
Legionella1

Description
Species of the genus Legionella are Gram-negative, non-spore-forming, rod-shaped, aerobic
bacteria. They contain branched-chain fatty acids, have a non-fermentative metabolism, and
require L-cysteine and iron salts for growth. They have been placed in the family Legionellaceae,
which contains the single genus Legionella; there are at least 42 species, which are listed in Table
5 (Drozanski, 1991; Adeleke et al., 1996; Hookey et al., 1996; Fry & Harrison, 1998; Riffard et al.,
1998). The type species is L. pneumophila. Two other genera have been proposed but have not
received general recognition (Garrity, Brown & Vickers, 1980): Fluoribacter for the blue-white
fluorescing species such as L. bozemanii and L. dumoffii, and Tatlockia for the species L.
micdadei. Some species of Legionella can be further differentiated into serotypes, of which there
are at least 15 for L. pneumophila but so far no more than two for any other species.

Free-living legionellae are rod-shaped, 0.3–0.9µm wide and approximately 1.3µm long. They will
grow to 2–6µm in vitro, but can form filaments 20µm or more in length. Although they are Gram-
negative, legionellae actually stain poorly in the Gram procedure and by other similar staining
methods, particularly in infected tissues. This has been attributed to the presence of the branched-
chain fatty acids that are a major component of the cell walls. Other staining methods have been
described, such as the silver impregnation method of Dieterle (Dieterle, 1927); the most effective
methods include antibody-coupled fluorescent dyes and immunoperoxidase staining.

The legionellae are usually motile by means of one or more polar or subpolar flagellae. The cell
wall consists of a cytoplasmic membrane on the inner surface, a thin peptidoglycan layer, and an
outer membrane that contains the heat-stable lipopolysaccharides (LPS) with species- and
serogroup-specific O antigens. There is no definitive evidence of a capsule.

The optimal temperature for in-vitro growth is 36°C (limits 15–43°C), with a generation time of
99 minutes under optimal conditions (Brenner, Fealey & Weaver, 1984; Brenner, 1986; Fallon,
1990; States et al., 1993). In the natural habitat—fresh water and soil—growth requires the
presence of other bacteria or of protozoa, which are considered to be the natural hosts of
legionellae (Rowbotham, 1980; Tison et al., 1980; Wadowsky & Lee, 1985; Fields et al., 1993).

Pathogenicity for humans

Legionellae were first detected in 1976 after a particularly notable outbreak of pneumonia in a hotel
on the occasion of a United States army veterans’ meeting (Fraser et al., 1977). Since that time, it
has been established that these organ-isms are an important cause of pneumonia, both
community-acquired (1–15%) (Lieberman et al., 1996; Butler & Breiman, 1998) and hospital-
acquired (up to 50%) (Butler & Breiman, 1998). To date, disease due to Legionella has been
detected almost exclusively in humans, but some animals (e.g. guinea-pigs, rats, mice, marmosets,
and monkeys) are susceptible to experimental infection. One case of Legionella pneumonia has
also been reported in a calf (Fabbi et al., 1998). Evidence of past infection can also be found in
other animal species, including wild animals, but no animal reservoir of the bacteria or transmission
between animals has been demonstrated (Collins, Cho & Reif, 1982; Boldur et al., 1987).

Two kinds of disease are observed in humans. Legionnaires disease is a severe pneumonia
(incubation time 2–10 days); mortality is about 15% and Legionella may be detected in sputum and
tissues. Pontiac fever is a febrile illness of 2–6 days’ duration, with an incubation time of 1–7



(normally 3) days; it is non-
pneumonic (cough is observed in about 50% of cases) and self-limiting, and accompanied by
headache and myalgia. Bacteria are not detectable in body fluids or tissues nor are bacterial
antigens found in urine, but blood antibodies are elevated (Glick et al., 1978; Fallon et al., 1993).

Legionnaires disease is commonly accompanied by extrapulmonary manifestations, such as
renal failure, encephalopathy, and pericarditis (Oredugba
et al., 1980; Posner et al., 1980; Riggs et al., 1982; Mayock, Skale & Kohler, 1983; Johnson, Raff
& Van-Arsdall, 1984; Nelson et al., 1984). Lung abscesses, other local infections, and wound
infections involving L. pneumophila and L. dumoffi have also been reported (Arnow, Boyko &
Friedman, 1983; Bauling, Weil & Schroter, 1985; Lowry et al., 1991).

L. pneumophila serogroup 1 is most commonly isolated from patients (58% of isolates in
England and Wales, 71.5% in the USA) (Joseph et al., 1994; Marston, Lipman & Breiman, 1994),
followed by L. pneumophila serogroup 6 (Tang & Krishnan, 1993). Other serogroups of L.
pneumophila and another 19 species of Legionella are associated to a varying degree with human
disease. In the USA, L. micdadei is the second most frequent cause of Legionnaires disease and
has also been repeatedly identified as the causative agent of Pontiac fever (Goldberg et al., 1989;
Luttichau et al., 1998). In Australia, L. longbeachae seems to be an important cause of
Legionnaires disease (Steele, Lanser & Sangster, 1990). Between 9.3% and 29.0% of infections
are caused by species other than L. pneumophila (Tang & Krishnan, 1993; Joseph et al., 1994;
Marston, Lipman & Breiman, 1994), but for most of these there are neither properly validated
serological tests nor optimized isolation media (Edelstein, 1993).

Pathogenicity of Legionella in humans is largely dependent on host susceptibility. Children and
young people are rarely affected, while immunocom-promised individuals—especially transplant
recipients—are at very high risk of disease. However, since any population may exhibit both
extremes of susceptibility, even people considered to be “fit and well” may become ill (World Health
Organization, 1990). Lieberman et al. (1996) observed that 39 out of 56 patients with community-
acquired Legionella pneumonia had no chronic comorbidity, although coinfection with another
microorganism was frequent. Smoking and alcoholism are commonly acknowledged to be
predisposing factors, and infection is more common in males than females and in people over 40
years of age (World Health Organization, 1990; Butler & Breiman, 1998). Individual risk factors
also include working more than 40 hours per week and spending nights away from home (Straus et
al., 1996).

Individuals with terminal renal insufficiency or blood malignancies, people receiving steroid
treatments, and severely immunocompromised individuals (including those with HIV/AIDS) are at
significant risk for acquiring Legionnaires disease (Marston, Lipman & Breiman, 1994). Patients
with chronic lung disease, cirrhosis of the liver, or diabetes are also at risk, though to a slightly
lesser extent. An indwelling nasogastric tube is a further independent risk factor for nosocomial
Legionnaires disease (Marrie et al., 1991; Blatt et al., 1993). Pontiac fever, by contrast, affects
children and healthy adults just as frequently as immunocompromised individuals (Goldberg et al.,
1989).

During an outbreak of disease, exposed populations frequently show elevated serum antibody
levels but no symptoms of disease. The same is true of people working in high-risk areas. It has
been reported that 62 out of 143 (43.4%) healthy people exposed to a contaminated environment
had positive antibody titres against distinct serogroups (Paszko-Kolva et al., 1993).

Virulence factors

Legionellae are intracellular pathogens of macrophages, by which they are phagocytosed in a
process involving the complement fragment C3 and the monocyte complement receptors CR1 and
CR3. Both virulent and non-virulent strains are phagocytosed, remaining intact inside the
phagocytes. Virulent strains can multiply inside the phagocytes and are able to inhibit the fusion of
phagosomes with lysosomes; non-virulent strains do not multiply (Horwitz, 1993). Only two products
of Legionella have so far been shown to be associated with virulence (Fields, 1996)—the 24-kDa
protein, macrophage infectivity potentiator, thought to be conserved throughout the genus



(Ciancotto et al., 1989, 1990; Riffard et al., 1996), and the 113-kDa integral protein of the
cytoplasmic membrane, which is the product of the dotA gene (defect in organelle tracking)
(Berger & Isberg, 1993; Berger, Merriam & Isberg, 1994; Roy & Isberg, 1997). Helbig et al. (1995)
have proposed that differences in the virulence of Legionella species or serogroups are associated
with differences of epitopes of the LPS. Within L. pneumophila serogroup 1, the strains most
commonly associated with disease in humans share a common epitope, as revealed by monoclonal
subtyping (Watkins et al., 1985; Ehret, von Specht & Ruckdeschel, 1986; Dournon et al., 1988).
Aerosol survival (Dennis & Lee, 1988), growth temperature (Mauchline et al., 1994), the possession
of tissue-destructive protease (Baskerville et al., 1986), and the expression of flagellae (Bosshardt,
Benson & Fields, 1997) may also be important virulence factors.

The host defence against Legionella relies principally on cell-mediated immune mechanisms.
One protein produced by L. pneumophila, the major secretory protein (MSP, 39kDa), is able to
induce protective cell-mediated immunity without being a virulence factor (Blander & Horowitz,
1991). Circulating antibodies are produced during infection with L. pneumophila in humans, but
they do not seem to be protective and antibody titres rise only slowly; 30% of patients do not
produce antibodies detectable by immunofluorescence-coupled antigens up to 4 weeks after
infection. Rising levels of serum antibodies, however, are of great diagnostic and epidemiological
value. No vaccine has so far been tested in humans.

Dose–response relationship; animal studies

Inoculation of guinea-pigs with material from the lungs of infected individuals resulted in the first
isolation of L. pneumophila in 1977 (McDade et al., 1977). Since that time, guinea-pigs have been
used repeatedly for experimental infection and have proved susceptible to infection by inhalation,
although aerosol infection is in fact very difficult to achieve (Yu, personal communication). The
lethal dose varies from 2400 to 100000 viable bacteria, but infection can be initiated by as few as
130 organisms. Infections have also been induced in monkeys, rats, and mice, although mice
seem to be somewhat resistant, at least in terms of mortality (Baskerville et al., 1981; Collins,
1986). The susceptibility of the A/J mouse strain is due to a single recessive gene conferring
permissiveness on A/J macrophages (Beckers et al., 1995). Suckling CD1 mice have been shown
to be susceptible to infection and seem to provide a promising animal model for studies of L.
pneumophila virulence (Castellani Pastoris et al., 1997).

The infective dose for humans can be assumed to be low—possible even a single organism—
since Legionella infections have frequently been traced to contaminated aerosols generated at
distances of up to 3.2km (Addiss et al., 1989). Given the frequency of L. pneumophila in human
surroundings, the virulence of the organism, and the fact that the infective dose is so low, a much
larger number of infections would be expected than is actually the case. It therefore follows that
there must be other, as yet unknown, determinants of infection. Infectivity may be substantially
enhanced if amoebae are inhaled or aspirated (Brieland et al., 1996). Vacuoles in infected
amoebae may contain many hundreds of Legionella cells which, when liberated, provide a large
inoculum in a restricted area of the respiratory tract (Rowbotham, 1986; O’Brien & Bhopal, 1993;
Berk et al., 1998).

Mode of transmission

Inhalation of airborne droplets or droplet nuclei containing legionellae is
generally thought to be the commonest mode of transmission. The aerosols may be generated by
mechanical devices (e.g. cooling towers of air-conditioning systems) or by the use of potable
water, especially from domestic hot-water
installations (e.g. showers) (Breiman et al., 1990). In one cluster of infections,
L. longbeachae was isolated from potting mixes and the soil of potted plants
in the vicinity of patients (Steele et al., 1990, 1993, 1996). Three cases of
Legionnaires disease due to L. pneumophila were reported following the flooding of the basement



of a bar; bacteria were isolated from the sump water (Kool
et al., 1998).

Aerosol formation is deemed necessary to cause pneumonic disease, but aspiration following
ingestion of contaminated water, ice, and food has also been implicated as the route of infection in
some cases (Marrie et al., 1991; Blatt et al., 1993; Venezia et al., 1994; Graman, Quinlan & Rank,
1997). Some authors believe aspiration to be the major mode of transmission (Yu, 1993). Sporadic
cases in hospitals have arisen from use of the taps in wash-basins. Even when it is possible to
demonstrate that the disease strain and the strain colonizing a plumbing system are identical, the
exact route of transmission sometimes remains a matter of speculation. There is no evidence of
person-to-person transmission (Fraser, 1977; Yu, 1983).

Outbreaks and single cases of Legionnaires disease have been traced to the cooling towers
and evaporative condensers of air-conditioning systems, decorative fountains, ultrasonic
nebulizers, room humidifiers, hot whirlpool and spa baths, hot water from taps and showers, and
medical devices containing water (e.g. respiratory care devices) (Butler & Breiman, 1998). Of 20
hospital outbreaks of Legionnaires disease in England and Wales between 1980 and 1992, 19
were attributed to Legionella-contaminated potable water systems (Joseph et al., 1994). The hot-
water plumbing systems of many hospitals are contaminated and colonized by legionellae. The
same strain may be identified over extended periods at particular sampling points (Chang et al.,
1996), but different strains may colonize different parts of the same building (Marrie et al., 1992).

Disease occurrence: outbreaks, sporadic cases, and
prospective studies

Outbreaks

Since the 1976 outbreak in Philadelphia led to the detection and description of the family
Legionellaceae, many outbreaks—a number of them spectacular, but most on a smaller scale—
have been reported, frequently involving hospitals. Infections have often been traced to colonized
parts of air-conditioning plants (Dondero et al., 1980; Addiss et al., 1989; O’Mahoney et al., 1990;
Watson et al., 1994), but most outbreaks and recurrent single cases in hospitals are associated
with contaminated potable water and hot-water systems (Joseph et al., 1994). Decontamination of
colonized installations has been shown to interrupt outbreaks and prevent recurrence of sporadic
cases. In two prospective studies in hospitals, the frequency with which L. pneumophila was
isolated from patients with pneumonia was reduced from 16.3% to 0.1% over a 6-year period and
from immunocompromised patients from 76% to 0.8% over a 10-year period (Grosserode et al.,
1993; Junge-Mathys & Mathys, 1994). Measures used to achieve this included decontamination of
the plumbing systems, monitoring of Legionella in the water, examination of all clinical specimens
for signs of Legionella infection, use of sterilized water for all applications in high-risk patients, and
ensuring that all patients and clinical staff were adequately informed of the risks of infection,
especially with respect to the use of hot water in
high-risk wards.

Travel-associated Legionnaires disease

Legionnaires disease is often associated with travel and with staying in hotels—as was the case in
the 1976 outbreak in Philadelphia. A study carried out in Ohio (Straus et al., 1996) on domestic
acquisition of Legionnaires disease identified nights spent away from home as a risk factor. In
England and Wales, 56% of the 160 cases reported in 1995 occurred in travellers (Newton et al.,
1996), and in 1997 the same was true for 114 of the 226 reported cases (Joseph et al., 1998).
Among 52 Finnish patients with Legionnaires disease, 76% of those who were not
immunosuppressed and had no underlying disease (n = 17) had made recent journeys (Skogberg
et al., 1994). Small clusters of cases have repeatedly been reported among tourists staying at
certain hotels in holiday resorts, especially in the Mediterranean region: 55% of 119 hotels in



various European countries had legionellae in their water distribution systems and 73% had
amoebae (Starlinger & Tiefenbrunner, 1996).

Outbreaks reported among passengers on cruise ships have been traced to contaminated
water in whirlpool baths (Jernigan, 1996) or to drinking-water (Castellani Pastoris et al., 1999).
Gerchikova et al. (1990) have found immunological evidence of increased exposure among railway
conductors, subway
personnel, and railroad construction workers, and have isolated two strains of
L. pneumophila from water samples taken from railway dining cars. Water pipes and reservoirs on
ships, railway carriages, and the like are often subject to warming and are not easily emptied for
cleaning. Chlorine decay and bacterial growth are thus more likely in the water they contain.

The link between travel and Legionnaires disease was discussed at a WHO meeting in 1989
(World Health Organization, 1990). A surveillance scheme for travel-associated Legionnaires
disease, instituted by the European Working Group on Legionella Infection, coordinated by the
Public Health Laboratory Service in London, England, and monitored by WHO, has led to the
detection of many cases and improved disease prevention.

Sporadic community-acquired infections

In a prospective study in two counties in Ohio, USA, Marston et al. (1997) showed that most cases
of pneumonia caused by Legionella are community-acquired and sporadic. The annual incidence
(with definite diagnosis) was calculated to be 7.0/100000 adults—approximately 10 times the
number of cases reported to health authorities. Community-acquired infections may be caused
partly by cooling towers and other aerosol-producing devices, but certain features of domestic
plumbing and potable-water supply and water-heating systems have also been shown to be
associated with Legionnaires disease and must therefore also be considered as a sources of
legionellae (Aldea et al., 1992; Straus et al., 1996).

Plumbing systems in residential premises—particularly one-family houses (Tiefenbrunner et al.,
1993)—are less frequently colonized than those in
hospitals. However, investigations in different cities in Finland, Germany,
and Spain have shown that apartment blocks may be as heavily contaminated
as hospitals (Aldea et al., 1992; Lück et al., 1993; Zacheus & Martikainen,
1994). The observed differences may be due to the size of water heaters, the extent of the hot-
water installations, and other details of the heating (central versus point-of-use, electric versus gas
or oil) and distribution systems (Alary & Joly, 1991).

Monitoring and assessment
Examination of clinical specimens

No specific clinical symptoms of Legionella infections distinguish them from pneumonia or
localized infections of other origins, and many community-acquired infections will be treated
without diagnosis. Definitive diagnosis of a Legionella infection relies on the following features:

— increasing serum concentrations of antibodies;
— detection of antigens in the urine;
— detection of bacteria in lung tissue, or in sputum or other secretions, by direct

immunofluorescence microscopy;
— culture of Legionella from respiratory secretions, bronchoalveolar lavage fluid, pleural fluid;
— detection of Legionella nucleic acid by DNA probes or by polymerase chain reaction

(PCR).
Up to 4 weeks after infection, 30% of patients do not develop antibodies detectable by indirect

immunofluorescence assay (IFA). An acute-phase antibody titre of 1:256 did not discriminate
between cases of Legionella infection and non-cases, while a positive urine antigen assay was
found in 55.9% of cases compared with <1% of non-cases (Plouffe et al., 1995). A fourfold
increase in IgG and IgM titres is considered to be a reliable sign of infection, and detection of



Legionella antigen is a fairly sensitive (70%) and highly specific (>99%) method for diagnosis of L.
pneumophila serogroup 1 infection (Plouffe et al., 1995). Urinary antigen test results will remain
positive for several weeks after the onset of infection (Stout & Yu, 1997). However, infections with
non-serogroup 1 L. pneumophila will be missed unless test kits containing antibodies against other
Legionella serogroups and species are available. Urinary tests to detect infection with other
serogroups and species are being developed.

Detection of bacteria in lung tissue and sputum by direct immuno-
fluorescence as well as by DNA hybridization and PCR is no more successful than the examination
of serum for antibodies or of urine for antigen—70% of cases, at best, are detected. Clearly, a
positive bacterial culture is the most convincing evidence of infection, but only 9% of 160 cases
reported in England and Wales in 1995 were diagnosed by culture (Newton et al., 1996).

To summarize, there is no single laboratory test currently available that will detect all infections
caused by L. pneumophila or other Legionella species
(Edelstein, 1993).

Analytical methods for environmental samples

A standard procedure for the isolation, culture, and identification of Legionella has been prepared
by the International Organization for Standardization (1998). High-yield solid and liquid culture
media are commercially available; these are generally optimized for L. pneumophila. Recovery
rates using these media, and using sample preparation procedures, have yet to be fully evaluated
for other Legionella species. In dealing with Legionella species other than L. pneumophila,
therefore, the recovery rate should be determined. Steinert et al. (1997) have shown that
legionellae may enter a viable but non-culturable state, but become culturable again by cocultivation
with axenic Acanthamoeba castellani. Swab specimens from a faucet have been shown to yield 10
times as many legionellae as a 250-ml water sample taken from the same faucet (Ta et al., 1995),
reflecting the prevalence of the organisms in biofilms.

Environmental samples frequently need to be concentrated or diluted to give optimal results on
solid media. Moreover, background bacteria must be eliminated before, or suppressed during,
primary culture. Legionellae and background bacteria can be concentrated by centrifugation (e.g.
6000g for 10 minutes at about 20°C) or by membrane filtration. Numbers of other bacterial species
present in the sample can be reduced by heat treatment (50 ± 1°C for 30 ± 2 minutes, or 55°C for
15 minutes) or by acid treatment (3 minutes at pH 2.2). The material is then streaked, or the filter is
transferred, onto buffered charcoal–yeast extract (BCYE) agar (Edelstein, 1981), with or without
selective supplement. Various improved media for different purposes have been proposed more
recently, as has incubation under 2–5% carbon dioxide. A medium containing dyes (bromocresol
blue and bromocresol purple), vancomycin, and polymyxin B (DGVP) gave optimal results in a
comparative study (Ta et al., 1995).

Plates are incubated at 36 ± 1°C for up to 10 days and examined every 2 or 3 days.
Presumptive Legionella colonies are examined for their L-cysteine requirement by streaking them
onto cysteine-free BCYE agar or other appropriate media, e.g. sheep blood agar, with subsequent
incubation. Confirmation of Legionella, and species and serotype identification are done using
commercially available antisera, preferably by direct immunofluorescence. Commercially available
latex agglutination kits may also be used. A more rapid procedure has been proposed to replace
examination for L-cysteine requirements, namely a colony blot assay using a genus-specific
monoclonal antibody coupled with a chromogenic reagent (Obst, 1996). PCR procedures have also
been developed. The DNA-sequence information of the ribosomal 23S–5S spacer region was used
to develop a genus- and species-specific detection and identification system for all legionellae,
using PCR and reverse dot-blotting (Robinson et al., 1996).

Both environmental strains and clinical isolates can be successfully subtyped by molecular
techniques such as ribotyping, macrorestriction analysis by pulsed-field gel electrophoresis, or
PCR-based methods (Schoonmaker & Kondracki, 1993; Pruckler et al., 1995; Van Belkum et al.,
1996). These yield valuable information on the sources and epidemiology of infections. However,



the results of subtyping alone, in the absence of epidemiological data, cannot reliably implicate a
source because the distribution of the various subtypes in the environment is unknown.

Control
Occurrence, transport, and survival in the environment and in source waters

The legionellae have been found in natural freshwater systems, including thermal waters, all over
the world and are considered to be part of the natural fresh-
water microbial ecosystem (Fliermans et al., 1981; Verissimo et al., 1991). The organisms have
also been found in sewage-contaminated coastal waters of Puerto Rico (Ortiz-Roque & Hazen,
1987), in well material down to a depth of 1170 metres (Fliermans, 1996), and in low
concentrations in groundwater (Frahm & Obst, 1994; Lye et al., 1997). Some outbreaks have been
associated with soil and excavation activities. L. longbeachae, L. bozemanii, and L. dumoffi have
all been isolated from potting mixes made from composted wood wastes (Hughes & Steele, 1994;
Steele & McLennan, 1996).

A characteristic feature of legionellae is their ability to multiply inside
protozoa (Rowbotham, 1980). Protozoa that support the growth of legionel-
lae include species of Acanthamoeba, Hartmanella, Naegleria, Echinamoeba, Vahlkampfia, and
Tetrahymena (Fields, 1993). Indeed, it has been suggested that environmental growth of
legionellae in the absence of protozoa has not been demonstrated, and that protozoa are the
natural reservoir for these organisms in the environment (Fields, 1993). However, association with
cyanobacteria of the genera Fischerella, Phormidium, and Oscillatoria also promotes relatively
rapid growth of L. pneumophila (Tison et al., 1980), and cocultivation with some bacteria has been
demonstrated in vitro (Wadowsky & Yee, 1985).

Legionellae will not grow in sterilized samples of the water from which they have been isolated.
It follows from this that they are part of a microbial ecosystem in which they are both nourished
and protected from physical removal by the water current and from antimicrobial agents. They are
detected in significant numbers only after other microorganisms have colonized sediments, soil, or
biofilms. Growth of other Legionella-like organisms in amoebae has been described repeatedly,
and—on the basis of 16S rRNA similarity—it has been
proposed that these organisms are indeed members of the genus Legionella
(Rowbotham, 1993; Adeleke et al., 1996).

With the exception of thermal waters and water in tropical regions, legionellae are found in only
low concentrations in natural environments (≤1cfu/ml in groundwater); this is to be expected from
the low replication rates at temperatures below 25°C. The organisms will be introduced from
surface water, soil, and subsoil into water used as the source for preparation of drinking-water and
other purposes.

Effects of drinking-water treatment

Storage of raw water in reservoirs will not necessarily reduce numbers of Legionella; at elevated
temperatures there may even be growth of the organisms. However, as for other bacteria,
Legionella concentrations can be reduced by coagulation, flocculation, and sedimentation. Growth
of Legionella may well occur inside filters used for drinking-water preparation (such as granular
activated carbon filters) if there is microbial colonization that includes amoebae, but this will be
controlled by low temperatures. Significant concentrations will develop only in situations where
temperatures rise above 20°C for prolonged periods.

Growth and/or recontamination in distribution systems

At temperatures between 20°C and 50°C, legionellae frequently colonize
water distribution systems. The main sites of colonization, bacterial growth, and contamination are
the pipework in buildings, boilers (especially if they contain sediment), membrane expansion



vessels and reservoirs inside buildings, as well as the fittings, outlets, and accessory devices
connected to water-supply systems. Special mention should be made of medical and dental
equipment containing
or supplied with water, because it is likely to be used on, or in the vicinity of, susceptible
individuals. Colonization is enhanced at temperatures above 25°C, by stagnation, and by formation
of biofilms that include protozoa and have
an elevated iron content. All these features are common in the warm-water distribution systems of
large buildings, including hospitals and other clinical
establishments.

Measurable inactivation of legionellae begins at a temperature of 50°C: for L. pneumophila,
decimal reduction times of 80–111 minutes at 50°C, 27 minutes at 54°C, 19 minutes at 55°C, 6
minutes at 57.5°C, and 2 minutes at 60°C have been recorded (Dennis, Green & Jones, 1984;
Schulze-Röbbecke, Rödder & Exner, 1987).

Prolonged stagnation (of several months, for instance during building construction or over
holiday periods) resulting in a heavy microbial load has been reported on several occasions when
water has been identified as the source of infection (Dondero et al., 1980; Kramer et al., 1992;
Breiman, 1993; Mermel et al., 1995; Straus et al., 1996). Pressure-compensation vessels (shock
absorbers) also provide the conditions for stagnation (Memish et al., 1992) and should be
positioned on the cold-water (i.e. intake) side of hot-water installations.

The concentration of assimilable organic carbon (AOC) in water seems to have less influence
on the growth of Legionella than on the formation of biofilms. Legionellae are not observed in the
absence of other microorganisms. Biofilm formation is encouraged not only by elevated AOC levels
but also by certain materials present in a plumbing system. Since legionellae are iron-dependent, it
is to be expected that the use of iron piping would encourage their growth; Legionella-contaminated
water frequently contains high levels of iron as the result of corrosion. However, in a study on the
prevalence of legionellae in private homes, the organisms were found only in houses with copper
pipework (Tiefenbrunner et al., 1993), and many hospitals in the United Kingdom that have
experienced outbreaks of Legionnaires diseases also had copper plumbing. It therefore seems that
avoidance of iron or steel pipework does not protect against colonization by Legionella.

Materials that promote biofilm formation by nutrients that migrate to surfaces in contact with the
water should not be used in water installations, whether
as coatings, fillings, or sealants for pipes, reservoirs, or containers, or for devices such as
membranes of pressure-compensation vessels, tap washers, etc. (Colbourne
et al., 1984; Niedeveld, Pet & Meenhorst, 1986). Biofilms will also form,
however, on inert surfaces, albeit more slowly and less extensively, so that the
material of which the surface is composed is actually less important than the size of the biofilm-
bearing surface. The larger the surface that is available for bacterial growth in a water system, the
more likely it is to become colonized by legionellae; thus small water systems in single dwellings are
much less likely to become
colonized than large systems in, for example, hotels or hospitals.

Control of legionellae in potable-water systems

Prevention

Entry into a potable-water system of single bacteria or bacteria-carrying amoebae from the public
supply system, or during construction or repair, must always be considered as a possibility.
Prevention of significant bacterial growth is best achieved by keeping water cool (preferably below
15°C) and flowing, or hot (at least 55°C) and flowing. Mains drinking-water supplies can be kept
free of significant levels of Legionella by chlorination: a concentration of 0.2mg/litre free chlorine
will keep levels below 1cfu/100ml, indicating that no active replication is occurring. The low levels of
legionellae occasionally found in public water supplies have never been shown to constitute a
health risk. Inside buildings, however, the residual chlorine (if any) carried over from the public



supply will not prevent growth of these organisms, and additional measures are required to prevent
water stagnating at temperatures that will allow bacterial growth.

The cold water supply should be kept cool, with temperatures at outlets not exceeding 20°C.
Pipework, storage tanks, and devices such as water softeners should be insulated against heat
gain and should never be situated in rooms where the temperature is constantly high. Hot water
must be stored and distributed at a temperature of at least 50°C throughout the system. It is
recommended that the water is heated to, and stored at, 60°C, and that it attains 50°C (NHMRC,
1996; Health and Safety Executive, 2000), 55°C (DVGW, 1996), or 60°C (Gezondheidsrad, 1986)
at taps after running for no more than 1 minute; temperatures inside boilers and recirculation
systems should be similar. For this purpose, the design and construction of the hot-water system
must meet certain requirements that are otherwise unnecessary. Water temperatures inside
calorifiers and tanks must reach 60°C throughout, including at the bottom, at least once a day. The
calorifier must be able to achieve this temperature consistently, even during periods of high
demand. For the purpose of thermal disinfection, the calorifier must produce sufficient amounts of
water to flush all outlets in the building with water at 70°C. Tanks must be accessible for cleaning
and the accumulation of sludge must be avoided. Connected tanks, filters, and other appliances
must be scrutinized for their potential to promote Legionella growth. Pipework should be as short
and easy to survey as possible and should avoid “dead ends” and other zones of stagnation.
Outlets should be fitted with mixer taps to reduce the risk of scalding.

Point-of-use water heaters have been proposed as a means of obviating the need for hot-water
storage and distribution systems (Muraca, Yu & Goetz, 1990). Even these, however, are not totally
failsafe, since growth of legionellae can occur at the outlets (Sellick & Mylotte, 1993).

Since stagnation will give rise to elevated colony counts (and also frequently to high
concentrations of legionellae in the water within pipes and reservoirs), it has been proposed that
water-supply systems should be drained when there is
to be an extended period (e.g. weeks) during which there will be no water
consumption.

Particular care should be taken to protect plumbing systems during the construction of new
hospital buildings. Before a new or renovated hospital or similar building is opened, the water in the
supply system should be tested for microbiological quality, including the presence of Legionella.

Eradication/disinfection

When hot-water systems develop problems that cannot be identified or repaired, it is often difficult
to keep them permanently free of elevated concentrations of legionellae. Continuous or intermittent
treatment for purposes of disinfection or permanent eradication may then be advisable. Techniques
for the eradication of Legionella include the following:

— thermal disinfection: heating and flushing
— UV irradiation
— use of chlorine, chlorine dioxide, chloramine, ozone, or iodine
— metal ionization (copper and silver).
Raising the water temperature to at least 60°C (Health and Safety Executive, 2000) is the most

reliable means of eradicating legionellae from a water-supply system, although the exact
temperature and the length of time necessary for heating and flushing the system, including the
outlets, remain matters of some debate (Dennis, Green & Jones, 1984; Snyder et al., 1990). An
8log10 reduction in L. pneumophila has been demonstrated within 25 minutes at 60°C, 10 minutes
at 70°C, and 5 minutes at 80°C. The most resistant species—L. micdadei—is about twice as
resistant to thermal disinfection as L. pneumophila (Stout, Best & Yu, 1986). This is consistent with
the finding that Legionella in a hospital water system could not be eradicated by raising the
temperature in the hot-water tank to 60°C; however, raising the temperature in the tank to 77°C
(which produced 50–60°C in the system as a whole) successfully eradicated the organism (Best et
al., 1983). At 50–60°C in a model plumbing system, a 7log10 reduction in legionellae occurred in
under 3 hours (Muraca, Stout & Yu, 1987).



From the observation of Stout, Best & Yu (1986), it follows that thermal disinfection of plumbing
systems requires the water in boilers and tanks to be heated to 70°C and taps (outlets) to be kept
open for 30 minutes; see also Plouffe et al. (1983). This measure should succeed in eliminating
Legionella for some weeks. Reappearance of the organisms in the water is usually accompanied or
preceded by elevated concentrations of other bacteria, resulting in an elevated heterotrophic plate
count (HPC), i.e. >100 colony-forming units/ml (cfu/ml), which is more easily monitored than the
concentration of legionellae. Chlorination of the water, however, may make this indicator useless,
because chlorine
does not affect legionellae to the same extent as HPC (Zacheus & Martikainen, 1996).

Compared with other Gram-negative bacteria, the legionellae are highly
susceptible to UV irradiation (Antopol & Ellner, 1979). In the dark, a 90% reduction has been
achieved at 5W·s/m2, 99% at 10W·s/m2, and 99.9% at
16W·s/m2. On exposure to photoreactivating light, however, doses at least 3 times higher are
needed because of the organism’s effective light-dependent DNA repair system (Knudson, 1985).
In hospitals, UV irradiation units installed near “points of use”, together with prefiltration systems to
prevent accumulation of scale, have been successful in keeping water outlets free of legionellae
(Farr
et al., 1988; Liu et al., 1995). However, these units are effective only over short distances.

Chlorine is much better tolerated by Legionella spp. than by many other bacteria, including
Escherichia coli. Achieving a given reduction in different species of media-grown Legionella
required more than 40 times longer than the same reduction in E. coli (Kuchta et al., 1983). Tap-
water-adapted strains have been reported to be 68 times as resistant as E. coli when computed as
a product of concentration and time (CT ), and experiments using iodine suggest that cultures
associated with stainless-steel surfaces are even more resistant (Cargill & Pyle, 1992). The
resistance of Legionella to chlorine is further enhanced by inclusion of the organisms in amoebae
or by growth in biofilms (Kuchta et al., 1993), and it is therefore unsurprising that legionellae have
repeatedly been found in chlorinated water that complies with microbiological standards for
drinking-water. In reality, the calculation of CT values in laboratory experiments with cultured
legionellae is an inadequate indication of resistance to chlorine and other antimicrobial agents.

A chlorine concentration of 2mg/litre will kill free legionellae (Kuchta et al., 1993) and appears
to be sufficient to keep the organisms at low levels in hot water (Snyder et al., 1990; Grosserode et
al., 1993); even at chlorine levels of 4mg/litre, however, amoebae containing L. pneumophila will
liberate viable organisms (Kuchta et al., 1993). Continuous hyperchlorination (>2mg/litre) may
cause corrosion of pipes and formation of trihalomethanes as by-products (Helms
et al., 1988; Grosserode et al., 1993). Nevertheless, supplementary chlorination of the hot-water
supply may produce satisfactory results in many situations.

There have been fewer studies of chlorine compounds than of chlorine itself. Chlorine dioxide
is probably more effective than chlorine because of its superior oxidative power and effect on
biofilms (Walker et al., 1995; Hamilton, Seal & Hay, 1996). Chloramines have a slower action than
chlorine but greater sta-
bility; Cunliffe (1990) reported that legionellae were much more sensitive than E. coli to
monochloramine—a compound that is used in Australia to control the growth of Naegleria fowleri.
In a comparison of hospitals that had reported Legionnaires disease with others that had not, Kool,
Carpenter & Fields (1999) revealed that outbreaks were 10 times as likely in a hospital with residual
free chlorine in its water than in one where the residual disinfectant was chloramine.

Electrolytically generated copper and silver ions have been shown to be effective in reducing
legionellae in vitro (Landeen, Yahya & Gerba, 1989). At 45°C, a 5log10 reduction in legionellae
was achieved after 1 hour with silver and copper ion concentrations of 80 and 800µg/litre
respectively, and after 24 hours with concentrations of 20 and 200µg/litre (Rohr, Senger &
Selenka, 1996). Lin et al. (1996) have also demonstrated a synergistic effect of copper and silver
ions. Copper/silver ionization has been used successfully in hot-water recirculating systems,
reducing Legionella concentrations to 10–100cfu/litre (Colville et al., 1993; Liu et al., 1994; Selenka
et al., 1995; Rohr et al., 1996), although there is still no proof of continuing efficiency with
prolonged use.



The resistance of legionellae to ozone is comparable to that of E. coli and Pseudomonas
aeruginosa (Domingue et al., 1988): at an ozone concentration of about 0.3mg/litre, a 4–5log10
reduction in the number of organisms was achieved within 20 minutes (Edelstein et al., 1982;
Domingue et al., 1988). However, results for the use of ozone to eradicate legionellae from water
systems remain ambiguous. It is probably difficult to achieve a sufficient contact time, since
adequate levels of residual ozone will not persist in extended domestic water-supply systems.
Additional considerations include the safety and corrosive effects of ozone, and compliance with
local regulations.

Although each of the disinfection techniques described in this section has proved effective in
reducing Legionella under controlled conditions, there are
differences in their costs and in their suitability for use in large domestic
water-distribution systems. In the event of a disease outbreak or other situation requiring immediate
action, heat flushing—alone or combined with hyperchlorination—may be the most appropriate
measure to apply. To prevent recurrence, the affected system should be checked for any
peculiarities of design or operation that predispose to Legionella colonization, and these should be
corrected, if possible, before any further action is taken.

Conclusions and recommendations
Health risk assessment

The risk of infection following exposure to Legionella is difficult to assess and remains a matter of
some debate (O’Brien & Bhopal, 1993). Since Legionella
is ubiquitous in both natural and man-made environments, it must be supposed that most people
are frequently exposed, at least to single organisms. Generally, there is either no reaction to such
exposure or asymptomatic production of
antibodies. Drinking-water from natural sources and from public supplies
may carry single organisms or Legionella-containing amoebae but, outside hospitals, there are no
reports of outbreaks or recurrent cases of disease follow-
ing consumption or use of drinking-water that has been kept cool and not
subjected to prolonged periods of stagnation. However, the inference to be
drawn from the many reported outbreaks and documented single cases is that inhalation of small
numbers of bacteria, or aspiration following ingestion, will lead to disease.

Risk of infection is acknowledged to be high among transplant patients, patients receiving high-
dose steroid treatment or intensive care, individuals being fed by nasogastric tube, and people with
malignancies and end-stage renal disease. Special measures of protection and surveillance are
essential for people in these categories. Increased susceptibility during outbreaks has also been
observed among males, diabetic patients, the elderly, and people with reduced resistance to
respiratory disease (e.g. smokers). Nonetheless, no unequivocal dividing line between those at risk
and those not at risk has yet been established.

Risk management strategies

Most outbreaks reported to date have been associated with cooling towers, evaporative condensers
of air-conditioning devices, potable water at elevated temperatures (especially in hospitals and
hotels), hot whirlpool and spa baths, nebulizers, and certain potting composts. The greatest risk
seems to be associated with water subjected to prolonged periods of stagnation and in systems that
are frequently maintained at temperatures of 25–50°C; this range of temperatures should therefore
be avoided as far as possible.

Water systems—particularly cooling towers and evaporative condensers—should be designed,
constructed, and operated in such a way that microbial growth is minimized. High water
temperature is the most efficient approach to both intermittent disinfection and continuous control.
In hot-water distribution systems, water temperatures should exceed 60°C in boilers, reservoirs,
and circulating pipes, and reach 50°C at outlets. Continuous surveillance and disinfection have



been proposed for water systems in hospitals and in public swimming pools, hot whirlpool and spa
baths and the like, and for medical and dental equipment that uses water. However, opinion
continues to be divided on this issue (Centers for Disease Control and Prevention, 1997), and
there is no generally accepted threshold limit for the concentration of legionellae in water.
Surveillance of the drinking-water and hot-water supply systems in hospitals is recommended by
some (Allegheny County Health Department, 1997), and considered prudent in institutions for the
elderly and, possibly, in large hotels.

Total prevention of sporadic infections is impossible, because of the widespread occurrence of
Legionella in all environments. In hospitals, however, all clinical specimens from patients with
symptoms of pneumonia should be
examined for Legionella, Legionella antibodies, and Legionella antigen. Transplant patients should
be scrupulously protected from exposure to Legionella during immunosuppression; their drinking-
water should be sterilized, and sterilized water should be used for washing these patients.

There are insufficient data to support widespread disinfection of water-supply systems in the
absence of any linkage to Legionella infections, but in all cases of nosocomial pneumonia every
effort must be made to identify the source of infection and implement measures to interrupt
transmission. Continuous monitoring of the water, however, is advocated only when antimicrobial
measures have to be checked.
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Table 5. Legionella species and serogroups and their association with disease

Legionella species Serogroups Pathogenicity for humans



L. adelaidensis
L. anisa +
L. birminghamensis +
L. bozemanii  2 +
L. brunensis
L. cherrii
L. cincinnatiensis +
L. donaldsonii a

L. dumoffii +
L. erythra  2
L. fairfieldensis
L. feeleii  2 +
L. gesstiana
L. gormanii +
L. gratiana
L. hackeliae  2 +
L. israelensis +
L. jamestowniensis
L. jordanis +
L. lansingensis
L. londiniensis  2
L. longbeachae  2 +
L. lytica b

L. maceachernii +
L. micdadei +
L. moravica
L. nautarum
L. oakridgensis +
L. parisiensis +
L. pneumophila 15 +
L. quateirensis
L. quinlivanii  2
L. rubrilucens
L. sainthelensi  2 +
L. santicrucis +
L. shakespearei
L. spiritensis
L. steigerwaltii
L. tucsonensis +
L. wadsworthii +
L. waltersii c

L. worsleiensis

a Adeleke et al., 1996.
b Drozanski, 1991.
c Hookey et al., 1996.


