
Some Reections on Computer Engineering:

30 Years after the IBM System 360 Model 91

Michael J. Flynn

30th International Symposium on Microarchitecture
Durham, NC

Invited Talk, 2 December 1997
(Following is an annotated and edited version of the presented talk.)

I am very pleased to address the MICRO conference on the occasion of
its 30th anniversary, and to speak to you about the IBM System 360 (S/360)
Model 91, which also celebrates the 30th anniversary of its �rst shipment.
I will describe �rst the background to the project, then the machine itself;
in the second half of my talk I will share some reections on the changes in
computer engineering over this time.

Before going further, I would like to dedicate these remarks to the design-
ers of the S/360 Model 91 machine and its derivative, the S/360 Model 195,
and also to the designers of the CDC 6600 and its derivative, the CDC 7600.
The CDC 6600 machine was for the S/360 Model 91 a very important com-
petitive machine. I believe this competition pushed both projects to achieve
excellence within the context of the technology of the day.

The Background

In addition to the CDC 6600 [4], there were three important precursors to
the Model 91. The IBM 7030 [3], or the Stretch machine, was IBM's �rst
large pipelined high speed machine. It was begun in the late 1950's and
delivered in the early 1960's. It developed a number of imaginative machine
technology and architectural concepts, including what we now know as ECL
circuit technology. It was a fully pipelined system with highly interleaved
memory. It used speculation on branch, as determined by a bit set in the
branch instruction. However, to IBM and the �eld it was regarded as a
failure because of late delivery and disappointing performance. The long
delay required to recover from a misguessed branch prediction was at least
in part to blame for the performance shortfall.

Another important predecessor to the S/360 Model 91 was the IBM 7090
series. This series began in the early 1950's as IBM's �rst computer, the
IBM 701. It was inuenced in part by John von Neumann and the Princeton
machine which he had successfully designed. It was modi�ed (by Gene

1

Amdahl and John Cocke) in two versions: the IBM 704 and IBM 709, as
they incorporated index registers, core memory, oating point instructions,
etc. I saw this machine �rsthand as a designer of the IBM 7090, which was
an ECL transistorized version of the 709. Forst delivered in 1959, the 7090
was a nonpipelined machine that achieved about �ve times the performance
of the earlier, tube-implemented 709. The 7090 was an extraordinary success
for IBM. It was originally estimated that only 20 copies would be made as
part of a government procurement. Before it ended production, I believe
more than 300 copies were made.

The System 360 instruction set [2] was the third important inuence
on the Model 91. This instruction set architecture was introduced in 1963,
to unify IBM's product line. In this integrated approach, IBM turned its
back on at least three very successful and pro�table lines of computers: the
scienti�c line (IBM 7090), the small business machine line (IBM 1401), and
the large business machine line (IBM 7080). Since the new System 360
implementations were not compatible with these older machines (although
emulation was widely used), they were vulnerable to competition.

The S/360 Model 91 [1]

When the System 360 line was announced, the S/360 Model 90 (as it was
called)1 was simply a footnote in the announcement in early 1963. Indeed,
unlike a number of the other models,2 which had been well along in the engi-
neering e�ort, the \Model 90" consisted of two small study projects. It was
not until the latter part of 1963, when CDC announced the 6600, that these
two projects were brought together as a full development program to realize
the Model 91. The market for the machine was clear enough; it consisted
of the AEC, NASA and DOD labs, as well as DOD contractors and several
university based research institutes. The machine itself was implemented in
ECL circuits, using multitransistor chips mounted on an aluminum ceramic
substrate. Passive devices were implemented as thin �lm printed compo-
nents on the substrate. Two small substrates were stacked one on top of
each other, forming a module which was about the size of a sugar cube 1/2
inch (1 cm) on a side [1h]. The density was roughly comparable to what
we now think of as SSI (two to three circuits per package). Approximately
60 such modules could be mounted on a daughterboard and twenty daugh-
terboards could be plugged in to a motherboard (about 1 sq. ft. or 0.1 sq.
meter). Twenty motherboards formed a frame (about 6 � 6 � 1 feet, or 2 �
2 � .3 meters), and four frames formed the basic CPU for the system [1a].

1The nomenclature for the \Model 90" is as follows: Model 90|a concept term only;
Model 91|used 0.75 �sec memory; Model 92|planned to use 0.5 �sec memory, never
built; Model 95|used 0.18 �sec thin �lm memory, 2 machines built; Model 195|a later
machine (c. 1971) with cache.

2The other S/360 models were smaller, and ranged from model 20 through models 30,
40, 50, 65, and the model 75.

2

The ECL circuits were not slow; average delay was little over a nanosec-
ond [1f], but the average distance between logic gates was more than a
foot. All interconnections were made by terminated transmission line (ex-
cept for a small number of stubbed transmission lines). A great deal of care
was paid in developing the signal transmission system; for example, a dual
impedance system of 50 and 90 ohms was used|the width of the basic 50
ohm line could be reduced and create a 90 ohm line in the vicinity of loads,
so that the e�ective impedance of the loaded 90 ohm line would appear as
a 50 ohm line.

The processor had in total about 120,000 gates, certainly small by to-
day's standards. Since each gate had an associated interconnection delay
(transmit time plus loading e�ects) of about three and one half nanosec-
onds, the total delay per gate was approximately �ve nanoseconds. With
twelve stages of logic as the de�nition for cycle time, this led to a 60 nanosec-
ond cycle as the basic CPU cycle. The multiply{divide unit had a subcycle
of 20 nanoseconds for an iteration for reducing 12 partial products to two.

The processor used water cooled heat exchangers between motherboards
for cooling. A motor generator set powered the system (also isolating the
system from short power disruptions and allowing for state preservation on
power failure). The total power consumption was probably a signi�cant
fraction of a megawatt!

Some of the architectural or organizational features of the system3 that
are most interesting include the following:

1. It was a deeply pipelined system, as it had no cache. The overall
pipeline length was probably 20 stages [1b].

2. Memory had a 10 cycle access, was fully bu�ered and interleaved 32
ways [1e].

3. The execution units shared a common data bus, designed by Bob
Tomasulo, which allowed out of order execution of operations and
represented the �rst use of a dataow approach to the control of con-
current operations [1c].

4. Each of the oating-point arithmetic units were innovative [1d]. The
oating-point adder had a two cycle latency and was internally pipelined
so that it could accept an operand every cycle. The oating-point mul-
tiplier had a three cycle latency, but it was implemented using a 20ns
subcycle, which reduced 12 partial products each subcycle. The divide
was designed by Bob Goldschmidt, using what we now refer to as the
Goldschmidt algorithm. This is a multiplicative series approximation

3The CDC 6600 was also quite innovative. It introduced a load{store register based
instruction set (3 register speci�ers in each instruction), a \scoreboard" to control inter-
instrcution dependences and a ten processor multi-threaded peripheral processor ensemble
which time shared the ALU [4].

3

to the reciprocal which when multiplied by the numerator gives the
quotient. Divide required 11 cycles.

5. Model 91 implemented a speculative branch using a branch loop mode|
if the branch was at a target within approximately the last 8 instruc-
tions, the processor speculates that the target is taken [1b].

6. The maintenance features included full checking of all data transfers,
residue checking on all arithmetic operations, full scan of all regis-
ters, full state display of all register state, together with error logging.
Probably 15{20% of the processor system was devoted to the support
of these maintenance and reliability features [1a].

The performance overall approaches one CPI on scienti�c loop oriented
code. On heavily branched nonscienti�c code, the long pipeline takes its toll
and performance slips to 3 CPI.

About twenty Model 91s were made,4 and perhaps an equivalent number
of the Model 195. The Model 195 used the basic Model 91 design, but the
implementation had a faster cycle (54 ns) and the 195 incorporated a cache.
It was available in about 1971.

Sometimes what earns physicists a prize earn an engineer nothing but
pain. And indeed, the Model 91 su�ered at least one such pain as we dis-
covered the electromigration e�ect, whereby aluminum starts to disintegrate
into silicon at very high electric �eld densities (over 300,000 amperes per
square cm). This required a signi�cant schedule slippage, a redesign of the
basic devices, and a writeo� of the value of inventory.

Despite this, the processor had an unexpectedly (in my view) long life-
time, as the more evolutionary IBM mainframes did not substantially exceed
its oating point performance for more than 15 years after the initial deliv-
ery.

Reections

I guess in view of the discussion on transmission lines, I could call these
simply reections down the line; but I o�er these thoughts as computer
engineering continues to evolve.

Business Strategy Model

IBM success, up until the mid-1980's, was based upon management foresight
in being able to look beyond pro�t and see future opportunity. It certainly
did this in the era of the System 360, when it e�ectively terminated 3 or
4 very pro�table computer lines to provide a better overall solution for its
customers. Management failed to take similar bold moves in the 1980's when

4I was told that this number included two machines used primarily for COBOL job
processing! This was a major feat of salesmanship, as we hadn't even implemented the
decimal instructions (they were interpreted).

4

it enjoyed a high pro�t margin from the mainframes. It seems to me that
a company is in great danger when it is very pro�table yet lets this pro�t
blind itself to future opportunities.

Excellence

Building systems to extend the state of the art can be done from many
reasons. It can be done for simply market prestige, or it can be done to con-
tinually stretch our limits of understanding of technology, reliability, and
architecture. \Excellent" projects must sometimes fail. Otherwise, they
would not be stretching the limits. Management that fears failure, fears
excellence. I notice that IBM abandoned the Model 91 approach to concen-
trate on evolutionary and safer approaches to processor implementation. I
think this was a mistake, akin to its business strategy mistake mentioned
previously.

The Technical Management Process

A processor has a long gestation period|something between one and a
half, and perhaps three or four years. This requires consistent management
commitment and focus to the project. Changes in objectives, in schedules,
in sta�ng, almost always bring about disastrous results.

Managing a development project requires several types of understanding
and support. It requires understanding of both the technology and the man-
agement process itself. Designers require tools|CAD tools, test support,
validation tools, provided in a integrated, seamless way. Designers equally
require process support. This includes discipline in communications, doc-
umentation, and especially in well de�ned speci�c project targets. This is
simply the essence of good management. I am horri�ed by two develop-
ments, especially prevelant in the Silicon Valley. One is the concept of what
I call \macho hours"|the more hours a designer works, the better a job
he or she must be doing. Indeed, designers are expected to bid against one
another in being able to put in more hours than their collegues, to show that
they are in fact better designers. The second problem is that technical man-
agers are simply not trained in management. These two items are related.
The unskilled manager, unable to articulate speci�c project targets and sub-
targets, measures projects by hours of e�ort. If a designer is working long
hours simply because there is not enough tools, then the project runs the
exposure of errors because, as I believe we have learned from the 19th cen-
tury, errors occur when the mind is fatigued. If management expects more
truly creative ideas by simply being present in the o�ce for longer hours,
they are clearly mistaken. I personally feel that I have had better ideas
pruning roses than I got in some sterile o�ce. Of course, in any project, a
moment comes when extra e�ort is required, and for a period of time (per-
haps one or two, even three months) overtime is required; but to imagine
that a designer is expected to operate at peak e�ciency for 15{18 hours a

5

day for endless periods of time is patently wrong and clearly indicative of
the lack of maturity that our �eld has in managing itself.

Reliability

A user wants speed and cost{performance, but only if it comes with reli-
able computations. I am horri�ed that some PC-based operating systems
let the user applications crash the system. This is simply a failure to use
hardware features such as system state registers and memory protection. I
can't imagine why software vendors do this. An errant application ought
never bring down either the system or any other applications. Failure to use
obvious hardware features to do this is just simply a dereliction on the part
of the software designer.

Hardware designers are equally to blame when they fail to use simple
techniques to ensure reliable computation. Techniques such as scan, design
for testability, error checking (detection and/or correction of the computa-
tion), and data transfers ought to be universally used. All of the above
techniques have been well known for now more than 30 years. Perhaps it
is the lack of sophistication5 on the part of today's mass market user that
allows shoddy implementations.

Technology Changes

Technology changes in uneven ways|the speed of light remains unchanged,
but cycle times have decreased perhaps 20 times over 30 years. On the other
hand, memory costs have decreased by 10,000 as densities have increased
by more than a million times. For disks, these costs per byte have been
reduced by a factor of a million, yet disk access has probably changed by
less than a factor of ten. The net result of this uneven change in technology
parameters means that approaches which seem \outrageous" at one time,
or as a negative result in one technology context, may be quite reasonable
in another. I recall in 1970 working with Gary Tjaden [5] and showing
that multiple instruction issue machines (superscalar) would probably be
limited in performance to about 1.8 IPC. At that time, we took this|
given the implementation complexity|as a negative result. Today, multiple
instruction issue is the obvious approach to processor implementation.

Computer Engineering

Engineering is a profession whereby we apply scienti�c and mathematical
principles to social need. Engineering disciplines accumulate understanding
so that advances of systems or structures can provide a long term additional
social bene�t.

5Advertisement and product literature stress Mhz and SPECMARKS|how about an
emphasis on reliability and system robustness? |RELMARKS?

6

Computer engineering is in a peculiar situation, where the underlying
technology and user behavior are changing at a rapid and uneven rate. It
becomes easy to forget important lessons that have already been learned
in the past. I was greatly amused a few years ago, when pipelined micro-
processors were being introduced, to learn that pipelining was enabled by
RISC technology. However one de�nes RISC technology, it had only been
introduced a few years earlier. That this could be responsible for pipelining
which had existed for more than 20 years earlier, illustrates the amnesia
that is present in the computer engineering �eld. I am also fearful that we
have unlearned a number of important lessons relating to reliability, main-
tainability, testability, diagnosis, and overall integrity of a processor product
design. As our user base becomes increasingly sophisticated, I believe that
it will be important to relearn the lessons of the past decades. But do we
really have to relearn them from scratch?

Communicating Ideas

In civil engineering, when a new structure is complete, almost all interesting
details of that structure are published. The same thing is true of most
mechanical innovation (aircraft, automobiles). When it comes to processor
products, however, there is a noticable reticence to publish details. One of
the great contributions of the Model 91 was simply that all relevant details
were published in a timely way. I can't say the this was easy; I remember
in order to achieve this I had to go down to world headquarters and have a
meeting with the chairman of the board of IBM. Subsequently, Jim Tornton
published a very interesting book describing the CDC 6600 [4].

In today's environment, I applaud the e�orts of Microprocessor Reports

and IEEE Micro to at least begin to present some semblance of information
on new processor products. But the larger lesson is that it ought to be the
responsibility of each computer engineer to at least see that the details of
a new product are published in a reasonably timely way. It is a source of
recognition for both the individuals involved, the designers, and the com-
pany. Of course I am not advocating the loss of intellectual property for the
company; I believe that timely publication is simply publication after the
necessary patent requirements have been satis�ed.

There is another need, and it is a need for organized access to informa-
tion. I believe that some of our technical societies have overly re�ned the
forums by publishing too many specialized transactions and journals. In
this case, however, the technology is coming to our aid as we move to an
electronic distribution of technical information.

Overall, looking forward to the next 30 years, we must achieve excel-
lence within the computer database. Next, we need to ensure that every
computer engineer makes every e�ort to use the database; to use the exist-
ing publications and source material. Finally, perhaps most importantly, is
the need to acknowledge the use of prior references. It is very depressing to

7

see engineers rediscover an old idea, but it is even more discouraging to see
engineers use old ideas when obviously they are aware of the source and fail
to acknowledge it.

Integrity

I think I can sum up the goal for computer engineering in one word: integrity.
Integrity in the products we build and in the way we build products|
integrity in the design process itself.

References

[1] The IBM System/360 Model 91 (issue). IBM Journal of Research and

Development 11(1), January 1967.

(a) M. Flynn and P. Low; Some Remarks on System Development.

(b) D. Anderson, F. Sparacio and R. Tomasulo; Machine Philosophy
and Instruction Handling.

(c) R. Tomasulo; An E�cient Algorithm for Exploiting Multiple Arith-
metic Units.

(d) S. Anderson, J. Earle, R. Goldschmidt, and D. Powers; Floating-
Point Execution Unit.

(e) L. Borland, G. Granito, A. Marcotte, B. Messina, and J. Smith;
Storage System.

(f) J. Langdon and E. Van Derveer; Design of a High-Speed Transistor
for the ASLT Current Switch.

(g) R. Sechler, A. Strube and J. Turnbull; ASLT Circuit Design.

(h) R. Lloyd; ASLT: An Extension of Hybrid Miniaturization Tech-
niques.

[2] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, Jr. Architecture
of the IBM System/360. IBM Journal of Research and Development

8(2):87{101, April 1964.

[3] W. Buchholz. Planning a Computer System. McGraw-Hill, New York,
1962.

[4] J. E. Thornton. Design of a Computer: The Control Data 6600. Scott,
Foresman and Co., Glenview, IL, 1970.

[5] G. S. Tjaden and M. J. Flynn. Detection and parallel execution of
independent instructions. IEEE Transactions on Computers, C-19:889{
895, October 1970.

8

