
QWERTY vs. Dvorak Efficiency: A Computational

Approach

Ricard Torres∗

ITAM and Universitat de Girona

This version: June 2013

Abstract

After David’s pioneering contribution, many authors have claimed

that the prevalence of the QWERTY keyboard layout is an instance

of lock-in on an inferior technology, because the Dvorak Simplified

Keyboard is more efficient. But other authors, notably Liebowitz and

Margolis, have disputed this claim. Here we proceed to examine the

relative efficiency of the two layouts by computational means. The

result is that Dvorak is actually more efficient than QWERTY. Our

computations depend on a coefficient that measures the additional ef-

fort associated with a displacement of the hand. For intermediate

values of this parameter, the gain in efficiency exceeds 10%.

1 Introduction

In an influential article, Paul David [4] argued that sometimes the path of

technological progress is not driven solely by gains in efficiency, but that

particular characteristics of the way in which new technologies were intro-

duced could substantially affect future developments, even resulting in the

prevalence of inferior technologies. In order to illustrate the point, David

mentioned the QWERTY keyboard layout[19] that is still dominant for the

∗Centro de Investigación Económica, Instituto Tecnológico Autónomo de México

(ITAM), and Universitat de Girona. Address: Faculty of Economics and Business,

Campus Montilivi, Universitat de Girona, E-17071 Girona, Spain. Email address:

ricard.torres@udg.edu.

1

mailto:ricard.torres@udg.edu

English language [18] (and derivations of it dominate for many other lan-

guages too).

Since its introduction, it has been argued by various authors and is still

being argued1 that an alternative keyboard layout patented in 1932, the so-

called Dvorak Simplified Keyboard [16] is more efficient. David cites some

experiments performed by the US Navy in the 1940s by which typists were

able to match their performance with QWERTY after ten days of retraining

with the new layout. He goes on to explain that the Dvorak layout has never

been able to gain widespread usage due to what economists have named later

“network effects”: since the QWERTY layout is used by most firms, people

who learn have an interest in being trained in this layout; analogously, since

most people are trained in the prevailing layout, firms have no interest in

investing in the alternative one.

W. Brian Arthur [1] developed a model that highlights the role of in-

creasing returns (that may be a consequence not only of network effects,

but also of learning) for history dependence. His paper was among many

that have used the QWERTY vs. Dvorak efficiency as an illustration of such

phenomena.

Later, Liebowitz and Margolis [8] contested David’s argument. They

argued that all experiments that had been performed in order to compare

the relative efficiency of the two keyboard layouts were badly designed. In

particular, they unravelled the fact that the US Navy experiment had been

performed under the supervision of August Dvorak himself, who had an

economic interest at stake, and this made the entire experiment suspect.

Hossain and Morgan [5] report a series of experiments in which they test

whether a QWERTY-like effect of being locked into an inferior technology

can occur. In their experimental set-up this never happened, so they add to

the skepticism raised by Liebowitz and Margolis.

Recently, Kay [6] raises again the issue about the efficiency of QWERTY.

Kay settles some historical issues, and next uses probabilistic arguments in

order to clarify allegations that have been made about the layout. In partic-

ular, he justifies that the design of QWERTY, in pursuing the objective of

avoiding key jams, was mostly guided by the principle of setting as contin-

guous letter pairs that are infrequent in the English language, rather than,

1Two instances from the “blogosphere” are: Dana Albert (http://www.albertnet.

us/2009/06/defendants-i-type-lot.html), and Marcus Brooks (http://dvorak.

mwbrooks.com/dissent.html).

2

http://www.albertnet.us/2009/06/defendants-i-type-lot.html
http://www.albertnet.us/2009/06/defendants-i-type-lot.html
http://dvorak.mwbrooks.com/dissent.html
http://dvorak.mwbrooks.com/dissent.html

as is often argued, trying to separate letter pairings that are frequent. Kay

shows how Dvorak would have caused substantially more key jams than

QWERTY, which was an issue until the introduction of the IBM golf-ball

electrical typewriter in 1961.

In this paper, we raise again the basic question of the relative efficiency

of the QWERTY vs. Dvorak layouts. The experiments that have been per-

formed in the past have been complicated by the fact that there is a nonneg-

ligible learning curve in order to realize people’s efficiency in typing. One

important element, that was already pointed out by David as favouring lock-

in, is that maximum efficiency in typing seems to be associated with touch

typing [20]. This allows us to take a computational, rather than experimen-

tal, approach in order to evaluate the question of efficiency. We calculate

an approximation to the “effort” that it would take a touch-typist to type

a given text using the two layouts. The results are unambiguous: Dvorak is

always more efficient than QWERTY. Our results show that, for interme-

diate values of the effort parameter (see later), the gain in efficiency is of

about ten percent.

2 Calculating efficiency

Our objective is to select a particular text file and compute (an approxima-

tion to) the typing effort it will take to type it with each of the two keyboard

layouts.

The basis of our computations is the touch-typist left and right hand po-

sitions and the movements necessary in order to type each succeeding glyph.

Taking as unit of effort the fact of typing a key when the finger is positioned

above that key, we approximate the total typing effort by a linear function

which adds to that the effort associated with hand displacement. For each

successive glyph, the hit count is increased by one unit corresponding to

hitting the current key, plus a given parameter (between 0 and 1) times the

number of rows the hand must traverse. Of course, this has a degree of ar-

bitrariness, and ideally it should be based on a physical study of the actual

effort exerted in each case. But, in a first approach, we dispense with this

requirement by resorting to a robustness argument: if the efficiency rank-

ing is the same regardless of the effort parameter we associate with hand

displacements, then we may be satisfied that our computational approach

makes sense qualitatively. Of course, this could and should be complemented

3

by a quantitative approach based on actual physical measurements.

Our interest is in computing the effort of typing using a modern computer

keyboard. The first problem we encounter is that, even within the US

QWERTY standard, keyboard layouts differ[19]. For instance, the key that

types ‘\’ and ‘|’ depending on the shift state, is sometimes positioned in the

same row as the digits, usually in the next row downwards, and other times

in the one below. So the first thing we do is to fix, for both QWERTY and

Dvorak, a layout which we have found to be the most common one. The

details are in our code, which is included in Appendix A.

We use the python (http://www.python.org/) language,2 because it is

simple and freely available for different computer platforms.

For touch typing purposes, the keyboard is divided into two sides, left

and right, each of which is assigned to the corresponding hand. The keys

used by both layouts are positioned in 4 rows from top to bottom; the

top row contains the digits and some symbols, and the three bottom rows

contain the letters and the remaining symbols. There is a fifth row that has

a special treatment and, for our purposes, just contains the space bar; this

key is hit with the thumb of either hand, and we assume that it does not

require any hand displacement, no matter what the current hand position is.

The carriage return key we assume that is accessed via either the 2nd or 3rd

row. The 4th row contains at each extreme the shift keys. For simplicity, we

ignore the possibility of using the “Caps Key” in order to type succeeding

capital letters; this might easily be incorporated into our program, but we

just thought it of little relevance. Another simplification we use is to ignore

all nonascii characters, even gramatically correct ones like those written with

a diaeresis,3 or long hyphens: this is of little relevance for our purpose, as

can be seen by the figures we report at the end of the program run, and

would require resorting to “internationalized” keyboards that allow typing

letters with diacritics, which is outside the scope of this work.

2We have used version 2.7.3, which, at the time of this writing, is considered the status-

quo, hence standard, version (http://wiki.python.org/moin/Python2orPython3). We

try to adhere to the style guide (http://www.python.org/doc/essays/styleguide.html),

except that, for convenience, we use 3 spaces for indentation instead of the recommended 4.
3The New Yorker magazine still uses the spellings “coördination” and “coöperation,”

instead of the more usual ones without any diacritics.

4

http://www.python.org/
http://wiki.python.org/moin/Python2orPython3
http://www.python.org/doc/essays/styleguide.html

2.1 The texts used

It has been asserted (see Kay [6]) that Twain’s Life on the Mississippi [14]

(LOTM) was the first book typed using the new mechanical typewriter.

Kay uses this text for some of his numerical exercises, so we will use it

as well. We obtained the text file from Project Gutenberg (http://www.

gutenberg.org/), and, for the purposes of our calculations, we edited out

the Project’s additions at the beginning and end of the file. A second text we

also used (again, following Kay [6]) is Adam Smith’s Wealth of Nations [13]

(WON), which we took from the same source and to which we applied the

same treatment. So we have two pre-20th century English texts, one in the

American variety and the other in the British one.

For purposes of comparison, we also took two modern publicly available

texts. The first is the Economic Report of the President 2012 [3] (ERP).

We used the online text version of this report [3], skipping the statistical

appendices; we edited the different files taking out the html headers and

footers, and concatenated them.4 For another modern text that is neither

Literature nor Economics, we chose Eric S. Raymond’s The Cathedral and

the Bazaar [11] (TCATB). We took the online html files, converted them

to text files using the “print” option of the freely available lynx program

(http://lynx.isc.org/), and concatenated them.

2.2 Results

Recall that the “cost” added by each new glyph typed is the sum of two

components: the fix (normalized) unitary component derived from hitting

a key, plus an additional component that measures the effect of having to

displace the hand from its previous position (if the shift key is depressed,

then both hands intervene, so we do this for each of them). The addition

that corresponds to hand displacement is the product of the number of rows

the hand must traverse times a fixed coefficient which we set between 0

and 1.

The key parameter in the computation of the total hit count correspond-

ing to each keyboard layout is the coefficient that multiplies the number of

rows traversed. If this coefficient is set to 0, then the total hit count is the

4We took the 2012 Report because the conversion to text of the one corresponding to

2013 was buggy at the time we downloaded it (June 2013).

5

http://www.gutenberg.org/
http://www.gutenberg.org/
http://lynx.isc.org/

Text Lines Characters Ignored QWERTY Dvorak % Gain

LOTM 14808 823096 77 1096114.0 993183.0 10.36

WON 35203 2257006 797 2993136.5 2683391.5 11.54

ERP 9846 587317 12 825221.0 738707.0 11.71

TCATB 2178 117230 218 161417.0 146613.5 10.09

Table 1: Layout efficiency when using a coefficient 0.5.

Text 0.2 0.4 0.6 0.8

LOTM 4.66 8.60 12.00 14.95

WON 5.17 9.57 13.38 16.69

ERP 5.29 9.74 13.54 16.81

TCATB 4.53 8.38 11.69 14.58

Table 2: Efficiency gain of Dvorak over QWERTY for different coefficient

values.

same for both layouts, and just equals the total number of characters (in-

cluding the carriage return). Let us first present the results for the different

texts when we set this coefficient at 0.5. Later on we will report the effect

of changing this value.

The results we present in Table 1 contain, for each text used, the follow-

ing data: the number of lines entered, the total number of characters read,

the number of those that are ignored (because they are nonascii), the total

hit count for the two keyboard layouts, and the percent gain in efficiency

that the better layout (which happens to be always Dvorak) represents over

the other. We may see that, when the coefficient of cost per row traversed is

set to 0.5, the Dvorak layout has an efficiency gain above 10% with respect

to the QWERTY layout.

In Table 2, we report the results of the sensitivity analysis when the coef-

ficient of cost per row traversed varies between 0.2 and 0.8, with step 0.2. We

can see that the efficiency gain is monotonic with respect to the coefficient.

6

3 Discussion

To the extent that the method used here to compute the relative efficiency of

the two keyboard layouts seems reasonable, the results point unambiguously

toward superiority of the Dvorak layout. Traditionally, people have empha-

sized the importance of contiguity of pairs, because key jamming in mechan-

ical typewriters happened to be highly dependent on this. The method we

use, based on touch typing, cares about the proximity of the keys that are

more often used, and not so much about pairs per se. From this viewpoint,

maybe the “Ideal” keyboard layout alluded to by David [4] might turn out

to be even more efficient than Dvorak. But that is besides the point we

want to make here: we are not interested in finding an optimal keyboard

layout, but in finding whether the often made claim that the Dvorak layout

is more efficient than the QWERTY one can be substantiated. And it turns

out that, if our method is well founded, it is, contrary to the doubts about

this point that were raised by Liebowitz and Margolis [8].

Now, one possible objection to our method is that most people who use

keyboards do not touch-type. While this is certainly true, we just want to

point out that the polemic about the relative efficiency of the two layouts

was framed from the beginning in terms of how fast expert typists could type

with them.

3.1 Is the QWERTY lock-in a rare occurrence?

Liebowitz and Margolis [8] and [9]) base their argument on the fact that,

if there is efficiency to be realized, market forces should ultimately push

toward the adoption of the most efficient technology. In particular, they

question the importance of network effects. However, the relevance in the

short run of network effects is illustrated by the numerous examples and

strategic recommendations displayed by Shapiro and Varian [12] in their

book about business strategy in the “new economy.”

For very short time frames, history dependence is almost a triviality.

For example, it seems clear that the fact that a large percentage of public

funding for research is devoted to defense, shapes the type of technologies

that are being developed: that is most likely the reason why, currently, flying

drones (unmanned aerial vehicles) have been operational for a time while

electric cars still represent a fringe market. Another element that surely

influences the path and type of technological development is patent law.

7

The problem is not whether there is path-dependence, but whether in

the long run the path of technological development shapes the type of tech-

nologies that end up prevailing. Liebowitz and Margolis [9] rightly point out

that most authors cite over and over again the same examples of QWERTY

and the VHS vs. Betamax standards battle. If the phenomenon were as

prevalent as some authors imply, shouldn’t there be plenty more examples

to show?

One issue here is that history dependence is a much wider topic than

lock-in on inferior technologies. For example, a consequence of history de-

pendence might be that the pace of advancement of the electronics and

information industries has been much faster than that of the energy gen-

eration industry.5 Phenomena of this type seem quite difficult to measure

empirically, but we may expect empiricists to develop ingenous means of

testing once they focus on the problem.

But, concentrating on the issue of technological lock-in, we should ob-

serve that there is something very peculiar about the QWERTY layout case.

If we view it as a technological means to achieving an end, namely to type

text, there has been little technological change since the advent of electronic

typing. And this has contributed to the fact that the issue has not be-

ing long superseded by technological innovation, as are the standards for

tape recording. In fact, the confluence of several developments will proba-

bly cause obsolescence of the QWERTY issue in the near future: first, the

widespread use of mobile devices with virtual (small) keyboards; second, the

increasing sophistication and use of voice as an input device.

4 Conclusions

In this paper, we tackle directly the problem of comparing the relative effi-

ciency of the QWERTY and the Dvorak keyboard layouts, from the view-

point of a touch-typist. The results, which depend on a coefficient that

measures the extra effort of hand displacement, favor unambiguously the

Dvorak layout. For intermediate values of the coefficient, Dvorak is ap-

proximately 10% more efficient than QWERTY. However, as Kay [6] points

out, this gain in efficiency should apply only after the introduction of elec-

tronic means of typing in the 1960s. But, with this proviso, this means that

5It is claimed that, nowadays, the backwardness of this sector is retarding development

in fields as different as computing and aviation.

8

the prevalence after the 1960s of the QWERTY layout can be seen as an

illustration of lock-in on an inferior technology.

Ideally, the effort coefficient should be the result of physical measure-

ment. However, there is no reason to think that our linear specification

corresponds to reality or, even if that were true, that the coefficient is the

same for all initial hand positions and keys. Our work here is intended

merely as an approximation, and its justification stems not from how exact

an approximation it is, but from its robustness to changes in the parameters.

References

[1] Arthur, W. Brian, “Competing Technologies, Increasing Returns, and

Lock-In by Historical Events,” The Economic Journal (1989), 99: 116–

131.

[2] Arthur, W. Brian, “Comment on Neil Kays paper—‘Rerun the tape of

history and QWERTY always wins’ ” Research Policy (2013), in press,

http://dx.doi.org/10.1016/j.respol.2013.01.012.

[3] Council of Economic Advisers, Economic Report of the President

2012, http://www.gpo.gov/fdsys/browse/collection.action?

collectionCode=ERP.

[4] David, Paul, “Clio and the Economics of QWERTY,” American Eco-

nomic Review Proceedings (1985), 75: 332–337.

[5] Hossain, Tanjim, and John Morgan, “The Quest for QWERTY,” The

American Economic Review (2009), 99: 435–440.

[6] Kay, Neil, “Rerun the tape of history and QWERTY always wins,”

Research Policy (2013), in press, http://dx.doi.org/10.1016/j.

respol.2013.03.007.

[7] Kay, Neil, “Rerun the tape of history and QWERTY always wins: Re-

sponse to Arthur, Margolis, and Vergne,” Research Policy (2013), in

press, http://dx.doi.org/10.1016/j.respol.2013.03.010.

[8] Liebowitz, Stan, and Stephen Margolis, “The Fable of the Keys,” Jour-

nal of Law and Economics (1990), 22: 1–26.

9

http://dx.doi.org/10.1016/j.respol.2013.01.012
http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=ERP
http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=ERP
http://dx.doi.org/10.1016/j.respol.2013.03.007
http://dx.doi.org/10.1016/j.respol.2013.03.007
http://dx.doi.org/10.1016/j.respol.2013.03.010

[9] Liebowitz, Stan, and Stephen Margolis, “Network Externality: An Un-

common Tragedy,” Journal of Economic Literature (1994), 8: 133–150.

[10] Margolis, Stephen, “A tip of the hat to Kay and QWERTY,”

Research Policy (2013), in press, http://dx.doi.org/10.1016/j.

respol.2013.03.008.

[11] Raymond, Eric, The Cathedral and the Bazaar, O’Reilly Me-

dia, Sebastopol (CA), 2001. There is a publicly available ver-

sion at: http://www.catb.org/~esr/writings/cathedral-bazaar/

cathedral-bazaar/.

[12] Shapiro, Carl, and Hal Varian, Information Rules: A Strategic Guide

to the Network Economy, Harvard University Press, 1998.

[13] Smith, Adam, An Inquiry into the Nature and Causes of the Wealth

of Nations, Project Gutenberg, http://www.gutenberg.org/cache/

epub/3300/pg3300.txt, last accessed June 2013.

[14] Twain, Mark, Life on the Mississippi, Project Gutenberg, http://www.

gutenberg.org/cache/epub/245/pg245.txt, last accessed June 2013.

[15] Vergne, Jean-Philippe, “QWERTY is dead; long live path dependence,”

Research Policy (2013), in press, http://dx.doi.org/10.1016/j.

respol.2013.03.009.

[16] Wikipedia, “Dvorak Simplified Keyboard,” http://en.wikipedia.

org/wiki/Dvorak_Simplified_Keyboard, last accessed June 2013.

[17] Wikipedia, “Eric S. Raymond,” http://en.wikipedia.org/wiki/

Eric_Raymond, last accessed June 2013.

[18] Wikipedia, “Keyboard layout,” http://en.wikipedia.org/wiki/

Keyboard_layouts, last accessed June 2013.

[19] Wikipedia, “QWERTY,” http://en.wikipedia.org/wiki/QWERTY,

last accessed June 2013.

[20] Wikipedia, “Touch typing,” http://en.wikipedia.org/wiki/Touch_

typing, last accessed June 2013.

10

http://dx.doi.org/10.1016/j.respol.2013.03.008
http://dx.doi.org/10.1016/j.respol.2013.03.008
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.gutenberg.org/cache/epub/3300/pg3300.txt
http://www.gutenberg.org/cache/epub/3300/pg3300.txt
http://www.gutenberg.org/cache/epub/245/pg245.txt
http://www.gutenberg.org/cache/epub/245/pg245.txt
http://dx.doi.org/10.1016/j.respol.2013.03.009
http://dx.doi.org/10.1016/j.respol.2013.03.009
http://en.wikipedia.org/wiki/Dvorak_Simplified_Keyboard
http://en.wikipedia.org/wiki/Dvorak_Simplified_Keyboard
http://en.wikipedia.org/wiki/Eric_Raymond
http://en.wikipedia.org/wiki/Eric_Raymond
http://en.wikipedia.org/wiki/Keyboard_layouts
http://en.wikipedia.org/wiki/Keyboard_layouts
http://en.wikipedia.org/wiki/QWERTY
http://en.wikipedia.org/wiki/Touch_typing
http://en.wikipedia.org/wiki/Touch_typing

Appendix

A The python code

Regarding the program, it should be taken into account that in python

indentation is essential, and in particular it determines the extent of the

code that is executed within if conditionals, and for and while loops.

The file with the code, as well as the different text files used, are available

from the author upon request.

#!/usr/bin/env python

qwerty.py: given an input ascii text file, determine which keyboard

layout would be more efficient typing it, QWERTY or Dvorak, and

print some statitics about it.

Author: Ricard Torres <ricard.torres@udg.edu>, June 2013

First, two settable parameters:

The first, the additional effort for each row that must be traversed

Should be a number between 0 and 1

addition_per_row = 0.5;

The second, the name of the file from which we will compute the

hit count for each keyboard:

input_text_file = "twain-life-on-the-mississippi.txt";

Now, define the keyboards (qwerty, dvorak) we are going to use

Each keyboard definition is a vector with as many components as rows

There are 5 rows from top to bottom (indexed from 0 to 4)

For each row, the keyboard specifies two strings:

The first (indexed by 0) corresponds to no shift key (lowercase),

The second (indexed by 1) corresponds to shift key active (uppercase).

The 5th row, for our purposes, contains just the space bar.

#

Note: US keyboards contain one more key in row 1 (the second), whereas

in European keyboards this additional key is usually found in row 2

11

qwerty_keyboard_us = [[’‘1234567890-=’,’~!@#$%^&*()_+’], # 13 keys

[’qwertyuiop[]\\’ , ’QWERTYUIOP{}|’], # 13 keys

[’asdfghjkl;\’’, ’ASDFGHJKL:\"’], # 11 keys

[’zxcvbnm,./’ , ’ZXCVBNM<>?’], # 10 keys

[’ ’, ’ ’]] ; # 1 key (sp bar)

dvorak_keyboard_us = [[’‘1234567890[]’,’~!@#$%^&*(){}’],

[’\’,.pyfgcrl/=\\’ , ’\"<>PYFGCRL?+|’],

[’aoeuidhtns-’, ’AOEUIDHTNS_’],

[’;qjkxbmwvz’ , ’:QJKXBMWVZ’],

[’ ’, ’ ’]] ;

Valid characters for us are unicode characters with values

in the ascii range, from 0x0020 (32, space) till 0x007e (126, tilde),

a total of 95 values (the same we have in both keyboards)

#

So we define a vector with 95 values indexed from 0 to 94,

in which each value contains the character with decimal

value ’index + 32’:

valid_chars = [];

for i in range(32,127):

valid_chars.append(chr(i));

In order to reference a character from its decimal ascii number, just

need to specify: valid_chars[number-32]

which, of course, is equivalent to chr(number)

Conversely, from an index in valid_chars the decimal ascii value

is found by adding 32

Initialize various counting variables:

qwerty_hit_count = 0;

dvorak_hit_count = 0;

total_chars = 0;

ignored_chars = 0;

total_lines = 0;

12

Begin main loop, whose objective is to compute the hit count

for each of the two keyboards

This variable is an indicator of the current keyboard

current_is_qwerty = 1;

We use it in order to avoid counting twice common parameters,

like the total number of lines or chars

for keyboard in [qwerty_keyboard_us, dvorak_keyboard_us]:

First, determine the position of characters in the keyboard

For each (valid) character, ’character_position’ is a vector with

three components: side, row, and shift state

The side can take the values: 0 (left) and 1 (right)

The row can take the values 0 to 3 (top to bottom)

The shift key state can take the values 0 (not set) and 1 (set)

#

Actually, the space key (32) has a special treatment, and we

set its side to center (2), row to 4, and shift to 0

(because it’s irrelevant)

#

The definition of ’character_position’ can be viewed as a sort of

inverse of the keyboard definition

character_position = [];

Space character has a special treatment

character_position.append([2,4,0]);

Initialize the rest

for validch in range(1,len(valid_chars)):

character_position.append([]);

for row in range(4):

for shift_state in [0,1]:

for keybch in range(len(keyboard[row][shift_state])):

for validch in range(1,len(valid_chars)):

if keyboard[row][shift_state][keybch] == valid_chars[validch]:

character_position[validch] = [0,row,shift_state];

13

if (row == 0 and keybch > 5) or (row > 0 and keybch > 4):

character_position[validch][0] = 1; # right hand

The current position of the hands has two components [left, right], and

each can take the value of any row between 0 and 3

We assume: (1) shift key is equivalent to row 3

(2) space key does not modify previous row (thumbs are used)

(3) carriage return corresponds to right hand -- rows 1 or 2

(4) Caps key not used: succeeding capital letters entered individually

Initialize:

current_hand_position = [2, 2];

Initialize hit count variable:

hit_count = 0;

f = open(input_text_file,’r’,1);

myline = f.readline();

while myline:

if current_is_qwerty:

total_lines += 1; # increase line count on qwerty

for mychar in myline:

if current_is_qwerty:

total_chars += 1; # increase char count on qwerty

numchar = ord(mychar) ; # easier to work with decimal representation

if current_is_qwerty and (numchar & 0x80): #8th bit set: nonascii

ignored_chars += 1;

Optionally write message for nonascii utf8 or other enc chars

print "Line num:",total_lines,

print "Will ignore char",numchar ;

elif numchar == ’10’: # linefeed: hit carriage return

jump = min(abs(current_hand_position[1] - 1),

abs(current_hand_position[1] - 2));

new_row_is_2 = 1;

if (jump < abs(current_hand_position[1] - 2)):

new_row_is_2 = 0;

hit_count += 1 + jump * addition_per_row;

current_hand_position[1] = 1;

if new_row_is_2: current_hand_position[1] = 2;

14

elif numchar == 32: # space: hit space bar

hit_count += 1;

elif numchar >= 33 and numchar <= 126: # valid ascii: hit char

[side,row,shift] = character_position[numchar-32];

jump = abs(current_hand_position[side] - row);

hit_count += 1 + jump * addition_per_row;

current_hand_position[side] = row;

if shift: # Use other hand for shift key

jump = abs(current_hand_position[1-side] - 3);

hit_count += 1 + jump * addition_per_row;

current_hand_position[1-side] = 3;

else: # Ignore all other characters (CR=13, control, nonascii)

pass;

myline = f.readline(); # Read new line and continue while loop

End of while loop:

we have finished reading the file, so first we close it

f.close();

Assign the hit count to the corresponding keyboard

if current_is_qwerty:

qwerty_hit_count = hit_count;

else:

dvorak_hit_count = hit_count;

Change the keyboard index

current_is_qwerty -= 1;

This is the end of the for loop, so now we just print the overall result

Print final result

print "\nInput file:",input_text_file;

print "Total number of lines read:",total_lines;

print "Total number of characters read:",total_chars;

print "Of which",ignored_chars,"were ignored";

print "\nHit count is:"

print "QWERTY:", qwerty_hit_count;

print "DVORAK:", dvorak_hit_count;

print "Addition per row traversed:", addition_per_row;

Determine the more efficient keyboard

qwerty_is_more_efficient = 0;

if qwerty_hit_count <= dvorak_hit_count:

qwerty_is_more_efficient = 1;

15

print "The more efficient keyboard is",

if qwerty_is_more_efficient:

print "QWERTY";

else:

print "DVORAK";

difference = abs(qwerty_hit_count - dvorak_hit_count);

ratio = difference/min(qwerty_hit_count , dvorak_hit_count);

print "Hit count difference:",difference;

print "Percent gain:",ratio*100;

This is the end of the program

16

	Introduction
	Calculating efficiency
	The texts used
	Results

	Discussion
	Is the QWERTY lock-in a rare occurrence?

	Conclusions
	The python code

