

Dr Michelle Millar, Technical Officer (Human Performance), ICAO

Measuring Fatigue

- → Definition of fatigue
- → What fatigue measures measure
- → Current methods for measuring fatigue
- → Selecting the right measure
- → The FRMS framework

What is fatigue?

ICAO definition:

A physiological state of reduced mental or physical performance capability resulting from sleep loss or extended wakefulness, circadian phase, or workload (mental and/or physical activity) that can impair a crew member's alertness and ability to safely operate an aircraft or perform safety related duties.

Measuring in different contexts

- No simple measure, just different ways of estimating the level of fatigue
- In the Laboratory
 - Use many different measures in the same experiment to build up a complete picture
 - There tends to be a strong correlation between the different measures
- → In an operational context:
 - Need to select a very limited number of measures
 - Practical constraints
- → How should we select what to use?

Measuring fatigue in operations

Subjective fatigue assessments

- → There are several well-established subjective measures, including:
 - Visual analogue scales (VAS)
 - Samn-Perelli seven-point fatigue scale (SPS)
 - The Karolinska Sleepiness Scale (KSS)

A Luna

Visual analogue scales

- → Sometimes called linear analogue scales
- Typically a 10cm line with the end points labelled
- → The subject marks the line at the appropriate point
- The distance along the line is measured and recorded
- Advantages:
 - simplicity
 - sensitive to small changes
- → Disadvantages:
 - points along the line are not defined
 - comparison with other studies difficult

The Samn-Perelli 7-pt scale

- 1. Fully alert, wide awake.
- 2.) Very lively, responsive, but not at peak.
 - 3. Okay, somewhat fresh.
 - 4. A little tired, less than fresh.
 - 5. Moderately tired, let down.
 - Extremely tired, very difficult to concentrate.
 - 7. Completely exhausted, unable to function effectively.

The Karolinska Sleepiness Scale

- 1 Very alert
- 2
- 3 Alert normal level
- 4
- 5 Neither alert nor sleepy
- (6)
 - 7 Sleepy, but no effort to keep awake
 - 8
 - 9 Very sleepy, great effort to keep awake

Pros and Cons

- → Advantages of subjective scales:
 - quick and easy to administer
 - either paper-based or computer-based
 - minimal disruption to the aircrew
 - many studies have used the SPS and KSS, and provide data for comparison
- → Disadvantages of subjective scales:
 - relatively easy to cheat
 - may lack face validity
 - do not always reliably reflect objective performance measures

When are they useful?

- → Looking at a lot of crew members
- → Identifying where problems might exist
 - Further investigation
 - Mitigation
- → As one of several measures
- →Included on Fatigue Report Forms

Subjective sleep assessment

→ Sleep diaries

- Where
- Sleep and wake times
- How much
- How well
- → Useful when
 - Looking at groups
 - Used with other measures

Measuring sleep - Actiwatches

- Actiwatches monitor activity
- → They can give an indication of when an individual may be asleep
- → Estimates the timing of periods of sleep and quality
- → Various models

Actiwatches: Pros and Cons

→Advantages:

- not intrusive
- easy to administer
- can pick up unintentional sleeps, e.g. on the flight deck
- can be used alongside subjective measures

→ Disadvantages:

- Measures activity not sleep
- Cannot distinguish between sleep and still wake
- Not cheap

Polysomnography

- → The pattern of brain activity changes with increasing fatigue
 - Microsleeps (alpha waves)
 - Rolling eye movements
- → Measures
 - Sleep quantity and structure
 - Sleep quality
 - Waking alertness
- Measurement requires
 - Attachment of electrodes to head / face
 - Technicians to accompany the aircrew
- Gold standard

When is it useful?

→ To examine

- Subsequent fatigue levels
- Recovery from a series of duties

→ For example:

- sleep in hotel rooms on layover
- sleep in aircraft bunks on augmented flights
- sleep at home on return from transmeridian flights

Simple performance tasks: The PVT

- → The Psychomotor Vigilance Task
- A sustained-attention task that measures the speed with which subjects respond to a visual stimulus.
- The test runs for 5-10 minutes
- The device records reaction time and the number of missed responses.

Performance tasks: Pros and Cons

→ Advantages:

- Simple to administer
- Little training required
- Short duration
- Can be carried out in 'noisy' surroundings
- Sensitive to changes in fatigue levels
- Has been validated

→ Disadvantages:

- Requires equipment to be purchased / hired and distributed to the crew
- Requires at least 5-10 minutes without any disturbance
- Impact on other operational activities
- Relationship with operational performance?

Monitoring effects on operational performance

- → Air safety reports
 - include fatigue factors in the reports of safetyrelated events
 - monitor on a regular basis

- → Flight data monitoring
 - difficult to identify the effect of fatigue due to the influence of other factors

Measuring circadian rhythms

- → Why might we want to?
 - understanding the development of fatigue
 - understanding the recovery process
- → How might we do it?
 - continuous monitoring of body temperature
 - collection and analysis of blood / urine / saliva samples
- → Generally impractical

- "Fatigue" can be tricky to measure
- → Need a variety of measures
- → Some measures require specialist knowledge
- → Fatigue needs to be measured as part of an FRMS to:
 - Identify times of higher fatigue risk
 - Monitor effectiveness of mitigations

