
Explicit bounds for generic decoding algorithms for code-
based cryptography
Bernstein, D.J.; Lange, T.; Peters, C.P.; van Tilborg, H.C.A.

Published in:
International Workshop on Coding and Cryptography (WCC 2009, Ullensvang, Norway, May 10-15, 2009. Pre-
proceedings)

Published: 01/01/2009

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences
between the submitted version and the official published version of record. People interested in the research are advised to contact the
author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Bernstein, D. J., Lange, T., Peters, C. P., & Tilborg, van, H. C. A. (2009). Explicit bounds for generic decoding
algorithms for code-based cryptography. In International Workshop on Coding and Cryptography (WCC 2009,
Ullensvang, Norway, May 10-15, 2009. Pre-proceedings). (pp. 168-180). Bergen: Selmer Center, University of
Bergen.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 20. Dec. 2016

https://pure.tue.nl/en/publications/explicit-bounds-for-generic-decoding-algorithms-for-codebased-cryptography(0455e62a-c521-4308-ad20-795bc3ae0660).html


Explicit Bounds for Generic Decoding
Algorithms for Code-Based Cryptography

Joint work with

Daniel J. Bernstein, Tanja Lange, and Henk van Tilborg

Christiane Peters

Technische Universiteit Eindhoven

EIPSI Seminar

April 1, 2009



1. Introduction

2. Attacks on the McEliece PKC

3. Explicit Bounds for Generic Decoding Algorithms



1. Introduction

2. Attacks on the McEliece PKC

3. Explicit Bounds for Generic Decoding Algorithms



Linear codes

A binary [n, k] code is a binary linear code of length n and
dimension k, i.e., a k-dimensional subspace of Fn

2 .

A generator matrix of an [n, k] code C is a k × n matrix G such
that C = {xG : x ∈ Fk

2}.

The matrix G corresponds to a map Fk
2 → Fn

2 sending a
message x of length k to an n-bit string.

Example: An [8,4] code C given by its generator matrix

G =









1 1 0 0 0 0 1 0
1 1 1 0 1 1 0 1
0 0 0 1 0 1 1 0
0 1 1 0 1 0 0 0









.

Example of a codeword: c = (0110)G = (11111011).
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Hamming distance

The Hamming distance between two words in Fn
2 is the number

of coordinates where they differ. The Hamming weight of a
word is the number of non-zero coordinates.

The minimum distance of a linear code C is the smallest
Hamming weight of a nonzero codeword in C.

x1 y
b b b b

x2

code with minimum distance 3

b b b b b
x1 x2y

code with minimum distance 4
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Decoding problem

Consider binary linear codes with no obvious structure.

Classical decoding problem: find the closest codeword x ∈ C to
a given y ∈ Fn

2 , assuming that there is a unique closest
codeword.

Berlekamp, McEliece, van Tilborg (1978) showed that the
general decoding problem for linear codes is NP-complete.
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McEliece PKC from an attacker’s point of view

Given a k × n generator matrix G of a public code, and an error
weight w.

To encrypt a message m ∈ Fk
2, the sender computes mG, adds

a random weight-w error vector e, and sends y = mG + e.

Not knowing the secret code and its decoding algorithm the
attacker is faced with the problem of decoding y in a
random-looking code.

McEliece proposed choosing random degree-t classical binary
Goppa codes. The standard parameter choices are
k = n − t⌈lg n⌉ and w = t, typically with n a power of 2.

McEliece’s original suggestion: n = 1024, k = 524, and w = 50.
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Attacks on the McEliece PKC

Most effective attack against the McEliece cryptosystem is
information-set decoding.

Many variants: McEliece (1978), Leon (1988), Lee and Brickell
(1988), Stern (1989), van Tilburg (1990), Canteaut and
Chabanne (1994), Canteaut and Chabaud (1998), and Canteaut
and Sendrier (1998).

Bernstein, Lange, P. (PQCrypto 2008): improved Stern attack

Note: some of the algorithms are used for decoding; some are
minimum-weight-word-finding algorithms.
For comparison we rephrase all algorithms in terms of
“fixed-distance decoding”.
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Fixed-distance decoding

A fixed-distance-decoding algorithm searches for a codeword at
a fixed distance from a received vector.

Input: the received vector y and a generator matrix G
for the code.

Output: a sequence of weight-w elements e ∈ y − Fk
2G.

Note that the output consists of error vectors e, rather than
codewords y − e.

In the important special case y = 0, a fixed-distance-decoding
algorithm searches for codewords of weight w.

—p.6



Information sets

Given a generator matrix G of an [n, k] code.

An information set is a size-k subset I ⊆ {1, 2, . . . , n} such that
the I-indexed columns of G are invertible.

Denote the matrix formed by the I-indexed columns of G by GI .
The I-indexed columns of G−1

I G are the k × k identity matrix.

Let y ∈ Fn
2 have distance w to a codeword in Fk

2G, i.e.,
y = c + e for a codeword c ∈ Fk

2G and a vector e of weight w.

Denote the I-indexed positions of y by yI .

If yI is error-free, yIG
−1
I is the original message and

c = (yIG
−1
I )G. Thus, e = y − (yIG

−1
I )G.
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Information-set decoding algorithms

Error distribution among the columns of G.

Figure from Overbeck and Sendrier: Code-based Cryptography,
in Post-Quantum Cryptography (eds.: Bernstein, Buchmann,
and Dahmen)

k n − k
McEliece

0 w

Lee-Brickell
p w − p

ℓ n − k − ℓ
Leon

p 0 w − p

Stern
p p 0 w − 2p
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Model of the number of iterations (Lee–Brickell)

k n − k

p w − p

If e is a uniform random weight-w element of Fn
2 , and I is a

size-k subset of {1, . . . , n}, then e has probability exactly

LBPr(n, k,w, p) =

(n−k
w−p

)(k
p

)

(n
w

)

of having weight exactly p on I.

Consequently the Lee–Brickell algorithm, given c + e as input
for some codeword c, has probability exactly LBPr(n, k,w, p) of
printing e in the first iteration.

—p.9



Note on probablities

These probabilities are averages over e!

Extreme example Take n = 5, k = 1, w = 1, and p = 0, and
consider the code C = {(0, 0, 0, 0, 0), (1, 1, 0, 0, 0)}.

The value LBPr(5, 1, 1, 0) =
(4

1)(
1

0)
(5

1)
= 4/5 is the average of

these probabilities over all choices of e.

If e = (0, 0, 1, 0, 0) or e = (0, 0, 0, 1, 0) or e = (0, 0, 0, 0, 1)
then the iteration has chance 1 of printing e;

if e = (1, 0, 0, 0, 0) or e = (0, 1, 0, 0, 0) then the iteration
has chance only 1/2 of printing e.

Thus, the average number of iterations is 1 for three choices of
e, and 2 for two choices of e. The overall average, if e is
uniformly distributed, is 7/5, while 1/LBPr(5, 1, 1, 0) = 5/4.
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Model of the total cost (Lee–Brickell)

The function LBCost defined as

LBCost(n, k,w, p) =

1
2(n − k)2(n + k) +

(k
p

)

p(n − k)

LBPr(n, k,w, p)
.

is a model of the average time used by the Lee–Brickell
algorithm.

The term 1
2(n − k)2(n + k) is a model of row-reduction

time;
(k
p

)

is the number of size-p subsets A of {1, 2, . . . , k};
and p(n − k) is a model of the cost of computing
y − ∑

a∈A Ga.
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Asymptotic analysis

Let R be the code rate and S the error fraction S; i.e., k = Rn
and w = Sn.

Goal: Measure the scalability of the information-set algorithm.

The simplest form of information-set decoding takes time
2(α(R,S)+o(1))n to find Sn errors in a dimension-Rn length-n
binary code if R and S are fixed while n → ∞; here

α(R,S) = (1−R−S) lg(1−R−S)−(1−R) lg(1−R)−(1−S) lg(1−S)

and lg means the logarithm base 2.

—p.12



Stirling revisited

We assume that the code rate R = k/n and error fraction
S = w/n satisfy 0 < S < 1 − R < 1.

We put bounds on binomial coefficients as follows. Define ǫ(m)
for each integer m ≥ 1 by the formula

m! =
√

2π mm+1/2 e−m+ǫ(m).

The classic Stirling approximation is ǫ(m) ≈ 0. Robbins showed
that

1

12m + 1
< ǫ(m) <

1

12m
. (1)

Define LBErr(n, k,w, p) as

k!

(k − p)!kp

w!

(w − p)!wp

(n − k − w)!(n − k − w)p

(n − k − w + p)!

eǫ(n−k)+ǫ(n−w)

eǫ(n−k−w)+ǫ(n)
.
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Putting upper and lower bounds on LBPr(n, k, w, p)

Define β(R,S) =
√

(1 − R − S)/((1 − R)(1 − S)).

Lemma
LBPr(n, k,w, p) equals

2−α(R,S)n 1

p!

(

RSn

1 − R − S

)p 1

β(R,S)
LBErr(n, k,w, p).

Furthermore
(1−

p
k

)p(1−
p
w

)p

(1+
p

n−k−w
)p

e
−

1
12n

`

1 + 1
1−R−S

´

< LBErr(n, k,w, p) < e
1

12n

` 1
1−R

+ 1
1−S

´

.

Note that for fixed rate R, fixed error fraction S, and fixed p the
error factor LBErr(n, nR, nS, p) is close to 1 as n tends to
infinity.
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Comparing Lee-Brickell for various p

Corollary

LBCost(n,Rn, Sn, 0) = (c0 + O(1/n))2α(R,S)nn3 as n → ∞
where c0 = (1/2)(1 − R)(1 − R2)β(R,S).

Corollary

LBCost(n,Rn, Sn, 1) = (c1 + O(1/n))2α(R,S)nn2 as n → ∞
where c1 = (1/2)(1 − R)(1 − R2)(1 − R − S)(1/RS)β(R,S).

Corollary

LBCost(n,Rn, Sn, 2) = (c2 + O(1/n))2α(R,S)nn as n → ∞
where c2 = (1 − R)(1 + R2)(1 − R − S)2(1/RS)2β(R,S).

Corollary

LBCost(n,Rn, Sn, 3) = (c3 + O(1/n))2α(R,S)nn as n → ∞
where c3 = 3(1 − R)(1 − R − S)3(1/S)3β(R,S).
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Complexity of Stern’s attack

k ℓ n − k − ℓ

p p 0 w − 2p

Model of the number of iterations Define

STPr(n, k,w, ℓ, p) =

(

k/2

p

)2(n − k − ℓ

w − 2p

)

/

(

n

w

)

.

Define the function STCost: a model of the average time used
by Stern’s algorithm.

STCost(n, k,w, ℓ, p)

=

“

1

2
(n−k)2(n+k)+2(k/2

p )pℓ+(k/2

p )
2
p(n−k)/2ℓ

”

STPr(n,k,w,ℓ,p) .
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Bounds on STPr(n, k, w, ℓ, p)

Define error term as STErr(n, k, w, ℓ, p) = eǫ(n−k)+ǫ(n−w)

eǫ(n−k−w)+ǫ(n)

·
(

(k/2)!
(k/2−p)!(k/2)p

)2
w!

(w−2p)!w2p

(n−k−ℓ)!(n−k)ℓ

(n−k)!
(n−k−w)!

(n−k−ℓ−w+2p)!(n−k−w)ℓ−2p .

Lemma
STPr(n, k,w, ℓ, p) equals

2−α(R,S)n 1
(p!)2

(

RSV
2(1−R−S)

)2p (

1−R−S
1−R

)ℓ
1

β(R,S) STErr(n, k, w, ℓ, p).

Furthermore

(1 − 2p
k )2p(1 − 2p

w )2p(1 − n−k−ℓ−w+2p
n−k−w )pe

−

1
12n

(

1 + 1
1−R−S

)

<

STErr(n, k, w, ℓ, p) < (1 + ℓ−1
n−k−ℓ−1 )pe

1
12n

(

1
1−R + 1

1−S

)

.
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Decoding complexity comparison

vanTilburg
p = 0

vanTilburg
p ≥ 1

CC

McEliece
Θ(n/ lg(n))

≤ Θ(n)

LB
p = 1 Θ(n/ lg(n))

≤ Θ(n)

LB
p ≥ 2

≤ Θ(lg(n))

Stern

≤ 1 + o(1)

There are several variants of information-set decoding
designed to reduce the cost of row reduction, sometimes at
the expense of success probability.

These variants save a non-constant factor for Lee–Brickell
but save at most a factor 1 + o(1) for Stern. The critical
point is that row reduction takes negligible time inside
Stern’s algorithm, since p is large.
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Thank you for your attention!
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