Neural Networks I (R1EN) IRE-1HE

Contents lists available at SciVerse ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2012 Special Issue

Connectivity and thought: The influence of semantic network structure in a
neurodynamical model of thinking

Nagendra Marupaka, Laxmi R. Iyer, Ali A. Minai *

School of Electronic and Computing Systems, University of Cincinnati, Cincinnati, OH 45221, United States

ARTICLE INFO ABSTRACT

Keywords:

Semantic networks
Semantic cognition
Creativity

Cognitive dynamics
Itinerant dynamics
Attractor networks

Understanding cognition has been a central focus for psychologists, neuroscientists and philosophers
for thousands of years, but many of its most fundamental processes remain very poorly understood.
Chief among these is the process of thought itself: the spontaneous emergence of specific ideas within
the stream of consciousness. It is widely accepted that ideas, both familiar and novel, arise from the
combination of existing concepts. From this perspective, thought is an emergent attribute of memory,
arising from the intrinsic dynamics of the neural substrate in which information is embedded. An
important issue in any understanding of this process is the relationship between the emergence of
conceptual combinations and the dynamics of the underlying neural networks.

Virtually all theories of ideation hypothesize that ideas arise during the thought process through
association, each one triggering the next through some type of linkage, e.g., structural analogy, semantic
similarity, polysemy, etc. In particular, it has been suggested that the creativity of ideation in individuals
reflects the qualitative structure of conceptual associations in their minds. Interestingly, psycholinguistic
studies have shown that semantic networks across many languages have a particular type of structure
with small-world, scale free connectivity. So far, however, these related insights have not been brought
together, in part because there has been no explicitly neural model for the dynamics of spontaneous
thought. Recently, we have developed such a model. Though simplistic and abstract, this model
attempts to capture the most basic aspects of the process hypothesized by theoretical models within
a neurodynamical framework. It represents semantic memory as a recurrent semantic neural network
with itinerant dynamics. Conceptual combinations arise through this dynamics as co-active groups of
neural units, and either dissolve quickly or persist for a time as emergent metastable attractors and are
recognized consciously as ideas. The work presented in this paper describes this model in detail, and
uses it to systematically study the relationship between the structure of conceptual associations in the
neural substrate and the ideas arising from this system’s dynamics. In particular, we consider how the
small-world and scale-free characteristics influence the effectiveness of the thought process under several
metrics, and show that networks with both attributes indeed provide significant advantages in generating
unique conceptual combinations.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction cognition, and is the main motivation for the work reported in this

paper.

Current understanding in neuroscience suggests that percep-
tion, thought and action are essentially the same phenomenon—
a pattern of activity across complex networks of neural elements.

The “train of thought” or the “stream of consciousness” is
an experience common to all humans - and probably to most
other complex animals. Thoughts can be mundane or creative,

transient or memorable, insignificant or salient - all emerging
somehow from the continuous activity of billions of neurons in
the brain influenced by the experience of the body embedded
in its environment. How does this happen, and what determines
the nature of the thoughts that arise in this way? Answering
these questions is fundamental to any understanding of human
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When these elements are connected to the musculoskeletal sys-
tem, the result is action. If this connection is (temporarily and
voluntarily) disabled, one gets pure thought. This capability for
“internal action” disconnected from overt behavior is the essen-
tial attribute that allows humans to think in the abstract, make
plans, evaluate choices, generate ideas and solve complex prob-
lems. However, unlike behavior, thought is very difficult to study
experimentally as a temporal process. Almost all studies of cogni-
tion rely on observables such as memory recall, response times,
choice patterns, neural correlates of behavior, etc., but the thinking
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process itself remains mysterious and hard to observe (Graziano,
Polosecki, Shalom, & Sigman, 2011). Computational modeling pro-
vides a principled way to address this issue (McClelland & Rogers,
2003; Tyler & Moss, 2001)—not so much to explain its details,
but to provide general insight, much as attractor network mod-
els helped clarify the mechanisms of associative memory (Amit,
1989; Hopfield, 1982). In this spirit, the work presented in this pa-
per describes a simple model for the thought process, informed
by theoretical work on creative ideation (Brown, Tumeo, Larey, &
Paulus, 1998; Campbell, 1960; Mednick, 1962; Nijstad & Stroebe,
2006; Schilling, 2005; Simonton, 2003, 2010) and recent empirical
analysis of universal semantic structure in language (Bales & John-
son, 2006; Motter, de Moura, Lai, & Dasgupta, 2002; Sigman & Cec-
chi, 2002; Steyvers & Tenenbaum, 2005). In particular, it addresses
two questions:

1. How do the conceptual associations embedded in the brain’s
semantic network generate a “train of thought”, including
creative thought?

2. How are the dynamical and functional characteristics of this
process related to the structure of the semantic network?

In this paper, we assume amodal or lexical representations of
concepts, and do not consider sensorimotor features. Research
on the conceptual representations in the brain (Caramazza
& Mahon, 2003; Damasio, 1989; Damasio, Grabowski, Tranel,
Hichwa, & Damasio, 1996; Damasio, Tranel, Grabowski, Adolphs, &
Damasio, 2004; Kellenbach, Brett, & Patterson, 2001; Martin, 2007;
Patterson, Nestor, & Rogers, 2007; Warrington & Shallice, 1984)
indicates that modal, amodal and lexical representations exist in
various parts of the cortex. These representations can be shown
to arise from associative learning (e.g., in self-organized feature
maps Kohonen, 1989). Higher level categorical representations can
also arise from similar mechanisms (Iyer & Minai, 2011), and are
explained partially by recent computational models (Ashby, 1998;
Iyer & Minai, 2011; Kruschke, 1992; Love, Medin, & Gureckis, 2004;
Nosofsky, Palmeri, & McKinley, 1994).

2. Theoretical formulation

The model we present is based on three basic assumptions:

1. All thought is homogeneous: This is the principle that creative
and conventional thinking are the same type of phenomenon
at the physiological level, differing not in their inherent
phenomenology but only in the value of their output relative
to utilitarian or aesthetic measures. This contrasts with
the popular notion that genius uses mysterious processes
unavailable to most individuals.

2. All thought is combinatorial: This principle asserts that all
ideas are conceptual combinations, i.e., combinations of existing
concepts or ideas. This is a central theme in most theories
of creativity (Brown et al., 1998; Campbell, 1960; Fauconnier
& Turner, 2003; Nijstad & Stroebe, 2006; Schilling, 2005;
Simonton, 2003, 2010) and is discussed in more detail below.

3. All thought is associative: This is the principle that all new
ideas arise b association with currently active ideas or percepts
(Mednick, 1962), thus creating the “train of thought”. The
fundamentally associative nature of cognition is borne out by
both experience and experiments, e.g., the body of research
on priming (Collins & Loftus, 1975; Masson, 1995; McKoon &
Ratcliff, 1992; Moss, Hare, Day, & Tyler, 1994; Plaut, 1995).

These assumptions may well be too simplistic, but we believe
that they apply broadly enough to form the basis of a useful model.
Given these assumptions, we argue that the difference between
creative and mundane thinking arises not from the nature of the
underlying process but from the organization of knowledge within
the brain and, possibly, from differences in modulating factors such
as inhibition, emotion, etc.

Studies of cognitive dynamics based on behavioral experiments
indicate that it has an itinerant character (Tsuda, 2001), where
periods of relative stability are interspersed with those of rapid
transition. In particular, a recent study showed that a complex
cognitive process can be segmented into saccade-like sequences
of fixation and transition in the cognitive state (Graziano et al.,
2011). These are similar to the idea of “mental saccades” proposed
by Starzyk (Starzyk, 2011), and the underlying dynamics can be
seen as itinerant traversal over a landscape of metastable states
(Rabinovich et al., 2001). Over the last few years, as part of a larger
cognitive model, we have developed an attractor network model
for the itinerant emergence of conceptual combinations in a neural
semantic network (Iyer et al., 2009; Iyer, Minai, Doboli, Brown, &
Paulus, 2009; Iyer, Venkatesan, & Minai, 2010), and have recently
presented a preliminary study of how the dynamics of this network
is affected by its structure (Marupaka & Minai, 2011). The present
paper builds on this work through more systematic experiments,
and applies it to a real-world dataset.

3. Background

This section provides brief background on three important
research areas that the work described in this paper draws upon.

3.1. Complex networks

Over the last few years, complex networks have become a major
focus of study in many research areas, including physics, biology,
sociology, linguistics, psychology, neuroscience, computer science
and engineering (Barabasi, 2002; Newman, 2010; Newman,
Strogatz, & Watts, 2001; Newman, Watts, & Strogatz, 2002; Watts,
1999, 2003). One interesting class of such networks are scale-
free networks, characterized by a power-law distribution of node
degree (number of connections for each node) (Albert & Barabasi,
2002; Barabasi & Albert, 1999), i.e., p(k) ~ Kk, where p(k) is
the probability of a node having k connections. Random networks
- also known as Erdés-Renyi networks - with homogeneous
uniform probability of connection between all node pairs have
a Poisson degree distribution with a pronounced mode and an
exponential tail, whereas the power-law distribution has a “fat
tail”. Scale-free networks are known to be generated by processes
of preferential attachment, where new nodes entering the network
connect preferentially to already well-connected nodes (Barabasi &
Albert, 1999). This produces hub nodes with very high connectivity,
which comprise the fat tail of the degree distribution. Many real-
world networks, including the Internet and the World-Wide Web,
have been found to be scale-free (Newman, 2010; Newman et al.,
2001; Yook, Ad Jeong, & Barabasi, 2002).

Another widely studied class of networks is that of small-
world networks (Watts, 1999; Watts & Strogatz, 1998), which are
networks with a high clustering coefficient, C, but low mean shortest
path length (MSPL), L, between node pairs. The MSPL is calculated
by finding and averaging the shortest paths (in hops) between all
pairs of nodes. The clustering coefficient is defined as the mean
probability that the direct neighbors of two directly connected
nodes are also directly connected. It is calculated as:

7Zn(n, )Z .

JjeH;

where N is the number of nodes in the network, H; is the set of
nodes directly connected to node i, n; is the size of this set, and
¢; = 1if a connection exists from j to i, else 0. It should be
noted that this calculation works for both undirected and directed
networks. However, nodes in directed networks typically have
distinct neighborhoods for incoming and outgoing connections,
each giving its own clustering coefficient.
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Clustering is defined Random networks typically have low L and
low C, whereas networks with only local connectivity have high L
and C. Small-world networks, with low L and high C, thus represent
a distinct class, and are known to be good models for many real-
world complex networks such as power grids, neural networks and
social networks (Newman, 2010; Watts & Strogatz, 1998). Small
world characteristics have been found in cortical neural networks
(Sporns & Zwi, 2004), and attractor neural networks with small
world architecture are known to be very efficient as associative
memories (Bohland & Minai, 2001). It has also been suggested that
small-world connectivity in the brain may underlie high creativity
in individuals (Schilling, 2005).

Scale-free networks have low L, but not necessarily low C, while
small world networks do not necessarily have a power law degree
distribution. However, it is possible to have networks that are both
scale-free and small-world, and this structure has been found in
many semantic networks (see below).

3.2. The dynamics of thought

A widely held view of creativity is that it arises from the
combination of disparate concepts or ideas (Brown et al., 1998;
Campbell, 1960; Fauconnier & Turner, 2003; Mednick, 1962;
Nijstad & Stroebe, 2006; Schilling, 2005; Simonton, 2003, 2010).
In particular, an influential model for creativity is the blind
variation and selective retention (BVSR) model, first proposed by
Campbell in 1960 (Campbell, 1960), and subsequently developed
by Simonton (1988, 2003, 2010) and others. This theory postulates
that potentially creative ideas arise as conceptual combinations
through blind variation, and only those selected based on some
evaluation criterion are retained.

The role of novel combinations in creativity has been noted by
many great innovators. For example, Einstein is quoted as saying,
“Taken from a psychological viewpoint... combinatory play seems
to be the essential feature in productive thought—before there
is any connection with logical construction in words or other
kinds of signs which can be communicated to others” (quoted in
Mednick (1962) and Simonton (2003)). Similarly, Poincare gives
the following description of his creative process: “Ideas arose in
crowds; I felt them collide until pairs interlocked, so to speak,
making a stable combination. ... the only combinations that have
a chance of forming are those where at least one of the elements is
one of those atoms freely chosen by our will. Now, it is evidently
among these that is found what I called the good combination.

. among the great numbers of combinations blindly formed
almost all are without interest and without utility” (Poincaré,
1921) (quoted in Simonton (2003)). The last quote points to both
the benefits and costs of blind combinatorial search—it is rich
in novelty but is likely to be very poor in truly useful, or even
sensible, ideas. Not only creative thinking but all thinking must
contend with the trade-off between the need to produce sensible
ideas and the need to generate new ones. This is simply the classic
exploration vs. exploitation dilemma that underlies all complex
adaptive processes, including evolution, learning, behavior and
thought.

Since conceptual combinations arise in the minds of individuals,
they must depend in some way on the way these minds organize
information. Given the assumption that ideas arise associatively,
the key issue is the structure of associations between mental
representations of concepts. Such associations are the result of
prior experience, and are encoded in the brain through the
long-term modification of synapses between neurons involved in
the representation of different concepts. Presumably, individuals
whose minds encode unusual associations between concepts are
likelier to find them when needed. This idea was formalized by
Mednick (1962) as an associative hierarchy, relating the remoteness

of associations in an individual’'s mind with the strength of
these associations. He argued that the hierarchy is steep in non-
creative individuals, who make very strong associations between
commonly connected concepts but do not make unconventional
associations. Such individuals are likely to think mainly in
conventional terms. The creative individual, in contrast, has
a flatter association hierarchy with fairly strong associations
between concepts generally considered remote from each other.
One way to see these two cases is in terms of the distribution of
associations between concepts. In the non-creative individual, the
distribution is likely to be strongly peaked at a typical level with an
exponential tail, indicating that most concepts have approximately
the same (small) number of associations. In contrast, creative
individuals have a significant number of concepts with a large
number of associations, creating a fat-tailed distribution such as the
power-law.

An important consideration in the quality of thought is fixa-
tion—the inability to break out of conventional ideas, presumably
because the strongest associations are between commonly linked
concepts (e.g., “bread and butter”, “bat and ball”, etc.) Fixation can,
thus, be seen as cognitive cliche. An interesting aspect of Mednick’s
hypothesis is that, due to their flatter associative hierarchies, cre-
ative individuals may not only generate more unusual conceptual
combinations but also fewer conventional ones, which may explain
the idiosyncrasy popularly associated with creative people. For the
same reason, individuals with broad but relatively shallow exper-
tise may be more creative than those with deep and narrow ex-
pertise (Schilling, 2005). Indeed, experiments have shown that the
inclusion of a few unconventional thinkers can enhance the cre-
ativity of a whole group even if these thinkers are not especially
knowledgeable (March, 1991; Nemeth, 1995).

3.3. The organization of semantic knowledge

The organization of semantic knowledge has been studied along
two complementary tracks: (1) Through associative recall tests
with human subjects; and (2) Through the structural analysis of
lexical semantic networks.

Word association or cued recall tests (Nelson, Bennett, Gee,
Schreiber, & McKinney, 1993; Nelson, McKinney, Gee, & Janczura,
1998; Nelson, Schreiber, & McEvoy, 1992; Nelson & Xu, 1995;
Raaijmakers & Shiffrin, 1981; Ratcliff & McKoon, 1994) have
produced a rich body of data on association norms, leading
to theories of associative recall (e.g., McKoon & Ratcliff, 1992;
Nelson et al., 1993, 1998, 1992; Ratcliff & McKoon, 1994). These
experiments and theories provide a well-grounded understanding
of the associative structure of semantic memory at the cognitive
and behavioral level. This is complemented by studies of the
structure of semantic networks obtained from dictionaries and
thesauri by several investigators (Bales & Johnson, 2006; Motter
et al,, 2002; Sigman & Cecchi, 2002; Steyvers & Tenenbaum,
2005), all indicating that a number of lexical networks have
consistent and complex structure. In particular, all these studies
have shown that lexical semantic networks possess two interesting
attributes: (1) A small-world architecture; and (2) A power-law
degree distribution. Steyvers and Tenenbaum (2005) proposed
a plausible model of semantic evolution that generates such
networks, and have suggested that these properties might
generalize across all associative semantic networks. It is, therefore,
interesting to ask if the structure found by these studies
simply reflects the formative processes of semantic networks,
or might they also provide functional advantages to a cognitive
agent.

4. Model description

In this paper, we describe a simple but neurally plausible
computational model for associative search through the space
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of conceptual combinations in semantic neural networks, and
use it to compare the characteristics of the resulting search
in abstract networks with five different types of connectivity:
Random (RA), Localized (LO); small-world (SW); scale-free (SF);
and Steyvers-Tenenbaum (ST). We then use our model with an
actual semantic network (WD) constructed using experimental
word association norms (Maki, 2003, 2008; Nelson, McEvoy, &
Schreiber, 1998).

It is important to emphasize that our work differs from most
models of associative recall (e.g., Nelson et al., 1998, 1992) in
two ways: (1) We consider the recall of conceptual combinations
rather than single associates; and (2) We consider free recall (or
spontaneous thinking) rather than cued recall. However, since
conceptual combinations can themselves be seen as more complex
concepts, the model can be considered a distributed form of
associative chaining.

4.1. Network model

The core of the model is a semantic neural network of N concept
units, each representing one concept (e.g., a word or an object).
Each unit can be seen as a neural assembly. Since the goal in this
paper is to study the dynamics of networks with various types of
connectivity, we begin with networks of abstract concepts instead
of actual words. We then also evaluate the model using empirically
obtained word association data.

The connections between concept units represent directed
associations, with wy; denoting the connection from unit j to unit
i. For simplicity, we assume that the connections are binary and
symmetric, i.e., either two concepts are mutually associated with
a weight of 1 or not associated, with a weight of 0 (this condition
is relaxed for the real-world network studied later). The output of
unit i at time ¢ is x;(t), and the net input to a unit i and time ¢ is
given by:

N
xi(6) =Y wi(OX;(6) + Yroisebi () (2)

=1

where x; are the outputs from units j, &;(t) is uniform white noise
between 0 and 1, and pyise, iS a fixed gain parameter.
The state of concept unit i at time ¢t is given by:

Yi(®) = ayj(t — 1) + (1 — a)x;(t) (3)

where « is an inertial parameter, typically set to a value slightly
below 1. The network has competitive activity, and the K non-
refractory units with the highest y(t) > 0 are allowed to fire
at time t. In order to avoid arbitrary thresholding, units with
excitation levels very close to the Kth most excited unit are also
allowed to fire. Thus, the competitive firing is better considered
“soft K-of-N".
The output of unit i is calculated as:

() = 1, ify;(t) € k most excited units
X = 0, otherwise.

Unit activity and excitability are modulated by two other
processes: (1) Refractoriness; and (2) synaptic modulation.

Refractoriness captures the fact that periods of high activity
for neurons deplete resources and must be followed by intervals
of refractoriness to replenish these resources. In the model, once
unit i fires, it may remain active for an activity duration ¢ if y (t)
remains sufficiently high (i.e., it keeps winning the competition),
after which it enters a refractory period. This is modeled through a
resource, 1;(t) € R(t), with the following dynamics:

(4)

(1 —A)r(t = 1),

B if active
ri(t) = ri(t — 1) + Ay (1= ri(t — 1)),

if inactive

(3)

where A_ is the resource depletion rate, and A, is the resource
recovery rate. A neuron is said to be in a refractory state if:

ri(t) < Oy. (6)

Thus, a unit’s resource is depleted when it fires and recovers
when it is inactive due to lack of stimulus or refractoriness.

Synaptic modulation, i.e., activity-dependent short-term change
in synaptic strength, has recently been proposed as an important
component of neural information processing and short-term
memory (Abbott & Regehr, 2004; Zucker & Regehr, 2002). In
the model, synapses that are excited repeatedly by pre-synaptic
activity temporarily become habituated and weaken while the
activity persists, recovering gradually when activity ceases. This is
modeled as follows:

1=y )w(t - 1), if active
wi(t — 1) + ¥y [wijo - wij] , ifinactive

wi(t) = (7)
where ¥/_ and ¥, represent the synaptic decay and recovery rates

respectively and wjj, represents the initial weight of the synapse.

4.2. Network dynamics

The dynamics of the network emerges from an interplay
between the recurrent excitation within the network, the compet-
itive K-of-N activity rule, and the modulatory processes (refrac-
toriness and synaptic modulation). If the currently active group of
(approximately) K units form a sufficiently strongly connected set,
the group can sustain itself under competition, and only becomes
inactive eventually due to resource depletion and synaptic mod-
ulation. This can be seen as an emergent metastable attractor. In
contrast, if a group of relatively weakly connected units become
co-active, they cannot remain active as a group and quickly fall
apart. Thus, the dynamics of the network is itinerant (Tsuda, 2001)
or “sticky”, with periods of metastable activity patterns punctu-
ated by intervals of transient activity.

Since ideas are defined as conceptual combinations and each
unit in the network represents a concept, any set of co-active
units can be seen as a potential idea. However, we assume that
only those co-active sets that persist beyond a certain duration,
Oy, - termed the awareness threshold - are perceived consciously
as ideas, whereas the rest remain subconscious. The intuition is
that the persistence of an active concept group as a metastable
attractor indicates that these concepts have sufficiently strong
mutual associations based on prior experience and form a coherent
idea, while transient groups comprise poorly associated concepts.
It should be noted that, in contrast with standard associative
memory networks (Hopfield, 1982), no attractors are explicitly
embedded in our network. They are configured latently by the
accumulation of associations between individual concepts. Over
time, the network comes to embed a large number of such latent
ideas, which are unmasked emergently by the dynamics of the
system. Thus, in a sense, any novel ideas that emerge during
thinking are “false memories”—ideas that were never explicitly
experienced but are constructed from fragments of previous ideas
that happen to connect together. Such combinatorial spurious
memories are well-known in attractor networks (Amit, 1989), and
are generally regarded as a nuisance when the goal is to store
and recall specific memories. We assert that, for a system to be
capable of creativity, such spurious memories are, in fact, very
valuable, and their exclusion - e.g., by repeated reinforcement of
“true” memories at their expense - reduces creativity. Creative
thinking is productive confabulation. This point has also been made
independently by others (Plotkin, 2009; Thaler, 1996a, 1996b).

Functionally, the dynamics of the system can be seen as
generating a sequence of ideas with intervening periods of
transience. We characterize these functional dynamics in terms of
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the following attributes:

1. Productivity, p, is the number of unique ideas generated over a
finite period.

2. Efficiency, n, is a measure of how little time is “wasted”
generating repeated ideas. This is calculated as:

n=p/pa (8)

where p, is the total number of ideas (including repeated ones)
generated by the network during the simulation. Low efficiency
can be seen as indicating fixation.

3. Consistency, &, quantifies repeatability in the behavior of a net-
work over distinct simulations. It measures the overlap be-
tween ideas generated over repeated runs from different initial
conditions. A value closer to 1 indicates high repeatability, im-
plying that the dynamics at the idea level is more “ergodic”.

4, Coherence, w, measures how strongly connected a generated
idea is relative to the knowledge embedded in the network. It is
measured by calculating the clustering — or mutual connectivity
- among the nodes participating in the idea. If idea I, has K
active nodes,

() = q(h) /KK — 1) (9)

where q(I;) is the number of connections that exist between
the K nodes active in I.. This measure is modified slightly for
the WD network, where: (1) All non-zero weights are set to
1 before calculation of coherence; and (2) The raw coherence
value obtained is scaled by the connectivity of the WD network
relative to the abstract networks. This allows the coherence for
all networks to be compared.

Using cooperatively co-active groups of concepts as represen-
tations of ideas has been considered by Nelson et al. (1993) in the
context of implicit memory. They found that concepts that are part
of such highly connected (or clustered) groups are easier to recall
than those that are not.

From a neurophysiological viewpoint, a more plausible instan-
tiation of our co-activity model might be in terms of emergent
synchronization among neuronal assemblies, which has been sug-
gested as the brain’s main mechanism for representational bind-
ing (Bressler & Tognoli, 2006; Eckhorn et al., 1988; Engel, Fries,
& Singer, 2001; Singer et al., 1997; Singer & Gray, 1995; Varela,
Lachaux, Rodriguez, & Martinerie, 2001). Several computational
models have been developed for such systems (e.g., Wang & Ter-
man, 1995), but we use the simpler model described above for clar-
ity.

Finally, it should be noted that, while we use the term
“concept” for the information represented by each network unit,
they could also be seen as “features”. The distinction between
features, concepts and ideas is largely a matter of the level in a
representational hierarchy rather than an essential difference.

4.3. Network generation

The study of abstract networks centers on the Steyvers-
Tenenbaum model, which represents the structure of actual lexical
networks. Thus, we first generate this network for a specific value
of N and other parameters, and then generate the other four
architectures to be comparable to it. The networks are generated
as follows:

Steyvers—-Tenenbaum (ST) network: This network is generated
using the algorithm described by Steyvers and Tenenbaum in
Steyvers and Tenenbaum (2005). The process begins with M fully
interconnected nodes, with the remaining N — M nodes added
subsequently one at a time. The addition of each new node requires
two steps: (1) An existing node, i, is chosen with probability P; =
ki/ >_; ki, where k; is the degree of node j; (2) The new node

is connected randomly to M other nodes from the set of nodes
to which i is already connected. Thus, the new node partially
replicates the connectivity of node i, which is chosen with a
preference for higher degree nodes. The resulting network is both
small-world and scale-free, with an exponent near 3. For the
simulations described here, we use N = 500 and M = 6, giving
a total of n, = 2979 bidirectional connections for an extremely
sparse network with mean node degree 0.023.

Random (RA) network: The RA network has N nodes with n,
connections between node pairs chosen randomly with equal
probability. This results in a Poisson degree distribution for the
nodes (Newman, 2010).

Localized (LO) network: For the LO network, nodes are first
placed randomly in 2-dimensional Euclidean space in order to
create distance relationships, each node making connections
within a certain radius, r, of itself. The radius is chosen so that the
total number of connections in the network is very close to n..

Small-World (SW) network: The SW network is obtained by
randomly rewiring short connections in the LO network to more
distant nodes until the mean clustering coefficient of the network
equals that of the ST network.

Scale-Free (SF) network: The SF network is generated through
a preferential attachment process (Barabasi & Albert, 1999), con-
strained by the requirement that the total number of connections
be close to n.. This results in a scaling exponent of approximately
3, albeit over a large range of node degrees, with a cutoff at very
high values.

To summarize, all nodes have the same number of nodes and
connections, the ST and SW networks have the same clustering
coefficient, the LO and SW networks have the same basic
connection radius, and the ST and SF networks have the same
degree scaling exponent, albeit over a somewhat narrower range
for the SF network.

The WD network is generated using actual word association
measures generated by Maki (2003, 2008) based on the University
of South Florida free association norms dataset (Nelson et al.,
1998). The available dataset had word associations and word
frequencies for 4374 nouns, of which we chose 2059 by excluding
low frequency words. In the network, each word is represented
by a node, and the connection weight, wy, from node j to
node i equals the relative strength of their association. Thus,
the weights are neither binary nor symmetric in this case. Also,
the resulting network is considerably sparser than the abstract
networks described above, with a mean node degree of 0.005. It
should be noted that a larger network based on the same dataset
was also analyzed by Steyvers and Tenenbaum (2005), but only
with respect to structural properties.

Fig. 1 shows the degree distributions for all six networks.

4.4. Network attributes

Fig. 1(a)-(e) show the degree distributions for the five abstract
networks, and Fig. 1(f) the in- and out-degree distributions for the
WD network, all in log-log coordinates. It is clear that the RA, LO
and SW networks have Poisson distributions with exponential tails
while the ST and SF networks’ distribution have (truncated) power
law tails. It is interesting to interpret these connectivity patterns
from the perspective of Mednick’s associative hierarchies. In the
three networks with Poisson degree distributions, all concepts
have approximately similar numbers of associations, whereas the
ST and SF networks have concepts with very different numbers
of associations, including some with a very large set. These high
degree “hub” nodes can serve to link disparate concepts.

Table 1 summarizes the structural properties of all the
networks. As expected, the RA network has a low mean shortest
path length (MSPL) and almost no clustering, whereas the LO
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Fig. 1. Degree distribution for the six networks. Note that the WD network has directed links, resulting in separate distributions for in-degree and out-degree.
Table 1
Network properties.
Network Size (N) Mean degree (1) Clustering coefficient (C) MSPL (L) Radius (R) Diameter (f)) Scaling exponent ()
RA 500 12 0.0238 2.77 3.49 4.56 NA
LO 500 12 0.6160 7.78 9.56 19.6 NA
SW 500 12 0.2790 3 3.49 5.09 NA
SF 500 12 0.0290 2.78 3 4.01 32
ST 500 12 0.2780 2.79 3 5 25
WD 2059 10 0.1258 4.16 55 11 1.3 (in-degree)
0.1464 (in)

0.1053 (out)

network has very long paths and very high clustering. The ST and
SW networks have MSPL similar to the RA networks but much
higher clustering, indicating small-world characteristics (Watts
& Strogatz, 1998). The SF network has low MSPL and very low
clustering coefficient. Finally, the WD network also shows a small
world pattern, though with a lower clustering coefficient and
longer MSPL than the SW and ST networks. This is because, in
contrast to the other networks, the connections in the WD network
are directed. The values we find are in agreement with those found
for a larger version of the WD network in Steyvers and Tenenbaum
(2005).

5. Simulations and results

All five abstract network models were simulated using N =
500 units with connectivity generated as described above. The
WD model with N = 2059 was also simulated with the same
parameter values. There are three significant differences between
the five abstract networks and the WD network:

1. The WD network is larger but also much sparser than the
abstract networks. On average, each WD node receives 10
inward connections compared to 12 for each abstract network.

2. The WD network has directed, asymmetric connections.

3. The WD network has real-valued rather than binary weights,
with the values indicating the strength of association between
concepts.

In analyzing the simulations, it is important to remember that
almost all the parameters for the WD network - unlike those for
the abstract networks - are constrained by the data, and not every

performance metric for this network can be compared directly
with those for the abstract networks.

An issue in the simulations is to set the awareness threshold,
Oy, appropriately given the other dynamical parameters in the
system. To do this, we looked at the distribution of persistent
activity duration for individual units with all parameter values
fixed. This distribution was found to be bimodal as shown in Fig. 2
(see also Marupaka & Minai, 2011). In most instances, units stay
active only for a few consecutive steps before switching off, which
indicates transient activity. However, in some cases, the persistent
activity lasts for durations between 65 and 80 consecutive time
steps, which is the limit set by the resource decay rate. We
hypothesize that these units are participating in a metastable
attractor - i.e., an idea - by remaining active as long as physically
possible. Based on this figure, we set the awareness threshold near
the lowest point of the distribution at ®y, = 40.

Fig. 3 shows the mean values of the four metrics - productivity
(n), efficiency (p), coherence (w) and consistency (&) - for all six
networks. Each data point is averaged over 20 independent runs.
Fig. 4 shows the throughput for each system, defined as the fraction
of time the system spends in metastable attractors that correspond
to ideas. The distribution of coherence values over all ideas and
unique ideas for each of the networks is plotted in Fig. 5. Fig. 6
shows two representative ideas from the WD network.

To illustrate the dynamics of the thought process as it moves
from one idea to the next, Fig. 7 shows the activity of part of the
WD network over the entire period spanning the two successive
ideas, while Fig. 8 shows the Hamming distances of this activity
from the first idea (top) and the second idea (middle), and between
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successive states. The left side of both figures shows how an
existing idea dissipates, and the right side shows the emergence of
the next idea. Table 2 gives a more detailed view of the transition
out of the first idea and into the second idea, showing the transient
conceptual combinations generated as the first idea dissipates
and those generated as the second idea emerges. As indicated by

Fig. 8 and Table 2, neither happens abruptly, but requires only
a short duration of dissipation or build-up. This is typical for all
ideas seen in the simulation, though we have not explored this
issue systematically. Looking at the dependence of the emergence
and dissipation times on network characteristics is a potentially
interesting issue for future research.

Neural Networks (2012), doi:10.1016/j.neunet.2012.02.004
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Table 2

Steps of conceptual combinations spanning two successive ideas (in bold).
T No N1 Nz N3 N4 N5 N5 N7 Ns Ng Nm
240 England English France French Guide Language Latin London Paris Spanish Tour
241 England English France French Guide Language Latin London Paris Spanish
242 England English France French Greek Language Latin London Paris Spanish
296 England English France French Greek Language Latin London Paris Spanish
297 England English France French Greek Language Latin Literature Paris Spanish
298 English Europe France French Greek Language Latin Literature Paris Spanish
299 English Europe France French Greek Language Latin Literature Paris Spanish
300 English France French Greek Language Latin Literature Paris Poetry Spanish
301 English France French Greek Language Latin Literature Paris Poetry Spanish
302 English France French Greek Language Latin Literature Paris Poem Spanish
303 English French Greek Language Latin Paris Poet Poetry Spanish Verse
304 English French Greek Language Latin Literature Poem Poet Spanish Verse
305 English French Greek Language Latin Poem Poet Poetry Spanish Verse
578 Cover Discover Find Glance Hide Look Search See Seek Sight
579 Cover Discover Discovery Find Glance Hide Lid Look Search Seek
580 Cover Discover Discovery Find Glance Hide Lid Lose Search Seek
581 Cover Discover Discovery Find Hide Lid Lose Search Seek Win
582 Defeat Discover Discovery Find Hide Lid Lose Search Seek Win
583 Defeat Discover Discovery Find Hide Lose Search Seek Victory Win
584 Defeat Discover Find Gain Hide Lose Search Seek Victory Win
585 Defeat Discover Find Gain Hide Lose Search Seek Victory Win
586 Defeat Discover Find Hide Lose Search Seek Triumph Victory Win
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Fig. 4. The average throughput for the six networks. Throughput represents the
fraction of time a network spends in a metastable state corresponding to an idea.

6. Discussion

Several interesting observations emerge from the results
presented in the previous section:

Productivity and efficiency: Fig. 3(a) indicates that, while the LO
and SW networks generate the greatest number of ideas among
abstract networks, a large fraction of these are repeated. The RA
network, in contrast, generates fewer ideas but almost all are
unique. The SF network generates more unique ideas than LO or
SW, though fewer than RA. The ST network, however, generates
more unique ideas than RA, and the WD network generates even
more. Comparing the efficiency of these networks, as shown in
Fig. 3(b), it is clear that the RA network is most efficient, and the
three other networks with power law degree distribution are also
much more efficient than the two other networks with Poisson
degree distribution (LO and SW).

Mean coherence: Fig. 3(c) shows that, on the average, the ideas
produced by the LO, SW, SF and ST networks were much more

internally coherent than those generated by the RA networks. The
mean coherence for ideas from the WD network is also low, but
this is mainly because this network, unlike the others, had directed
links and much lower mean weights. Thus, the coherence values for
the WD network should not be compared directly with the other
networks. It is interesting to note that the mean coherence values
for all ideas and unique ideas are virtually identical for all networks
except the SF network. This suggests that the SF network tends to
repeat a few highly coherent ideas disproportionately (see below).

Consistency: Fig. 3(d) indicates that the RA and SF networks
are extremely inconsistent, producing very different ideas on each
independent trial with the same connectivity pattern. Further
investigation shows that the underlying reasons are quite different
in the two cases. The RA network simply has a lot of random,
weakly connected sub-networks that are not associated strongly
with each other, making each trajectory through the network quite
different. In contrast, the SF network has a few very strongly
connected components, and the system gets trapped around one
of these on each run. The networks with high clustering tend
to have higher consistency, but this is weakened by power law
connectivity.

Throughput: Fig. 4 shows that all networks have roughly similar
throughput, spending between 14% and 22% of their time in
metastable states. The WD network seems to have much higher
throughput, possibly indicating a greater richness of ideas.

Coherence distribution: Fig. 5 shows that the distribution of
coherence across ideas differs considerably in the six networks.
As expected, coherence values for the RA network are tightly
clustered around a low mean. The LO network, in contrast,
preferentially produces highly coherent ideas, reflecting its high
degree of clustering. It is very interesting to note that the
introduction of shortcuts in modifying the LO architecture to the
SW one completely changes the distribution of coherence, with the
distribution taking on a Gaussian shape around a fairly high mean.
Almost exactly the same distribution is seen in the ST network,
indicating that it is characteristic of small-world networks. The
distribution seen for SF networks is the most intriguing. The
distribution for all ideas is strongly bimodal, with a bell-shaped
lobe at low coherence values and a sharp peak towards high values.
However, the distribution for unique ideas shows that most of the
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in between represents transient conceptual combinations.

very high coherence ideas are just repetitions of the same few
cases. Finally, as discussed earlier, the exact values of coherence
for the WD network are not directly comparable with those in the
five abstract networks, but the Gaussian shape of the distribution
is suggestive of the ST network. This similarity is also borne out by
the high efficiency of the WD network.

Ideas generated in the WD network: Since the WD network
is based on word associations, the “ideas” generated from it
tend to be combinations of semantically and functionally related
words. More useful ideas would require a network with multiple
types of connections between concepts/words and possibly some
schematic mechanism. It is interesting to note, however, that even
in this simplified setting, the presence of polysemic or multi-
domain terms like “value” and “time” tend to connect concepts
that might not otherwise be connected. This is a concrete example
of how concepts in disparate ideas might come together through
the agency of bridging concepts with multiple meanings.

We also looked at the distribution of durations for individual
idea (i.e., the time for which a metastable pattern persisted)
and the distribution of intervals between ideas. The latter were
remarkably close to exponential, indicating a Markov-type process
at the level of idea-idea transitions. The idea duration distributions
were generally flat and did not show any interesting regularities.

Neural Networks (2012), doi:10.1016/j.neunet.2012.02.004
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They are governed mainly by the values used for the modulation
parameters.
All these observations lead to the following conclusions:

1. High clustering promotes fixation, i.e., repetition of the same
ideas, but this can be mitigated by power law connectivity.
Thus, the Steyvers-Tenenbaum architecture achieves high
efficiency in spite of a high clustering coefficient.

2. High clustering leads to high mean coherence, indicating that
highly clustered networks tend to produce “sensible” ideas.

3. Power law connectivity in the absence of high clustering (SF
network) results in the generation of two classes of ideas:
(a) Low coherence “novel” or “nonsensical” ideas similar to
those generated by low clustering random networks; and (b)
A small number of highly coherent, often repeated “cliche”
ideas representing densely connected neighborhoods of hub
nodes. Thus, a power law network of associations without high
clustering is not very useful.

4, High clustering leads to consistent trajectories on different
runs, but this effect is weakened significantly by power
law connectivity. Non-power law connectivity without high
clustering is not enough to produce high consistency.

Thus, it appears that networks with connectivity that is both
small world and power law provide the best search performance
of all the architectures considered. They combine the benefits of
each attribute and mitigate the problems of each - small-world
connectivity ensuring high coherence and power law ensuring
high efficiency - leading to a very productive, efficient and
consistent search for coherent ideas.

Since coherence is, by definition, a measure of consistency with
prior knowledge, an idea with very high coherence represents
an “old” idea. In contrast, an idea with very low coherence
can be seen as bordering on absurdity—a quirk of the system’s
dynamics. However, ideas with a moderate degree of coherence
can be regarded as sensible but novel. The ability to generate
ideas in the mid-to-high range of coherence can, therefore, been
seen as a signature of a healthy, creative mind, whereas a
tendency towards low coherence (as in the RA network) indicates
confusion, and a tendency towards very high coherence (as in

the LO network) fixation. The pattern shown by the SF network
is indicative of a mixture of confusion and fixation—a pattern
characteristic of certain mental pathologies and dementias. This
also suggests the very intriguing possibility that a healthy ST-
type network with high clustering and power law connectivity
could gradually become more like an SF network with the loss of
some local connectivity, leading to a radical transformation in the
balance between confusion, creativity, conventional thinking and
fixation. This may have relevance for the understanding of various
pathologies related to mental illness and dementia.

In summary, the following broad characterizations can be made
for the type of “thinking” supported by each of the five abstract
networks:

1. Random: Creative but nonsensical.

2. Localized: Inefficient and conventional to the point of obsessive
fixation.

3. Small-world: Inefficient but spanning a healthy range between
creativity and conventionality.

4. Scale-free: Mixture of creative-nonsensical and conventional-
fixated.

5. Steyvers-Tenenbaum (small-world and scale-free): Efficient and
spanning a healthy range between creativity and conventional-
ity.

7. Conclusion

In this paper, we have investigated the effect of connectivity
on the dynamics of a neural model for generating conceptual
combinations. The most significant result to emerge from the
study was that networks with small-world power-law connectivity
provide the best balance between the efficient search and the need
to generate both novel and conventional ideas. Such connectivity
has, in fact, been found in the study of several real-world semantic
networks. Other types of connectivity were found to generate
dynamics that may correspond to pathological states of mind. The
semantic neural network model used in this study represents a
promising way to model the dynamics of spontaneous thought.
Because of its associative dynamics, the model is especially suitable
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for investigating the phenomenon of priming (Collins & Loftus,
1975), where external cues can strongly influence subsequent
perceptions, thoughts, inferences, decisions. Spreading activation
and attractor dynamics models have been applied to the study
of priming (Masson, 1995; McKoon & Ratcliff, 1992; Moss et al.,
1994; Plaut, 1995), but all these models differed from the one
described here in fundamental ways—particularly in attention to
connectivity and the use of itinerant dynamics with emergent
metastable attractors. Thus, unlike most previous models, the
model we describe can simulate whole trajectories of thought
under the influence of priming, including the use of sequentially
applied primes to shape this trajectory. We have already applied
the present model to limited simulations of priming under specific
conditions (lyer et al., 2009, 2009), and further work is planned in
this direction. As discussed above, the model may also be useful
in investigating the effects of mental illness and dementia on
semantic cognition. Finally, more complex versions of the model
will also be used in future studies with large real-world datasets.
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