Domino.

If a Windows NT user account name is changed, running synchronization again updates the
corresponding Person document accordingly.

Administrators can also run synchronization to specify a common Windows NT user and Domino
Internet user password.

Migrating users to Notes/Domino
Migration tools in the Domino Administrator allow administrators to easily migrate information
from an existing messaging and directory system to Notes/Domino. With the migration tools,
administrators can import users from a foreign directory, register them as Notes users, and then
convert mail from supported mail systems to Notes mail. The migration tools lets administrators
migrate all users from a foreign directory or select specific users to migrate.

�� Migrating cc:Mail users

�� Migrating Microsoft Mail Users

�� Migrating Microsoft Exchange users

�� Migrating Windows NT users

�� Migrating users from an LDIF file

�� Migrating users from Novell GroupWise

�� Migrating users from the Netscape Messaging Server

Migrating cc:Mail users
Using the cc:Mail™ to Notes migration tool in the Domino Administrator, administrators can import
cc:Mail users and groups from a selected post office and register them as Notes users. The migration
process:

�� Imports local users and groups from the post office (users in the directory whose locations are
designated as L or R) and creates entries for them in the Domino Directory

�� Lets administrators create Notes IDs and mail files for imported users

�� Migrates the contents of mail boxes from the cc:Mail post office server

�� Converts Organizer® 2.x for cc:Mail Group Scheduling files (OR2 files) into Notes group
scheduling format (NSF)

130 Inside Notes: The Architecture of Notes and the Domino Server

The following table shows the data that the cc:Mail to Notes migration tool migrates from a cc:Mail
post office to Notes.

Not migratedUndeliverable mail reports

Not migratedTrash folder

Sender and recipient informationSender and recipient information

Not migratedRules

Return receiptsReturn receipts

Not migrated ++Read and unread marks

Group document in Domino DirectoryPublic mailing list

Group documents in Personal Address Book +Private mailing lists

Domino DirectoryPost office directory

PasswordPassword

Entries in mail file, Personal Journal, and Personal Address
Book

Organizer data (OR2 files)

Not migratedMobile sessions log

Messages and attachments ****Messages and attachments in migrated folders

Message priority ***Message priority

Message dateMessage date

Folders and subfolders**Folders and subfolders

Not migratedClipboard folder

Not migratedBulletin board messages on mobile post offices

Discussion databasesBulletin boards

Not migrated*Archives

Notescc:Mail

* Archives are not migrated by the migration tool in the Domino Administrator, but after you
migrate users, they can run an upgrade wizard at their workstations to migrate their message
archives.

** For cc:Mail Release 8 clients, the migration converts nested folders and the messages they contain.

*** The migration tool preserves message status in cc:Mail messages marked Urgent (an exclamation
mark appears beside the message in the Notes Inbox or folder). However, Notes does not assign a
special status to migrated cc:Mail messages that were marked Low priority.

**** During migration rich text attributes such as color, font style, font size, underlining, boldface,
bullets, embedded objects, and doclinks are not preserved.

+ Private mailing lists are automatically sent to users in a Notes message attachment. Users then run
an upgrade wizard at their workstations to migrate these lists to their Notes Personal Address
Books. The upgrade wizard also migrates private addresses that cc:Mail Release 2.x and 6.x clients
maintain locally in the file PRIVDIR.INI. The upgrade wizard does not support migrating private
addresses for cc:Mail Release 8.x clients.

++ All migrated messages are marked unread.

Chapter 7: Directories 131

Migrating Microsoft Mail Users
Using the Microsoft Mail to Lotus Notes migration tool in the Domino Administrator,
administrators can import users and groups from a selected Microsoft Mail postoffice and add them
to Notes. The migration process:

�� Imports users and groups from the postoffice and creates entries for them in the Domino
Directory

�� Lets administrators create Notes IDs and mail files for imported users

�� Migrates the contents of mailboxes (MMF files) from a central location, such as the Microsoft
Mail Postoffice server

Administrators must be able to map a drive to the location of the MS Mail mailboxes from the
workstation running the Domino Administrator.

Migration of mailbox information is supported for Microsoft Mail versions 3.2, 3.5, and 3.6.

A separate user upgrade wizard allows the migration of messages from an off-line Microsoft Mail
mailbox.

The following table shows the data that the Microsoft Mail to Notes migration tool migrates from a
Microsoft Mail postoffice to Notes.

Not migratedWastebasket or Deleted mail folder

Not migratedShared and group folder

Sender and recipient informationSender and recipient information

Read and unread statusRead and unread status

Domino DirectoryPostoffice address list

Personal Address book*Personal Address Book

PasswordPassword

Not migratedOutbox folder

Messages and attachmentsMessages and attachments

Message date and priorityMessage date and priority

Not migratedInterpersonal mail messages (IPM)

Group document in Domino DirectoryPublic groups

Not migratedDelivery failure messages

Not migratedCustom message types, including Scheduler messages

Notes Microsoft Mail

* Personal Address Books are automatically sent to users in a Notes mail message attachment. Users
then run an upgrade wizard at their workstations to migrate address book information to their
Notes Personal Address Books.

Migrating Microsoft Exchange users
Using the Microsoft Exchange to Notes migration tools in the Domino Administrator, administrators
can import Microsoft Exchange users and distribution lists from a selected server and add them to
the Domino directory as Notes users and groups. The migration process:

�� Imports users and distribution lists from the Exchange server and creates entries for them in
the Domino Directory

�� Lets administrators create Notes IDs and mail files for imported users

�� Migrates the contents of mailboxes (PST files) that are located in a central location, such as on
the Microsoft Exchange server.

132 Inside Notes: The Architecture of Notes and the Domino Server

The following table shows the data that the Microsoft Exchange migration tool migrates from the
Microsoft Exchange server to Notes:

To Do tasksTasks

Sender and recipient informationSender and recipient information

Not migratedRoles and Permissions on Mailboxes and Folders

Not migrated ***Read and unread status

Not migratedPublic folders

Not migrated Private Address Book

Person documents in Domino DirectoryExchange directory

Drafts folderOutbox folder

To Do tasksNotes

Messages with attached Microsoft Office documentMicrosoft Office documents

Messages and attachmentsMessages and attachments

Message date and priorityMessage date and priority

Not migratedJournals

Not migratedDocument links

Not migratedEncrypted messages

Group document in Domino DirectoryDistribution lists

Not migratedDigital signatures

Not migratedDelivery failure messages

Trash folder**Deleted items

Not migratedCustom message types, including Scheduler
messages

Personal Address Book entries *Contacts

Not migratedCalendaring and scheduling information

Equivalent Notes dataMicrosoft Exchange data

* Contacts, which are stored on the Exchange server, are available for Outlook clients only. During
migration Contacts information is placed in a Notes Personal Address Book database, which is
automatically mailed to the user. Users run the upgrade wizard for Microsoft Exchange to copy
information from this temporary database to the Personal Address Book on the Notes client.

** Depending on the user preferences set at the Notes client, messages migrated to the Trash folder
may be deleted when users close their mail files.

*** Release 5 of the Domino migration tool for Microsoft Exchange marks all messages migrated
from Microsoft Exchange as unread in the Notes mail file.

Migrating Windows NT users
Using the Microsoft Windows NT to Notes migration tools in the Domino Administrator,
administrators can import users and groups from a selected Windows NT domain and register them
as Notes users. The migration process:

�� Imports users and groups from the Windows NT domain list and creates entries for them in
the Domino Directory

�� Lets administrators create Notes IDs and mail files for imported users

Chapter 7: Directories 133

The migration tool lets administrators choose whether or not to:

�� Generate random passwords for users with no passwords

�� Overwrite existing passwords with random passwords

�� Add the Windows NT full name to the Notes User name field in a Person document

�� Add the unique Windows NT user name to the Short name field in a Person document

�� Allow the addition of empty groups to Notes

Migrating users from an LDIF file
LDIF is a data format standard for conveying information from an LDAP directory. By using an
LDIF export tool to create an LDIF file and then using the Domino migration tool for LDIF,
administrators can migrate users from any LDAP-compliant external directory and add them to the
Domino Directory.

The migration tool for LDIF creates Person documents in the Domino Directory from the person
entries in an LDIF file. Optionally, administrators can create Notes IDs and mail files for migrated
users, and register them as Notes users.

Currently, the migration tool does not process LDIF group entries.

Migrating users from Novell GroupWise
Using the Domino Upgrade Service for Novell GroupWise in the Domino Administrator,
administrators can import GroupWise 4 or GroupWise 5 users from a selected post office and
register them as Notes users. The migration process:

�� Imports users and groups from the post office and creates entries for them in the Domino
Directory

�� Lets administrators create Notes IDs and mail files for imported users

�� Migrates the contents of mailboxes from the GroupWise post office

Migrating users from the Netscape Messaging Server
Using the Domino migration tool for Netscape Messaging Server in the Domino Administrator,
administrators can import Netscape messaging users registered in a NetScape Directory Server and
register them as Notes users. The migration process:

�� Imports users and groups from the Directory server and creates entries for them in the
Domino Directory

�� Lets administrators create a Notes ID and mail file for imported users

�� Migrates the contents of IMAP4 mailboxes from the Netscape Messaging Server

Migration requires a Netscape Mail Server 3.5 which uses the Netscape Directory Server for storing
user information. The migration tool migrates only mail that is stored in the IMAP mailboxes, not
the mail in POP3 mailboxes or local mail.

134 Inside Notes: The Architecture of Notes and the Domino Server

Chapter 8
The Administration Process

This chapter provides a detailed technical discussion of the Administration Process.

The Administration Process
This section offers an in-depth look at how the Administration Process processes administration
requests. An administration request is created by the administrator or a user performing an action,
by the Administration Process itself, or by a server. Each request represents an administration task
and is run by the Administraton Process server task. When an administration request is generated,
it appears in the Administration Requests database (ADMIN4.NSF).

The Administration Requests database is created
When you set up the first server in the domain, Domino automatically creates the Administration
Requests database for the Domino Directory. This database is propagated when additional servers
pull the database during their initial server setup. Replication enforces consistency among the
Administration Requests databases on servers in a domain.

The next few sections explain how the Administration Process determines the requests it has to
process and how it schedules those requests. The discussion also includes an explanation of how
threads process administration requests as well as where and when the Extension Manager is called
upon to extend the processing of core administration requests.

The Administraion Process checks the scheduling attributes
The Administration Process checks the Administration Requests database for requests that need
processing according to the scheduling attribute of the request. The scheduling attribute for each
request controls when a request is processed. For example, the “Create new mail file” request is
processed immediately, while the “Add Internet Certificate” request is processed according to an
interval listed in the Server document and defined by the administrator. The scheduling attribute
is fixed and cannot be modified.

How and when the Administration Process uses formulas
The Administration Process checks the scheduling attribute first, and then, recognizing whether it is
the administration server of the Domino Directory or not, it determines which formula to use for
determining which requests to process. The Administration Process uses a formula to determine
what to process and uses the scheduling attribute to determine when to process a request.

The administration server for the Domino Directory looks for requests in this order:

1. Requests that only the administration server processes. These are requests that affect the
Domino Directory or that the administration server must sign before they can be processed.
The integrity of the request is ensured if the request is signed by the administration server of
the Domino Directory because of the integrity of that server.

2. Requests that every server in the domain processes.

3. Requests for which the administration server for the Domino Directory is the target.

The other servers in the domain look for requests in this order:

1. Requests that every server in the domain processes

2. Requests for which the current server is the target server.

135

The Administration Process checks the Response documents
To determine which requests to process, the server first looks for unprocessed requests. The server
then looks for previously processed requests that the administrator has requested should be
processed again. To request reprocessing, the administrator selects “Perform Request Again” in the
Administration Process Log. In this way, the Administration Process prepares a table of requests
that need processing.

After processing a request, the Administration Process either generates a response document called
the Administration Process Log or stores the Notes ID of the request in an internal table. If the
Administration Process does any work or experiences an error, it generates a response document for
that request. If a request does not require any work on the part of the Administration Process, the
Notes ID for that request may be stored in an internal table. The administrator can designate
whether these requests are stored in the internal table of Notes IDs by entering Yes or No in the field
“Store Admin Process log entries when status of no change is recorded:” in the Server document.
Storing the request Notes IDs internally reduces the size of the Administration Requests database.

Worker threads process administration requests
The Administration Process is multi-threaded. The main administration process thread looks for
new work and then creates a table of note IDs. Worker threads wait until a new copy of the note ID
table is available. One thread then begins processing the first ID; a second thread processes the next;
and so forth. After processing a request, a thread looks for another ID and the process continues
until all IDs are processed. By default, three threads are assigned to the Administration Process;
however, the administrator can customize the number of assigned threads. For example, if
maintaining the Domino Directory is a high priority, the administrator may designate a higher
number of threads.

How threads process requests
After picking up a request, a thread makes a series of decisions. First, the thread determines whether
the Administration Process or a third-party product will process the request. If it is a third-party
request, the Administration Process opens a process queue on the server and moves the request to
the queue. The name of the queue is the name specified in the Proxy Process field of the
administration request.

If it is an Administration Process request, the Administration Process checks whether the request is
from another domain. If the request originated in another domain, the Administration Process
checks the configuration documents in ADMIN4.NSF and the integrity of the request. If the
appropriate configuration documents exist and the request has not been tampered with, processing
begins immediately.

If the request originated in the current domain, the Administration Process verifies whether the
creator of the request has the authority to perform the action indicated by the request and checks the
integrity of the request. If the request is valid and its integrity is intact, the Administration Process
processes it.

136 Inside Notes: The Architecture of Notes and the Domino Server

Table of Administration Process scheduling attributes
This table describes the five scheduling attributes.

The Administration Process checks the Administration Requests database on a set
execution schedule to locate and process the “Delete unlinked mail file” request. No
other administration request uses this scheduling attribute.

Set execution
schedule

The Administration Process checks the Administration Requests database at least one
time per week at a designated interval defined in these two fields in the Administration
Process section of the Server document: Start executing on (day of the week) and Start
executing at (time).

Delayed

The Administration Process checks the Administration Requests database at the time
specified in the “Execute once a day requests at” field in the Administration Process
section of the Server document.

Daily

The Administration Process checks the Administration Requests database every n
minutes. The value of n is set in the Interval field in the Administration Process section
of the Server document.

Interval

The Administration Process checks the Administration Requests database at one-minute
intervals to locate and begin processing Immediate requests.

Immediate

DescriptionAttribute

To override the designated schedule for a request, use the server commands.

For more information on server commands, the Administration Process, and the Administration
Requests database, see Administering the Domino System.

Chapter 8: The Administration Process 137

Chapter 9
Replication

This chapter describes, in technical detail, how replication works.

Replicas and replication
To make a database available to users in different locations, on different networks, or in different
time zones, you can create a special type of database copy called a replica. When someone makes a
change to a replica, Domino lets you duplicate that change to the other replicas you created. This
process ensures that all users share the same information. All replicas of a database have an ID in
common. This ID is called the replica ID.

The process of exchanging modifications between replicas is called replication. Replication occurs
only between databases that have the same replica ID. These replicas can have different names,
different database designs, or different documents. As long as they have the same replica ID, you
can replicate them.

As users add, edit, and delete documents in different replicas of a database and as administrators
change design elements, agents, and ACL entries, the contents of the various replicas are no longer
identical. To make the contents identical again, you replicate between the servers that store the
replicas. The most common way to replicate is to create Connection documents in the Domino
Directory. Using Connection documents, you can schedule replication to occur on a regular basis —
for example, once an hour or once a day. You can schedule replication more often when it is very
important to keep replicas synchronized and less often when it is less important to keep replicas
synchronized.

If it is important to synchronize replicas immediately when any change occurs, you can set up a
cluster of servers that remain in constant contact with each other. When a change occurs in a replica
on a cluster server, that change immediately replicates to replicas on the other servers in the cluster.

Keep in mind that creating a replica of a database is significantly different from making a copy of
the database. Because a copy of a database does not have the same replica ID as the original
database, you cannot replicate the copies to synchronize them. Therefore, the copies become
increasingly different as users add, edit, and delete documents.

The benefits of replication
Using replication, you can:

�� Distribute databases to locations around the world

�� Reduce communication costs by letting users access local replicas

�� Distribute network traffic

�� Improve performance of heavily used databases

�� Keep a database that you’re redesigning separate from a production version of the database

�� Keep a database available even if one server becomes unavailable

�� Provide a replica containing only a subset of information that is relevant to a particular work
group

�� Set up Domino system administration — for example, you must create replicas of the Domino
Directory, the Administration Requests database, and other critical system databases

139

�� Give users access to a database even when the server on which they usually access the
database is unavailable.

�� Place a replica of a master template on each server that stores a database that inherits from
the master template

�� Create a backup database from which you can restore information if data becomes corrupted;
since corrupted data often replicates, use this only as a secondary backup method

In addition, you can use replicas and replication to prevent users from seeing your
work-in-progress. For example, if you are planning to update a Web site that you administer, you
can set up a Web staging area, where you design and test new pages. After you test the design
changes, you can replicate the server that contains the Web staging area with the server that
contains the replica of the Web site that is available to users.

The Replicator server task and replication commands
The process of replicating between servers requires a server task and a replication command.
Replicating between a client and a server requires only a replication command.

The Replicator server task
By default, the Replicator server task is loaded when you start a server. The Replicator replicates
with one other server at a time. If your organization has many servers, you may want to run more
than one Replicator on a server so that the server can replicate with more servers simultaneously.
Each Replicator handles one replication session with another server. Using multiple Replicators, you
can create Connection documents that schedule a server to replicate with multiple servers
simultaneously. Using multiple Replicators can shorten the time it takes to replicate with all servers,
letting you schedule more replication cycles.

Note Use multiple Replicators to replicate with multiple servers only. Multiple Replicators do not
share the work of replicating with a single server, even if that server has many databases in common
with the calling server. If you enable multiple Replicators and the server needs to use only one, the
other Replicators remain idle.

Issuing the replication commands
There are three primary ways to issue the replication command between servers:

�� Set up Connection documents to schedule replication at certain times

�� Replicate immediately by issuing a replication command at the server console

�� Replicate immediately by issuing the Replicate command from the Domino Administrator

Using Connection documents to set up a replication schedule
You create Connection documents in the Domino Directory to schedule replication. Each Connection
document controls:

�� When and how often to replicate

�� Which type of replication to use

�� Which databases to replicate

Whenever possible, schedule replication for times when there is the least network activity — for
example, before or after work. You can schedule replication to occur at specific times or during a
range of times and to repeat at a specific interval. Specifying a range of times with a repeat interval
guarantees that replication occurs several times during the day. After the server successfully
replicates, it waits the amount of time you specify as the repeat interval before calling the other
server to replicate again. If you specify a particular time and the source server cannot reach the
destination server at that time, it does not try again; it skips that replication cycle.

140 Inside Notes: The Architecture of Notes and the Domino Server

You can also specify the replication type, which determines whether a server sends or receives
changes during a replication session. There are four choices for replication type:

�� Pull-push, which is the default choice, is a two-way process in which the calling server first
pulls changes from the answering server and then pushes changes to the answering server.
For example, if Server A calls Server B, Server A first pulls all new and modified information
from Server B. Server A then pushes all of its new and modified information to Server B. The
Replicator on Server A does all of the work.

�� Pull-pull is a two-way process in which two servers share the work of replication. First the
Replicator on the calling server pulls new and modified information from the answering
server; then the Replicator on the answering server pulls new and modified information from
the calling server. If the servers are connected through a modem rather than a LAN, however,
both servers pull simultaneously in order to make the best use of the connection.

�� Push-only is a one-way process in which the Replicator on the calling server pushes new and
modified information to the answering server.

�� Pull-only is a one-way process in which the Replicator on the calling server pulls new and
modified information from the answering server.

Using the server console or the Domino Administrator to initiate replication immediately
You can issue commands at the server console to initiate replication immediately, rather than wait
for the time scheduled in the Connection document. These commands correspond to the types of
replication you can schedule in a Connection document, although there is no command to perform
pull-pull replication from the console or the Domino Administrator. You can issue these commands
to replicate all databases the servers have in common, or you can specify a particular database to
replicate.

Initiating replication from a Notes client
If you have the correct access rights, you can replicate databases between Notes clients and Domino
servers. To do this, you can use the Replicator in the Notes client or issue the Replicate command
from the client.

For more information about replicating between Notes clients and Domino servers, see Notes Help.

Replication controls
You can control replication to limit the notes that are replicated, and you can control database access
to prevent replication that you do not want.

Replicating only a portion of a database
By default, replicas exchange all edits, additions, and deletions if the replicating servers have the
necessary access privileges. However, you can alter replication settings to customize replication. For
example, you can do the following:

�� Limit the contents of a replica

�� Limit what a replica sends to other replicas

�� Assign miscellaneous replication settings, such as replication priority, to a database

You can specify replication settings on a new replica as you create it or on an existing replica. You
can also specify some replication settings for multiple replicas at once from a central source replica.
You must have Manager access to a replica to set replication settings for it.

To change the replication settings for a database, you choose File - Replication - Settings. To specify
replication settings for multiple replicas from a single source replica, you specify the destination and
source servers in the Advanced panel of the Replication Settings dialog box. To replicate these
settings to the other databases, you must select “Replication formula” in the Advanced panel of the
Replication Settings dialog box.

Chapter 9: Replication 141

The replication settings for each replica are saved in a special class of note —
NOTE_CLASS_REPLFORMULA. When you use a single source replica to specify settings for
replicas on other servers, Notes creates a separate note for each destination server you list. If you
specify multiple source servers as well as multiple destination servers, Notes creates a separate note
for each source-destination combination. To be sure all replicas have the same settings, replicate
with each source and destination server you specified.

The replication settings
The following table describes the replication settings.

The publishing date for a database on a CD-ROMCD-ROM publishing date

The replication priority of a database used in Connection
documents for scheduling replication

Scheduled replication priority

Whether a replica replicatesTemporarily disable replication

Whether a replica sends changes to the database Encryption
Settings (on the Database Basics tab of the Database Properties
box) to other replicas

Do not send changes in local security
property to other replicas

Whether a replica sends changes to the database title and
Database Catalog categories to other replicas

Do not send changes in database title &
catalog info to other replicas

Whether a replica sends document deletions to other replicasDo not send deletions made in this replica to
other replicas

Which non-document elements this replica receives. These can
be design elements, such as forms and views, agents,
replication formulas, ACL changes, deletions, or fields.
See the table below for more information.

Replicate*

Which documents a replica receivesReplicate a subset of documents*

The size of documents that a replica receivesReceive summary and 40KB of rich text only

The cutoff date, so that a replica only receives documents
created or modified since the date
Which documents are scanned during the first replication after
clearing the replication history

Only replicate incoming documents saved
or modified after: date

When Domino purges document deletion stubs and,
optionally, unmodified documents

Remove documents not modified in the last
x days

DescriptionSetting

*You can customize this setting for multiple replicas from a single source replica.

The Replicate settings
The table below describes how you can use the Replicate settings to affect the way that
non-document design elements replicate.

continued

If selected, allows a replica to receive agents. If deselected, prevents the replica from
receiving agents, although the replica still receives changes made by the agents.

Agents

If selected, allows a replica to receive design changes, such as changes to forms,
views, and folders from a source replica.
If deselected, prevents a replica from receiving design changes. Alternatively, you
can assign source servers Editor access or lower in the ACL; however, doing so
prevents agents from replicating.
Do not select this option when you first create the replica because the new replica
won’t contain any design elements for displaying information.

Forms, views, etc.

DescriptionSetting

142 Inside Notes: The Architecture of Notes and the Domino Server

If deselected, the replica receives all fields in each document received. If selected, you
select a subset of fields to receive, but you should do this only if you have a thorough
knowledge of application design.
If you’re replicating a Domino Directory, you can also choose among minimal
Address Book options. These options let mobile users replicate a small version of a
Domino Directory locally. The minimal Address Book options are also available in
the Space Savers panel.
Note that users can also use a mobile directory catalog to have local access to names
in a Domino Directory.

Fields

If selected, allows the replica to receive document deletions. If deselected, the replica
won’t receive deletions through replication, but users assigned “Delete documents”
access in the replica ACL can still delete documents from the replica.
Note If “Do not send deletions made in this replica to other replicas” (on the Send
panel of the Replication Settings dialog box) is selected for the source replica, this
replica won’t receive deletions from the source replica, regardless of this setting.

Deletions

If selected, allows the replica to receive ACL changes from any server that has
Manager access in the replica’s ACL.

Access control list

If selected, ensures that replication settings specified for multiple destination replicas
from one source replica can replicate. This option is required if you use a central
source replica to manage replication settings for multiple replicas.

Replication formula

DescriptionSetting

Replication formulas
You can also use replication formulas to specify which documents to pull into a database during
replication.

Using the access control list in replication
The access level and access privileges that you give a server in a database ACL determine what the
server can push to that database. The table below shows how the ACL settings affect replication.

Servers to which you want to deny access. Servers in the
OtherDomainServers group are sometimes given No
Access.

�� No changes. Also prevents the
server from pulling changes.

No Access

No servers. You don’t typically use this access for servers.�� New documents. Also prevents
the server from pulling changes.

Depositor

Servers that should never make changes. Servers in the
OtherDomainServers group are often given Reader
access.

�� No changes; server can only pull
changes

Reader

No servers. You don’t typically use this access for servers.�� New documentsAuthor

Servers that users use only to add and modify
documents. In a hub-and-spoke configuration, you
typically give the spoke servers Editor access.

�� All new documents
�� All changes to documents

Editor

Servers you want to use as the source for design changes.
Use Manager access instead if you want one server to
control ACL and design changes.

�� Design elements
�� All elements allowed by lower

access levels

Designer

Servers you want to use as a source for ACL changes. For
tight database security, give this access to as few servers
as possible. In a hub-and-spoke server configuration, you
typically give the hub server Manager access.

�� ACL settings
�� Database encryption settings
�� Replication settings
�� All elements allowed by lower

access levels

Manager

Assign toAllows a server to push these
changes

Access level

Chapter 9: Replication 143

Using the access privileges in replication
For each access level, you can select or deselect these privileges:

�� Create documents

�� Delete documents

�� Create personal agents

�� Create personal folders/views

�� Create shared folders/views

�� Create Java agents

�� Read public documents

�� Write public documents

In general, enable all the privileges that the selected access level allows. This ensures that the server
has access that is as high as users might have and can replicate all user changes. However, to
prevent certain changes from replicating without deselecting privileges for each user, you can
deselect a particular privilege for a server entry in the ACL. For example, to prevent all document
deletions made in a database on a particular server from replicating, deselect “Delete documents” in
the ACL entry for the server. Then when users who have “Delete documents” access in the ACL
delete documents, the deletions don’t replicate.

How replication works behind the scenes
This topic describes pull-push replication, which is the default type of replication.

In the following example, the Replicator on Server A replicates between Server A and Server B. To
do this, the Replicator on Server A uses Notes RPC capabilities to read from and write to replicas on
both servers. No Replicator runs on Server B.

The example refers to a “source” replica and a “destination” replica. When Server A pulls from
Server B, the source replica resides on Server B, and the destination replica resides on Server A.
When Server A pushes to Server B, the source replica resides on Server A, and the destination
replica resides on Server B.

The Replicator task remains idle until the server initiates replication. Then the following occurs:

1. When a server initiates replication with another server, the servers authenticate each other by
finding a certificate in common and testing to be sure the certificates are authentic.

2. The Replicator on the initiating server (Server A) searches the directory of databases on both
servers and constructs a list of the databases on each server.

3. The Replicator searches through the two lists to find databases that have identical replica IDs.

A replica ID is an 8-byte number that Notes creates when it creates a database. The number
represents the day and time that the database was created. Databases that are replicas have the
same replica ID.

4. When the Replicator finds a match, it looks at the replication history in the source replica to find
the last time the replicas replicated.

5. The Replicator searches the source replica for notes that have changed since the last replication.

To find this information, the Replicator issues an NSFSearch request against the source replica.
To receive the correct documents, the Replicator passes NSFSearch the time from the replication
history of the source replica, as well as any replication settings or replication formulas that are in
the destination replica.

NSFSearch returns several pieces of information, including a list of the OIDs of all documents
that have been created or modified since the last replication, as long as they meet the criteria of
the replication settings and replication formula. (If there are no entries in the replication history,

144 Inside Notes: The Architecture of Notes and the Domino Server

NSFSearch returns this information about all documents that meet the criteria of the replication
settings and the replication formula.)

Note An OID consists of three parts: a UNID, which is a unique 16-byte document identifier
that never changes; a sequence number, which indicates how many times the document has
been modified; and a time stamp, which indicates the last time the document was modified.
Each of these parts plays a role in replication.

6. The Replicator issues another NSFSearch request, using the UNIDs in the list it received from
the source replica to search the destination replica for the corresponding notes. It receives
information, including a list of the OIDs, of the corresponding notes.

7. The Replicator examines the two lists of OIDs to determine what to replicate and where conflicts
exist.

�� If the UNID of a note in the source replica does not have a corresponding UNID in the
destination replica, this is a new note. The Replicator pulls that note to the destination replica.

�� If a note in the source replica has the same OID as a note in the destination replica, the notes
are identical; no replication is necessary.

�� For notes that have the same UNID but different OIDs, the Replicator checks the revision
histories of the notes (the $Revisions field) to determine if a conflict exists.

The revision history is a list of when changes were made to a note. Each time someone updates a
note, the time from the OID is transferred to the revision history, and the current time is placed
in the OID. During replication, the $Revisions field is updated so that the revision history in
corresponding notes is identical.

Here are the rules the Replicator follows to determine if there is a conflict:

�� If the revision histories are identical except that one has additional entries, no conflict exists.
This shows that one note has information that can be replicated to the other note. If the
changed note is in the source replica, the changes are pulled to the destination replica.

�� If the revision histories are identical to a point but then both have additional entries, both
have changed and a conflict exists.

8. If a conflict exists, the Replicator checks the field $ConflictAction in the destination document. If
this field contains a “1,” the Replicator can copy the changes from the source document to the
destination document (merge the documents) if the changes in the documents are in different
fields. Otherwise, the Replicator must create a conflict document.

A “1” in the $ConflictAction field indicates that the form for the document was designed with
“Merge Replication Conflicts” enabled or that the field was set with an API program,
LotusScript, or Java.

9. If $ConflictAction=1 in the destination document, the Replicator uses the following logic to
determine if the changes to the documents are in different fields:

�� The Replicator looks at the sequence number in the corresponding field of each document
and compares the numbers to the sequence number that existed in the note when the
divergence began in the revision history. This determines whether the field changed since the
point of divergence.

�� If both fields changed since the point of divergence, there is a conflict and you cannot merge
the documents. If only the source field changed since the point of divergence, you can pull
that field to the destination document. The Replicator copies changes from one document to
another only if it can do so in all the fields that have changed. Otherwise, it creates a conflict
document.

10. If there is a conflict and the Replicator cannot merge the documents, it leaves one of the
documents as it is (the “winner”) and turns the other documents into a conflict document (the
“loser”). The Replicator uses the following logic to determine a winner and a loser:

�� The note that has the highest sequence number in its OID is the winner.

�� If the sequence numbers are the same, the note that has the most recent time stamp in its OID
is the winner.

Chapter 9: Replication 145

11. The losing server always creates the conflict document. While doing a pull, if the losing server is
the destination server, it pulls the winner from the source server and then creates a conflict
document as a response to the winner.

If the losing server is the source server, no conflict document is created during a pull because
the source server cannot pull the winner from the destination server. In this case, the conflict
document is created during the push portion of replication.

12. The Replicator on Server A initiates the push portion of replication. The Replicator on Server A
still does all the work, but the replica on Server A is the source replica and the replica on Server
B is the destination replica.

How the Replicator handles conflicts in ACL, design element, and agent changes
During replication, the Replicator replicates changes to all notes — document, ACL, design element,
and agent. The Replicator follows the same logic and procedure for all of these but does not create a
conflict document for ACL, design element, and agent changes. For these notes, the winner’s
changes replicate, and the loser’s changes are discarded.

How the Replicator handles conflicts when documents are deleted
When a document is deleted, a deletion stub is left behind. This deletion stub includes all the
information needed to identify the document so that the Replicator can follow the preceding
procedure to find changes and replicate them. In case of a conflict with a deletion, the Replicator
follows this rule: If a document is deleted in one replica but edited in another replica, the deletion
takes precedence unless the edited document was edited more than once or the editing took place
after the deletion.

Preventing and resolving replication conflicts
There are ways to minimize the likelihood of having a replication conflict occur and to resolve the
conflicts when they do occur.

Preventing conflicts
Although Domino has significant built-in logic to prevent replication conflicts, they still occur
occasionally. Here are a few things you can do to prevent conflicts:

�� Set up the ACL to minimize conflicts. For example, assign users Author access or lower
instead of Editor access. Limiting the number of Editors in a database reduces the possibility
that someone will accidentally edit someone else’s document.

�� Whenever possible, use the Administration Process to process administration requests.

�� When designing forms, select the Form property “Merge replication conflicts” to
automatically merge conflicts into one document if no fields conflict. Alternatively, use
LotusScript, Java, or an API program to program a $ConflictAction field to merge documents
automatically when no fields conflict.

�� When designing forms, specify a Form property for versioning. This property makes edited
documents into new documents.

�� Use LotusScript to write a conflict handler that lets you resolve conflicts when they occur or
that automatically resolves conflicts.

�� Keep the number of replicas to a minimum.

�� If the database property “Limit entries in $Revisions fields” is set to a value greater than 0,
increase the limit by specifying a greater value than the existing one or specify -1 to remove
the limit.

146 Inside Notes: The Architecture of Notes and the Domino Server

Resolving existing conflicts
When the Replicator determines that it cannot resolve a conflict, it makes the winning document the
main document and makes the losing document a response document that is displayed in the view
as “[Replication or Save Conflict].” To fix this problem, you copy information into one document
and then delete the other document.

To save the winning document
1. (Optional) Copy any information you want from the losing document into the winning

document.

2. Delete the losing document.

To save the losing document
1. Open the losing document in Edit mode.

2. (Optional) Copy any information you want from the winning document into the losing
document.

3. Save the losing document.

This makes the losing document become a main document.

4. Delete the winning document.

Clusters and replication
A Domino cluster is a group of servers that keep in constant contact with each other so that you can
provide users with continual access to data, balance the workload between servers, improve server
performance, and maintain performance when you increase the size of your enterprise. The servers
in a cluster contain replicas of databases that you want to be readily available to users at all times.
If a user tries to access a database on a cluster server that is not available, Domino opens a replica
of that database on a different cluster server, if a replica is available. Through replication, Domino
continuously synchronizes databases so that whichever replica a user opens, the information is
always identical.

How cluster replication differs from standard replication
Cluster replication is event-driven rather than schedule-driven. When the Cluster Replicator learns
of a change to a database, it immediately pushes that change to the other replicas in the cluster. If a
cluster server is unavailable for replication, the Cluster Replicator on the source server stores the
replication events in memory until it can push them to that server. If the source server shuts down
before replication completes, the replication events in memory are lost. For this reason you should
use standard replication to perform immediate replication with all members of a cluster when you
restart a cluster server. It is also a good idea to schedule replication between cluster servers on a
regular basis, such as once an hour, to ensure that databases remain synchronized.

Because replication formulas can use a lot of processing power, the Cluster Replicator leaves the
processing of these formulas to the standard Replicator. This reduces the overhead of using cluster
replication. If you use selective replication, therefore, a database may temporarily include
documents that do not match the selection formula. Domino deletes these documents when you use
standard replication.

In addition, cluster replication does not honor the settings in the Advanced panel in the Replication
Settings dialog box. The Cluster Replicator always attempts to make all replicas identical. Keeping
replicas identical ensures that users will not notice a difference if Domino opens a different replica
than the one that the users attempted to open.

Note Standard replication does not remove changes to specific database elements, such as the ACL,
agents, or design elements. If limiting replication of these elements is important for a database,
consider using only standard replication, not cluster replication, for that database.

Chapter 9: Replication 147

How cluster replication works
There are several components that work together to make clustering work correctly. The two
components most important in the process of cluster replication are the Cluster Database Directory
and the Cluster Replicator. The Cluster Database Directory contains a document for each database
and replica in the cluster. These documents tell the Cluster Replicator which events to replicate and
where to replicate them. A replica of the Cluster Database Directory resides on every server in the
cluster.

The Cluster Replicator looks in the Cluster Database Directory to determine which databases have
replicas on other cluster servers. The Cluster Replicator stores this information in memory. When
the Cluster Replicator detects a change in the Cluster Database Directory, it updates the information
in memory — for example, adding or deleting a database or disabling replication for a database.
This ensures that the information cached in memory is always the same as the information in the
Cluster Database Directory.

The Cluster Replicator also creates a queue to receive notifications of changes to databases in the
cluster. The Cluster Replicator registers the queue with a Domino internal function that detects
database changes and sends notifications to the queue each time a database change occurs. The
notifications include the replica IDs and path names of the databases, as well as the note IDs of any
changed notes. The Cluster Replicator looks in this queue once a second for new notifications. It then
checks the information from the Cluster Database Directory to see if any of the changed databases
are on another server in the cluster. It then uses basic replication to push the changes to the
appropriate servers. It checks the same things that the standard Replicator checks — UNIDs, OIDs,
revision histories, sequence numbers, and so on. It also honors the ACL settings.

Because cluster replication can result in so many replications, the Cluster Replicator writes to the
replication history only once an hour. It stores the changes in a queue until it writes them.

148 Inside Notes: The Architecture of Notes and the Domino Server

Chapter 10
Clusters

This chapter describes, in technical detail, how clusters and failover work.

Domino clusters
A Domino cluster is a group of two to six servers that you use to provide users with constant access
to data, balance the workload between servers, improve server performance, and maintain
performance when you increase the size of your enterprise. The servers in a cluster contain replicas
of databases that you want to be readily available to users at all times. If a user tries to access a
database on a cluster server that is not available, Domino opens a replica of that database on a
different cluster server, if a replica is available. Domino continuously synchronizes databases so
that whichever replica a user opens, the information is always identical.

Each server in a cluster contains cluster components that are installed with the Lotus Domino
Enterprise Server license. These components and the Administration Process perform the cluster
management and monitoring tasks that run the cluster. The components keep replicas synchronized,
and they continually communicate with each other to ensure that the cluster is running efficiently
and smoothly. In addition, you use the components to set limits for workload balancing, track the
availability of servers and databases, and add servers and databases to the cluster.

The benefits of clusters
Clustering servers provides many benefits.

High availability of important databases
When a hardware or software problem occurs, cluster servers redirect open database requests
to other servers in the cluster. This process, which provides users with uninterrupted access to
important databases, is called failover. Clusters provide failover for business-critical databases
and servers, as well as passthru server failover to other servers in the cluster.

Workload balancing
When users try to access databases on heavily used servers, Domino redirects the user requests to
other cluster servers so that workload is evenly distributed across the cluster. Workload balancing
of cluster servers helps achieve optimum system performance, which leads to faster data access.

Scalability
As the number of users you support increases, you can easily add servers to a cluster to keep server
performance high. You can also create multiple database replicas to maximize data availability and
move users to other servers or clusters as you plan for future growth. As your enterprise grows, you
can distribute user accounts across clusters and balance the additional workload to optimize system
performance within a cluster.

Data synchronization
A key to effective clustering is setting up replicas on two or more cluster servers so that users have
access to data when a server is unavailable or is being used heavily. Cluster replication9 ensures
that all changes, whether to databases or to cluster membership, are immediately passed to other
databases or servers in the cluster. Thus, databases are continuously synchronized to provide high
availability of information.

149

Ease of changing operating systems, hardware, and versions of Domino
When you want to change the hardware, operating system, or Domino release, you can mark the
cluster server as RESTRICTED so that requests to access a database on the server fail over to other
servers that are in the cluster and that contain replicas. After marking a server RESTRICTED, you
can perform system maintenance without interrupting the productivity of your users.

System backup
You can set up a cluster server as a backup server to protect crucial data. You can prevent users
from accessing the server, but cluster replication keeps the server updated at all times.

Cluster requirements
There are special requirements for servers in a cluster and for clients that access those servers.

�� All servers in a cluster must run the Domino Release 5 or Release 4.62 Enterprise Server
license, or the Domino Release 4.5 or Release 4.6 Advanced Services license.

�� All servers in a cluster must be connected using a high-speed local area network (LAN). You
can also set up a private LAN for cluster traffic only.

�� All servers in a cluster must use TCP/IP, be on the same Notes named network, and use the
same set of network protocols.

�� All servers in a cluster must be in the same Notes domain and share a common Domino
Directory.

�� In the domain that contains the cluster, you must specify an administration server for the
Domino Directory. If you do not specify an administration server, the Administration Process
cannot change cluster membership. The administration server does not have to be a member
of a cluster or be running the Enterprise Server license.

�� Each server in the cluster must have a hierarchical server ID. If any server has a flat ID, you
must convert it to a hierarchical ID before you can include the server in a cluster.

�� A server can be a member of only one cluster at a time.

�� Notes clients must run Notes Release 4.5 or higher to take advantage of the cluster failover
feature.

�� Clients who access a cluster server must use TCP/IP.

Cluster components
There are several components that work together to make clustering function correctly. These
include:

�� The Cluster Manager

�� The Cluster Database Directory

�� The Cluster Database Directory Manager

�� The Cluster Administrator

�� The Cluster Replicator

The Cluster Manager
A Cluster Manager runs on each server in a cluster and tracks the state of all the other servers in the
cluster. It keeps a list of which servers in the cluster are currently available and maintains
information about the workload on each server.

When you add a server to a cluster, Domino automatically starts the Cluster Manager on that server.
As long as the server is part of a cluster, the Cluster Manager starts each time you start the server.

150 Inside Notes: The Architecture of Notes and the Domino Server

Each Cluster Manager monitors the cluster by exchanging messages, which are known as probes,
with the other servers in the cluster. Each minute, the Cluster Manager uses the NSPingServer
command to probe the other servers in the cluster to determine the workload and availability of the
other cluster servers. The Cluster Manager issues the NSPingServer command once every minute,
unless you change this default by using the Server_Cluster_Probe_Timeout NOTES.INI setting.

When it is necessary to redirect a user request to a different replica, the Cluster Manager looks in the
Cluster Database Directory to determine which cluster servers contain a replica of the requested
database.

The tasks of the Cluster Manager include:

�� Determining which servers belong to the cluster. The Cluster Manager periodically monitors
the Domino Directory for changes to the ClusterName field in the Server document and the
cluster membership list.

�� Monitoring server availability and workload in the cluster.

�� Informing other Cluster Managers of changes in cluster server availability.

�� Redirecting database requests, based on the availability of cluster servers (failover).

�� Balancing server workloads in the cluster, based on the availability of cluster servers.

�� Logging failover and workload balance events in the log file (LOG.NSF).

When it starts, the Cluster Manager looks in the ClusterName field in its Server document in the
Domino Directory to determine its cluster name. It then looks at the cluster membership list to
determine the names of the other servers that belong to the cluster. It finds this information in the
Server document of each server. It maintains this information in memory in the server’s cluster
name cache. The Cluster Manager uses this information to exchange probes with other Cluster
Managers. The Cluster Manager also uses the cluster name cache to store the availability
information it receives from these probes. This information helps the Cluster Manager perform the
tasks listed above.

The cluster name cache contains the following information:

�� The name of the cluster

�� The names of the servers in the cluster

�� The server availability index of each cluster server, sorted by the most available first

�� The state of the server if it is BUSY, MAXUSERS, or RESTRICTED

�� The cluster probe timeout value

The Cluster Manager checks the modified time of the Domino Directory once a minute and
compares it to the last update time of the cluster name cache. If the modified time of the Domino
Directory shows that the Domino Directory has changed since the time the cluster name cache was
last updated, the Cluster Manager does a lookup in the Domino Directory to see if the cluster
membership or the name of the cluster has changed. The Cluster Manager copies the new
information to the cluster name cache.

To view the information in the cluster name cache, type show cluster at the server console.

The Cluster Database Directory

The Cluster Database Directory (CLDBDIR.NSF) resides on every server in a cluster. The Cluster
Database Directory contains a document for each database and replica in the cluster. This document
contains the database name, server, path, and replica ID, as well as other replication and access
information. The cluster components use this information to perform their functions — for example,
to determine failover paths, control access to databases, and determine which events to replicate to
which servers.

Chapter 10: Clusters 151

The Cluster Database Directory Manager
The Cluster Database Directory Manager task (Cldbdir) on each server creates the Cluster Database
Directory and keeps it up to date. When you first add a server to a cluster, the Cluster Database
Directory Manager creates the Cluster Database Directory on that server. When you add a database
to a cluster server, the Cluster Database Directory Manager creates a document in the Cluster
Database Directory. This document contains information about the new database. When you delete
a database from a cluster server, the Cluster Database Directory Manager deletes the document for
the server. The Cluster Database Directory Manager also tracks the status — for example, Out of
service, Pending, or Delete — of each database.

When there is a change to the Cluster Database Directory, the Cluster Replicator immediately
replicates that change to the Cluster Database Directory on each server in the cluster. This
replication ensures that each cluster member has up-to-date information about the databases in the
cluster.

The Cluster Administrator
The Cluster Administrator performs many of the housekeeping tasks associated with a cluster. For
example, when you add a server to a cluster, the Cluster Administrator starts the cluster tasks, such
as the Cluster Database Directory Manager and the Cluster Replicator. It also adds task names
(Cldbdir and Clrepl) to the ServerTasks setting in the NOTES.INI file so that these tasks start each
time you start the server. The Cluster Administrator also starts the Administration Process, if it is
not already running. When you remove a server from a cluster, the Cluster Administrator removes
these commands from the NOTES.INI file and stops these tasks. In addition, the Cluster
Administrator deletes the Cluster Database Directory on the server and cleans up records of the
server in Cluster Database Directories on other servers.

The Cluster Replicator
The Cluster Replicator task (Clrepl) constantly synchronizes data among replicas in a cluster.
Whenever a change occurs to a database in the cluster, the Cluster Replicator immediately pushes
the change to the other replicas in the cluster. This replication ensures that each time users access a
database, they see the most up-to-date version. The Cluster Replicator also replicates changes to
private folders that are stored in a database. By default, each server in a cluster runs one Cluster
Replicator, but you can run more cluster replicators to improve performance.

The Cluster Replicator looks in the Cluster Database Directory (CLDBDIR.NSF) to determine which
databases have replicas on other cluster members. The Cluster Replicator stores this information in
memory and uses it to replicate changes to other servers. When the Cluster Replicator detects
changes in the Cluster Database Directory, it updates the information in memory — for example, by
adding or deleting a database or disabling replication for a database.

The Cluster Replicator task pushes changes only to servers in the cluster. The standard Replicator
replicates changes to and from servers outside the cluster.

Failover and workload balancing
A cluster’s ability to redirect requests from one server to another is called failover. When a user tries
to access a database on a server that is unavailable or overloaded, Domino connects the user to a
replica of the database on another server in the cluster.

When a user tries to access a database that is not available, the Cluster Manager redirects the user
request to a replica of the database on a different server in the cluster. Although the user connects to
a database on a different server, failover is transparent to the user.

152 Inside Notes: The Architecture of Notes and the Domino Server

Workload balancing
By distributing databases throughout the cluster, you balance the workload in the cluster so that no
server is overloaded. In addition, you can use several NOTES.INI settings to help balance the
workload. For example, you can specify an availability threshold that limits how busy a server can
get. When the server reaches the availability threshold, the Cluster Manager marks the server BUSY.
When a server is BUSY, requests to open databases fail over to other servers that contain replicas of
the requested databases. You can also use the Server_MaxUsers setting in the NOTES.INI file to
specify the maximum number of users allowed to access a server. When the server reaches this limit,
it is marked MAXUSERS, and users fail over to another server. Controlling failover with these
settings keeps the workload balanced and keeps the server working at optimum performance.

When failover occurs
Failover occurs when users cannot access the server that contains a database or cannot access the
database itself. The following table describes why a user may not be able to access a server or
database.

�� The database is marked OUT-OF-SERVICE in the Cluster Database Directory.
�� The database is marked PENDING DELETE in the Cluster Database Directory.

Unable to access database

�� The server is unavailable.
�� There are network connectivity problems.
�� The server has reached the maximum number of users allowed, as specified in

the Server_Maxusers setting in the NOTES.INI file.
�� The administrator used the Server_Restricted setting in the NOTES.INI file to

restrict the server.
�� The server is BUSY because it has reached the maximum load allowed (the

server availability threshold).

Unable to access server

Cause of failoverCategory

When a server or database is not available, failover occurs when a user attempts to use Notes to
perform certain actions. The following table describes the actions that trigger failover.

�� Selecting the Open URL icon
�� Clicking a URL hotspot
�� Accessing a URL with a Web browser

Web server operations

�� Composing mail
�� Name lookups
�� Type-ahead addressing
�� Routing mail messages
�� Mail pre-processing agents
�� Meeting invitations
�� Free time lookups
�� Server lookups

Mail server operations

�� Opening a database from a bookmark
�� Clicking a document link, a view link, or a database link
�� Activating a field, action, or button that contains @command

([FileOpenDatabase])
�� Running a LotusScript routine that contains the OpenWithFailover method of

the NotesDatabase class
�� Using Java that contains the Open Database method of the DbDirectory class
�� Replicating with a database on a cluster server that is not running or not

reachable on the network

Database open operations

Action that triggers failover Category

Chapter 10: Clusters 153

When failover does not occur
Failover does not occur in the following cases:

�� When a server becomes unavailable while a user has a database open

If the user opens the database again, the server fails over to a different replica, if one exists in
the cluster. If the user was editing a document when the server became unavailable, the user
can copy the document to the replica.

�� When a user chooses File - Database - Properties or File - Database - Open

�� If the Router attempts to deliver mail while MailClusterFailover is set to 0

�� If the template server is unavailable when a user attempts to create a new database

�� When running agents, other than the mail pre-delivery agent

�� When replicating with a server that is restricted by the administrator or that has reached the
maximum number of users or the maximum usage level set by the administrator. Also, when
replicating with a database marked “Out of Service.” Replication occurs regardless of such
restrictions, so there is no need for failover to occur.

Mail failover
If you create replicas of mail databases in a cluster, failover occurs by default in the following
instances. Note that failover does not occur if you deactivate mail failover in the Configuration
Settings document for a server.

When a user tries to open a mail database that is unavailable
Failover for mail works the same as for any database.

If a user’s mail server becomes unavailable and then the user tries to send a message
If a user is composing a message when the mail server becomes unavailable, the user can still
send the message if the cluster contains a replica of the user’s mail database. The delivery
fails over to another cluster server, where Notes deposits the message in the outgoing
mailbox.

When the Router tries to deliver mail to a server that is unavailable
If the server that contains the mail database is unavailable, the Router delivers the mail to a
cluster server that contains a replica mail database. The Router uses this process to find the
correct mail database.

First, the Router checks if mail failover is enabled for the local server and if the user’s mail
server is in a cluster. If the local server is in the same cluster and has a replica of the user’s
mail database, the Router delivers the mail to that database. Otherwise, the Router asks an
available cluster member for a server that contains a replica of the user’s mail database and
delivers the mail to that database. If there is no replica available, the Router tries again to
deliver the mail to the user’s mail server.

When the user is using shared mail
Shared mail works the same on a cluster server as it does on a non-cluster server. Just as users
can access the shared mail database from their primary mail databases, they can access the
shared mail database from replicas of their mail databases. When the Cluster Replicator
replicates mail databases, it copies the message header to each user’s mail databases and
copies the message body to the shared mail database.

154 Inside Notes: The Architecture of Notes and the Domino Server

How calendars work in a cluster
Domino supports clustering of calendars and the Free Time database. To make calendar failover
work, the scheduling system works a little differently behind the scenes in a cluster than when it is
not in a cluster. However, these differences are not noticeable to users.

When not in a cluster, each server contains a Free Time database (BUSYTIME.NSF) that includes
scheduling information for all users who use that server as their mail server. In a cluster, there is one
Free Time database for all users whose mail servers are in the cluster. This database is named
CLUBUSY.NSF, and it contains all the information that was in all the Free Time databases on all the
servers in the cluster. Every server in the cluster contains a replica of this database.

When you add a server to the cluster, the Schedule Manager deletes the BUSYTIME.NSF database
on the server and creates the CLUBUSY.NSF database, which then replicates with the other servers
in the cluster. When a user in the cluster looks for free time, the server looks in its own
CLUBUSY.NSF first to find information for every user in the cluster. For users whose mail servers
are outside the cluster, a request is sent to those servers for the free time information. When a user
outside the cluster makes a request for information about a user in the cluster, the request fails over
to another server in the cluster if the user’s mail server is unavailable. Whenever there is a change to
the CLUBUSY.NSF on any server in the cluster, the Cluster Replicator replicates the change to the
other servers in the cluster.

When you remove a server from a cluster, the Schedule Manager deletes CLUBUSY.NSF from that
server and creates BUSYTIME.NSF on the server. The Schedule Manager on each server in the
cluster removes the deleted information from its replica of CLUBUSY.NSF.

Note If there are Domino Release 4.5 or 4.6 servers in a cluster, these servers maintain their
BUSYTIME.NSF databases. These databases are not converted to CLUBUSY.NSF. Using calendars
on these servers works the same as in a non-clustered environment.

Limiting the workload of a server
To better balance the workload among the servers in a cluster, you can limit the workload of each
server by setting the server availability threshold. When a server’s workload reaches the server
availability threshold, the server is marked BUSY. At that point, access requests fail over to another
server in the cluster, if one is available. If no other server is available, the original server takes the
access request, even though it is in a BUSY state. No request is denied access because a server is in a
BUSY state. Each time an access request is redirected, Domino generates a workload balancing event
in the log file (LOG.NSF).

To determine if a server is BUSY, Domino compares the server availability threshold with the server
availability index, which is a measure of the current workload on a server. When the availability
threshold is equal to (or greater than) the availability index, the server is BUSY.

Note The availability threshold does not affect replication. Replication occurs even when a server is
in a BUSY state.

The server availability index
Each server in a cluster periodically determines its own workload by calculating the average
response time of the requests the server has recently processed. The workload is expressed as a
number from 0 to 100, where 0 indicates a heavily loaded server and 100 indicates a lightly loaded
server. This number is called the server availability index. As response times increase, the server
availability index decreases.

Although the numbers range from 0 to 100, the availability index is not a percentage. Instead, the
availability index is calculated by dividing the response time for a function under the current load
by the response time of the same function under a light load and then subtracting the result from
100. For example, if a database open call currently takes 3 seconds but would take only .3 seconds

Chapter 10: Clusters 155

under optimum conditions, the availability index is 100 minus the result of 3 divided by .3. Thus the
availability index is 90.

To determine the current availability index, Domino divides the current response time by the
optimum response time for a representative set of transactions that occurred during the previous
minute or so and then subtracts the average from 100, as shown in this formula:

Availability index = 100 - (Current response time / optimum response time)

The availability index measures only the server response time, which is usually only a small portion
of the response time that clients experience. For example, the network response time between a
client and a server often accounts for a significant portion of the response time that the client
experiences. Therefore, an availability index of 90 indicates that the response time of the server itself
is 10 times longer than optimal, not that the response time that the client experiences is 10 times
longer than optimal.

Setting the maximum number of users on a server
Another way to balance the workload in a cluster is to use the Server_MaxUsers setting in the
NOTES.INI file. This setting specifies the maximum number of active users allowed on a server at
one time. When the server reaches this limit, the server goes into the MAXUSERS state and rejects
any additional requests until the number of active users falls below the Server_MaxUsers limit.
When Domino rejects access requests because of a MAXUSERS state, the Cluster Manager attempts
to redirect new user requests to other cluster servers that contain the appropriate replicas. If no
other server is available, Domino rejects the access request and displays an explanatory message.

Note that the Server_MaxUsers setting does not affect replication. Replication occurs even when a
server is in a MAXUSERS state.

You can use the Server_MaxUsers setting on any Domino server. However, only cluster servers
redirect access requests; servers that are not in a cluster reject access requests.

Causing failover to occur
To cause failover to occur, you can use the Server_Restricted setting in the NOTES.INI file. This
setting tells a server to deny new open database requests and places the server in a RESTRICTED
state. This state prevents new users from accessing a server but allows users who have active
connections to databases on the server to retain their connections. This setting is useful when you
want to make a server unavailable so that you can perform routine maintenance on it or upgrade it.
This setting is also useful when users have failed over to a server and you want them to fail back to
another server.

When a server is in a RESTRICTED state, the Cluster Manager redirects new open database requests
to other servers in the cluster. When an attempt to redirect is unsuccessful, the user receives an
explanatory message and cannot access the server.

You can also set up a server as a backup to another server. You can set the availability threshold to
100 on the backup server so that it is BUSY at all times. That way, the backup server accepts open
database requests only when the primary server is unavailable.

By setting the availability threshold on a server to 100, you put the server into a BUSY state. This is
similar to a RESTRICTED state, except a BUSY server accepts new open requests if no other replica
is available, while a RESTRICTED server does not.

Note that the Server_Restricted setting does not affect replication. Replication occurs even when a
server is in a RESTRICTED state. In addition, you can use the Server_Restricted setting for any
Domino server. This setting is not limited to clusters.

156 Inside Notes: The Architecture of Notes and the Domino Server

Managing database availability in a cluster
Using the three database attributes — OUT-OF-SERVICE, IN-SERVICE, and PENDING DELETE —
you can specify whether a database is available for user access.

On occasion, you may want to mark a database OUT-OF-SERVICE — for example, to perform
database maintenance or to force users to fail over to a different database replica because the server
is reaching a high level of use.

You use the Domino Administrator to mark a database OUT-OF-SERVICE. Users cannot open an
OUT-OF-SERVICE database. Instead, open database requests fail over to a replica, if one is
available. If no replica is available, Domino denies users access to the database and displays an
explanatory message. To make the database available again, you use the Domino Administrator to
mark it IN-SERVICE.

In addition, you can use the Domino Administrator to mark a database PENDING DELETE. When a
database is PENDING DELETE, the database does not accept any new database open requests. After
all users close the database, Domino pushes changes to another replica and then deletes the
database. Mark a database PENDING DELETE if you plan to remove it because it is obsolete or if
you are copying the database to another server and want to delete the database from the original
server.

Example of failover
This example describes the steps involved in failover.

1. A Notes user attempts to open a database on Server 1. To open the database, Notes calls
NSFDbOpenExtended with the FailOver and Workload Balance options, or it calls another
database open function, depending on the method the user used to try to open the database.

2. Notes receives a message indicating that the server is not responding. Notes calls a Name
services function to attempt to locate a replica of the database on another cluster server.

3. Notes looks in its cluster cache (populated by the contents of the CLUSTER.NCF file) to see if
the server is part of a cluster and to find the name of another server in the cluster.

The names of the servers in a cluster are added to the CLUSTER.NCF file on the client the first
time the client accesses any server in the cluster. When you start the client, this information is
copied to the cluster cache in memory. This information is updated each time Notes opens a
database if at least 15 minutes have passed since the last update. If the client has never accessed
a server in the cluster prior to receiving the server not responding message, the client has no
information in the cluster cache and will not be able to find another server in the cluster to fail
over to.

4. Notes issues an RPC transaction to the first server listed in the cluster cache (Server 2) in order
to get availability information for the servers in the cluster. As part of the transaction, Notes
sends the path name of the database it is trying to open and asks Server 2 for the availability of
all cluster servers that contain a replica of the database and for the replica ID of the database.
(Depending on the method the user used to try to open the database, Notes may include the
replica ID of the database when it sends the path name to the server.)

5. The Cluster Manager on Server 2 looks in the Cluster Database directory to locate servers that
contain a replica and to obtain the replica ID of the database, if the Cluster Manager does not
already have the replica ID. The Cluster Manager stores the server names in a text list in
memory. If a server contains a replica that is marked OUT-OF-SERVICE or PENDING DELETE,
the Cluster Manager does not include that server on the list unless that server contains an
additional replica that is available.

Chapter 10: Clusters 157

6. The Cluster Manager on Server 2 looks in the server’s cluster name cache to find the availability
of each server on the list created in Step 5. The Cluster Manager deletes from the list any server
that is in a MAXUSERS or RESTRICTED state. The Cluster Manager then sorts the list by
availability and puts any servers that are in a BUSY state at the bottom of the list.

The Cluster Manager sends Notes the list of server names, as well as the replica ID of the
database. If one of the cluster servers contains multiple replicas, Server 2 sends a null replica ID
to Notes.

If Notes receives a null replica ID, Notes must use failover by path name rather than failover by
replica ID. This type of failover can occur when you use selective replication and store multiple
versions of a database on a single server. Notes uses failover by path name to be sure it chooses
the correct version of the database.

Note If you put multiple replicas on a server, be sure that all replicas in the cluster that use the
same selective replication formula have the same path name. Otherwise, users may fail over to a
different replica.

7. Notes looks for the database on the most available server that contains a replica. If that server is
no longer available, Notes tries the next server on the list. It uses one of the following
procedures to find the fully qualified path name of the replica on this server:

If Notes received a null replica ID in Step 6, it does the following to find the fully qualified path
name of the replica on this server:

a. Notes starts with the path name of the original database the user tried to open. Notes adds
the name of the new server and includes the full path to the database to makes a fully
qualified path name.

b. Notes uses NSFDbOpen on the server to be sure the database will open and then closes the
database and returns the fully qualified path name back to the Name services function that
Notes called in Step 2

If Notes received a replica ID in Step 6, it does the following to find the fully qualified path
name of the replica on this server:

a. Uses NSFDbOpen to open the Notes data directory on the server.

b. Uses a Name services function to locate the database in the Notes data directory or in one of
its subdirectories. This function returns the fully qualified path name of the replica on this
server.

c. Notes uses NSFDbOpen on the server to be sure the database will open and then closes the
database and returns the fully qualified path name back to the name service function that
Notes called in Step 2.

8. Using the path name from Step 7, Notes issues a new command to open the database, such as
the NSFDbOpenExtended command or whichever command Notes used originally, to open the
database. This time Notes disables the Workload Balance option of the command so that the
command will access a BUSY server if there is one on the list that Server 2 sent to Notes. Since
the Cluster Manager put any BUSY servers at the bottom of the list, Notes tries to access BUSY
servers only if it cannot access any other server.

If Notes does not find an available server that contains an available replica, or if the database Notes
found in Step 7 is no longer available, Notes does not open the database and sends a message to the
user.

158 Inside Notes: The Architecture of Notes and the Domino Server

Chapter 11
The Indexer

The Indexer keeps database views and full-text indexes up to date after documents are added,
removed, and/or modified.

The Indexer
The Indexer is composed of two server tasks:

�� The Update task

�� The Updall task

These tasks use two sets of NOS services, the Notes Index Facility (NIF) and Full-Text services, to
keep database views and full-text indexes up to date after documents are added, removed, and/or
modified. Use of both Update and Updall is optional. You do not need to run them in order for
client and server programs to see up-to-date views because a view will be updated automatically if
it is out of date when a client or server program accesses it. However, it may be useful to run
Update and/or Updall if a server has excess performance capacity. Running the tasks during
normal hours of operation or during off-peak times enables Update and Updall to use the excess
capacity to update views, thereby reducing the delays that clients and server programs experience
when attempting to access the views. Both Update and Updall update out-of-date views. The
difference between the two is that Updall runs once, updates all out-of-date views in all databases,
and then stops; Update runs continuously, updating views in response to certain database activities
as they happen.

By default, the Domino server runs Update continuously in the background and runs UpdAll every
night at 2 AM to update any additional views and full-text indexes that Update did not manage to
update during the day.

By default, both Update and Updall update a view only if it has an index in it. The presence of an
index indicates that client and/or server programs have used the view. By default, Update and
Updall ignore views that do not have an index in them. The tasks do not waste time building an
index for a view that has not actually been used. This can happen because the template used to
create a database may be designed to serve many needs and so may include many views, but the
use of specific views in any one database created from the template may vary greatly.

The Updall task
The Updall task is a single instance of the Update task. Although Updall does not check or use the
requests in $UpdateQueue, it performs the same tasks as Update. When Updall runs, by default at 2
AM, it refreshes outdated views and full-text indexes and discards expired view indexes. If you use
the -r switch with Updall, by typing load updall -r at the server console, Updall discards and
rebuilds every view in a database.

Discarding view indexes
When creating a view, a designer uses the Discard View property to define when to remove the
view information, which is known as the view index, from the database. The choices are: Never,
After each use, and If inactive for n days. The Updall task removes the view index from the
database. Removing unused views saves database space and improves performance.

Even if the discard frequency is set to “After each use,” the view is not removed from the database
until the Updall task runs.

159

The Update task
The Update task updates views by accounting for deletions and/or changes to existing documents
and the creation of new documents.

Update is enabled, by default, on a Domino server. To enable one or more Update tasks, type load
update one or more times at the server console or add Updaters=n to the server’s NOTES.INI file,
where n is the number of Update tasks to launch. Note that if you type tell update quit at the server
console, all Update tasks on the server stop.

Using multiple Indexers improves the speed of indexing, but it may also cause a decrease in server
performance, because more than one Update task may contend for access to the same view
collection.

To configure the log file (LOG.NSF) to record the activity of each Indexer, use the Log_Update=1
setting in the NOTES.INI file.

Indexer Updating names.nsf view "($Users)"

Indexer Updating names.nsf view "($Users)"

$UpdateQueue and view changes
A request to update a view can be triggered by the Router, by replication, or by the server when it
closes a database that has been modified. Update requests are stored in the $UpdateQueue, which
holds a maximum of 500 requests. Each request contains the name and path of the database that
needs updating. When running, the Update task polls the queue every five seconds to look for
requests. If Update finds requests, it acts on them in sequential order. If the queue becomes full,
some requests may be dropped, which may result in a client or server program having to
synchronously update a view when it tries to access it instead of finding the view already updated
by Update.

Each Update task takes a request and performs the necessary database updates. Multiple Update
tasks can work on the same database, but semaphore-locking prevents two tasks from updating the
same view or full-text index at the same time.

Suppression time and efficient view rebuilds
Although the Update task checks the $UpdateQueue every five seconds, it does not always
immediately refresh a database view or full-text index. To increase efficiency and improve server
performance, Update collects changes so that it can process many changes at once. The suppression
time interval controls how often the Update task processes changes to a view or full-text index. By
default, suppression time is set to five minutes. However, you can change this setting by adding
Update_Suppression_Time=x to the NOTES.INI file, where x is the number of minutes.

The Domino Directory and indexing
In most cases, users, servers, and applications cannot access a view while the Indexer is updating it.
However, an exception is made when accessing certain views in the Domino Directory. Because the
Domino Directory is one of the most heavily used and most frequently updated databases and
because the Domino Directory is needed to manage critical processes such as authentication and
mail, Domino allows name lookups to access certain views of the Domino Directory that may not be
quite up-to-date — ($ServerAccess), ($Users), ($Groups), ($NameFieldLookup). Although this view
availability ensures quick mail routing and authentication, it also risks that the information retrieved
from these views may not be current. This mechanism works because the Update and Updall tasks,
which run in the background, eventually update the Domino Directory, so that the Domino
Directory is always reasonably up-to-date for lookup operations.

160 Inside Notes: The Architecture of Notes and the Domino Server

Chapter 12
The Router

This chapter describes, in technical detail, how the Router moves a document to a recipient’s mail
file or transfers the document to another server on the route to the recipient’s home server.

The Router
Lotus Domino provides mail services as part of its architecture. The Router, a specialized program
on the server, moves a document to a recipient’s mail file or transfers the document to another
server on the route to the recipient’s home server. Mail routing on a Domino server begins when the
server receives a message from a client mailer, a Router on another server, or an application. The
Router examines the message and determines whether its recipients are on the current server or on a
different server. The Router then moves the message either to the recipient’s mail file on the server,
to the other server, or to both.

Components that the Router uses
The Router uses many components of the Domino and Notes architecture:

�� Router task

�� MAIL.BOX database (or multiple MAIL.BOX databases in Domino Release 5)

�� Domino Directory

�� Mail files

�� NOTES.INI file for each server

�� Domain Name Service (DNS) servers and/or hosts files

�� (optional) SMTP Listener task

�� (optional) Shared mail database

�� (optional) Domino clusters

Mail protocols
Domino uses two protocols to route mail: Notes remote procedure calls (NRPC) and Simple Mail
Transfer Protocol (SMTP). When using NRPC, Domino can route messages in Notes rich-text format
(Notes RTF) and in MIME (Multipurpose Internet Mail Extensions) format. When using SMTP,
Domino routes only MIME messages.

How the Router works
A Domino server’s MAIL.BOX database acts as a mail repository. Mail routing begins when the
Router finds a new or changed message in MAIL.BOX. The following steps describe basic mail
routing:

1. The Router task initializes (for example, at server startup), builds the routing table, determines
the maximum number of threads to allocate, and checks MAIL.BOX. If the Router finds new or
changed messages in MAIL.BOX, its main thread builds the main message queue.

2. The main thread dispatches each queued message to a transfer queue or to a local delivery
queue.

161

3. Transfer and delivery threads check the transfer and delivery queues, respectively, and process
the messages in those queues.

4. The main thread checks the transfer and delivery queues for updates. Based on these updates,
the main thread modifies the main message queue and the messages in MAIL.BOX.

Router initialization
When the Router task loads, its main thread uses a DatabaseOpen call to open each MAIL.BOX
database on the local server. The Router thread performs a Search NSF call to check each mailbox
for new or modified documents, such as documents that arrived since its last check or documents
that the server administrator modified, for example, to correct a misspelled recipient name. The
thread builds the main message queue, which contains an entry (a list item) for each new or
modified message and summary information about the message, such as recipients, destination,
date sent, and so forth. After building the message queue, the main thread dispatches each message
in the queue.

Routing tables
Using information in the Connection documents, Domain documents, and Server documents in the
Domino Directory, the Router builds the routing table and determines which servers are connected.
The Router periodically checks the $Connections, $Domains, and $Servers views for edits and
additions to these documents. The Router does not pick up a change until one of the views changes
— for example, if you change a value in the Server document, the Router is not aware of it until the
view refreshes. The Router tries to check the views before dispatching each message. If it finds
changes, it reloads the routing table. The data structure of the routing table is significant to the
routing algorithm. Essentially, the Router builds a graph of all servers in the domain and all servers
that use Adjacent domain documents to connect to other domains in a format that ensures fast
lookups.

Maximum threads
During startup, the Router evaluates the available memory on the server and determines the
maximum number of transfer, concurrent transfer, and delivery threads that it can create and use.
When the Router needs a thread but one is not available, it creates a new thread as long as this does
not cause the total number of threads to exceed the determined limits.

Note An administrator can set the NSF_Buffer_Pool_Size setting in the NOTES.INI file to control
how much physical server memory to allocate to Domino and, consequently, to specify the
maximum number of threads. If NSF_Buffer_Pool_Size is not explicitly set, then the Router
calculates a default value. Although an administrator can modify this setting, it’s best to let Domino
allocate the memory.

Message routing
To dispatch a message, the main thread checks each recipient’s address for an @domain. If the
address has an @domain, the thread attempts to determine whether the domain is a local domain. If
the address does not have an @domain, the thread looks up the local part of the recipient’s address
in the Domino Directory on the server.

Determining local or external domain
If a recipient’s address has an @domain, the Router needs to determine whether that domain is part
of the local domain. If it is part of the local domain, the Router can look up the local part of the
recipient’s address in the Domino Directory. If it is not part of the local domain, the Router forwards
the message to a server in the external domain.

162 Inside Notes: The Architecture of Notes and the Domino Server

To determine whether the domain listed in the recipient’s address is part of the local domain, the
main thread compares the domain to the Notes domain listed in the local server’s Server document
and to the Internet domains listed in the “Fully qualified Internet host name” field in the local
server’s Server document, and the “Local primary Internet domain” and “Alternate Internet domain
aliases” fields in the Global Domain document in the Domino Directory. If there is a match, the
Router removes the @domain from the recipient’s address and looks up the local part of the
recipient’s address in the Domino Directory.

If there is no match, the Router treats the domain as an external domain.

If the domain is a Notes domain (for example, @Acme), the Router looks in the routing table for a
connection to a server in that domain. If the domain is an RFC 822 / Internet domain, the Router
looks in the DNS for MX or A records that correspond to that domain. After the Router determines a
destination server (and, for Internet domains, MX or A records), it appends that information to the
message and places the message in the transfer queue.

Note If the DNS lookup does not return any information for the receiving server or if the DNS
server is down, the transfer thread marks the message DNS WAIT in the main message queue and
retries the lookup later.

Looking up recipients in the Domino Directory
After the Router determines that a recipient is in the local domain, either by resolving the @domain
portion of the address to a local domain or by determining that there is no @domain in the address,
the Router looks up the recipient in the Domino Directory. For example, if a message is addressed to
Jane Doe and Sales, the Router looks up both Jane Doe and Sales in the ($Users) view of the Domino
Directory. The Router expands Jane Doe to Jane Doe/Tampa/Acme and expands Sales to John
Smith/Charleston/Acme and Jeff Nguyen/Washington/Acme.

Next the Router determines the home mail server for the recipient. If the recipient’s home mail
server is the local server, the Router places the message in the local delivery queue. If not, Domino
calculates how to route the message to the recipient’s home server. The configuration of the local
server and the message format determine how Domino moves the message to the server. If the
message is in MIME format, the local server can send SMTP within the local Internet domain, and
the home mail server can receive SMTP, the Router marks the message for SMTP and looks up the
home mail server in the DNS. If the DNS returns either MX records or an A record for the home mail
server, the Router appends these records to the message and moves the message to the transfer
queue. In all other cases, the Router uses NRPC as the transfer protocol.

After the Router sets NRPC as the transfer protocol, the Router checks the routing path to the home
mail server. The Router selects the route that has the lowest routing cost. If more than one path has
the lowest cost, the Router chooses the one that has the fewest number of hops. If more than one
path has the lowest cost and fewest hops, the Router selects among them alphabetically based on the
name of the first server hop. For external domains — that is, Notes domains that are outside the
current Notes domain — the Router employs a slight variation on this algorithm. When choosing
between two routes that have the lowest cost and fewest hops, the Router selects alphabetically
based on the name of the server in the other domain.

Note Routing cost is the total of the costs of all connections on a path to a server. A connection’s
cost is an arbitrary, relative integer. A fast LAN connection might have a cost of one, while a slow
WAN connection might have a cost of five. If a connection is slow or fails, its routing cost increases.

Next, the main thread calculates the next server along this best route to which it should transfer the
message — the “next hop server.” The Router appends the server information to the message and
puts the message in the transfer queue.

Group expansion
When a message is addressed to a group — for example, Sales — the Router performs group
expansion — that is, it looks up the group in the Domino Directory and converts the group name
into individual recipient names. Group expansion may create new message instances. A message
instance is an in-memory copy of a message that the main thread can process. For example, group
expansion creates a new instance for each group, which is then expanded to a list of recipient names.

Chapter 12: The Router 163

Domino automatically eliminates duplicate recipients, which may occur when a message is
addressed to an individual twice or when an individual is included both as a recipient and as a
member of a group. To eliminate duplicates, Domino builds a vector of recipients and ensures that
each entry in the array is unique. The Router performs recursive expansion (expanding groups
within groups) to remove duplicate names. This process helps prevent a single recipient from
receiving multiple copies of the message.

Delivery failures
If the main thread is unable to find a name in the Domino Directory or encounters a duplicate name,
it generates a non-delivery failure. For example, if a message is addressed to Jane Chang but there is
no Jane Chang or there are two entries (Jane I Chang and Jane L Chang) in the Domino Directory,
Domino generates a non-delivery failure. Acting as the dispatcher, the main thread can insert new
messages in MAIL.BOX — for example, delivery failures or new messages generated when a
recipient has a forwarding address. The Router treats these as new messages.

When creating a non-delivery failure, the Router appends a copy of the message, changes the
recipient name to the sender’s name, adds an explanation of the failure, and moves the non-delivery
failure message to MAIL.BOX.

Route calculation
Each server calculates the routing path for each recipient independently. This dynamic calculation
allows Domino to adjust for changes in routing cost or routing problems while a message is in route.
For example, Server A determines that a message should go to Jane Doe on Server D by transferring
it from Server A to Server B to Server C and then to Server D. However, after the message reaches
Server B, Server C becomes unavailable. If Server B uses the routing calculations performed by
Server A, it cannot transfer the message. When Server B uses the routing algorithm to calculate the
best path, the increased routing cost of a path to Server C — because of the server’s inability to
receive messages — causes Server B to route the message to Server E, which then routes it to
Server D.

Message transfer queues
Transfer queues are in-memory queues that move a message from one server to another. Each
transfer thread handles a single message for a single destination, but deals with all recipients of that
message at that destination. The sending server tries to transfer as many pending messages to a
destination as possible over an open connection for maximum efficiency.

For maximum efficiency, a sending server can create multiple transfer threads to a single
destination. For example, suppose two messages are pending for transfer from Server A to Server B.
Message 1 has a large attachment (50MB) and Message 2 is a 25KB text message. While one transfer
thread is transferring Message 1 to Server B, another thread can transfer Message 2 to Server B.
Using multiple transfer threads prevents large messages from creating a bottleneck in transfer
between two servers. One thread, however, operates on each message — two threads would not
attempt to operate on the same message.

If the transfer thread sends over NRPC, it makes a DatabaseOpen call to the MAIL.BOX database on
the destination server. The thread performs a NoteUpdate to write the new message to MAIL.BOX
and closes the session.

If the transfer thread sends over SMTP, it uses information in the message to determine how to
connect to the destination server. The transfer queues list messages by domain and store MX record
information. When handling a message, a transfer thread tries the MX record that has lowest cost
and chooses randomly among records that have equal cost. if the initial connection attempt is
unsuccessful, the thread retries the connection on an MX record that has higher cost (or a different
record that has an equal cost). After selecting an MX record, the transfer thread attempts a TCP
connection on port 25 to the receiving server at the designated IP address. If the connection is
successful, the transfer thread initiates an RFC 821 conversation with the receiving server and
attempts to transfer the message.

164 Inside Notes: The Architecture of Notes and the Domino Server

Transfer threads may have to convert messages from one format to another. For example, if the
sending server is a Domino Release 5 Internet relay but the receiving server is a Domino Release 4
server, and the message being transferred is in MIME format, the transfer thread on the Release 5
server converts the MIME message to Notes RTF and then transfers it. The sending server
determines whether the receiving server can handle MIME messages by checking the version of the
receiving server.

Note You can see which transfer queues are operating by entering this command at the console:
Tell Router Show

The console displays the destination, number of messages pending, and state for each active transfer
queue.

Message delivery
Domino treats “local delivery” as a special destination. When the Router dispatches a message, it
notes that one or more recipients have mail files on the local server. It marks the message as “local
delivery” for these recipients and places the message in the delivery queue. Local delivery is
composed of multiple sub-destinations which are recipients’ mail files. The main thread creates a
queue in matrix form for each mail file. One axis of the matrix shows messages for delivery, and the
other axis shows the local mail files on the server.

Delivery threads
A delivery thread handles delivery to each mail file. Delivery threads are essentially the same as
transfer threads — they treat local delivery as a special destination. To deliver a message, the thread
performs a DatabaseOpen call to the mail file, uses a NoteUpdate to deliver all messages pending
delivery to that mail file, and closes the session. While the delivery thread is operating on the mail
file, it locks the file so that there is no contention for access to the recipient’s mail database. Domino
allows multiple delivery threads to operate independently on multiple mail files at the same time. A
single message can be delivered to multiple mail files at once, even though each delivery thread
handles only a single destination and each destination is handled by only one delivery thread.

After the delivery thread delivers a message to a recipient’s mail file, it marks that recipient
Complete and deletes the message from the delivery queue. The Router updates the main message
queue with this state information and removes that recipient and that message as work items.

Message cleanup
After a thread transfers or delivers a message, it updates the status of that message. For example, if
Domino marks a message for local delivery to Jane Smith’s mail file and a delivery thread
successfully delivers the message to her mail file, the delivery thread marks that message as
delivered in the delivery queue. The main thread checks the delivery and transfer queues for these
updates and then reflects the changes in the main message queue and in MAIL.BOX. For example,
after reading the change to the message addressed to Jane Smith, the main thread updates the
information in the main message queue and in MAIL.BOX to reflect the delivery to her mail file.

If the Router processes all recipients of a message —meaning that the message was successfully
transferred to a server along the best path to the destination, that it was delivered locally, or that the
Router created delivery failure reports — the main thread deletes the message from the main
message queue and then from MAIL.BOX. Deleting the message after processing prevents
redelivery or multiple deliveries of a message if the server crashes. There is brief period of time
between when the transfer and delivery threads update the main message queue and when the
main thread updates MAIL.BOX during which a crash could cause redelivery of a message. For
reliability reasons, it is better to risk redelivery than to risk non-delivery.

If a message has a delivery failure, the main thread uses the information generated by the delivery
thread to update the message queue and MAIL.BOX.

After deleting a message from MAIL.BOX, the main thread checks to make sure that the message
isn’t being processed by other transfer threads. If not, it deletes the message from the transfer
queues.

Chapter 12: The Router 165

After updating messages in MAIL.BOX with new information from message processing, message
cleanup ends.

Message state
Each message in the main message queue is in one of these states.

The server tried to use SMTP to send the message but was unable to get information from
a DNS server. The server waits for an interval and retries the DNS server. If a message is in
the DNS WAIT state for 24 hours, the Router generates a non-delivery failure to the
sender.
Note If you use the Domino Administrator or a Notes client to open MAIL.BOX and see
messages in the queue, you cannot see messages in the DNS WAIT state. To determine the
number of messages in this state, check the server statistic Mail.WaitingForDNS.

DNS WAIT

The message would normally return a non-delivery failure; however, the server
administrator has set the server to hold the messages so that the administrator can attempt
to correct the error — for example, by entering a correct user name or address.

HELD

Message delivery has failed, and the server’s attempt to send a non-delivery failure to the
sender has failed.

DEAD
The message is ready for processing.NORMAL
MeaningState

Message transfer threads
Transfer threads move messages from the transfer queues to other servers.

Number of threads
Domino can create multiple transfer threads to one or more destinations. While you can use a setting
in the Configuration Settings document to control the number of threads, it’s best to leave the setting
blank so that the server can set the number of threads, based on available memory.

To configure the maximum number of threads, Domino uses an algorithm that evaluates the
physical memory (RAM) of the server. The amount of RAM determines the Domino NSFBufferPool
setting, which is 25 percent of RAM, by default. The maximum number of transfer threads is based
on the size of the NSFBufferPool. The Router creates three threads plus one for every 32MB of
memory in the NSFBufferPool, up to a maximum of 25 threads.

On some servers, such as ones with multiple partitioned servers, administrators should tune the size
of the NSFBufferPool in the NOTES.INI file, since not all RAM is available to each server.

Processing transfer queue entries
After dispatching messages, the main Router thread starts transfer threads to process messages in
the transfer queues. The main thread checks the transfer queues for destinations that have messages
that have not been processed or that do not have a thread assigned to them. Essentially, the main
thread is looking for work that is not yet assigned to a transfer thread.

When the main thread finds a message that is not yet assigned to a transfer thread, the main thread
looks for an idle transfer thread. The main thread activates the idle thread, which checks the transfer
queue and begins operating on the first unassigned message. If the main thread discovers work that
can be done in parallel, such as processing multiple messages for one destination, it can activate
multiple transfer threads at once. However, the main thread does not activate more transfer threads
than are needed.

166 Inside Notes: The Architecture of Notes and the Domino Server

If the main thread determines that a destination has multiple messages pending, it does not
immediately create multiple transfer threads (one thread per message). First, the main thread checks
to see whether the server has successfully connected to this destination. If not, the main thread
assigns a single transfer thread to the destination. This thread attempts to connect. If there has been
a successful connection, the main thread can assign more threads to the messages for this
destination. Regardless of protocol, the main thread does not initially assign multiple transfer
threads to a single destination, because if the destination is unreachable, the threads would be busy
but performing no work. Waiting to assign multiple threads until after one transfer thread
successfully connects prevents inefficiency.

Transfer threads and protocols
Transfer threads are not procotol-specific; in other words, a transfer thread can use either NRPC or
SMTP to transfer a message. However, destinations are procotol-specific. When a transfer thread
selects an unassigned message to process, the message contains information telling the thread which
protocol to use. A transfer thread does not choose the protocol; it uses the protocol assigned to the
message that it is working on.

Multiple transfer threads to a single destination
Domino can assign multiple threads concurrently to a single destination, even if that destination
uses Domino Release 4 servers. However, Domino does not assign multiple transfer threads to a
single destination if the connection takes place over a slow network link. Assigning multiple transfer
threads to work over a slow network link does not increase efficiency or speed. For NRPC,
connections that rely on Connection documents are assumed to be slow; hence, Domino does not
assign multiple concurrent transfer threads to a single destination that requires a Connection
document.

Multiple MAIL.BOX databases and multiple transfer threads
Creating multiple MAIL.BOX databases greatly increases mail routing efficiency. Multiple
MAIL.BOX databases are especially useful when a sending server is trying to connect with multiple
transfer threads. When the transfer thread connects to MAIL.BOX, it performs a NoteUpdate that
temporarily locks MAIL.BOX. The NoteUpdate transaction is lengthy by Domino standards and can
present a bottleneck for mail transfer. If you create multiple MAIL.BOX databases, a transfer thread
can move to an available MAIL.BOX if one MAIL.BOX is locked by another process. Multiple
transfer threads and multiple MAIL.BOX databases on the receiving server result in fast processing
of messages for that destination.

Note There is no relationship between the number of MAIL.BOX databases on the sending server
and the number of transfer threads.

Message transfer over SMTP
To transfer a message over SMTP, the transfer thread attempts to use SMTP to connect to the
destination server on port 25. If the connection is successful, the thread establishes a session with the
receiving server and initiates an RFC 821 conversation. After the initial helo (or ehlo) handshake, the
thread initiates a message loop for each message, sending the Mail From:, Rcpt To:, and Data: for
each message, then moving through the same loop for the next message. After transferring all
messages, the thread disconnects.

If the receiving server rejects a message, the thread generates a non-delivery report. If the server
rejects a particular recipient, the thread creates a non-delivery failure to send to the sender. If the
server rejects an entire message — for example, if the size is greater than the maximum message size
allowed or if the message is attempting to relay through the mail system in a way that is not
permitted — the thread generates a non-delivery failure to the sender for all recipients of that
message. The Router creates the non-delivery failure as a new message in MAIL.BOX on the sending
server.

Chapter 12: The Router 167

Pipelining, available through theE/SMTP (Extended SMTP) feature, improves message transfer
efficiency. Pipelining sends several commands — such as, Mail From: and Rcpt To: — in a single
packet, rather than sending one command per packet.

Transferring to a Domino Release 5 server via SMTP
Domino includes an SMTP Listener task that listens on port 25 (by default) and receives messages
sent over SMTP. The Listener task deposits the message in MAIL.BOX after itemizing the message
from RFC 822 data into Notes items. Itemizing the message creates Notes items for each of the RFC
822 header items (such as From:, To:, Subject:, and so on). In most cases, RFC 822 items map directly
to existing Notes items. In some cases, the name of the item changes slightly; for example, the RFC
822 To: header item maps to the Notes SendTo item.

Message delivery threads
Delivery threads function similarly to transfer threads. For performance reasons, delivery threads
try to optimize the opening of messages, which is a relatively expensive transaction since it requires
reading the message from MAIL.BOX into memory. Delivery threads maintain information about
the mail files on the server for which the message is destined. If there is more than one recipient on
the server, the first delivery thread opens the message and reads it into memory. After the thread
delivers the message, it leaves the message open in memory for the delivery threads for the other
recipients. The thread for the last recipient closes the message and thus removes it from memory.

This algorithm becomes more complicated when dealing with multiple message formats and format
preferences. For example, a message in MIME format may have three recipients on a server. One
recipient prefers MIME messages, and two recipients prefer Notes RTF messages. The first delivery
thread opens the message, delivers it to the MIME recipient, and closes the message. The second
delivery thread opens the message, converts it to Notes RTF, makes a copy of the message, and
delivers it to the first Notes RTF recipient. The final delivery thread uses the converted copy of the
message (in Notes RTF) and delivers it to the final Notes RTF recipient.

Making a copy of the message is necessary because the thread may need to alter the message — for
example, by removing blind carbon copy (BCC) recipients from the message header. By operating
on the copy of the message, the thread leaves the original message open and unaltered for the other
delivery threads to use. This results in the creation of (n-1) copies of the message, where n is the
number of recipients on the server. Instead of making a copy, the last delivery thread operates on
the original message. Not making a copy for the final recipient improves performance. For example,
if a message has three recipients on a server, the first two delivery threads make a copy of the
message, and the final thread operates on the message itself.

Message processing and pre-delivery agents
When the delivery thread processes its copy of a message, it adds the delivery time to the message
and modifies the recipient list, if necessary — for example, by removing BCC recipients. Next, if the
recipient has set up an agent to run in the mail file before new mail is delivered, the delivery thread
invokes the Agent Execution engine. The agent can instruct the thread to perform up to two tasks: to
modify the folder into which the thread places the message, instead of placing it, by default, in the
Inbox, or to delete the message. The agent cannot perform other actions on the message because the
message is not yet in the mail file.

Rules processing
After running any pre-delivery agents, the thread checks to see if the user has created any rules for
message processing. Rules sort or filter mail based on criteria defined by the user. If there are rules,
the Router passes the rules to the NSF engine, which performs rules processing after the message is
delivered to the mail file.

Then, the thread performs a NoteUpdate to deliver the message to the mail file. If the mail file’s
owner created rules for mail processing, the NSF engine runs those rules on the message. Rules can
move or copy the message; change its importance; or delete it. If the rules require that the message
be deleted, the NSF engine passes this information to the Router.

168 Inside Notes: The Architecture of Notes and the Domino Server

After performing the NoteUpdate, the delivery thread delivers any other messages queued for the
mail file. After the delivery thread delivers and processes all messages, the thread calls the Update
task, which refreshes the Inbox view in the user’s mail file.

Post-delivery agents
The delivery of the mail triggers the Agent Manager, which runs any agents that are set to run after
new mail arrives. After this, the delivery thread closes the session with the database.

Delivery failure
Message delivery may fail for a variety of reasons — for example, if the size of the user’s mail file
exceeds its database quota or if the server is out of disk space. If delivery failure occurs, the delivery
thread generates a non-delivery report and places it in MAIL.BOX on the server. The delivery
thread marks the message Done, and the main thread updates the status of the original message
during message cleanup.

Controlling the Router task
Using the Domino Administrator or the server console, administrators can enter commands to cause
the Router to perform certain tasks or actions. These commands begin with the syntax “Tell router.”
The commands are stored in the main message queue, which the Router checks periodically. When
the Router checks the queue and finds the command, it performs the desired action.

Configuration changes
The Router updates its configuration dynamically. It reads configuration variables — for example,
from the Configuration Settings document — every five minutes and updates its configuration.

Daily housekeeping performed by the Router
The Router performs maintenance tasks once a day at 4 AM. This includes compacting MAIL.BOX,
which is useful but less necessary in Domino Release 5 than it was in Domino Release 4. In Release
4, deleted messages left a stub behind in MAIL.BOX; stubs were removed only during compaction.
Hence, database size increased due to stubs until housekeeping compacted the database. Domino
Release 5 processes messages differently — deleted messages no longer leave a stub behind.

Release 4 used a table known as the UNK table to store a reference to each type of Notes item, with
information about what that item was. The Release 4 UNK table was limited to 64KB of memory.
Once the table reached 64KB, the database no longer accepted messages or notes with new items.
Compacting the database rebuilds the UNK table with items from notes in the database, discarding
all other items. Compaction in Release 4 was necessary to keep the UNK table from reaching the
64KB limit, which prevented MAIL.BOX from accepting messages with items not already in the
UNK table.

In Release 5, the UNK table can use a new property of the Release 5 ODS to allow up to 64,000
entries in the table. This removes the immediate need for compaction, since mail servers are
extremely unlikely to accumulate 64,000 unique items. This property is enabled when the Router
upgrades MAIL.BOX to the Release 5 ODS.

Compacting MAIL.BOX
In Domino Release 5, the Router attempts online in-place compaction. This allows MAIL.BOX to
continue accepting messages during compaction and is more efficient than Release 4-style
compaction. This type of compaction does not purge the UNK table, but does consolidate free space
in the database into a block, improving efficiency. If the Router detects that the UNK table is
approaching its limit (64,000 entries using the Release 5 ODS property; 64KB of entries otherwise), it
does Release 4-style compaction to purge the table.

Chapter 12: The Router 169

During Release 4-style compaction, MAIL.BOX is offline and cannot accept mail. This is an
important consideration in an Release 4-infrastructure, since mail cannot be delivered to the server
while MAIL.BOX is undergoing compaction. In Release 4 compaction, the Router makes a copy of
MAIL.BOX under a temporary file name, compacts the copy of the database, and checks for new
messages that have entered MAIL.BOX while the Router compacted the copy. If new messages have
arrived, the Router copies them to the temporary copy of MAIL.BOX, deletes the old MAIL.BOX,
and renames the temporary copy to MAIL.BOX. During the deletion and renaming process, there is
a brief window during which locking prevents mail from entering MAIL.BOX. This could
potentially result in a non-delivery failure, though the window is quite small.

To compact MAIL.BOX, the router’s main thread closes all threads and deletes all message queues.
The Router then calls the Compact task to compact MAIL.BOX, then reactivates the threads. The
Router rebuilds the main message queue, reading in all messages from scratch.

With multiple MAIL.BOX databases in Domino Release 5, the Router performs this process on each
database in turn. The Router marks each database as in use during compaction, so a request for
MAIL.BOX causes the server to establish a session with one of the MAIL.BOX databases that is not
in use.

Failover in clustered mail servers
During dispatching, the Router calculates the next hop for a message on the path to its destination.
That calculation includes the routing cost information that is stored in the routing table. Every
connection has a cost bias that reflects the bandwidth and speed of the route. If a server becomes
unavailable, the Router adds to the cost bias for connections to that server. Clustering servers helps
prevent transfer failures to a server — if one server in a cluster becomes unavailable, mail is
re-routed to other cluster members. From there, the mail can be routed or held until the server
becomes available.

Cluster algorithm
The cluster algorithm comes into play when a server is unavailable and the Router attempts to fail
over to another server.

Destination server in the same cluster
If the next hop for a message is the recipient’s home server and the current server is a member of the
home server’s cluster, the Router looks on the current server for a replica of the recipient’s mail file.
If there is a replica of the mail file, the Router marks the message for local delivery to that replica. If
there is no local replica, the Router consults the Cluster database (CLDBDIR.NSF) to find a cluster
member that has a replica. If a cluster member has a replica of the mail file, the Router transfers the
message to that server. If not, the Router queues the message for the original destination (the
unavailable server) and lets the transfer thread retry transfer after the server becomes available.

Destination server in a different cluster
If the next hop for a message is the recipient’s home server and that server is a member of a cluster
that does not include the current server, the Router transfers the message to another member of that
server’s cluster.

Cluster cache
When the Router performs a DatabaseOpen call to open a remote MAIL.BOX on another server, the
call queries the cluster cache on the server. The cache, CLUSTER.NCF, is a file that lists the members
and states of all clusters. The cache is built when the client or server asks for cluster information and
is updated periodically. The Router uses the Notes API to query the cache, locate cluster members,
and determine their availability. The cache selects the least-busy server in a cluster to fail over to.

170 Inside Notes: The Architecture of Notes and the Domino Server

Domino Release 5 cluster enhancements
Domino Release 5 allows intermediate-hop failover to provide additional reliability and ease of
routing. A Domino administrator can set which hops should use failover — all hops, the last hop, or
no hops. If you use clustering in Release 5, it is helpful to cluster hubs, so that a hub failure does not
cause a disruption in mail routing.

Message-delivery retry algorithm
The Router includes a retry algorithm at several levels. Retrying occurs after a thread attempts to
connect to a server but the connection fails. The retry algorithm is independent of protocol and can
occur for delivery as well as transfer.

Transfer threads
When a transfer thread tries to connect to MAIL.BOX (via NRPC) or the SMTP listener task (via
SMTP) on a destination server and the connection times out or fails, the thread records the message
state as RETRY. The destination is marked RETRY, which prevents the Router from assigning other
threads to that destination. Initially, the Router waits 15 minutes and then tries again to connect.
After the retry interval expires, the main thread activates a transfer thread and retries a connection
to the destination server. If this connection attempt fails or times out, the destination remains in
RETRY and the interval increases to 30 minutes. After 30 minutes, the main thread again wakes a
transfer thread, which attempts to connect. If this attempt fails or times out, the destination remains
in RETRY and the interval increases to 45 minutes. Subsequent attempts follow the same pattern,
but the interval remains 45 minutes. While a destination can remain in RETRY mode for as long as it
is unreachable, individual messages expire after 24 hours and generate non-delivery failure reports
to the sender. To see what threads and destinations are in RETRY state, an administrator can enter
the command tell router show at the console.

Message level retry
Individual messages can also go into RETRY mode. Over SMTP, there may be a transient error that
interferes during message transfer. The transfer thread aborts the attempt to transfer that message
and then retries the transfer. Over NRPC, the connection may time out in trying to transfer a
message, leading the thread to retry the transfer later. RETRY may happen for messages on delivery
as well — if the user’s mail file is locked by another process or is being compacted, the local
destination (the mail file) is marked RETRY, and the delivery thread attempts delivery later.

Chapter 12: The Router 171

Glossary

A

About This Database document

The About document contains information supplied by the database designer, and is often a description of the
database purpose and contents. To open this document, choose Help - About This Database.

accelerator key

A key used in conjunction with the ALT key to trigger an action. For example, ALT+F shows the File menu. In
Notes menus, accelerator keys are underlined. See Extended accelerator key.

access control

A security feature that determines the tasks that each user, server, or group of users or servers in a Lotus Notes
database can perform. Some can do all tasks while others may be limited to specific tasks.

access-controlled section

A defined area on a form that allows only certain users to edit the fields in the section. Besides fields, it can
include objects, layout regions, and text.

ACL (access control list)

A list of database users (individual users, Lotus Domino servers, and groups of users and/or servers) created
and updated by the database manager. The ACL specifies which users can access the database and what tasks
they can perform.

ACL Monitor

A document created in the Statistics & Events database that causes the Event task on a server to monitor a
specific database for ACL changes.

Adjacent Domain document

This document defines the name, location, and access to adjacent (connected) and non-adjacent (unconnected)
Domino domains and non-Domino domains. It is stored in the Domino Directory.

Administration Process

A server task (Adminp) that automates many administrative tasks. You initiate the tasks, and the
Administration Process completes them for you. Some of the tasks the Administration Process can automate
are: recertifying Notes IDs, renaming and deleting references to Notes users and groups, creating replicas of
databases, and moving databases.

administration server

The server that you assign to apply Administration Process updates to a primary replica.

173

agent

A program that performs a series of automated tasks according to a set schedule or at the request of a user. An
agent consists of three components: the trigger (when it acts), the search (what documents it acts on), and the
action (what it does).

Agent Builder

Where users create these types of agents: simple action, formula, LotusScript, or Java. An agent automates a
task and can be run by a user or according to a set schedule.

Agent Manager

The background server program that manages and runs agents on a server. An agent performs a series of
automated tasks according to a set schedule or at the request of a user. The Agent Manager runs by default on
a server. You set guidelines for the Agent Manager in the Server document in the Domino Directory.

alarm

For end-users: Reminds you of an entry on your Calendar. When an alarm goes off, Notes shows a description
of the Calendar entry associated with the alarm.

For administrators: A document generated in the Statistics database indicating that a server statistic has
exceeded a specified threshold. For example, an alarm can notify you if disk space on server drive C drops
below 10 percent. You create Statistics Monitor documents to configure alarm reporting.

alias

An additional name for a form, view, or keyword.

alternate mail

A mail system other than Notes mail.

anonymous access

Lets users and servers access a server without authentication. This level of access is useful for providing the
general public access to servers and databases for which they are not certified. It is typically used for granting
access to the servers and databases on a Web site.

API (application programming interface)

A set of functions that gives programmers access to another application’s internal features from within their
own application. Notes and Domino offer several APIs that give developers access to Notes and Domino
features and functionality, enabling them to create powerful and customized client and server applications.

application proxy

A firewall configuration that examines the destination of a packet and the type of information it contains,
checks whether your network allows delivery to that destination, and controls the information flow between
internal and external clients and servers.

attach

To store a file with a Lotus Notes document or form. The file, or attachment, is stored with the document or
form in the database until you delete one of them. If you mail the document, the attachment is mailed with it.

attachment

A file attached to a Lotus Notes document or form or to a Web page document. An attachment remains with
the document until you delete the attachment or the document.

174 Inside Notes: The Architecture of Notes and the Domino Server

authentication

A security mechanism that verifies the identities of clients and/or servers. There are three types of
authentication in Notes and Domino -- Notes/Domino, SSL, and name-and-password authentication.

�� Notes/Domino

Verifies that the user or Domino server trying to access a particular Domino server has a trusted certificate
in common with it. Authentication occurs in both directions: the server authenticates the user, then the user
authenticates the server.

�� SSL authentication

Used by Internet protocols over SSL. During SSL authentication, the server exchanges the server certificate
with the client and, optionally, the client exchanges the client certificate with the server. This exchange
determines whether the client and server have a certificate in common and verifies the identities of the
server, and optionally, the client.

�� Name-and-password authentication

Used by Internet protocols over TCP/IP and SSL. During name-and-password authentication, a text
password is sent by the client to the server. The server verifies the identity of the client by making sure the
password provided matches the password stored in the Domino Directory for that person.
Name-and-password authentication does not use certificates.

Author access

An access level that allows users to create and read documents and edit the ones they created and saved.
Servers with Author access can replicate new documents and can usually delete documents marked for
deletion. Access levels can be further refined using roles and access restrictions.

Authors field

A field that lists the names of people who have Author access. This field does not override the access control
list. Use this field to control edit access on a document-by-document basis.

autolaunch

When a user creates or opens a document for reading or editing, an embedded object automatically opens in its
native format. The user can change the embedded object and add a new object directly in the application that
created the object. The Notes document automatically displays the changes.

autoregistration

A process by which external databases may be automatically added when the database type and path are
supplied during connection.

B

billing

A feature that enables a Domino server to track specific Domino activities for a chargeback of server processing
time. The billing server task collects this information and records the data.

binary tree server topology

Connects servers in a pyramid fashion: the top server connects to two servers below it, each of which connects
to two servers below it, and so on. Information travels down the pyramid and then back up.

bookmark

A customizable, graphical link to databases, views, documents, Web pages, and newsgroups.

Glossary 175

bookmark folder

A folder in the Bookmark Bar containing bookmarks.

broadcast meeting

Invitees are notified about a meeting but do not need to respond to the invitation. This option is useful when
individual response will not affect the occurrence of the meeting.

button bar

In the Notes client, the bar that displays actions as buttons. Actions let users click to accomplish tasks, from
mimicking the Notes menus to tasks defined by formulas or a LotusScript program.

C

CA (Certificate Authority)

The link that allows a server and client to communicate. A CA vouches for the identity of a server and client by
issuing certificates stamped with the CA’s digital signature and including the CA’s trusted root certification.
The digital signature assures the client and server that both the client certificate and the server certificate can be
trusted. If the client and server can identify the digital signature on the certificate, then a secure SSL session can
be established. Otherwise, the client and server cannot authenticate each other, and the session cannot be
established. Clients and servers identify digital signatures by comparing them against the trusted root
certificate.

A CA can be a third-party, commercial certifier, such as VeriSign, or a certifier that you establish at your
organization using Notes and Domino. Third-party and Domino CAs create both server and client certificates.

Calendar

A view in your Notes mail database that you can use to manage your time and schedule meetings. You can add
appointments, meetings, reminders, events, and anniversaries to the Calendar view. You can also display tasks
in the Calendar view.

Calendar profile

A document that lets you customize your calendar and indicate the times that you are available for meetings.
Notes saves this information in a database on your mail server; you define who can look up the information.

canonical format

A format for storing hierarchical names that displays the hierarchical attribute of each component of the name.
For example, the canonical format for the name Reuben D. Smith/Ottawa/Acme/CA is: CN=Reuben D.
Smith/OU=Ottawa/O=Acme/C=CA

where:

 CN is the common name

 OU is the organizational unit

 O is the organization

 C is the country code

category

A word, phrase, or number used to group documents in a view.

certificate

A certificate is a unique electronic stamp that identifies a user or server. Domino uses two types of certificates:
Notes certificates and Internet certificates.

176 Inside Notes: The Architecture of Notes and the Domino Server

A Notes certificate is stored in a Notes or Domino ID file that associates a name with a public key. Certificates
permit users and servers to access specific Domino servers. An ID may have many certificates.

An Internet client certificate lets a user access a server using SSL client authentication or send an S/MIME
message. The client certificate is stored in either the Notes ID file if you are using a Notes client or in a file
stored on the user’s hard drive. An Internet server certificate lets users access a server using SSL server
authentication. The server certificate is stored in a key ring file on the server’s hard drive.

Internet certificates contain a public key, a name, an expiration date, and a digital signature.

certification

Process that creates special signed messages called certificates, which state that a particular public key is
associated with a particular user or server name. Domino automatically issues Notes certificates for users and
servers when you register them.

Certificate Authority certificate

A binary file stored on the CA server’s hard drive that contains a public key, a name, and a digital signature.
The CA certificate identifies the Domino or third-party CA.

certifier ID

A file that generates an electronic “stamp” which indicates a trust relationship. It is analogous to the device
used to stamp passports -- it verifies that a person is trusted by that stamping authority.

CGI

Abbreviation for Common Gateway Interface (CGI). CGI is a standard that connects external programs with
information servers such as Web servers or HTTP servers. CGI scripts are a common way of customizing
information presentation and retrieval on the Web; they can run within databases and on a Domino server.

chain server topology

Connects servers one-to-one, end-to-end. Information travels along the chain and then back.

character set

A set of binary codes that represent specific text characters.

child document

A document that inherits values from another document (the parent document).

client certificate

An electronic stamp that contains a public key, a name, an expiration date, and a digital signature. The client
certificate uniquely identifies the user and is used when accessing a server using SSL and sending encrypted
and signed S/MIME messages.

The client certificate is stored in the Notes ID file if you are using a Notes client or on the user’s hard drive.

CLS files

Country Language Services (CLS) files convert characters such as foreign currency symbols and accented
letters to other characters when importing or exporting files. CLS files also control the order in which
characters are sorted.

cluster

A group of two to six Domino servers that you set up to provide users with constant access to data, balance the
workload among servers, improve server performance, and maintain performance when you increase the size
of your enterprise.

Glossary 177

collapse

An action that hides documents under categories or hides response documents under main documents in a
view.

@command

A special @function that performs an immediate action in the user interface.

command key

A key that directly triggers an action and usually makes use of the CTRL (Windows) or COMMAND
(Macintosh) keys. For example, to print press CTRL+P (COMMAND+P on Macintosh).

compact

To compress a database, in order to reclaim space freed by the deletion of documents and attachments.

computed field

On a form, a field whose value is determined by a formula that you write.

Connection document

In the Domino Directory, a Connection document enables communication between two servers and specifies
how and when the information exchange occurs. In the Personal Address Book, it describes how a client
accesses a certain server.

create access list

A list that restricts a form, so that only specified users can create documents using the form.

criteria

Data you specify so that your application can select records during a query. You can use matching criteria, in
which records must match the criteria you set, or formula criteria, which use logical formulas and @functions
to test records.

cross-certificate

Domino uses two types of cross-certificates: Notes and Internet. Notes cross-certificates allow users in different
hierarchically-certified organizations to access servers and to receive signed mail messages. Internet
cross-certificates allow Notes users to secure S/MIME messages and verify the identity of a server using SSL.

Cross-certificates are stored in the Domino Directory or Personal Address Book.

D

data directory

Directory that contains local databases, local database templates, country language services (CLS) files,
DESKTOP.DSK files, and if you’re using OS/2 or UNIX, your NOTES.INI file.

data note

A document in a Notes database.

data type

The type of information that one field in a database can store, for example, text, rich text, numbers, keywords,
and time.

178 Inside Notes: The Architecture of Notes and the Domino Server

database

A collection of documents and their forms, views, and folders, stored under one name. Notes databases can be
part of a Web site or part of a Notes application.

database cache

A section of memory on a Domino server where databases are stored for quick access. You can display cache
statistics, change the number of databases that a server can hold in its cache, close all databases in the cache,
and disable the cache.

Database Catalog

A database containing information about databases stored on a single Domino server, a group of servers, or all
the servers in a domain. Database Catalogs are commonly used to let users add the databases in them to the
users’ desktops.

database header

An internal structure that stores database-wide information such as, a time stamp that indicates when a
database was first created or when the Fixup task last ran on it.

DBID (database ID)

The time stamp that is located in the database header and that indicates when a database was first created or
when the Fixup task last ran on it.

DBIID (database instance ID)

A value that is located in the database header and that associates the database with specific entries in the
transaction log.

database library

A database that provides information about databases including descriptions, replica IDs, and manager names.
Database libraries can be local and describe databases on a workstation or can be on a server and describe
shared databases. Database libraries are commonly used to let users add the databases in them to the users’
desktops. Related databases can be grouped together for easier access.

database manager

A person with Manager access to a database whose responsibilities include setting up and maintaining access
to the database and monitoring database replication, usage, and size.

database replica

A special copy of a database that, because it shares a replica ID with the original database, can exchange
information with it through replication.

DDE (Dynamic Data Exchange)

DDE is a method for displaying data created with other Windows and Presentation Manager applications, such
as graphics or spreadsheet ranges, within Notes documents. DDE objects can be reactivated and updated to
reflect the current state of changing data.

default value formula

The formula that lets you set an initial value for an editable field.

default view

The view displayed the first time you open a database.

Glossary 179

deletion stub

A truncated document that is left in a database in place of the original document to indicate to the Replication
task that the document should, in fact, be deleted from all other replicas.

Depositor access

An access level where users can create documents but can’t read any of the documents in the database.

design pane

The workspace area that displays design options, as well as areas to enter design information.

design template

A database design that lets you share design elements among databases and store design elements with a
template. You can enable the template so that when it changes, the change automatically occurs in all databases
created with that template.

designer

The person who creates and develops a database or an application, pilot tests it, refines it as necessary, and
delivers it to the database manager.

Designer access

An access level where users can compose, read, and edit any documents, plus modify the database icon, About
and Using documents, and all design elements. Servers can replicate all of the above and, if they have delete
access, deletions.

DESKTOP.DSK

File that contains information about your workspace.

detach

To make a local copy of a file that is attached to a Lotus Notes document.

dialup

A connection type, usually a port, that is not on a local area network and must be accessed by modem and
telephone lines.

dialog box

A box that appears when an application needs additional information to complete a task. A dialog box can
contain check boxes, command buttons, option buttons, list boxes, information boxes, scroll buttons,
drop-down boxes, and text boxes.

digital signature

The electronic equivalent of a handwritten signature, a digital signature is a unique block of text that verifies a
user's identity and is appended to a message. The signature can be used to confirm the identify of the sender
and the integrity of the message. The block of text is encrypted and decrypted using public and private keys.

digital speech synthesizer

A device used with screen readers to portray what is on screen through voice.

DIIOP (Domino Internet Inter-ORB Protocol)

A server task that runs on the server and works with the Domino Object Request Broker to allow
communication between Java applets created with the Notes Java classes and the Domino server. Browser
users and Domino servers use IIOP to communicate and to exchange object data.

180 Inside Notes: The Architecture of Notes and the Domino Server

Directory Assistance

A feature that allows you to extend client authentication, name lookups, and LDAP searches to secondary
Domino directories and to LDAP directories. You use the Directory Assistance database to set up directory
assistance.

Directory Assistance database

A database used by directory assistance that serves as a directory of secondary Domino directories and of
LDAP directories.

Directory Catalog

A database that contains Person, Group, Mail-In Database, and Scheduling Resource entries from one or more
Domino Directories. Servers use Directory Catalogs for quick name lookups, and Notes users use a Mobile
Directory Catalog to easily address mail to people throughout an organization, even when disconnected from
the network.

DNS (Domain Name Service)

An Internet service that translates domain names into IP addresses.

document

A Notes database entry that users create by using a form on the Create menu. Documents consist of fields, text,
numbers, graphics, and so on. Information may be entered by a user, automatically calculated by formulas,
imported from other applications, or linked to another application and dynamically updated.

domain

A Domino domain is a collection of Domino servers and users that share a common Domino Directory. The
primary function is mail routing. Users’ domains are determined by the location of their server-based mail
files.

For a Domino server to communicate with a server in a different domain, you create a Domain document in the
Domino Directory to define the name, location, and access to adjacent and non-adjacent Domino domains and
non-Domino domains. Other domains are:

�� Foreign domain

A Domino domain and an external mail system such as SMTP or cc:Mail. It specifies which outbound
addresses are Internet addresses and where the Notes Mail Router sends those messages.

�� Global domain

A group of Domino domains, such as Sales1, Sales2, and Marketing, under a single Internet domain, such
as acme.com. All outbound SMTP mail, whether it originates from the Sales1 or Marketing domains, has
the return address acme.com.

Domino Directory

A directory of users, servers, groups, and other entities -- for example, printers. It is a tool that administrators
use to manage the Domino system, for example, to connect servers for replication or mail routing, to schedule
server tasks, and so on. In previous releases the Domino Directory was called the Public Address Book.

Domino server

A computer that runs the Domino Server program and stores Notes databases.

Domino Server program

The program that supports the connection between clients and the serer and also manages a set of server tasks,
which are programs that either perform schedule-driven database chores -- such as, routing messages to
mailboxes and updating user accounts -- or connect various types of clients -- Notes clients, Web browsers,
CORBA clients -- to the server.

Glossary 181

E

ECL (Execution Control List)

An ECL is a feature accessed through the User Preferences dialog box that enhances security of your
workstation data. The ECL lets you control which formulas and scripts created by another user can run on your
workstation.

Edit mode

The state in which you can create or modify a document.

editable field

On a form, a field whose value is determined by a formula that you write to supply a default value, edit the
user’s entry, and validate the entry to make sure it meets specific requirements.

Editor access

An access level that allows users to create, read, and edit any documents. Servers can replicate new documents,
change existing documents, and, if they have delete access, make deletions.

electronic signature

A stamp added to mail messages, fields, or sections that verifies that the person who originated the message is
the author and that no one has tampered with the data.

encryption key

Security feature that ensures that only the intended recipient can read encrypted text. Every Notes user ID
contains two: a public key for sending and encrypting and a private key for receiving and decrypting. Users
may also have a public and private key for S/MIME encryption and signatures.

event

In LotusScript, an action or occurrence to which an application responds. That action can be a user-generated
one, such as a mouse click; a system-generated one, such as the elapsing of a set amount of time on the
computer’s clock; or an application-generated one, such as the saving of a document via the product’s autosave
feature. Each LotusObject can respond to a predefined set of events, those defined for the class that the object is
an instance of. Events are the primary way to initiate the execution of scripts: when a script is attached to an
object event, it is executed when the event occurs.

In the Calendar, an entry with a duration of at least one day. For example, an all-day meeting or a vacation is
an event.

event script

A script attached to a particular event. Examples in LotusScript are Initialize, Queryopen, and Postopen. When
the event occurs, the script runs.

export

Save a Notes document or view in a non-Notes format.

extended accelerator key

Additional accelerator keys, used for bookmarks and task buttons. To view the extended accelerator keys, press
and hold down the ALT key.

extranet

An intranet with extended access, generally behind a firewall. For example, a company may give the public
access to certain parts of its intranet and restrict access to others. This can be done by using firewall programs
or routers, via a proxy, or by specialized software.

182 Inside Notes: The Architecture of Notes and the Domino Server

F

failover

A cluster’s ability to redirect requests from one server to another. Failover occurs when a user tries to access a
database on an unavailable server or one in heavy use, and the user instead connects to a replica of the
database on another (available) server in the cluster. Failover is transparent to the user.

field

On a form, a named area containing a single type of information. The field’s data type determines the
contents -- text, rich text (including styled text, graphics, and multimedia), numbers, or time-date.

firewall

A firewall is a system that is designed to control access to applications on a network. Typically, a firewall
controls unauthorized access to a private network from the public Internet.

folder pane

The workspace area that shows the folders and views available in the opened database.

form

Forms control how you edit, display, and print documents. A form can contain fields, static text, graphics, and
special objects. A database can have any number of forms.

formula

An expression that has program-like attributes; for example, you can assign values to variables and use a
limited control logic. Formulas are best used for working within the object that the user is currently processing.
The formula language interface to Notes and Domino is through calls to @functions.

You can write formulas that return a value to a field, determine selection criteria for a view, create specific
fields in a form, determine the documents a replica receives, help users fill out a document, increase database
performance, and create buttons or hotspots.

FTP (File Transfer Protocol)

A protocol used to transfer files from one computer to another. FTP also refers to the actual application used to
move files using the FTP protocol.

full-text index

A collection of files that indexes the text in a database to allow Notes to process users’ search queries.

full-text search

Search option that lets you search a database for words and phrases, as well as perform more complex searches
using wildcards and logical operators.

@function

A built-in formula that performs a specialized calculation automatically.

G

group

A named list of users and/or servers. It can be used in Domino Directories, Personal Address Books, access
control lists, and so on.

Glossary 183

groupware

Applications that enhance communication, collaboration, and coordination among groups of people.

H

hierarchical naming

A system of naming associated with Notes IDs that reflects the relationship of names to the certifiers in an
organization. Hierarchical naming helps distinguish users with the same common name for added security and
allows for decentralized management of certification. The format of a hierarchical name is: common
name/organizational unit/organization/country code -- for example, Pam Tort/Fargo/Acme/CA.

hierarchical view

A view that distinguishes between main documents and response documents. Each main document has its
response documents indented under it.

hop

An intermediate stop on the path along which mail is routed when the sender’s server and recipient’s server
are not directly connected.

hotspot

Text or a picture in a rich text field that a user can click to perform an action, run a formula or script, or follow
a link.

HTTP (Hypertext Transfer Protocol)

An Internet protocol used to transfer files from one computer to another.

hub-spoke server topology

Establishes one central server as the hub and other servers as the spokes. The spokes update the hub server by
replication and mail routing, and the hub in turn updates each spoke. Hub servers replicate with each other or
with master hub servers in organizations with more than one hub.

hunt group

A group of servers that are assigned one phone number. Clients dial the one phone number and connect to any
available server. Hunt groups balance the load on servers.

I

ICAP (Internet Calendar Access Protocol)

Network protocol that lets a client access, manipulate, and store Calendar information on a server. ICAP can be
used either as a set of capability extensions to IMAP4 to create a server that supports both messaging and
Calendar functions, or as a stand-alone protocol for a server dedicated only to the Calendar.

IIOP (Internet Inter-ORB Protocol)

An Internet protocol that implements CORBA solutions over the Web. IIOP lets browsers and servers exchange
complex objects, unlike HTTP, which only supports transmission of text.

IIS (Internet Information Server)

The Microsoft Internet Information Server is a Web server that lets you browse HTML and Active Server pages.
Domino includes an IIS product extension that lets you browse Domino databases using IIS.

184 Inside Notes: The Architecture of Notes and the Domino Server

IMAP (Internet Message Access Protocol)

Mail protocol that allows clients running it to retrieve mail from a host mail server also running the protocol.
IMAP is similar to POP3 but has additional features. For example, it supports three modes of mailbox access.
You can enable IMAP on a Domino server.

input-translation formula

In an editable field, the formula that converts or translates entered information into a specified value or format.

input-validation formula

In an editable field, the formula that verifies that the entered information meets the specified criteria.

intranet

A computer network with restricted access. Companies use intranets to share information internally.
Increasingly, intranets are built as private Internets: a TCP/IP network based on Web standards like HTML,
SMTP, or POP3. The difference is access -- anyone can access the Internet with the appropriate software, but
only employees can access an intranet. See extranet.

ISAPI (Internet server application programming interface)

The Internet server application programming interface supported by IIS. Developers use this interface to create
programs, called extensions, that extend the capabilities of IIS.

ISDN (integrated services digital network)

An international communications standard for sending voice, video, and data over digital telephone lines.

item descriptor

Stored in an array of fixed-size structures in a note header, each item descriptor describes one note item. Each
structure has information describing the item name, type, value, size, and so on.

ISP (Internet Service Provider)

 A company that provides access to the Internet.

K

key ring file

A binary file that is protected by a password and stores one or more certificates on the server hard drives.
Domino uses two types of key ring files: server and CA. You do not use a key ring file for client certificates.

keyboard shortcut

A key combination that can be pressed instead of using a command from a pull-down menu. CTRL+letter and
SHIFT+letter are the most common keyboard shortcuts. Some products let users define their own keyboard
shortcuts; these shortcuts may be single keys or key combinations.

keywords field

A multiple-choice field that lets users make selections by clicking, rather than typing, an entry. Keywords fields
can display in several formats, including a drop-down list box, a check box, and a radio button.

L

layout region

On a form or subform, a fixed-length design area in which related elements can be dragged and moved easily
and can be displayed in ways not possible on regular forms and subforms.

Glossary 185

LDAP (Lightweight Directory Access Protocol)

A set of protocols for accessing information directories. LDAP is based on the X.500 protocol, but supports
TCP/IP, which is necessary for Internet access. Because it’s a simpler version of X.500, LDAP is sometimes
called X.500-lite. You can enable LDAP on a Domino server to allow LDAP clients to access information in the
Domino Directory, for example, e-mail addresses.

LDAP directory

A hierarchical directory of names that can reflect an organization’s structure or geography and that is accessed
via the LDAP protocol.

Running LDAP on a Domino server enables the Domino Directory to serve as an LDAP directory. Two popular
public LDAP directories are Bigfoot and Four11.

letterhead

The particular way that your name, the date, and the time appear at the top of the mail messages you create.
You can choose from several letterhead styles.

library

A database containing lists of other databases.

license

Determines which databases, templates, and functions users have access to and the extent to which they can
perform design and administrative tasks.

LICS (Lotus International Character Set)

A character set supported by Notes.

link

An icon that gives you direct access from one Notes document, view, or database (the source object) to any
other document, view, or database (the target object). Notes opens the target object without closing the source
object you branched from.

local database

A database is local if it can be accessed only by programs running on the same computer.

LMBCS (Lotus Multibyte Character Set)

The format in which Notes stores all internal text, except file attachments and objects. As a result, any user can
edit, forward, and mail documents and work with databases in any language.

All text leaving the system -- that is, displayed, printed, and exported -- is translated from LMBCS to the
appropriate character set. LMBCS supports Western and Eastern European, North American, and Asian
languages.

LN:DO

Lotus Notes:Data Object is an LSX-compliant module that allows the use of LotusScript scripts for external data
access applications.

local database

A Notes database stored on your computer’s hard disk drive, on a disk, or on a networked file server.

186 Inside Notes: The Architecture of Notes and the Domino Server

Location document

A document in your Personal Address Book that contains communication and other location-specific settings
you use when you work with Notes in a specific place. You can create as many Location documents as you
need.

LotusObject

Any object that is an instance of a Lotus-product class. LotusObjects can be manipulated using LotusScript.
LotusObjects share a common design. Many are implemented either the same way across products, or almost
the same way, with slight variations from product to product.

LotusScript

A version of Basic that offers not only standard capabilities of structured programming languages, but a
powerful set of language extensions that enable object-oriented development within and across products. Its
interface to Notes is through predefined object classes.

LS:DO

The ODBCConnection, ODBCQuery, and ODBCResultSet classes, collectively called the LotusScript Data
Object (LS:DO), provide properties and methods for accessing and updating tables in external databases
through the ODBC (Open Database Connectivity) Version 2.0 standard.

M

macro

A program that performs a series of automated tasks on behalf of the user. A macro consists of three
components: the trigger (when it acts), the search (what documents it acts on), and the action (what it does).
Also called an agent.

Manager access

An access level that allows users to compose, read, and edit any documents; modify the access control list,
database icon, About and Using documents, and all design elements; define replication settings; and delete the
database. Servers can replicate all the above and, if they have delete access, deletions.

MIME (Multipurpose Internet Mail Extensions)

Software that allows you to attach non-text files to Internet mail messages. Non-text files include graphics,
spreadsheets, formatted word-processor documents, and sound files.

MSAA (Microsoft Active Accessibility)

An enabling technology, used to make software more accessible for people who use devices such as screen
readers. It helps to distinguish user interface elements, items in documents, and the organization of documents.

MTA (message transfer agent)

 A program that translates messages between mail formats. Also called a gateway.

N

Name & Address Book

Now called the Domino Directory or Personal Address Book.

named element

A specific design element in a database -- for example, a view or folder.

Glossary 187

named-object table

The named-object table maps names to associated notes and objects. For example, this table manages per-user
unread lists.

named style

A collection of styles that you can apply to other data in a file. Styles stored in a named style can include
number format, typeface, type size, underlining, bold, italics, lines, colors, and alignment.

navigation pane

The pane that either displays icons for all views, folders, and agents in a database, or displays the current
navigator.

navigation buttons

Browser-like buttons in Notes used to navigate among open pages of databases or Web pages. Button functions
include back, forward, stop, refresh, search, and go.

navigator

Programmed graphics in the user interface that direct users to specific parts of a database without having to
open views. Navigators usually include hotspots, and can do simple actions such as opening a database,
document, URL, view or folder, or even another navigator.

negotiated session key

Encryption key that is created at the beginning of the SSL handshake, which determines the key used when
encrypting information over an SSL connection. The negotiated session key changes each time a new session is
initiated.

newsgroup

An online discussion group that users with newsreaders can participate in. A Domino NNTP server can store
USENET newsgroups, public newsgroups distributed on the Internet, and private newsgroups.

newsfeed

The periodic transfer of newly posted newsgroup articles from one NNTP server to another using the NNTP
protocol. If you enable the NNTP protocol on a Domino server, you can set up a newsfeed to transfer both
USENET and private newsgroup articles.

newsreader

A client application that runs the NNTP protocol and is used to select, view, create, sort, and print USENET
and private newsgroup articles.

NNTP (Network News Transfer Protocol)

Protocol that supports reading newsgroups, posting new articles, and transferring articles between news
servers. When enabled on a Domino server, allows NNTP clients to access newsgroups on the server and
allows the Domino server to exchange news with other NNTP servers.

No Access

An access level where users have no access to a database; they cannot even add the database icon to their
workspaces.

note

A note is a simple data structure that stores database design elements (forms, views, and so on), user-created
data (documents), and administrative information, such as the database access control list.

188 Inside Notes: The Architecture of Notes and the Domino Server

note header

A note header is a structure that contains, among other things, the note's originator ID (OID), which includes
the note's universal ID (UNID); the note ID; the note's parent note, if one exists; the number of items in the note;
and the list of the note's item descriptors.

note ID

A 4-byte value that is assigned to a note when the note is first created. Note IDs are stored in the record
relocation vector table, which maps a note's note ID to the position with the database file. A note ID is unique
within a database but not across replicas of the database, meaning that the same note in two replicas can have
different note IDs, even though the replicas have identical UNIDs.

Notes application

A Notes application is the design of a Notes database. A complex Notes application may consist of several
individual database designs that work together to perform a specific task. A typical Notes application consists
of a set of design elements that specify, among other things, the type of documents in the database, the way
that documents can be indexed and viewed, and the application's logic, which is written in the Notes Formula
Language, LotusScript, Java, or JavaScript.

Notes client

Client software that allows you to access Notes databases on a Domino server, send mail, browse the Web.

Notes database

A Notes database is a single file that physically contains both a set of documents and a copy of the application
design elements that control the creation and modification of those documents. A database can be shared, local,
or remote.

Notes domain

A Notes domain is a network of client and server computers whose users, servers, connections, and access
control information is described in a single database called the Domino Directory.

Notes mail database

A Notes database in which you send and receive mail. Your mail database is stored on your home server.

NOS (Notes Object Services)

The Notes Object Services are a set of portable C/C++ functions that create and access information in databases
and files, compile and interpret formulas and scripts, and interface to operating systems in a consistent,
portable way.

Notes program

A Notes program is written in C or C++, compiled into machine code, and then distributed as an executable
(EXE) file. Examples of Notes programs include the Notes Client, the Domino Designer, the Domino
Administrator, the Domino Server program, and Domino server tasks.

Notes program component

A Notes program component is written in C or C++, compiled into machine code, and then distributed as a
dynamic link library (DLL) file. Program components contain reusable code and/or resources -- for example,
text strings -- that can be used by one or more running programs. An example of a Notes program component
is the Notes Object Services (NOS).

NRPC (Notes remote procedure call)

This is the architectural layer of Notes used for all Notes-to-Notes communication. You can set up either the
HTTP or the SOCKS proxy to work with RPC.

Glossary 189

Notes/FX

Notes/FX (Field Exchange) is a technology that lets desktop applications and Notes share data fields.

NOTES.INI

A settings file that includes installation choices, server console commands, and setup selections.

NotesNIC

The administrator of the NET domain, a way to communicate with other Notes organizations on the Internet.

NSF

The file extension for a Notes database file. A database file contains the data for an application. Its structure is
composed of forms, fields, folders, views, and other presentation features, such as a navigator and a database
icon.

Notes Storage Facility

Part of the Notes Object Services, the Notes Storage Facility is a library of C functions that implement the most
basic database-creation and database-management operations.

NTF

The file extension for a Notes template file. A template file contains the structure for the database -- that is,
forms, folders, and views -- but does not contain documents. Domino Designer comes with a collection of
templates that you can use to create system and application databases.

O

ODBC (Open Database Connectivity)

A standard developed by Microsoft for accessing external data. ODBC has four components: the
ODBC-enabled application, the ODBC Driver Manager, ODBC drivers, and data sources. Lotus Notes is an
ODBC-enabled application.

ODS (on-disk structure)

The common, portable format used to store information in a Notes database. In Domino Release 5, the ODS
version of a database is listed on the Info tab of the Database Properties box.

OID (originator ID)

A 28-byte identifier that contains a note's unique universal ID (UNID), which is essential for replication. The
OID contains a UNID, which uniquely identifies the note and all replicas of the note. The OID also contains a
sequence number and a time stamp that together indicate how often the note has been modified and when it
was last modified. Replication uses all three OID values to synchronize changes between replicas of a note.

outgoing mail database

A file (MAIL.BOX) that temporarily stores outgoing mail that users create when not connected to a mail server.

P

pane

An area of a workspace that shows a specific part of an opened database; for example, available folders and
views, the current view, or the contents of the highlighted document.

parent document

A document whose values are inherited by another document (the child document).

190 Inside Notes: The Architecture of Notes and the Domino Server

partitioned server

A feature that lets you run a maximum of six Domino servers on a single computer. With partitioned servers,
you can increase the number of servers in your organization without additional investment in hardware.

passthru server

An intermediary server that lets a client access a target server to which the client is not connected. A mobile
user can access multiple servers through a single phone connection; a LAN client can connect to servers
running network protocols different from its own.

peer-peer server topology

Connects every server in your organization to every other server. For organizations with only a few servers,
this allows for rapid updates.

permanent pen

An editing feature that allows users to edit documents in a second font.

Personal Address Book

A database that contains the names and addresses of users and user groups that you enter yourself.

Personal Web Navigator

A feature that retrieves, displays, searches for, and stores Web pages in a local Personal Web Navigator
database. Because this database is stored locally, you are the only person who can access the Web pages stored
in it.

PKCS (Public Key Cryptography Standards)

Industry-standard format for certificate requests. You see this acronym in both the Domino Certificate
Authority and Server Certificate Administration applications. It means that if the CA server understands how
to read PKCS format, it will understand your certificate request. This is important when you submit server
certificate requests to an external CA, as the external CA must understand PKCS format.

platform

A platform is a specific operating system running on a specific computer.

POP3 (Post Office Protocol Version 3)

A mail protocol that allows clients running it to retrieve mail from a host mail server also running the protocol.
You can enable POP3 on a Domino server.

preview pane

The preview pane lets you read the content of the document that is selected in the view pane. If Notes is set to
preview document links, you can also view documents linked to the selected document.

primary replica

The replica designated to be the only recipient of updates by the Administration Process. By updating a
primary replica and then replicating that database to other replicas on other servers, you avoid creating
replication conflicts.

private folder

A folder that users design and save for their own use with a database.

private key

A secret encryption key that is stored in a Notes ID file and that is used to sign and decrypt messages and to
authenticate as the owner of the key.

Glossary 191

For SSL-encrypted transactions, public and private keys are a unique pair of mathematically related keys used
to initiate the transaction that are stored in the Notes ID file, Internet client hard disk drive, or server key ring
file.

private view

A view that users design and save for their own use with a database.

proxy server

A server that intercepts all requests made to another server and determines if it can fulfill the requests itself. If
not, the proxy server forwards the request to the other server.

public key

An encryption key associated with a Notes ID that is used to verify an electronic signature, encrypt a message,
or identify an authenticating user. A public key is part of each user ID and a copy of the key is stored in the
Domino Directory. Certificates on IDs ensure that public keys are valid.

For SSL-encrypted transactions, public and private keys are a unique pair of mathematically related keys used
to initiate the transaction that are stored in the Domino Directory.

public key certificate

A unique electronic stamp stored in a Notes or Domino ID file that associates a name with a public key.
Certificates permit users and servers to access specific Domino servers. An ID may have many certificates.

public key encryption

Public key encryption provides a user with a key pair -- private and public. The public key is distributed to
everyone with whom the user wants to communicate. In Domino, the public key is published in the Domino
Directory. Public/private key encryption is used for two purposes: to communicate securely and to generate
electronic signatures.

R

read access list

A list that restricts a form so that only specified users can read documents created from the form. Use the
Readers field to control access on a document-by-document basis.

read-only mode

A document state that allows a user to read but not modify a document. To modify a document, a user must
have Editor access (or higher) to the database or be the document’s author.

Reader access

An access level where users can only read documents.

Readers field

A list of names (user names, group names, and access roles) that indicates who can read a given document.
This field does not override the access control list.

referral

An LDAP directory URL returned to an LDAP client. The Domino LDAP server can return a referral if an
LDAP client query is not successful in a Domino Directory and an entry in the Master Address Book suggests
that the query may be successful in another LDAP directory.

192 Inside Notes: The Architecture of Notes and the Domino Server

remote database

When a program is running on one computer accesses a shared database on another computer, the shared
database is considered to be a remote database, with respect to the program accessing it.

replica

A special copy of a database that, because it shares a replica ID with the original database, can exchange
information with it through replication.

replica ID

The replica ID, which is stored in the database header, is a unique number that is generated when you first
create a database. The replica ID never changes. When you make a replica of the database, the replica inherits
the replica ID. For two databases to replicate, they must share the same replica ID.

replicate

Update database replicas that are on different servers or on your workstation and a server. You can replicate
the entire database so that over time all database replicas are essentially identical, or select specific items or
areas to replicate.

replication

The process of exchanging modifications between replicas. Through replication, Notes makes all of the replicas
essentially identical over time.

replication conflict

A condition that occurs when two or more users edit the same document in different replicas of a database
between replications.

Replication Monitor

A document created in the Statistics & Events database that causes the Event task on a server to monitor a
specific database to make sure it is replicating.

Replicator

The part of the workspace where Notes displays all replica databases and lets you manage the replication
process. Also the name of the server task that replicates databases between servers.

response document

A document created using a Response form, a typical component of a discussion database. In a view, response
documents are usually indented underneath the document to which they respond.

rich-text field

A rich-text field can contain text, objects, file attachments, and pictures. You can tell you are in a rich-text field
if the status bar at the bottom of your screen tells you what font size and font name you are using.

ring server topology

Connects servers one-to-one in a circle with the ends connected. It is similar to chain server topology, which
connects servers one-to-one but with the ends unconnected.

role

Database-specific groups created to simplify the maintenance of restricted fields, forms, and views. You can
apply a role to Authors fields, Readers fields, and read and create access lists in forms and views.

RRV (record relocation vector) table

Each database contains an RRV table that maps a note's note ID to the position of the note in the database.

Glossary 193

S

SASL (Simple Authentication and Security Layer)

Internet protocol that allows LDAP clients to authenticate with an LDAP server and provides security for the
data transmitted with this protocol.

save conflict

A save conflict occurs when two or more users edit the same document in a database on a server at the same
time. The document saved first becomes the main document; subsequent users are prompted to save their
changes as responses titled “[Replication or Save Conflict].”

screen reader

A device that reads what is displayed on the computer screen. See digital speech synthesizer.

secondary Domino Directory

A secondary Domino Directory inherits its design from PUBNAMES.NTF and contains directory information
about an additional Notes domain.

section

A defined area on a form that can include fields, objects, layout regions, and text. You can set section properties
to expand automatically at certain points.

server certificate

An electronic stamp stored in the server’s key ring file that contains a public key, a name, an expiration date,
and a digital signature. The server certificate uniquely identifies the server.

server command

Command that lets you perform a task, such as shutting down or restarting a server. You can enter commands
manually at the console or remote console or use a Program document in the Domino Directory to run
commands automatically.

server connection

A document in the Domino Directory or your Personal Address Book that defines a connection to a server.
There are four types of server connection documents: dialup, network, passthru, and remote LAN.

server program

A program that automates an administration task, such as compacting all databases on a server. You can
schedule server programs to run at a particular time, or you can run them as the need arises.

server task

A program provided with the Domino server that runs only when specifically loaded. Server tasks serve
various purposes; the Administration Process, HHTP Server, and Reporter are just a few examples of server
tasks.

shared field

A field that is used in more than one form. For example, many forms have a creation date field, so you can
define the field once and reuse it.

shared mail

A feature that stores messages addressed to more than one user on a mail server in a central database, called
the shared mail database. Message headers are stored in user mail files. When users double-click the headers,

194 Inside Notes: The Architecture of Notes and the Domino Server

links to the corresponding content in the shared mail database are activated. This is a space-saving feature. The
shared mail database is also known as the Single Copy Object Store (SCOS).

shared view

A view that is public to more than one user.

sibling document

In a view or folder, a document at the same level as another document.

sign

To attach a unique electronic signature, derived from the sender’s user ID, to a document or field when a
document is mailed. Signing mail ensures that if an unauthorized user creates a new copy of a user’s ID, the
unauthorized user cannot forge signatures with it. In addition, the signature verifies that no one has tampered
with the data while the message was in transit.

single copy object store (SCOS)

The feature that allows mail addressed to multiple users to be stored in a central database, called the shared
mail database.

site certificate

A certificate obtained for an individual site. A site certificate is different from a trusted root certificate in that a
site certificate lets you access only a specific site. A trusted root certificate lets you access any servers with
certificates issued from that trusted root Certificate Authority.

SLIP/PPP

A dialup version of TCP/IP.

S/MIME (Secure/MIME)

A secure version of the MIME protocol that allows users to send encrypted and electronically signed mail
messages, even if users have different mail programs.

SMTP (Simple Mail Transfer Protocol)

The Internet’s standard host-to-host mail transport protocol. It traditionally operates over TCP, using port 25.
SMTP does not provide any mailbox facility, nor any special features beyond basic mail transport.

SOCKS (SOCK-et-S)

A mechanism by which a secure proxy data channel can be established between two computers. It is generally
used as a firewall.

SSL (Secure Sockets Layer)

A security protocol for the Internet and intranets that provides communications privacy and authentication for
Domino server tasks that operate over TCP.

stacked icon

A Notes database icon that represents a database and all of its associated replicas that are currently added to
the workspace.

static text

Text that remains constant on every document created with a particular form, as opposed to fields in which
you type or in which Notes calculates information.

Glossary 195

stub

A replica or database copy that has not yet been filled with documents. The database is no longer a stub after
the first replication takes place.

subform

A form-building shortcut that lets you store regularly used fields, sections, actions, and other form elements
together. You can place subforms on a form either permanently, or as computed subforms that display on
documents as dictated by a formula.

symmetric encryption

Often referred to as secret key encryption, symmetric encryption uses a common key and the same
mathematical algorithm to encrypt and decrypt a message. For two people to communicate securely with each
other, both need to agree on the same mathematical algorithm to use for encrypting and decrypting data. They
also need to have a common key: the secret key.

T

TCP/IP (Transmission Control Protocol/Internet Protocol)

Network protocols that define the Internet. Originally designed for UNIX, TCP/IP software is now available
for every major computer operating system.

template

A design that you can use as a starting point for a new database. If it is a design template, it will update
database design elements created from the template.

temporary field

A field used during calculations. It is not stored.

trusted root

A Certificate Authority’s certificate merged into the Domino Directory, client’s browser, or the server’s key ring
file, which allows clients and servers to communicate with any client or server that has that Certificate
Authority’s certificate marked as trusted.

U

UBM (Unified Buffer Manager)

The component of the Notes Storage Facility that caches information about open databases.

UNID (universal ID)

The UNID is a 16-byte value that is assigned to a note when the note is first created. The UNID uniquely
identifies a note. UNIDs are used when replicating database notes and when replacing or refreshing database
design notes.

UNID table

The UNID table maps a note's UNID to its note ID, which, in turn, can be mapped through the database's RRV
table to the note's position within the database file.

Unread Journal log

This log keeps unread lists synchronized between various replicas of a database and records when a
document's status changes from read to unread and vice versa.

196 Inside Notes: The Architecture of Notes and the Domino Server

URL (uniform resource locator)

The Internet address for a document, file, or other resource. It describes the protocol required to access the
resource, the host where it can be found, and a path to the resource on that host.

user ID

A file assigned to every user and server that uniquely identifies them to Lotus Notes and Domino.

Using This Database document

A document that explains how the database works. Specifically, it provides users with instructions on using
various forms, views, and navigators in the database.

W

Welcome page

The customizable default opening screen in the Notes client that includes major tasks such as sending mail,
creating appointments, and making a to do list. The page also contains a search bar, information on what’s new
in Notes, and a tour of Notes.

window tab

A button that represents an open window in Notes. Window tabs are convenient for switching back and forth
between windows.

Glossary 197

Symbols

$Ref field
Universal IDs, 16

A

Access control list note
database management and, 17

Access levels
described, 89
ECL, 94

Access privileges
described, 90

ACL
authentication with LDAP

directories, 120, 127
enforcing, 91
overview, 89
replication and, 143
roles, 92
services, 53
user types in, 91

Actions menus
adding items to, 53

Add-in server tasks
types of, 33

Add-in services
features, 53

Addresses
directory searches, 120, 128
LDAP directory searches, 121

Administration Process
described, 21, 135
formulas, 135
replication and, 22
requests, 48
scheduling attributes, 137
server tasks and, 71

Administration Process Log
request processing, 136

Administration requests
note IDs of, 136
processing, 135, 136
scheduling, 137

Administration Requests database
described, 21, 71, 135

Administration servers
described, 19

Administration, domain
overview, 19
tasks, 21

Administration, system
databases for, 30
server monitoring, 35

Administrator. See Domino
Administrator

AdminReq services
features, 48

Agent Manager task
server agents, 69

Agent notes
described, 48

Agent services
described, 48

Agents
creating, 48

Alarm services
features, 53

APIs
drivers, 41
toolkits, 40

Application design
NOS and, 10

Application development
Domino Designer and, 38
resources for, 30
steps, 36
toolkits, 40
tools, 35

Application extensions
managing, 13

Application sharing
data storage and, 7

Authentication
example, 101, 102, 107, 108
Internet user, 104, 108
name and password, 104
overview, 98
server, 87, 108
SSL, 105
user, 87

Authors fields
document access and, 88

B

Backups
database, 50, 140
system, 150

Backwards compatibility
between versions, 8

Billing task
reports, 74, 76

BOOKMARK.NSF database
described, 29

Built-in server tasks
types of, 32

C

C API
NOS services, 53

C/C++ programming languages
application development with, 35
server tasks, 31
toolkits, 40

CACHE.DSK database
described, 29

Caches
cluster name, 151
database, 59
memory, 58
types of, 84

Calendar and scheduling
clusters and, 155
server tasks, 34, 72
services, 49

Calendar Connector task
schedule management and, 72

Callback functions
NOS and, 13

Canonical format
of data structure, 12
of names, 54

Cataloger task
described, 69

cc:Mail
migrating users to Notes, 130

Certificates
contents of, 100
encryption of, 99
Internet, 105

Character sets
multibyte, 6

Classes, database
settings for, 61

Client programs
databases, 29
described, 28
running on servers, 8

Client. See Notes client
Client-server replication

initiating, 141
CLUBUSY.NSF database

free time information, 155
Cluster Administration Process

server tasks and, 71
Cluster Administrator task

described, 152
Cluster Database Directory

described, 151
replication and, 148

 Index 199

Index

Cluster Database Directory Manager task
described, 71, 152

Cluster Manager
tasks, 150

Cluster replication
overview, 147

Cluster Replicator task
described, 71, 152
overview, 148
replication formulas and, 147

Clustering
mail, 28

Clusters
database availability, 157
described, 149
failover, 152, 170
requirements, 150
server tasks, 71
workload balancing, 152, 153

Collect task
server statistics and, 77

Command handlers
caches and, 84

Common Object Model interface
application development and, 35

Compatibility
between operating systems, 11
between versions, 8, 60

Composite-text services, 49
Connection documents

replication and, 139, 140
Connectors

types of, 41
CORBA

Java applications and, 42
Cross-certificates

overview, 103

D

Data recovery
replication and, 61

Data storage
application sharing and, 7

Data structure
described, 8
format, 12

Data translation
ODS and, 46

Database Cache
described, 59

Database Compactor task
described, 69

Database drivers
types of, 41

Database IDs
compacting and, 61
replication and, 61

Database services
NOS, 44, 47

Database subscriptions
HEADLINE.NSF and, 30

Databases
access control, 53
access levels, 89
access privileges, 90
access rights, 17
availability, 157
backup and recovery, 50
catalogs, 69
classes, 61
client, 29
compacting, 61, 69
contents of, 7, 47
full-text indexes, 50, 69
header information, 47, 61
indexing, 12
local, 3
multilingual, 38
NOS and, 10
performance, 58, 59
portability, 12
program data in, 9
remote access, 13
security, 25, 87, 88, 89, 92
shared, 3
templates, 36, 70
time stamps, 14
unread list, 37
users list, 58
views, 51

Date stamps
format, 7

Dates
managing, 55

Dbserver task
mail routing and, 28
remote access and, 13

DECS
overview, 73

Definitions
Notes/Domino terminology, 1

Deletion stubs
described, 146

Design elements
classes, 16
personal, 37
security, 87, 92
updating, 37
Web applications and, 39

Design principles
Notes/Domino, 3
performance and, 5

Design-element notes
types of, 17

Designer task
database, 70

Designer. See Domino Designer
DESKTOP5.DSK database

described, 29
Dictionary

spelling checker, 30
Digital signatures

cross-certificates and, 104
in mail, 99

DIIOP server task
described, 73

Directories
database, 9
overview, 113
searching, 126

Directory Assistance
configuring, 118
described, 23, 114
features, 122
LDAP directories and, 120, 122
setting up, 118

Directory Catalog
described, 23

Directory Cataloger task
directory information, 70

Directory catalogs
authentication and, 119
configuration options, 117
described, 113, 115
features, 116, 122
LDAP and, 117
mobile features, 122
overview, 116
programmatic access, 117
views, 117

Directory databases
described, 22

Directory Manager
described, 59

Directory search
LDAP, 127

Directory servers
configuration, 128

Discussions
threaded, 17

Distinguished name services
features, 54

Distinguished names
LDAP and, 74

Documents
forms and, 16
security, 25, 88, 97
unread, 37

Domain Indexer task
described, 69

Domain lookups
mail routing and, 162

200 Inside Notes: The Architecture of Notes and the Domino Server

Domains
administering, 19
described, 10

Domino Administrator
described, 30
tasks, 20

Domino Designer
described, 30
programming languages, 38
Web application

development and, 39
XML support, 42

Domino Directory
address lookups, 120
authenticating Web clients with, 119
contents of, 9
deleting users, 21
described, 113, 115
directory assistance, 118
directory catalog, 118
domains and, 10
LDAP schema, 123
LDAP searches in, 119, 122, 125
name lookups, 116, 160
replication, 19
searching, 118, 125
secondary, 118
security, 25

Domino Enterprise Connection Server.
See DECS

Domino Global Workbench
multilingual databases, 38

Domino Import Service
HTML storage and, 39

Domino Server program
tasks, 31

Domino Web Administrator
tasks, 20

Domino Web server
architecture, 82
object-oriented design of, 81
tasks, 80

Drivers, database
types of, 41

E

ECL
JavaScript, 95
workstation, 94

Encryption
data protection with, 25
types of, 98

Encryption keys
types of, 98, 99
validating, 101

Event Monitor task
described, 75, 76

Event services
features, 54

Events
user-defined, 54

Exchange. See Microsoft Exchange
Extension Manager

administration requests and, 136
application design with, 10
calendar and scheduling services, 49
database services, 48
described, 13
features, 54
mail services, 50
name services, 51
Notes Index Facility services, 51
NSF services and, 47

Extension Services
full-text search services, 50

F

Failover
calendars and, 155
causing, 156
described, 153
example, 157
mail, 154, 170
server, 149

Fields
note, 14
security, 88

File extensions
types of, 37

File Protection document
described, 92

Files
local, 3
protecting, 92

Folder services
described, 49

Folders
restricting, 93

Forms
document, 16
restricting, 92
storage of, 16
subforms and, 52

Free time database
contents of, 72
failover, 155

Full-text indexes
updating, 159, 160

Full-text search services
described, 50

Full-text services
updates, 159

G

GroupWise. See Novell GroupWise

H

Hardware components
Notes/Domino, 2

HEADLINE.NSF
database subscriptions and, 30

Hierarchical names
format, 99

HTML
caching, 84
storing, 39

HTML log-in form
customizing, 106

HTML pages
storing, 74

HTTP
authentication and, 107, 108

HTTP server task
described, 83
Web servers and, 21, 80, 82

HTTP stack
described, 83

I

IBM Redbook, Notes/Domino
ordering, 88

ID table services
features, 55

IDs
database, 61
note, 14
originator, 14, 63
recursion, 54
replication, 18
universal, 14, 64
user, 24, 99

IIOP
authentication and, 107, 109
server task, 73

IMAP mail client
described, 27

IMAP service
described, 72

Import Service
HTML storage and, 39

Indexer task
updates, 70, 159

Indexes
full-text, 50
updating, 70
view, 51

Indexing
database notes, 12

 Index 201

Internationalization
language support, 6

Internet client authentication
LDAP directory and, 120
name and password, 104
protocols, 105

Internet clients
logging off, 106

Internet Inter-ORB Protocol. See IIOP
Internet protocols

authentication and, 105, 107
server tasks, 34

ISpy task
described, 74, 76

J

Java
application development with, 36
CORBA and, 42
uses, 38

Java applets
security, 94

JavaScript
uses, 38

JavaScript ECL
described, 95

L

Languages, international
LDAP search and, 125
LDAP service and, 125
support for, 6

Languages, programming
portability, 4
services for, 12
supported by Domino Designer, 38
supported by NOS, 3

LDAP
authentication and, 107, 110

LDAP accounts
for Notes users, 126

LDAP directories
address lookups, 121, 128
attributes, 123
authentication, 120, 126
described, 23
directory assistance for, 118, 120
migrating users to Domino

Directory, 126
searching, 126, 127

LDAP schema
overview, 123

LDAP service
access control, 124
authentication, 120, 124, 125
directory catalog, 117
directory searches, 114

Domino Directory access from, 115
international languages, 125
overview, 122
searches, 119, 121, 125, 127
statistics, 125

LDAP service task
described, 74

LDIF file
defined, 134
migrating users to Notes, 134

Listener task
NRPC requests and, 32

LMBCS
text translation, 6

Log off
Internet clients and, 106

Log services
features, 50

Logger
described, 59

Lookups, address
directories, 128
directory catalogs and, 115
Domino Directory, 120
LDAP directory, 121

Lookups, directory
databases, 113
LDAP searches and, 114

Lookups, domain
mail routing and, 162

Lookups, group
ACL verification, 127

Lookups, name
directories, 116
directory catalogs and, 116
directory servers and, 128
mail routing and, 162
name services and, 51
NOS Name services and, 114
updates and, 160
Web client authentication and, 126

Lotus Enterprise Integration
Web site, 41

LotusScript
extending, 35
uses, 38

M

Mail
addressing lookups, 128
client types, 26
failover, 154
migrating users to Notes, 130
performance, 28
protocols, 27, 72, 73, 167
tasks, 72
tracking, 76

Mail messages
storing, 7

Mail routing
commands, 169
cost, 163
delivery attempts, 171
delivery failures, 164, 169
described, 161, 162
duplicate names and, 164
failover and, 170
message queues and, 164, 165, 166,

168
message status, 166
name lookups and, 162
protocols, 161
Router task and, 73
SMTP and, 167

Mail servers
mail routing, 27

Mail services
features, 50

Mail Tracking Store database
contents of, 76

MAIL.BOX database
compacting, 169
described, 30
mail routing and, 27, 73, 167

Map Generator task
server topology, 72

Maximum Internet name and password
specifying, 91

Memory
performance and scalability issues, 6
Unified Buffer Manager and, 58

Message queue services
features, 55

Message queues
cleanup process, 165
delivery threads and, 168, 171
message status in, 166
transfer threads and, 164, 165, 166

Messaging
overview, 26
performance, 28

Microsoft Exchange
migrating users to Notes, 132

Microsoft Mail
migrating users to Notes, 132

Migration tools
cc:Mail, 130
LDAP directory, 126
LDIF file, 134
Microsoft Exchange, 132
Microsoft Mail, 132
Netscape Messaging Server, 134
Novell GroupWise, 134
overview, 130
Windows NT, 133

202 Inside Notes: The Architecture of Notes and the Domino Server

MIME messages
routing, 27, 161

Mobile directory catalog
described, 115
features, 115, 122
offline users and, 70

MTC task
mail tracking and, 76

Multiprocessing
NOS and, 44
thread safety and, 10

N

Name lookups
updates and, 160

Name services
features, 51
functions, 114

Name-and-password authentication
described, 106
Web clients and, 106, 107, 119

Named-object table
view management, 14

Names
format, 54, 99
hierarchical, 99
LDAP, 74

NAMES.NSF
contents of, 9
described, 30

Naming rules
authentication and, 119, 120, 126,

127, 128
NetLink

connecting to remote
systems with, 47

Netscape Messaging Server
migrating users to Notes, 134

Network services
NOS, 44, 47

Network transport services
described, 12

Networks
security, 24, 87

Newsfeeds
NNTP service and, 74

nnotes task
calendar and scheduling, 72

NNTP service task
described, 74

NOS
ACL services, 53
add-in services, 53
AdminReq services, 48
agent services, 48
alarm services, 53
calendar and scheduling services, 49

client programs and, 29
database services, 47, 48
described, 2
distinguished name services, 54
event services, 54
Extension Manager, 10
Extension Manager services, 54
folder services, 49
functions, 114
groupware support, 9
ID table services, 55
log services, 50
mail services, 50
message queue services, 55
name services, 51, 114
network services, 47
Notes index facility, 51
Notes language services, 46
NRPC, 13
NSF services, 47
ODS services, 46
operating system services, 46
portability, 4
portability layer, 11, 43, 46
program interpreting, 39
registration services, 52
replication and, 18
rich-text services, 49
search services, 50
security services, 55
service groups, 44, 45
services, 11, 53, 159
subform services, 52
text list services, 55
threads and, 43
time services, 55
translation functions, 6

Note IDs
ID table service and, 55
types of, 14, 64

Notes (data structure)
classes, 15
described, 8
fields, 14
hierarchy of, 17, 64
item types in, 66, 67
storage of, 65
summary data, 65
types of, 15, 63

Notes API
NOS functions, 43
NOS services, 53

Notes client
databases, 29
described, 30
mail and, 26

Notes Formula Language
described, 38

Notes IDs (user)
administration requests, 136
managing, 52
overview, 99

Notes index facility
database indexes and, 12
described, 51
memory, 52
updates, 159

Notes language services
features, 46

Notes Object Services. See NOS
Notes Storage Facility. See NSF
Notes User Manager Extension

Windows NT administrative tasks
and, 129

Novell GroupWise
migrating users to Notes, 134

NRPC
described, 13
mail routing and, 28, 161
replication and, 13
user requests, 32

NSF
API functions, 58
caching and, 59
database operations, 12
overview, 57

NSF services
features, 47

O

ODS
features, 46
Notes versions and, 60
services, 11

On-disk structures. See ODS
Open Database list

described, 58
Operating system services

features, 11, 46
Operating systems

compatibility between, 11
supported, 5

Originator IDs
described, 14, 63
replication and, 18
templates and, 37

Outlines
restricting access to, 94

P

Passwords
authentication, 104, 106
maximum Internet name and, 91

 Index 203

Performance
caching and, 58
clusters and, 149
database recovery and, 59
design principles and, 5
limiting users, 106
mail, 28

Person documents
linking with Windows NT user

accounts, 130
Personal Address Book

described, 30
LDAP directory accounts, 121

POP3
authentication and, 107, 111

POP3 mail client
described, 27

POP3 service
described, 72

Port access list
described, 88

Portability
database, 12
language services and, 12
operating systems, 5
program, 3
programming languages and, 4

Portability layer
NOS, 11, 43, 44, 46

Ports
restricting, 88

Private folders
accessing, 49

Program data
storage, 9

Programming languages
processing, 39

Protocols
Internet, 34, 73, 107
LDAP, 122
mail, 27, 72, 73, 161, 167
managing, 73
network, 12
transport, 42

Public key certificates
described, 99

Pull-only replication
described, 141

Pull-pull replication
described, 141

Pull-push replication
described, 141, 144

Push-only replication
described, 141

R

Readers fields
document access and, 88

Recovery
data, 61
database, 50, 59
ID file, 100

Recovery Manager
described, 59

Recursion IDs
extensions and, 54

Redbook, Notes/Domino
ordering, 88

Registration services
features, 52

Releases
compatibility between, 8

Remote access
databases, 13
NetLink and, 47

Remote servers
statistics, 76

Replica IDs
described, 18
replication and, 62, 139

Replicas
described, 139

Replicate setting
design elements and, 142

Replication
ACL settings and, 143
Administration Process task and, 22
benefits, 139
clusters and, 147, 149
commands, 140, 141
conflicts, 18, 145, 146
data recovery, 61
described, 18, 139
domains and, 10
Domino Directory, 19
formulas, 143, 147
IDs and, 14, 62
notes, 17
NRPC and, 13
revision history and, 145
scheduling, 140
selective, 18
settings, 62, 141, 142, 144
types of, 141, 144

Replication formula note
database management and, 17

Replication history
described, 62

Replicator task
conflicts and, 145, 146, 147
described, 70
running, 140

Reporter task
server statistics and, 76

Response documents
hierarchy of, 17

Response time
calculating, 155

Revision history
replication and, 145

Rich-text objects
converting to plain-text, 49

Roles
ACL, 92

Router task
commands, 169
components, 161
described, 161
housekeeping tasks, 169
initializing, 162
mail routing and, 28, 73
retry algorithm, 171
threads, 162, 166
UNK table, 169

RRV table
note location, 14

S

Scalability
performance and, 5, 58, 149

Schedule Manager
calendar management and, 72, 155

Schedules
tasks, 34, 72

Scheduling services
in NOS, 49

SDK
described, 10

Searches
directory, 118, 126
for user information, 115
full-text indexes and, 50
LDAP, 114, 119, 121, 125, 127

Security
authentication and, 98, 108
database, 89
design element, 92
document, 94, 97
ECL and, 94
encryption and, 25
features, 9, 98
file, 92
folder, 93
form, 92
Java applet, 94
overview, 24, 87
port, 88
server, 88
view, 93
workstation, 94

Security services
features, 55

Serialization
NOS and, 44

204 Inside Notes: The Architecture of Notes and the Domino Server

Server access list
described, 88

Server administration
tasks, 71

Server authentication
Internet users and, 108

Server availability index
described, 155

Server programs
running on clients, 8

Server tasks
add-in, 33
administrative, 135
built-in, 32
calendar, 34, 72
customizing, 31
Internet protocol management, 34
mail, 34, 72
monitoring servers with, 35
overview, 31, 69
protocol management, 73
schedule management, 34, 72
statistics gathering, 74

Server topology
displaying, 72

Servers
administration, 19
availability, 155
clustering requirements, 150
maintenance, 150
monitoring, 35, 74, 76
registration, 52
response time, 155
restricting, 88, 156
security, 25
statistics, 76
workload balancing, 153, 155

ServerTasks setting
NOTES.INI file, 71

Server-to-server replication
Connection documents and, 139, 140
overview, 144
Replicator task and, 70
tasks, 140

Services
ACL, 53
add-in, 53
agent, 48
alarm, 53
calendar and scheduling, 49
database, 47
mail, 50
message queue, 55
network, 47
NOS, 44, 45
security, 55

Shared folders
accessing, 49

Signatures, digital
cross-certificates and, 104
in mail, 99

Single Common Object Store
data storage, 7

SMTP
mail routing and, 27, 161
message transfer and, 167

SMTP listener task
described, 73
itemizing messages, 168

SMTP.BOX
described, 30

Software components
Notes/Domino, 2

SSL
authentication, 105, 108, 124
certificates, 99

Statistic Collector task
described, 75
server statistics and, 77

Statistics
server, 74

Statistics task
described, 74, 77

Stats task
remote servers, 76

Store database
mail tracking and, 76

Subforms
forms and, 52

Subscriptions, database
HEADLINE.NSF and, 30

Summary items
described, 65

Synchronization
with Windows NT, 129

T

TCP/IP ports
authentication on, 107

Templates
database, 22, 70
directory catalog, 70
types of, 37
updating, 37

Terminology
definitions, 1

Text
composite-text services, 49

Text list services
features, 55

Thread safety
NOS and, 10

Threads
discussion, 17
message transfer, 164, 165, 166, 167,

168

request processing by, 136
Time services

features, 55
Time stamps

database, 14
format, 7
replication and, 15

Toolkits
types of, 40

Transaction logging
database recovery and, 50, 59

Translation, text
NOS and, 6

Transport protocols
CORBA and, 42

U

Unified Buffer Manager
described, 58

Universal IDs
described, 14, 64
replication and, 14
response documents and, 17

UNK table
described, 169

Unread lists
in databases, 37

Updall task
indexes and, 70
running, 159

Update task
running, 159, 160
views and, 70

URL parser
described, 83, 84

User names
hierarchical, 99

User registration
database for, 30
Notes IDs and, 52

Users
deleting, 21
free time information, 72, 155
information about, 22
limiting, 156
mail files, 30
security, 24

Users list
database access, 58

V

Version numbers
Notes, 60

Versions
compatibility between, 8, 60

View indexes
updating, 70

 Index 205

Views
indexes, 51
management of, 14
personal, 37
removing, 159
restricting, 93
updating, 51, 159, 160

W

Web Administrator
tasks, 20

Web application development
tools for, 35

Web client authentication
Domino Directory and, 119
LDAP directory and, 120, 126
search order, 126

Web pages
storing, 74

Web servers
Domino, 80, 82
overview, 79

Windows NT
Domino administrative

tasks and, 129
migrating users to Notes, 133
user accounts, 130

Workload balancing
clusters and, 152, 153

Workstations
security, 94

X

X.509 certificates
authentication and, 105, 119

XML
support for, 42

206 Inside Notes: The Architecture of Notes and the Domino Server

	Contents
	Preface
	Chapter 1 Overview of Notes and Domino Architecture
	Critical terms and definitions
	Notes and Domino components
	Client and server programs
	Notes Object Services (NOS)
	Databases and files

	Fundamental design principles
	NOS is at the heart of everything
	Design principles
	Notes is multiplatform
	Notes must perform and scale well on all platforms
	Notes is designed for global use
	A Notes application can run on any Notes client or Domino server computer
	Client programs can run on servers, and vice versa
	The note is the basic data structure
	Later releases of Notes support databases created using earlier releases
	Fundamental support for security and groupware is built into all Notes software
	Notes uses its own databases to control many of its own activities
	Notes uses its own databases to implement domain-wide features

	Overview of Notes Object Services
	NOS is thread safe

	How NOS is organized
	The portability layer
	The Notes Storage Facility (NSF)
	Other NOS services
	The Extension Manager
	The Notes remote procedure call client

	The Notes database
	The database header and other internal structures
	The "note" in Notes
	Types of notes
	Data notes
	Administration notes
	Design-element notes
	Notes in hierarchy

	Overview of database replication
	Domain administration
	Administration design issues
	Administration design
	Administration processing flow-of-control
	How the Administration Process works
	The Domino Administrator and the Domino Web Administrator
	The Administration Process task and the Administration Requests database

	Domains and directories
	Directory databases
	The Domino Directory (NAMES.NSF)
	Directory Assistance (DA.NSF)
	The Directory Catalog (DIRCAT.NSF)
	LDAP directories

	Overview of security
	User security
	Network security
	Server security
	Database security
	Security issues

	Overview of messaging
	Messaging components
	Mail clients
	Domino mail servers
	Mail performance
	Mail availability

	Client programs
	Common client features
	Common client services
	Common client databases
	The Notes client
	The Domino Designer
	The Domino Administrator

	The Domino Server program
	Built-in server tasks
	Types of built-in tasks
	Table of built-in server tasks

	Add-in server tasks
	Table of server tasks that maintain Notes applications
	Table of server tasks that manage server and administration activities
	Table of server tasks that manage mail, calendars, and scheduling
	Table of server tasks that manage protocols
	Table of server tasks that monitor server activity

	Programmability
	Development environments

	Developing, creating, and maintaining Notes applications
	Creating a template
	Creating a new database from a template
	Editing and viewing the database
	Revising and refreshing a design

	The Domino Designer
	How Notes/Domino process the built-in interpreted languages
	Web authoring tools
	Using toolkits, drivers, and connectors
	Supported application toolkits
	Supported database drivers
	Supported Lotus connectors
	CORBA support

	XML support

	Chapter 2 Notes Object Services
	Notes Object Services
	Portability
	NOS is thread-safe

	Figure of NOS architecture
	NOS service groups
	Table of NOS service groups
	NOS portability layer services
	Notes language services in NOS
	On-disk structure services in NOS
	Operating system services in NOS

	NOS network services
	NOS database services
	Notes Storage Facility services in NOS
	High-level database services in NOS
	View architecture

	Other NOS services
	Access control list services in NOS
	Add-in services in NOS
	Alarm services in NOS
	Distinguished name services in NOS
	Event services in NOS
	Extension Manager services in NOS
	ID table services in NOS
	Message queue services in NOS
	Text list services in NOS
	Time services in NOS
	Security services in NOS

	Chapter 3 Notes Storage Facility
	The Notes Storage Facility
	Figure of NSF
	NSF API functions
	Unified Buffer Manager
	Open Database list
	Database Cache
	Directory Manager
	Recovery Manager and the Logger

	Database structures
	Components of the database header
	Major and minor version numbers
	Database class
	Database information buffer
	Database ID
	Database instance ID
	Database replication settings
	Database replication history

	Database notes
	Table of note types
	Identifiers for notes

	Layout of a note
	Physical storage of notes in a database
	How a program decides if an item is a summary or non-summary item

	Table of item types
	Layout of an item

	Chapter 4 Server Tasks
	Types of server tasks
	Tasks that maintain Notes applications
	Tasks that manage server and administration activities
	Tasks that manage mail, calendars, and scheduling
	Tasks that manage protocols
	Overview of statistics and events
	Tasks that monitor server activity

	Chapter 5 Notes and the Web
	Types of Web servers
	The Domino Web server
	Dynamic content
	User interaction
	Workflow and page processing
	Domino Web server object model
	Domino Web server architecture

	Components of the HTTP Server task
	HTTP stack
	URL parser
	Command handlers
	HTML emitter and engine

	How Domino processes a URL
	?OpenDocument and ?EditDocument
	?OpenForm
	?CreateDocument and ?SaveDocument

	Chapter 6 Security
	The Notes/Domino security model
	Network
	User authentication
	Server
	Database
	Design element
	Document
	Securing local databases

	Notes/Domino access control
	Restricting access to servers and ports
	Restricting access to databases
	Restricting access to files
	Restricting access to design elements
	Restricting access to workstation data
	Restricting access to documents

	Using access control features for security
	Notes/Domino authentication
	Public key encryption
	Symmetric encryption
	Digital signatures
	Public key certificates
	Hierarchical naming

	Notes ID files
	Types of ID files
	Contents of a Notes ID

	Example of Notes/Domino authentication
	Phase 1 -- Public key validation
	Phase 2 -- Authentication

	Cross-certificates
	Internet client authentication
	Supported authentication methods for Internet protocols
	Basic name-and-password authentication
	Session-based name-and-password authentication
	Examples of name-and-password authentication
	HTTP
	IIOP
	LDAP
	POP3

	SSL authentication
	Examples of SSL authentication
	HTTP
	IIOP
	LDAP
	POP3

	Chapter 7 Directories
	Directories
	Databases used for directory lookups
	Lookups using the NOS Name services
	LDAP directory searches

	The Domino Directory
	Directory catalogs
	The mobile directory catalog
	The server directory catalog
	How a directory catalog works
	Directory catalog configuration options
	Programmatic access to a directory catalog
	Directory assistance
	Directory assistance for secondary Domino Directories
	The server directory catalog and directory assistance
	Web client authentication in a secondary Domino Directory
	LDAP searches in a secondary Domino Directory
	Notes addressing lookups in a secondary Domino Directory
	Directory assistance for LDAP directories
	Web client authentication using a remote LDAP directory
	ACL group verification using a remote LDAP directory
	LDAP client referrals to a remote LDAP directory
	Notes addressing lookups in a remote LDAP directory

	Comparison of directory catalogs and directory assistance
	The Domino LDAP service
	The LDAP schema
	LDAP service authentication and access control
	LDAP searches in secondary Domino Directories
	LDAP referrals to other directory servers
	LDAP service and authentication of clients that use a third-party server
	LDAP alternate language searches
	LDAP service statistics
	Other LDAP features Domino offers

	Directory search orders
	Name lookups in multiple directories for Web client authentication
	Group lookups in multiple directories for database access verification
	LDAP searches in multiple directories
	Notes mail addressing lookups in multiple directories

	Directory servers
	User and group synchronization between Domino and Windows NT
	Domino tasks administrators can complete from Windows NT
	Windows NT tasks administrators can complete from Domino
	Linking Windows NT user accounts with Domino Person documents

	Migrating users to Notes/Domino
	Migrating cc:Mail users
	Migrating Microsoft Mail Users
	Migrating Microsoft Exchange users
	Migrating Windows NT users
	Migrating users from an LDIF file
	Migrating users from Novell GroupWise
	Migrating users from the Netscape Messaging Server

	Chapter 8 The Administration Process
	The Administration Process
	The Administration Requests database is created
	The Administraion Process checks the scheduling attributes
	How and when the Administration Process uses formulas
	The Administration Process checks the Response documents
	Worker threads process administration requests
	Table of Administration Process scheduling attributes

	Chapter 9 Replication
	Replicas and replication
	The benefits of replication
	The Replicator server task and replication commands
	The Replicator server task
	Issuing the replication commands
	Using Connection documents to set up a replication schedule

	Replication controls
	Replicating only a portion of a database
	The replication settings
	The Replicate settings
	Replication formulas

	Using the access control list in replication
	Using the access privileges in replication

	How replication works behind the scenes
	Preventing and resolving replication conflicts
	Preventing conflicts
	Resolving existing conflicts

	Clusters and replication
	How cluster replication differs from standard replication
	How cluster replication works

	Chapter 10 Clusters
	Domino clusters
	The benefits of clusters
	Cluster requirements

	Cluster components
	The Cluster Manager
	The Cluster Database Directory
	The Cluster Database Directory Manager
	The Cluster Administrator
	The Cluster Replicator

	Failover and workload balancing
	Workload balancing

	When failover occurs
	When failover does not occur

	Mail failover
	How calendars work in a cluster
	Limiting the workload of a server
	The server availability index
	Setting the maximum number of users on a server

	Causing failover to occur
	Managing database availability in a cluster
	Example of failover

	Chapter 11 The Indexer
	The Indexer
	The Updall task
	The Update task
	The Domino Directory and indexing

	Chapter 12 The Router
	The Router
	Components that the Router uses
	Mail protocols

	How the Router works
	Router initialization
	Message routing
	Message transfer queues
	Message delivery
	Message cleanup
	Message state
	Message transfer threads

	Message transfer over SMTP
	Transferring to a Domino Release 5 server via SMTP
	Message delivery threads

	Controlling the Router task
	Configuration changes

	Daily housekeeping performed by the Router
	Compacting MAIL.BOX

	Failover in clustered mail servers
	Cluster algorithm
	Domino Release 5 cluster enhancements

	Message-delivery retry algorithm
	Transfer threads
	Message level retry

	Glossary
	Index

