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1. Introduction 
While the theory of higher order elliptic differential equations with smooth 
coefficients grew up rapidly in the ten years since Gârding's paper [5] on the 
Dirichlet problem appeared, the development of the theory of equations 
with discontinuous coefficients has been very slow even for single second 
order equations. 

The fact that solely a differential operator with smooth coefficients can 
be considered locally as a small perturbation of an operator with constant 
coefficients makes a significant difference. Consequently the techniques of 
Fourier transform and of singular integral operator, although extremely 
useful for equations with constant coefficients, fail in the case of equations 
with discontinuous coefficients. 

The main reason for studying equations with discontinuous coefficients 
arises from nonlinear equations; however, there are several linear boundary 
value problems which escape the general theory of differential equations 
with smooth coefficients (for instance, the so-called transmission problem 
[26]). 

The theory of equations with discontinuous coefficients is quite different 
in the case of two variables than it is for more variables. For two variables 
the theory commenced with a paper by C. B. Morrey [15] appearing in 1938 
and developed with Nirenberg's results [21] in 1954 (see also [1]). For the 
applications of these results to nonlinear equations see the book of Miranda 
[14]. The theory of equations in two variables is closely connected with the 
beautiful and well developed theory of quasi-conformal mappings. See for 
expositions Courant-Hilbert [3] (the supplement to Chapter IV by L. Bers) 
and I. Vekua [29]. 

In more than two variables the theory was completely wrapped in mystery 
until a few years ago when the De Giorgi [4]-Nash [20] theorem was proved. 
This theorem is related to the equation in divergence form 

(ai/«^)*, = 0 (1.1) 

with measurable and bounded coefficients when the condition 

v-1 | f l»<a«f*fi<y|f |" (v>l) (1.2) 

is satisfied; it states that any weak solution in H^Q) is locally Holder 
continuous. 

This theorem led to many new results about the theory of linear and 
nonlinear second order elliptic equations in divergence form. 

(*) This talk was prepared while the author was a Temporary Member at the Cou
rant Institute of Mathematical Sciences, sponsored by the National Science Founda
tion, Contract No. NSF-GP98. I should like to thank the Courant Institute of Math
ematical Sciences for making my trip to Stockholm possible. 
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A theory of more general equations in the form 

aijUXiXj + biUXi = 0 (1.3) 

with discontinuous coefficients is still lacking. 
I want to limit myself to a review of some results for linear equations in 

divergence form and to mention only some applications to very special 
nonlinear problems. More general results are described in the talk by 
Nirenberg on nonlinear problems. Other questions on elliptic equations are 
described in an expository paper by Gilbarg [7]. 

2. Some notation 
If O is a domain of the Euclidean space En, d£i denotes its boundary and 

O its closure. If l ^ ^ l a , . . . , ! ^ is a vector in ^ n we put | | | 2 = | f + . . .+^ .We 
shall say that a function u(x) belongs to Cm(Q) if u is continuous together 
with all the partial derivatives of order <ra in O (C°°(0)= n%=0C

m(Q.)). 
We shall denote by Cfi(U) the class of the functions which are Holder conti
nuous with exponent A (0<A<1) in O, i.e. 

sup K o - y i < + e o . 
x'=f=a:" i i 

A function of C?(Q) is also called a Lipschitz function in O. 
Domains and boundary values of class <7f are defined as usual. 
The completion of Cm(Q) with respect to the norm 

2l|£MU*cn> &>!)> 
where D% denotes any of the jth derivatives and the sum is extended to all 
derivatives of order <m will be denoted by Hm'v(Q), or more simply by 
Hm(Q) when p=2. By H$tP(Q) [flo(Q)] we shall denote the closure in 
Hm-P(Q) [Hm(Q)] of the set of the functions of Cm(Q) vanishing near dQ. 
u(x)EHZoP(ü) [Jîtoo(û)] if u(x)EHm-p(Q') for any compact subdomain Ü' of 
Q. Consider the differential operator 

M(u) = (aijUxi)Xj, (2.1) 

where ai§ are measurable and bounded functions defined in Q. and suppose 
it is uniformly elliptic, i.e. 

Hfl^aiififi (">0)- (2-2) 
A function u(x) of IP(Q) is an M -subsolution [Jf-supersolution] in Q, if 

) atjuXj<l>Xjdx<0[>0] (2.3) 

for all <f> of HQ(Q,) such that ^>0 a.e. in O. 
A function u(x) which belongs to Hl0C(Q) and which satisfies (2.3) for 

every non-negative C°° function <f> with compact support in O, will be called 
a local M -subsolution [or Jf-supersolution]. 

Consequently one defines the solutions and the local solutions. 
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3. The maximum principle 

One of the best known results for second order elliptic equations is the 
Hopf maximum principle [8], (see also [3], p. 326) which holds for equations 
in the general form (1.3) even if the coefficients are supposed only to be 
bounded, but for smooth solutions. Different forms of the maximum prin
ciple which hold for very weak solutions, but for equations with smooth 
coefficients, have been found by E. Calabi [2] and W. Littman [12]. A 
balanced form of the maximum principle holds for M -subsolutions or for 
local if-subsolutions when the operator M has the form (2.1) and satisfies 
(2.2). 

More generally we shall consider a continuous function u(x) which be
longs to -ffJoc(O) and satisfies the inequality 

atjux.^Xjdx> f4xjdx\ (3.4') 

for every non-negative C°° function with compact support in O, where aif 

are measurable and bounded functions in O satisfying (2.2) and where 
fjELp(Q) withp>n. 

(3.4) [(3.4')] means that u satisfies locally the differential inequality 

M(u)>fjXj [ < ] . (3.5) [(3.5')] 

Then we have the following weak form (for a strong form see § 4) of the 
maximum principle: 

THEOBEM I. / / M is an elliptic operator satisfying (2.2), if u(x)EC°(Ù) 0 
Hl0C(Q.) and satisfies locally (3.5) [(3.5')] with f5 in LP(Q) (p>n), then there 
exists a constant G(p,n) depending only on p and n such that 

max u(x) < max u(x) + 9^i2tï 2||/,||Lp(Q)(mes Q)1,n-llP, (3.6) 
a dn v 

L i n u(x) > min u(x) - ^ - ^ 2| | /JUn )(mesQ)1 / n-1 / p l . (3.6') 
[ n en v J 

We cannot give here the proof of the theorem, but we want to mention 
that the proof is based on the same idea introduced by Marcinkiewicz and 
used extensively by Zygmund [31], Hörmander [9] and others which 
consists in looking for information about the behaviour of the function 

</>(k) = mes {x | u > k}. 

Here we can prove that for h>k>maxafl u the function <£ satisfies an 
inequality of the type 

rt^irr^ww ( 3-7> 
where a, ß are positive constants and ß>l for p>n. 
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By iteration, one obtains from (3.7) that </>(d)=0 where d is the right 
term of (3.6). 

Exactly the same proof shows that the (3.6) [(3.6')] holds for M -subsolu
tions [M-supersolutions] in Q also if they are not continuous. The meaning 
of maxdQ and minön has to be taken in a weak sense. Let u(x) be a function 
belonging to H^Q); u(x) is bounded from above on dQ by a constant 
<I> if there exists a sequence of functions ^m€C1(0) such that um<<f> on 
dQ and um tends to u in 1F(Q). The smallest of such numbers €> is denoted 
by maxöQ u. 

The same method of proof, as described above, can be used also for more 
general linear equations in order to obtain a priori bounds for the 2/ö-norm 
of the solution in terms of the JT'-norm of fj and the £2-norm of the solutions 
themselves; here l\q = ljp — Ijn ii p<n and q= + oo ii p>n (see Stampac
chia [23, 24, 27a] and Maz'ya [13]). Ladyzenskaya and Uralt'seva [10, 11] 
and myself [27] used the same method in order to prove the boundedness 
of the solutions of some regular integrals of the calculus of variations. 

About the Theorem I, Weinberger [30] proved that the constant G(p,n) 
in (3.6) and in (3.6') is given by 

\p-nj C(p,n)=conlln[^ n1 

where con is the measure of the unit ^-sphere. Equality occurs in (3.6) and 
(3.6') for Laplace's equation when Q is a sphere. 

4. Harnack's inequality and the Holder continuity in the 
interior 

The extension of the classic theorem by Harnack on the positive harmonic 
functions to the solution of more general elliptic equations has been given 
for n = 2 by Bers and Nirenberg [1] and in general by Serrin [22] supposing, 
when n > 2, the coefficients continuous. 

Recently Moser [18] was able to prove the Harnack inequality for local 
solutions of (1.1) when the condition (1.2) is satisfied. The quoted paper by 
Bers and Nirenberg is based on a famous theorem by Lebesgue on the 
continuity of monotone functions with finite Dirichlet integrals. Such a 
result does not hold for functions in more variables. The Moser proof is 
based on a very different argument, and makes use of a special case of a 
theorem by John and Nirenberg [9a] which partially takes the place of Le-
besgue's theorem. 

The Moser theorem is the following 

THEOBEM II. If u is a positive solution in D of equation (1.1) and (1.2) is 
satisfied, and if Q' is a compact subdomain of Q, then: 

max u ^ e min u, (4.1) 
Q' Q' 

where c depends on D', Q and v. 

As a consequence of the Harnack inequality we can deduce the strong 
form of the maximum principle. 

file:///p-nj
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Consider now a positive solution of the equation 

iPi}*>Xj)x=fiSi, (4.2) 

where (1.2) is satisfied and fjELp(Q.) with p>n. 
Using Moser's theorem and the maximum principle, as stated in Theorem 

I, we can get the following consequence. Let x0 be any point of a compact 
subdomain Q' of D and let 

M(r)= max u, ft(r)= min u (§<r<\d), 

where d denotes the distance from Q' to dQ. Then, there exists a constant c 
depending on O', Q,, v, such that 

M(r) < cWr) + 2II//II iKaf-*"")- (*-3) 

From (4.3) it is possible to deduce easily that for any solution of (4.2) the 
following inequality holds 

mfy < M r ) + CSH/yll**«/-«»'», (4.4) 

where co(r)=M(r)— p(r) is the oscillation of u in \x — xQ\ < r and where 
0 < 1 . 

From (4.4) follows that any solution of (4.2) is Holder continuous in the 
interior of Q. When /^=0 this result proves the De Giorgi-Nash theorem. 

A direct proof of this theorem which does not use the Harnack theorem 
has been given by Moser [19]. 

5. Boundary value problems 
The extension at the boundary of the latter result has been obtained 

independently by C. B. Morrey [16], Ladyzenskaya and Uralt'seva [10] 
and the author [25]. I t states (in a special case) 

THEOBEM III . 1/ U(X)EHQ(Q,) and satisfies the equation (4.2) where (1.2) 
holds and / iGi/p(û) with p>n and if O satisfies a suitable condition R, then 
u(x) is Holder continuous in Û. 

The condition R on dQ is the following [25]: 
Let B(y,r) be the sphere with center in y and radius r, there exist two 

constants K and rQ such that for all vEC1(B(y,r)) vanishing on QQ 0 B(y,r) 

\V(X)\<K\ 
J B(y,r) \x-tl71-1 

for xEB(y,r), yEd£i, r<r0. 
As a special case, condition R is satisfied if there exist two constants a, r0 

such that, for yEdQ, 

mes{ Cu fi B(y,r)}>xmes B(y,r) (r<r0) 

(see [16] and [10]). 

file:///x-tl71-1
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Using Hilbert space approach and the regularity theorem just mentioned 
we deduce that there exists one solution u(x) E Cl(Q) 0 H^Q,) of the Di-
richlet problem for the equation (4.2) where (1.2) holds, fjELp(Q) with 
p > n and for the boundary values 

u-vEHl(Q), 

provided that vECfi(ß) Ç\HltQ(Q) (q>n) and O satisfies the condition R. 
We remark that if O is smooth the condition on v can be vEHltQ(Q.) with 
q>n. 

Making use of the maximum principle of § 3 and the Harnack inequality 
of § 4 we can extend the Perron method from Laplace equation to the moro 
general equation (1.1) satisfying (1.2). Using the preceding theorem, the 
existence of a barrier at the boundary can be proved if the condition R on 
O is satisfied. 

Then the Dirichlet problem for equation (1.1) satisfying (1.2) with arbitrarily 
assigned continuous boundary values has one solution u(x) in C°(fì) fi Hioc (Q) 
if the condition R on D, is satisfied. 

We shall say that the points of d£l are regular points for the operator M 
ii the Dirichlet problem for arbitrarily assigned continuous boundary values 
is possible in C°(Q) fi Hl0Q(Q). 

The condition R assures that the points of d£i are regular for the operator 
M. 

We do not know if the class of domains which are regular for Laplace's 
operator coincides with the one of domains which are regular for the operator 
M given by (1.1) as is the case for operators with smooth coefficients 
[7a, 21a, 28](!). 

6. Some special cases of non-linear problems 

The De Giorgi-Nash theorem and its extensions led to very interesting 
results on the differentiability of weak solutions of nonlinear equations or of 
minimizing functions of multiple integrals of the calculus of variations. 

The first results in this direction were found by De Giorgi [4] for problems 
of the form 

I(u)= f(p)dx = min (p = gra>du), 
Jo 

supposing that 

'~iifi,</v,(i»)Äft<»'ifr (v>i). 

More general results have been obtained by C. B. Morrey [17] and Lady-
zenskaya and Uralt'seva [10, 11] for general multiple integrals 

(x) Added in proof. Recently H. F. Weinberger, W. Littman, and the author proved 
(Regular points for elliptic equations with discontinuous coefficients, to appear in Ann. 
Scuola Norm. Sup., Pisa) that a domain is regular for the operator M if and only if 
it is regular for the Laplace operator. 
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F(x,u,p)dx. 
Jn 

These results require that F satisfy a condition of the type 

v-\i+\p\tr\e\t<F9t,,(z,u,p)ilç,<v(i+\p\'r\i\t 

with r > —-J. 
To begin with we remark that the classical variational problem of the 

minimal surface, where .F = K1 + | # | 2 is not included in these results. 
Recently it has been proved [27] that there exists a Lipschitz function in Ö 
solution of the variational problem for the integral 

-tf(p)dx 
Jn 

I(u)= f(p)dx = min, (6.1) 

Jn 

provided that / is strictly convex, i.e. 

/ W ( P ) I A > 0 for |4=0, 
and O is strictly convex and the boundary values are sufficiently smooth. 
The solution is analytic if the data are analytic. A similar theorem, using a 
different approach has been proved, independently by Gilbarg [6]. 

Such a statement may fail when F depends on the function u too. For the 
special integrals 

m= [ {f(p) + G(x,u)}dx, (6.2) 
Jn 

supposing that 

/^Gptèi&îMi + H W ( V > ( W < T < O ) 

and O strictly convex has been proved [27] the existence of a Lipschitz 
function minimizing I(u) on the class of all Lipschitz functions vanishing on 
dQ. provided that suitable conditions on G(x,u) are satisfied. Also here the 
solutions are smooth if the data are sufficiently smooth. 

The assumption on the function G(x,u) can be, for instance, the following: 

lim uOu(x,u) 
l^Too I^I« > -*A(a,Q), (6.3) 

where a = 2 ( T + 1) and A (a, O) is given by 

f|g»d.|M, 
A(a,Q)= inf Ja 

Jn 

In particular A(2,D) is the first eigenvalue of the boundary value problem: 
Au+Àu=0 in O, u=0 on dQ.. 

Application of these theorems to the boundary value problems for the 
Euler equations of (6.1) and (6.2) leads to new results. 
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