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Abstract

The area of surface reconstruction has seen substantial progress in the past two decades. The traditional problem
addressed by surface reconstruction is to recover the digital representation of a physical shape that has been
scanned, where the scanned data contains a wide variety of defects. While much of the earlier work has been
focused on reconstructing a piece-wise smooth representation of the original shape, recent work has taken on more
specialized priors to address significantly challenging data imperfections, where the reconstruction can take on
different representations – not necessarily the explicit geometry. We survey the field of surface reconstruction, and
provide a categorization with respect to priors, data imperfections, and reconstruction output. By considering
a holistic view of surface reconstruction, we show a detailed characterization of the field, highlight similarities
between diverse reconstruction techniques, and provide directions for future work in surface reconstruction.

1. Introduction

Advances made by the computer graphics community have
revolutionized our ability to digitally represent the world
around us. One subfield that has blossomed during this rev-
olution is surface reconstruction. At its core, surface recon-
struction is the process by which a 3D object is inferred,
or “reconstructed”, from a collection of discrete points that
sample the shape. This survey compiles the major directions
and progress of the community that addresses variants of
the basic problem, and it reflects on how emerging hardware
technology, algorithmic innovations, and driving applications
are changing the state-of-the-art.

Surface reconstruction came to importance primarily as a
result of new techniques to acquire 3D point clouds. Early
on, these technologies ranged from active methods such as
optical laser-based range scanners, structured light scanners,
and LiDAR scanners to passive methods such as multi-view
stereo. These devices fundamentally changed the way we ac-
complished engineering and rapid prototyping tasks, and they
have improved hand-in-hand with technologies for computer-
aided design.

Computer graphics took an immediate interest in such tech-
nology, following one of its longstanding goals: the modeling,

recognition, and analysis of the real world. Moreover, current
applications have made use of such scanners in all fields of
data-driven science, spanning from the micro- to macro-scale.
A more recent trend has seen the massive proliferation of
point clouds from inexpensive commodity real-time scan-
ners such as the Microsoft Kinect. This has impacted varied
fields including automotive design, engineering, archaeology,
telecommunications, and art.

In many ways, it is these new acquisition methods that pose
the most significant challenge for surface reconstruction.
Each distinct method tends to produce point clouds contain-
ing a variety of properties and imperfections. These prop-
erties, in conjunction with the nature of the scanned shape,
effectively distinguish the class of reconstruction methods
that exist today. This diverse set of techniques ranges from
methods that assume a well-sampled point cloud, generalize
to arbitrary shapes, and produce a watertight surface mesh,
to methods that make very loose assumptions on the quality
of the point cloud, operate on specific classes of shapes, and
output a non-mesh based shape representation.

Our survey presents surface reconstruction algorithms from
the perspective of priors: assumptions made by algorithms
in order to combat imperfections in the point cloud and to
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Figure 1: Surface reconstruction has grown in diversity
in recent years, with a wide variety of techniques taking
on specialized priors. ROSA [TZCO09], shown on the left,
uses volumetric smoothness to aid in reconstruction. Non-
local consolidation [ZSW⇤10], shown in the middle, uses
global regularity in the form of structural repetition. Part
composition [SFCH12], shown on the right, uses data-driven
techniques to perform reconstruction.

eventually focus what information about the shape is re-
constructed. Without prior assumptions, the reconstruction
problem is ill-posed; an infinite number of surfaces can pass
through (or near) a given set of data points. Assumptions are
usually imposed on the point cloud itself, such as sampling
density, level of noise, and misalignment. But just as impor-
tantly they are also imposed on the scanned shape, such as
local surface smoothness, volumetric smoothness, absence of
boundaries, symmetries, shape primitives, global regularity,
and data-driven assumptions. In some instances, requirements
are made on knowledge of the acquisition, such as scanner
head position, as well as RGB images of the object. In other
cases, the user is involved in prescribing high-level cues for
reconstruction. All of these factors permit the regularization
of the otherwise ill-posed problem of surface reconstruction,
particularly when processing a point cloud containing severe
imperfections. Figure 1 depicts several different priors used
to reconstruct surfaces from challenging point clouds.

The utility of classifying surface reconstruction in terms of
priors also helps to constrain expectations and prioritize de-
sirables for reconstruction output in application dependent
ways. For example, in the field of archaeology, dense, good-

coverage scans might be available (e.g. the Digital Michae-
langelo project [LPC⇤00]), allowing for standard smoothness
priors that enable the high-detail reconstruction. Such great
detail enables more than just digitization, but also the preser-
vation of culture in ways that will transform how we study
art [SCC⇤11]. In urban planning, reconstructing fine details
such as individual bricks on a building might be both unnec-
essary and impossible given incomplete terrestrial LiDAR
scans. However, in such contexts global regularity priors en-
able detail completion as well as interactive, realistic proxies
for missing details such as plants and vegetation [BAMJ⇤11].

Historically, priors have evolved in conjunction with the types
of point clouds being processed. For instance, local surface
smoothness priors were developed primarily to handle small
objects acquired from desktop scanners. Mobile, real-time
scanners have enabled the dynamic acquisition of more gen-
eral scenes, rather than single objects, prompting more spe-
cialized structural and data-driven priors. Since priors tend
to be coupled with the type of acquisition, we argue that
our perspective of surface reconstruction is beneficial for un-
derstanding how to process future types of acquired point
clouds.

Organization. Our survey is organized as follows. In Sec-
tion 2 we characterize the problem of surface reconstruction
by examining common input and output characteristics:

• Point Cloud Artifacts: the imperfections of the point
cloud that the method is able to effectively handle.

• Input Requirements: the types of inputs associated with
a point cloud required by the algorithm.

Section 3 provides an overview of the different priors from
the perspective of the type of data produced through acquisi-
tion, the shape classes that tend to be acquired, and the type
of output produced. We use all of these considerations as a
way of examining surface reconstruction methods, starting
with traditional surface smoothness priors in Section 4, and
delving into specialized priors in Sections 5–10. In Table 1.1
we provide a summary of surface reconstruction methods by
prior, characterizing their input and output, as well as their
level of robustness to various artifacts. We discuss methods
for evaluating surface reconstruction in Section 11, and con-
clude in Section 12 with a discussion on future trends in
surface reconstruction.

1.1. Survey Scope and Related Works

There are many variants to surface reconstruction. This sur-
vey focuses on those relating to the reconstruction from point
clouds of static objects and scenes acquired through 3D scan-
ners, wherein the point cloud contains a considerable level of
imperfection. Furthermore, we concentrate on methods that
approximate the input point cloud. For clarity, we contrast
this organization relative to other important types of surface
reconstruction:

Urban reconstruction. Our survey covers a wide variety
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Method Point Cloud Artifacts Input Requirements Shape Class Reconstruction Output
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Surface Smoothness
Tangent Planes [HDD⇤92] # # general implicit field

RBF [CBC⇤01] # # 3 general implicit field
MLS [ABCO⇤03] # # 3 general point set
MPU [OBA⇤03] # # # 3 general implicit field
Poisson [KBH06] #  # # # 3 general implicit field
Graph Cut [HK06] # # # # # general volumetric segmentation

Unoriented Indicator [ACSTD07] #  # # # 3 general implicit field
LOP [LCOLTE07]   # # general point set

Dictionary Learning [XZZ⇤14]    # general mesh
Visibility

VRIP [CL96] #  # 3 general implicit field
TVL1-VRIP [ZPB07] #  # # # 3 general implicit field

Signing the Unsigned [MDGD⇤10] #   # 3 general implicit field
Cone Carving [SSZCO10] # #  3 3 general implicit field

Multi-Scale Scan Merge [FG11]   # 3 general implicit field
Volumetric smoothness

ROSA [TZCO09] # #  3 organic skeleton curve
Arterial Snakes [LLZM10] # #  3 man-made skeleton curve

VASE [TOZ⇤11] # #  3 general implicit field
l1 Skeleton [HWCO⇤13] # #  organic skeleton curve

Geometric Primitives
Primitive Completion [SDK09] # # #  3 CAD volumetric segmentation

Volume Primitives [XF12] # # #  3 indoor environment interior volume
Point Restructuring [LA13] # # # # # 3 3 general volumetric segmentation

CCDT [vKvLV13] # # # # 3 3 urban environment volumetric segmentation
Global Regularity

Symmetry [PMW⇤08] # #  3 architectural point set
Nonlocal Consolidation [ZSW⇤10]  # #  3 architectural point set

2D-3D Facades [LZS⇤11] # #  3 3 architectural point set
Globfit [LWC⇤11]   #  3 man-made primitive relations

RAPTER [MMBM15]   #  # indoor environment primitive relations
Data-driven

Completion by Example [PMG⇤05] # #  3 general point set
Semantic Modeling [SXZ⇤12] # #  3 3 indoor scene objects deformed model
Shape Variability [KMYG12] # #  3 indoor scene objects deformed model
Part Composition [SFCH12] # #  3 3 man-made deformed model parts

Interactive
Topological Scribble [SLS⇤07] # #  3 general implicit field

Smartboxes [NSZ⇤10]  # #  3 architectural primitive shapes
O-Snap [ASF⇤13] # # #  3 architectural primitive shapes
Morfit [YHZ⇤14] # #  general skeleton + mesh

Table 1: A categorization of surface reconstruction in terms of the type of priors used, the ability to handle point cloud artifacts,
input requirements, shape class, and the form of the reconstruction output. Here # indicates that the method is moderately
robust to a particular artifact and  indicates that the method is very robust. 3indicates an input requirement and 3indicates
optional input.

of reconstruction methods, with urban reconstruction from
point clouds among them. We note that [MWA⇤13] surveys
urban reconstruction more broadly: 3D reconstruction from
images, image-based facade reconstruction, as well as recon-
struction from 3D point clouds. Although there exists some
overlap between the body of surveyed material, we cover
these methods in a different context, namely the priors that
underlay the reconstruction methods and how they address
challenges in point cloud reconstruction.

Interpolatory reconstruction. An important field of surface
reconstruction methods are those that interpolate a point
cloud without any additional information, such as normals
or scanner information. Delaunay-based methods are quite
common in this area. The basic idea behind these methods
is that the reconstructed triangulated surface is formed by a
subcomplex of the Delaunay triangulation. A comprehensive
survey of these methods is presented in [CG06], as well

as the monograph of [Dey07]. A very attractive aspect of
such methods is that they come with provable guarantees
in the geometric and sometimes topological quality of the
reconstruction provided the sampling of the input surface
is sufficiently dense. Nonetheless, these requirements can
be too severe for point clouds encountered in the wild, thus
rendering the methods impractical for scanned, real-world
scenes containing significant imperfections. We do not cover
these methods, as our focus on reconstruction emphasizes
how challenging artifacts are dealt with, though we note that
there are some recent interpolatory approaches which are
equipped to handle moderate levels of noise – see [DMSL11]
for a scale-space approach to interpolatory reconstruction.

Dynamic reconstruction. Another recent advance in scan-
ning techniques has enabled the acquisition of point clouds
that vary dynamically. These devices promise the ability to
capture more than just a single static object, but one that
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changes over time. Such techniques are still in their infancy,
so they have not as yet explored their full range of potential
applications. While we focus our survey on the broad spec-
trum of techniques associated with static point clouds, it is
interesting to note that already a prior-oriented viewpoint (e.g.
incompressibility [SAL⇤08] and gradual change [PSDB⇤10])
has fueled a better understanding of shape in space-time.

Single-view reconstruction from images. Very recent work
has considered the problem of surface reconstruction from
single RGB images [SHM⇤14, HWK15]. These techniques
are data-driven, in that they rely on large shape collections to
estimate either depth or a full 3D model strictly from a single
image. Due to the rapid growth in this new area, and the fact
that our primary focus is on reconstruction from point clouds,
we have decided not to cover this area in the survey.

2. Surface Reconstruction Fundamentals

Surface reconstruction methods must handle various types
of imperfections and make certain requirements on input
associated with the point cloud. Here we summarize these
properties in order to cover the basic principles underlying
surface reconstruction.

2.1. Point Cloud Artifacts

The properties of the input point cloud are an important fac-
tor in understanding the behavior of reconstruction methods.
Here we provide a characterization of point clouds according
to properties that have the most impact on reconstruction
algorithms: sampling density, noise, outliers, misalignment,
and missing data. See Figure 2 for a 2D illustration of these
artifacts.

Sampling density. The distribution of the points sampling
the surface is referred to as sampling density. Sampling den-
sity is important in surface reconstruction for defining a neigh-
borhood – a set of points close to a given point which captures
the local geometry of the surface, such as its tangent plane.
A neighborhood should be large enough so that the points
sufficiently describe the local geometry, yet small enough so
that local features are preserved. Under uniform sampling
density, a neighborhood may be constructed at every point in
the same manner. For instance, one can define a neighborhood
at a point p 2 P via an e–ball, defined as the set of points
Ne(p) ⇢ P such that each y 2 Ne(p) satisfies kp � yk < e,
under a single value e used at all points.

3D scans typically produce a nonuniform sampling on the sur-
face, where the sampling density spatially varies. This can be
due to the distance from the shape to the scanner position, the
scanner orientation, as well as the shape’s geometric features.
See Figure 2(b) for an illustration of nonuniform sampling on
a curve. To capture the local variation in sampling density, a
common approach is to use the k nearest neighbors (knn) at a

(a) Original shape (b) Nonuniform sampling

(c) Noisy data (d) Outliers

(e) Misaligned scans (f) Missing data

Figure 2: Different forms of point cloud artifacts, shown
here in the case of a curve in 2D.

given point for neighborhood construction. Another alterna-
tive is to use a spatially-varying e–ball, commonly defined as
a function of a point’s knn neighborhood [GG07].

More sophisticated sampling density estimation techniques
use reconstruction error bounds [LCOL06] and kernel meth-
ods [WSS09]. The method of [LCOL06] finds the neighbor-
hood size at each point by bounding the error of a moving
least squares surface approximation [ABCO⇤03], where the
selected e minimizes this error bound. The work of [WSS09]
formulates the error of a moving least squares surface ap-
proximation in terms of kernel regression, where the optimal
neighborhood size may be defined via a point-wise error or
the error in the support region of the defined kernel.

Noise. Points that are randomly distributed near the surface
are traditionally considered to be noise – see Figure 2(c). The
specific distribution is commonly a function of scanning arti-
facts such as sensor noise, depth quantization, and distance or
orientation of the surface in relation to the scanner. For some
popular scanners, noise is introduced along the line of sight,
and can be impacted by surface properties, including scatter-
ing characteristics of materials. In the presence of such noise,
the typical goal of surface reconstruction algorithms is to pro-
duce a surface that passes near the points without overfitting
to the noise. Robust algorithms that impose smoothness on
the output [KBH06], as well as methods that employ robust
statistics [OGG09], are common ways of handling noise.

Outliers. Points that are far from the true surface are clas-
sified as outliers. Outliers are commonly due to structural
artifacts in the acquisition process. In some instances, out-
liers are randomly distributed in the volume, where their
density is smaller than the density of the points that sample
the surface. Outliers can also be more structured, however,
where high density clusters of points may exist far from
the surface, see Figure 2(d). This can occur in multi-view
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stereo acquition, where view-dependent specularities can re-
sult in false correspondences. Unlike noise, outliers are points
that should not be used to infer the surface, either explicitly
through detection [LCOLTE07], or implicitly through robust
methods [MDGD⇤10].

Misalignment. The imperfect registration of range scans re-
sults in misalignment, see [vKZHCO11] for a survey on
registration techniques. Misalignment tends to occur for a
registration algorithm when the initial configuration of a set
of range scans is far from the optimal alignment – see Fig-
ure 2(e) for a 2D illustration. In scanning scenarios where
we are only concerned with the acquisition of a single object,
it is common for the object to rotate in-place with respect
to the sensor for each scan; hence, the amount of misalign-
ment is bounded since the initial scan alignment may be
estimated from the known rotations. In SLAM-based RGBD-
mapping [HKH⇤12], however, drifting errors due to the accu-
mulation of misregistration over time, as well as insufficient
loop closures, can cause substantial misalignment.

Imperfections due to misalignment require techniques which
differ from handling standard noise, discussed above. For
instance, under a Manhattan world prior [VAB12] a scene is
composed of planar primitives aligned along three orthogo-
nal axes – hence planar primitives from erroneously rotated
scans can be robustly “snapped” onto one of these axes. Un-
der the prior of repetitive relationships between geometric
primitives [LWC⇤11], a misaligned scan can similarly be
corrected if it fails to conform to the remaining discovered
repetitions.

Missing data. A motivating factor behind many reconstruc-
tion methods is dealing with missing data. Missing data is due
to such factors as limited sensor range, high light absorption,
and occlusions in the scanning process where large portions
of the shape are not sampled. Although the aforementioned
artifacts are continually improved upon, missing data tends
to persist due to the physical constraints of the device. We
note that missing data differs from nonuniform sampling, as
the sampling density is zero in such regions – see Figure 2(f).

Many methods deal with missing data by assuming that the
scanned shape is watertight [CBC⇤01,Kaz05,KBH06,HK06,
ACSTD07]. Within this setting, the goal of some methods is
to handle the aforementioned challenges where data exists,
and infer geometry in parts of the surface that have not been
sampled. Other methods are focused on handling missing
data by trying to infer topological structures in the original
surface at the possible expense of retaining geometric fidelity,
for instance, finding a surface that is homeomorphic to the
original shape [SLS⇤07]. For significant missing data, other
approaches seek the reconstruction of higher-level informa-
tion such as a skeleton [TZCO09], shape primitives [SDK09],
symmetry relationships [PMW⇤08], and canonical regulari-
ties [LWC⇤11].

2.2. Point Cloud Input

Reconstruction methods have different types of input require-
ments associated with a point cloud. The bare minimum
requirement of all algorithms is a set of 3D points that sample
the surface. Working with the points alone, however, may
fail to sufficiently regularize the problem of reconstruction
for certain types of point clouds. Other types of input can be
extremely beneficial in reconstruction from challenging point
clouds. We consider the following basic forms of inputs com-
monly associated with point clouds: surface normals, scanner
information, and RGB imagery.

2.2.1. Surface Normals

Surface normals are an extremely useful input for recon-
struction methods. For smooth surfaces the normal, uniquely
defined at every point, is the direction perpendicular to the
point’s tangent space. The tangent space intuitively represents
a localized surface approximation at a given point. Surface
normals may be oriented, where each normal is consistently
pointing inside or outside of the surface, or may lack such a
direction. Normals that are oriented provide extremely useful
cues for reconstruction algorithms – see [CBC⇤01, KBH06].

Unoriented normals. Normals that do not possess direction
– the input normal at every point can be expected to be point-
ing either in the inside or the outside of the surface – are
considered to be unoriented normals. This information can
be used in a number of ways: determining planar regions
in a point cloud [SWK07], the projection of a point onto an
approximation of the surface [ABCO⇤03], or the construction
of an unsigned distance field [AK04]. Unoriented normals
are typically computed directly from the point cloud alone,
since scanner-specific information can be used to provide a
means to infer normal orientation.

A popular and simple method for computing the normal
at a given point p 2 P is to perform principal component
analysis (PCA) in a local neighborhood of p. The method
of [HDD⇤92] estimates the normal as the smallest eigenvec-
tor of the covariance matrix constructed over a local neigh-
borhood of points, obtained via an e-ball or its k nearest
neighbors. PCA defines a total least-squares plane fitting es-
timation of the tangent plane, and as such can be sensitive to
imperfections in the point cloud, such as the sampling density
and noise. The work of [MNG04] analyzes the accuracy of
this form of normal estimation, where they show that the an-
gle between the true normal n and the PCA-estimated normal
n̂, with probability 1� e, is:

^(n, n̂)  C1kr +C2
sn

r2per
+C3

s2
n

r2 , (1)

where k is the curvature at p, r is the radius for the r–ball used
in constructing the neighborhood, sn is the noise magnitude
under zero-mean i.i.d. noise, r is the sampling density, and C1,
C2, and C3 are constants independent of the aforementioned
quantities. Hence, we see a trade-off between noise and the
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neighborhood size: as sn vanishes, r should be small, but as
noise is introduced, r should be large in order to combat the
effects of noise.

There exist many other methods for normal estimation: using
a weighted covariance matrix [PMG04], higher-order ap-
proximations via osculating jets [CP05], and the randomized
Hough transform [BM12]. Similar to standard PCA, all of
these methods require a local neighborhood of points, hence
in the presence of point cloud imperfections, it can be quite
challenging to find the optimal neighborhood. As a result,
these estimation methods can produce rather noisy normals,
hence surface reconstruction algorithms must be robust to
such inaccuracies.

Oriented normals. Normals that have consistent directions,
either pointing in the inside or the outside of the surface are
referred to as being oriented. Knowledge of the exterior and
interior of the surface has proven extremely useful in surface
reconstruction. It can be used to construct a signed distance
field over the ambient space, where up to a sign, the field takes
on positive values in the exterior and negative values in the
interior. The surface is then represented by the zero crossing
of the signed distance field. Other methods generalize this to
implicit fields and indicator functions, but the basic idea of
trying to construct the exterior and interior remains the same,
see [CBC⇤01, OBA⇤03, KBH06] to name a few.

There are numerous ways to compute oriented normals. If
the original 2D range scans are known, then the 2D lattice
structure provides a way of performing consistent orientation
since one always knows how to turn clockwise around a
given vertex. For instance, if we denote the point in a range
scan at pixel (x,y) as px,y, then one can take the normal at
px,y simply as the cross product between (px+1,y �px,y) and
(px,y+1 �px,y). If the point cloud is noisy, then this method
can produce rather noisy normals, since it does not aggregate
points in overlapping scans.

If scanner information is absent altogether, then one must ori-
ent the points exclusively from the unoriented normals. The
well-known method of [HDD⇤92] achieves this by construct-
ing a graph over the point cloud (e.g. through each point’s
knn neighborhood) and weights each edge wi j for points pi
and p j based on the similarity between the respective points’
unoriented normals ni and n j as wi j = 1� |ni ·n j|. A minimal
spanning tree is then built, where upon fixing a normal orien-
tation at a single point serving as the root, normal orientation
is propagated over the tree. The method of [HLZ⇤09] adjusts
the weights wi j by prioritizing propagation along tangential
directions – if the estimated tangent space between two points
pi � p j is perpendicular to the normal directions, then this
indicates these two points are valid neighbors, rather than
belonging to opposite sides of the surface.

Although these methods are able to deal with nonuniform
sampling, noise, and misalignment to a certain degree, they
still remain sensitive to imperfections in the point cloud, and
as a result can leave some normals unoriented or pointing in

Figure 3: The impact of incorrect normal orientation. On the
left we show the result of normal orientation via [HDD⇤92],
where red splats indicate incorrect orientation. The results
of running Poisson surface reconstruction [KBH06] on this
point cloud are shown in mid-left, where we indicate un-
wanted surface components due to the clustered normal
flips. Similarly, on the right we show the orientation results
of [LW10], and the corresponding results of [KBH06].

the wrong direction – see Figure 3. The impact on surface
reconstruction largely depends on the distribution of incor-
rect orientations: if randomly distributed, then methods may
treat this as spurious noise, but if incorrect orientations are
clustered together over large regions, then this form of struc-
tured noise can be difficult to handle – see Figure 3 for an
illustration.

2.2.2. Scanner Information

The scanner from which the point cloud was acquired can
provide useful information for surface reconstruction. Its 2D
lattice structure permits the estimation of sampling density
which can be used to detect certain forms of outliers in the
scan – points whose lattice neighbors are at a far greater dis-
tance than the sampling density are likely outliers. However,
caution must be taken in distinguishing outliers from sharp
features.

Scanner information may also be used to define the confi-
dence of a point, which is useful in handling noise. Certain
scanners (e.g. LiDAR) can provide confidence measures in
the form of the reflectivity measured at each point. One can
also derive confidence through line of sight information. Line
of sight is defined as the collection of line segments between
each point in the point cloud and the scanner head position
from which that point was acquired. In active scanning sys-
tems, i.e. laser-based scanners, if the angle between the line of
sight and the surface normal is large, this can result in noisy
depth estimation, i.e. poor laser peak estimation [CL96], im-
plying low confidence.

Note that line of sight also defines a region of space marked as
lying outside of the shape. Combining line of sight from mul-
tiple scans refines the bounding volume in which the surface
lies – this is known as the visual hull. This information is par-
ticularly useful when handling incomplete data – it can infer
that there exists a large concavity in the shape [TOZ⇤11].
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2.2.3. RGB Imagery

Different acquisition modalities that complement depth ac-
quisition can be of great assistance. RGB image acquisition
is a very common modality that accompanies numerous sen-
sors, such as the Microsoft Kinect. In the case of the Kinect,
the RGB camera is co-located with the IR camera, hence
assuming the two are calibrated, it is straightforward to iden-
tify corresponding depth and RGB values at a pixel level.
RGB images are most useful for reconstruction when they
are able to complement depth information that is either not as
descriptive as its visual appearance, or simply not measured
by the data. For instance, if a color image and 3D scan are
at a wide baseline, hence containing very different views,
then segmented parts of the image can be used to infer 3D
geometry in the original scan [NSC14].

3. The Role of Priors

The development of priors is largely driven by emerging data
acquisition technologies. Acquisition methods set expecta-
tions for the class of shapes that can be acquired and the type
of artifacts associated with the acquired data, consequently
informing the type of output produced by reconstruction al-
gorithms and the fidelity of the reconstruction. In this section
we provide an overview of each prior, discussing the type of
inputs each prior expects and subsequent output produced, as
well as the typical shape classes and acquisition methods that
characterize these scenarios.

3.1. Surface Smoothness

The surface smoothness prior constrains the reconstructed
surface to satisfy a certain level of smoothness, while en-
suring the reconstruction is a close fit to the data. Perhaps
the most general form is local smoothness, which strives for
smoothness only in close proximity to the data. The output of
such approaches typically produce surfaces that can smooth
out noise associated with the acquisition, while retaining
boundary components where there exists insufficient sam-
pling (or simply no sampling) [HDD⇤92, ABCO⇤03]. Due to
their generality, these methods can be applied to a wide vari-
ety of shapes and acquisition devices, yet absent of additional
assumptions, handling severe artifacts can pose a significant
challenge.

In contrast, global smoothness seeks higher order smooth-
ness, large-scale smoothness, or both. High order smoothness
relates to the variation of differential properties of the sur-
face: area, tangent plane, curvature, etc. Large-scale herein
relates to the spatial scale where smoothness is enforced –
not just near the input. It is common for these methods to
focus on reconstructing individual objects, producing water-
tight surfaces [CBC⇤01, KBH06]. As a result, this limits the
class of shapes to objects that can be aquired from multiple
views, captured as completely as possible. Desktop scan-
ners capable of scanning small (i.e. 1 inch) to mid-sized

(i.e. several feet) objects are commonly used to produce such
point clouds. Laser-based optical triangulation scanners, time-
of-flight (TOF) scanners, and IR-based structured lighting
scanners are all representative devices for such scenarios.
Furthermore, due to the sensor’s close proximity to an object
and its high resolution capabilities, an emphasis is commonly
placed on reconstructing very fine-grained detail.

Piecewise smooth priors seek to preserve sharp (i.e. nons-
mooth) features in the shape [FCOS05, ASGCO10]. For this
prior the acquisition device does not differ much from global
or local smoothness priors, but rather the class of shapes are
restricted to those which contain a set of sharp features – i.e.
CAD models, man-made structures, etc..

3.2. Visibility

The visibility prior makes assumptions on the exterior space
of the reconstructed scene, and how this can provide cues
for combating noise, nonuniform sampling, and missing data.
Scanner visibility is a powerful prior, as discussed in Sec-
tion 2.2.2, as it can provide for an acquisition-dependent noise
model and be used to infer empty regions of space [CL96].
This enables the filtering of strong, structured noise – a com-
mon characteristic of multi-view stereo outputs – for water-
tight reconstruction of individual objects [ZPB07]. Recent
work has extended the visibility prior to scene reconstruction
in an interactive setting by relaxing the watertight constraint
and only maintaining a surface in close proximity to the
data [NDI⇤11]. The Microsoft Kinect and Intel’s RealSense
are two representative scanners which enable the interactive
acquisition of geometry. Such scanners permit the reconstruc-
tion of very large spaces, i.e. building interiors, but often at
the expense of geometric fidelity compared to static, more
constrained scanning setups.

3.3. Volume Smoothness

The volume smoothness prior imposes smoothness with re-
spect to variations in the shape’s volume. This has shown to
be quite effective when faced with large amounts of miss-
ing data [TZCO09, LYO⇤10]. Some volume priors assume
the watertight reconstruction of an individual object with an
emphasis on topological accuracy, where it is assumed that
the well-sampled acquisition of an object is prohibited, pri-
marily due to self-occlusions and limited mobility in sensor
placement. This can be seen in man-made objects composed
of such materials as coils or metal wires, where the shape
can be described as a complex arrangement of generalized
cylinders [LLZM10]. Other techniques such as [LYO⇤10]
focus on extracting the skeleton structure of a shape from sig-
nificant missing data. This can be seen in organic shapes, in
particular trees, which tend to be scanned via LiDAR sensors
in uncontrolled outdoor environments, and as a result many
branches and leaves may only be partially scanned.
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3.4. Primitives

The geometric primitive prior assumes that the scene geome-
try may be explained by a compact set of simple geometric
shapes, i.e. planes, boxes, spheres, cylinders, etc.. In cases
where we are concerned with watertight reconstruction of in-
dividual objects, the detection of primitives [SWK07] can sub-
sequently be used for primitive extrapolation for reconstruc-
tion when faced with large amounts of missing data [SDK09].
CAD shapes naturally fit this type of assumption since they
are usually modeled through simpler geometric shapes, how-
ever once scanned, the point clouds may be highly incomplete
due to complex self occlusions. Furthermore, certain CAD
models are mechanical parts whose physical materials may
be unfavorable for scanning with many devices (be it IR, TOF,
etc..), hence structured noise may result. The primitive prior
can thus be useful for robustly finding the simpler shapes un-
derlying the noise-contaminated point cloud [SWK07]. Note,
however, that any fine-grained details are likely to be treated
as noise with the primitive prior, if they are unable to be
represented as a union of smaller primitives.

Indoor environments are another shape class ideal for primi-
tives, as they may be summarized as a collection of planes or
boxes. A typical application of this is in the reconstruction of
a floor plan of a building. Such environments may be captured
by LiDAR scanners [XF12], where obtaining full scans can
be difficult due to large-scale scene coverage. Hence planes
can be a useful prior for completion from incomplete data, in
addition to denoising [JKS08,XF12]. Similar to CAD shapes,
however, fine geometric details may be lost as a result, though
hybrid methods have been developed to preserve detail while
simultaneously extracting primitives [LA13, vKvLV13].

3.5. Global Regularity

The global regularity prior takes advantage of the fact that
many shapes – CAD models, man-made shapes and archi-
tectural shapes – possess a certain level of regularity in their
higher-level composition. Regularity in a shape can take many
forms: a building composed of facade elements, building in-
teriors composed of regular shape arrangements, or a me-
chanical part consisting of recurring orientation relationships
between sub-parts, amongst other shape classes.

For instance, facades can often be described in terms of re-
peating parts, i.e. a collection of windows, such that the parts
possess some regularity in their arrangement, i.e. a uniformly-
spaced grid of windows. Facade acquisition, however, is often
faced with substantial noise and incomplete measurements,
as typical acquisition devices – i.e. LiDAR or multi-view
stereo – can only take measurements at far distances and
suffer from occlusion with other parts of the environment.
Hence, if such regularity was detected in the input data, it
can be used to model the rest of the facade for denoising and
filling in missing parts [ZSW⇤10, LZS⇤11].

In the case of building interiors and mechanical parts, a major

artifact addressed by global regularity is scan misalignment.
For instance, building interiors may be captured by the reg-
istration of depth scans in real-time scanners such as the
Kinect, but imperfections in the registration can manifest in
drifting, where parts of the scene are gradually misaligned
and become quite pronounced when comparing scans of very
different time periods. Enforcing regularity on angles be-
tween detected planes can be highly beneficial in correcting
for drift [OLA15, MMBM15]. The acquisition of mechanical
parts through standard desktop 3D scanners can similarly
result in poorly registered depth scans, yet finding canonical
relationships in extracted geometric primitives can be use-
ful in correcting for these errors [LWC⇤11]. For mechanical
parts, we note that the reconstruction objective is to produce
a watertight reconstruction of an individual object, whereas
for building interiors the objective is primarily plane detec-
tion, not necessarily a watertight reconstruction. However,
due to the large scale of building interiors, there may exist
more evidence for regularity compared to a mechanical part,
whose small size inherently limits the potential number of
relationships, so we see a trade-off in reconstruction fidelity
and regularity.

3.6. Data Driven

The data driven prior exploits the massive amounts of ac-
quired or modeled 3D data available to benefit reconstruction,
primarily in scenarios where the input point cloud is highly
incomplete. In these scenarios we are primarily focused on
reconstruction of individual objects, or potentially a collec-
tion of objects, since 3D databases tend to be populated with
well-defined semantic object classes. For instance, we may be
concerned with obtaining a watertight reconstruction of an in-
dividual object from only a single, or several, depth scans. A
database of objects may be used to best match the incomplete
point cloud to a complete model [PMG⇤05], or a composition
of parts from different models [SFCH12]. In other scenarios
we may be more concerned with scene reconstruction, and
using the database to complement the detected objects in the
scene [SXZ⇤12, KMHG13].

Due to the generality of a data driven prior – i.e. the re-
construction quality is as good as the provided data – these
methods can be applied to a wide variety of data acquisition
scenarios and shape classes. Employing complete 3D models
for reconstruction poses few limitations, so long as these mod-
els accurately reflect the scanned data. If not, then complex
nonrigid registration methods are necessary to deform the
models appropriately [NXS12, KMYG12]. Employing parts
from different models can significantly expand the generaliza-
tion of a model database to the input, however this assumes
certain shape classes that can be described with respect to
well-defined parts: most man-made objects fit this description,
but organic shapes may be difficult to describe in terms of
parts. To address this, an alternative data-driven prior is to use
a shape space, or a compact means of representing shape vari-
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ations, for which the input data should conform to. This prior
can enable the reconstruction of more general scenes, i.e. not
just individual objects but natural environments consisting of
trees [BNB13] or flowers [ZYFY14].

3.7. User Driven

The user driven prior incorporates the user into the process
of surface reconstruction, allowing for them to provide intu-
itive and useful cues for reconstruction. The specific form
of interaction is largely driven by the type of shape being
reconstructed, and how it was acquired. In performing wa-
tertight reconstruction of individual objects, often the focus
is on topology recovery due to incomplete sampling from
the sensor. Hence certain approaches focus on reconstruction
of arbitrary shapes [SLS⇤07], while others admit interac-
tion with a shape’s skeletal model, relying on the volumetric
smoothness prior to guide the reconstruction [YHZ⇤14]. In
the reconstruction of architectural buildings, similar to the
case of facades discussed in Section [?], scanning in outdoor
environments can cause large gaps in the acquisition. Hence,
user interaction can help in the discovery of global regularity,
as well as how to apply the detected regularity to the rest
of the point cloud [NSZ⇤10]. If finer-grained control of the
reconstruction is desired, then the user can specify geometric
primitives to model the building, with guidance provided by
the relationships discovered in the input [ASF⇤13].

4. Surface Smoothness Priors

The surface smoothness prior can roughly be divided into
local smoothness, global smoothness, and piecewise smooth-
ness. These methods vary based on the smoothness constraint
and how it is prescribed in practice.

Notation. We first fix the notation for this section and all
subsequent sections. We assume that we are given a point
cloud P which is a sampling of a shape S. Individual points
in P are indexed as pi 2 P for the i’th point. Many methods
also require normals associated with the point cloud, where
we define the normal field N as a set of normal vectors such
that for each pi 2 P there is an accompanying normal ni 2 N.
The distinction between oriented and unoriented normals is
made explicit for each method.

4.1. Local Surface Smoothness Priors

The pioneering method of [HDD⇤92] was hugely influential
on the class of methods that impose local smoothness priors.
This method approximates a signed distance field F :R3 !R
by assigning, for each point in the ambient space x 2 R3, its
signed projection onto the tangent plane of its closest point
to P, denoted pi:

F(x) = (x�pi) ·ni. (2)

Note that the normal field N must be oriented in order to
obtain an estimate of the signed distance field. The surface is

then defined by the zero level set of F. Although straightfor-
ward to implement, this approach suffers from several issues.
The method is very sensitive to the estimated normals – noisy
normals, or worse inverted normal orientations, can give rise
to very inaccurate signed distance estimates. Furthermore,
in the presence of nonuniform sampling, choosing the clos-
est tangent plane to define a signed projection can produce
a rather noisy output. Subsequent methods based on local
surface smoothness have focused on addressing such issues.

4.1.1. Moving least squares (MLS)

This class of methods approaches reconstruction by approx-
imating the input points as a spatially-varying low-degree
polynomial. Assuming that a scalar value vi is associated
to each input sample pi, the reconstructed signal at x is then
defined as the value at x of the multivariate polynomial gx
which best approximates the neighborhood of x in a weighted
least-square sense:

gx = argmin
g

Â
i

w(kx�pik)(g(pi)� vi)
2 , (3)

where w is a smooth decreasing weighting function giving
larger influence to samples near the evaluating point. This
weighting function plays the role of a low-pass filter. It is
an essential ingredient of MLS to combat moderate levels
of noise by allowing the weight function to have a larger
spatial influence. For nonuniform sampling, it is necessary
to define a weight function whose spatial support varies as a
function of the sampling density – see Section 2.1 For surface
reconstruction this approach needs to be adapted to address
the lack of a natural parameterization for which vi could be
prescribed – see [CWL⇤08] for a survey on MLS.

Levin’s method. In the first MLS formulation [Lev03,
ABCO⇤03], the neighboring samples of the evaluation point
x are first parameterized with respect to a local tangent plane
H(x) obtained through a weighted PCA as in normal estima-
tion methods (Section 2.2.1). In this parameterization, the
neighborhood can be seen as a height-field with displace-
ments vi which is approximated by a low-degree bivariate
polynomial gx (Figure 4a). The projection of x is defined as
the point closest to the polynomial approximation. The MLS
surface is finally implicitly defined as the fixed points of the
projection operator, suitably defined for points near the input.

Planar approximations. Authors rapidly observed that
Levin’s method can be significantly simplified by omitting
the polynomial fitting step [AK04]. The MLS surface is then
directly defined as the zero level set of the scalar field defined
by the distance between the evaluation point and the best
fitted plane. If oriented normals are available, then one might
advantageously compute the normal n(x) of the best fitted
plane as the weighted average of the neighboring normals:

n(x) =
Âi w(kx�pik)ni

Âi w(kx�pik)
, (4)

For the sake of brevity, let us introduce the normalized
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Figure 4: Illustration in 2D of the principle of many MLS
surface variants. The local approximations computed for
the evaluation point x in red are show in green. The orange
curves correspond to the reconstructed iso-contours.

weights wi(x) = w(kx � pik)/Â j w(kx � p jk), such that
n(x) = Âi wi(x)ni. This leads to the following scalar field
definition [AK04, AA04] (see Figure 4b):

F(x) = n(x)T x�n(x)T Â
i

wi(x)pi . (5)

Another variant called Implicit MLS (IMLS), constructs the
implicit field as the weighted average of distances between x
and the prescribed tangent planes:

F(x) = n(x)T x�Â
i

wi(x)nT
i pi = Â

i
wi(x)nT

i (x�pi) . (6)

As see in figure Figure 4c, the summation done in the IMLS
variant tends to expand/shrink the surface away from the
input points, especially for large weighting support. More
recent work has addressed this by replacing the neighboring
points pi in Equation 5 by the projection onto their respective
tangent planes [AA09], as well as the Robust Implicit MLS
(RIMLS) method [OGG09], which discounts outliers by iter-
atively reweighting points based on their spatial and normal
residual errors.

Spherical approximations. All the aforementioned MLS
methods assume that it is possible to construct a well-defined
tangent plane at each evaluation point, which may not exist
for sparsely sampled data. In this case, a higher-order approx-
imation such as algebraic point set surfaces [GG07], which
uses an MLS definition with spheres for shape approximation,
can be more robust (see Figure 5). APSS first fits a gradient
field of the algebraic sphere s to the input (oriented) normals

(a) (b) (c)

Figure 5: When sampling density is insufficient to resolve
local curvature (a), the plane fitting operation employed
by moving least squares [AA04] becomes highly unstable
(b). APSS [GG07] addresses this problem by locally fitting
spheres instead of planes. Employing spheres tackles the
aforementioned problem while remaining computationally
inexpensive.

by solving a small linear least square problem(see Figure 4f):

argmin
s

Â
i

wi(x)krs(pi)�nik2 . (7)

This minimization fixes the linear and second order coef-
ficients, and after integrating rs, a simple weighted aver-
age minimizing Âi wi(x)ks(pi)k2 permits to pick the best
iso-sphere. More recently, is has been shown that alge-
braic spheres can also be robustly fitted to unoriented nor-
mals [CGBG13] by computing the spherical gradient field
maximizing the sum of squared dot products with the pre-
scribed unoriented normals:

argmax
s

Â
i

wi(x)krs(pi)
T nik2 , (8)

under the quadratic constraints Âi wi(x)krs(pi)k2 = 1.

4.1.2. Hierarchical methods

For this set of techniques, the reconstruction problem is ap-
proached as hierarchical partitioning. In the multi-level par-
tition of unity (MPU) method [OBA⇤03], an octree-based
partitioning is constructed top down: given a cell, the points
inside and nearby the cell are approximated by either a bivari-
ate quadratic polynomial or an algebraic trivariate quadric if
the set of orientations spanned by the input normals is too
large. If the residual error is too large then the cell is subdi-
vided and the overall procedure is repeated. This results in a
set of locally defined distance fields F which are smoothly
blended to form a globally defined implicit surface:

F(x) =
Âk Fk(x)w(kx� ckk/h)

Âk w(kx� ckk/h)
, (9)

where ck is the center of the cell, and h is the support radius
which is proportional to the diagonal length of the cell. This
blending needs signed implicit primitives to be consistent, and
thus oriented normals are required. This approach resembles
the weighted average of implicit planes achieved by the IMLS
method with the major difference that primitives and weight
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exterior of the local convex-hull such that a convex interpola-
tion is theoretically possible (see Figure 6d). It is interesting
to observe that both this variant and the IMLS one consider
the projections p̃i, but whereas one directly averages their
coordinates, the other averages their signed distances with
the evaluation point.

Finally, the Robust Implicit MLS (RIMLS) defini-
tion [OGG09] extend IMLS to be more robust to outliers,
and to better preserve the surface features (see Figure 6e).
This is accomplished by introducing an iterative evaluation
scheme where the influence of each sample is adjusted using
two additional re-weighting terms:

F(x)t+1 =
Âi wi(x)nT

i (x�pi)wr(rt
i)wn(Dnt

i)

Âi wi(x)wr(rt
i)wn(Dnt

i)
. (8)

Here wr and wn are decaying weight functions penalizing
outliers in the spatial and gradient domains respectively with
the residuals rt

i = F(x)t � nT
i (x � pi) and gradient errors

Dnt
i = krF(x)t �nik. By removing the influence of points

lying on a different surface sheets, this strategy also signif-
icantly reduces the expansion/shrinking effect of the initial
IMLS solution.

Spherical approximations. All the aforementioned MLS
methods assume that it is possible to construct a well-defined
tangent plane at each evaluation point, which may not exist
for sparsely sampled data. In this case, a higher-order approx-
imation such as algebraic point set surfaces [GG07], which
uses an MLS definition with spheres for shape approxima-
tion, can be more robust (see Figure 7). Even though algebraic
spheres can be fitted to raw point clouds, the availability of
oriented normals is necessary to avoid oscillations and to
achieve stable and fast fits. This is a two step procedure. First,
a small linear least square problem is solved to fit the gradi-
ent field of the algebraic sphere s to the input normals (see
Figure 6f):

argmin
s

Â
i

wi(x)krs(pi)�nik2 . (9)

This minimization fixes the linear and second order coef-
ficients, and after integrating rs, a simple weighted aver-
age minimizing Âi wi(x)ks(pi)k2 permits to pick the best
iso-sphere. More recently, is has been shown that alge-
braic spheres can also be robustly fitted to unoriented nor-
mals [CGBG13] by computing the spherical gradient field
maximizing the sum of squared dot products with the pre-
scribed unoriented normals:

argmax
s

Â
i

wi(x)krs(pi)
T nik2 , (10)

under the quadratic constraints Âi wi(x)krs(pi)k2 = 1.

3.1.2. Hierarchical methods

For this set of techniques, the reconstruction problem is ap-
proached as a hierarchical partitioning. In the multi-level

Figure 8: Illustration of the LOP operator [LCOLTE07].
Bottom-row: a set of samples shown in red is projected onto
the multivariate median of the input points in green though
attraction/repulsion forces. Top-row: the scan on the left
contains outliers and scan misalignment, particularly near
its boundaries. The result of LOP, shown on the right, is able
to robustly deal with such challenging data.

partition of unity (MPU) method [OBA⇤03a], an octree-
based partitioning is constructed top down: given a cell, the
points inside and nearby the cell are approximated by either
a bivariate quadratic polynomial (as in Levin’s MLS method)
or an algebraic trivariate quadric if the set of orientations
spanned by the input normals is too large. If the residual
error is too large then the cell is subdivided and the overall
procedure is repeated. This results in a set of locally defined
distance fields F which are smoothly blended to form a glob-
ally defined implicit surface:

F(x) =
Âk Fk(x)w(kx� ckk/h)

Âk w(kx� ckk/h)
, (11)

where ck is the center of the cell, and h is the support radius
which is proportional to the diagonal length of the cell. This
blending needs signed implicit primitives to be consistent,
and thus oriented normals are required. This approach resem-
bles to the weighted average of implicit planes made by the
aforementioned IMLS method with the additional major dif-
ference that here primitives and weight functions are attached
to cells instead of the individual input points. Another dif-
ference is that the level of smoothness and hence robustness
to noise is indirectly adjusted by the error residual tolerance.
Missing data can be partly addressed by allowing for the

extrapolation and subsequent blending of spatially adjacent
shape fits. However, such an extrapolation is prone to erro-
neous surface sheets. Those can be resolved by applying a
diffusion operator on the collection of implicit primitives, in
order to perform smoothing directly on the MPU representa-
tion [NOS09].

c� The Eurographics Association 2014.

Figure 6: Illustration of the LOP operator [LCOLTE07]:
a set of samples shown in red is projected onto the multi-
variate median of the input points in green though attrac-
tion/repulsion forces.

functions are attached to cells instead of the individual input
points. Another difference is that the level of smoothness and
hence robustness to noise is indirectly adjusted by the error
residual tolerance. Missing data can be partly addressed by
allowing for the extrapolation and subsequent blending of
spatially adjacent shape fits. However, such an extrapolation
is prone to erroneous surface sheets. Those can be resolved
by applying a diffusion operator on the collection of implicit
primitives, in order to perform smoothing directly on the
MPU representation [NOS09].

4.1.3. Locally Optimal Projection (LOP)

Unlike the methods presented so far, this class of techniques
do not strictly reconstruct a continuous surface, but rather
fit an arbitrary set of points Q onto the multivariate median
of the input point cloud P while ensuring that Q is evenly
distributed [LCOLTE07] – see Figure 6. These methods do
not require normal information, nor local parameterization,
and they do not involve least square fits. This makes them
particularly appealing to handle raw point clouds exhibiting
noise, outliers and even misalignment. The median of a set
of points is defined as the minimum q of Âi kq � pik. This
definition is localized and extended to multiple target samples
Q by attaching a fast decaying weight function w to each
sample and by performing a fixed-point iteration:

Qt+1 = argmin
Q

Edata(Q
t ,P)+Espread(Qt ,Q) , (10)

where

Edata = Â
j

Â
i

kpi �q jkw(kqt
j �pik)

Espread = Â
j

l j Â
k

w(kqt
j �qt

kk)h(kq j �qt
ik) )

Here Edata attracts the samples to the local medians, while
Espread produces an even distribution by repulsing points that
are too close to each other. The repulsion forces are defined
by the function h, for which typical choices include h(r) =
1/r3 and h(r) = -r. The coefficient l j permits to balance
both the importance of these two energy and the relative
influence of each particles. The method of [HLZ⇤09] tackles
highly nonuniform sampling by incorporating weighted local
densities into Edata and Es pread. More recently, the above
discrete formulation has been extended to a continuous one
using a Gaussian mixture model to continuously represent the

pi
ni

F( ) = 0

F( ) = a

Figure 7: (left) For RBFs, the scalar field to be optimized
for should evaluate to zero at sample locations F(pi) = 0,
while at off surface constraints F(pi +ani) = a; this choice
is appropriate as signed distance functions have unit gradient
norm almost everywhere. The cluster of off-surface samples
reveals how specifying constraints in regions of high curva-
ture must be done carefully. (right) The surface reconstructed
by RBF typically has severe geometric and topological arti-
facts when inconsistent off-surface constraints are provided.

input point cloud density [PMA⇤14]. This new formulation
is almost an order of magnitude faster while leading to even
higher quality results.

4.2. Global Surface Smoothness Priors

Radial basis functions (RBFs). RBFs are a well-known
method for scattered data interpolation. Given a set of points
with prescribed function values, RBFs reproduce functions
containing a high degree of smoothness through a linear com-
bination of radially symmetric basis functions. For surface
reconstruction, the method of [CBC⇤01] constructs the sur-
face by finding a signed scalar field defined via RBFs whose
zero level set represents the surface. More specifically they
use globally-supported basis functions f : R+ ! R. The im-
plicit function F may then be expressed as:

F(x) = g(x)+Â
j

l jf(kx�q jk), (11)

where g(x) denotes a (globally supported) low-degree poly-
nomial, and the basis functions are centered at the nodes
q j 2 R3. The unknown coefficients l j are found by prescrib-
ing, as interpolation constraints, a function value of 0 for
pi 2 P; see Figure 7. Off-surface constraints are necessary
to avoid the trivial solution of f (x) = 0 for any x 2 R3. Pos-
itively (resp. negative) valued constraints are set for points
displaced at pi along ni in the positive (resp. negative) direc-
tion. Interpolation can then be achieved using the union of
the on-surface and off-surface constraint points for the set of
node centers {q j}. The coefficients li are found via a dense
linear system in n unknowns, efficiently computed via fast
multipole methods [CBC⇤01].

An advantage to using globally-supported basis functions for
surface reconstruction is that the resulting implicit function is
globally smooth. Hence RBFs can be effective in producing
a watertight surface in the presence of nonuniform sampling
and missing data. However, when the input contains moderate
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noise, determining the proper placement of off-surface points
can become challenging (see Figure 7-right).

The need for off-surface RBFs and constraints is elegantly
avoided by the Hermite RBF (HRBF) scheme [Wen05]. In
addition to the positional constraints F(pi) = 0, HRBF im-
poses that the gradient of F interpolates the input normal ni
at pi. The application of HRBF to 3D datasets is discussed
in [MGV11].

Indicator functions. These methods approach surface re-
construction by estimating a soft labeling that discriminates
the interior from the exterior of a solid shape. Indicator
function methods are an instance of gradient-domain tech-
niques [PGB03]. For surface reconstruction, such a gradient-
domain formulation results in robustness to nonuniform sam-
pling, noise, and, to a certain extent, to outliers and missing
data. This is accomplished by finding an implicit function c
that best represents the indicator function. The key observa-
tion in this class of methods is that, assuming a point cloud
with oriented normals, c can be found by ensuring that the
gradient of the indicator function measured at the point cloud
P is aligned with the normals N; see Figure 8. Therefore, the
indicator function can be found by minimizing the following
quadratic energy:

argmin
c

Z
krc(x)�N (x)k2

2 dx (12)

The differential equation that describes the solution to this
problem is a Poisson problem; it can be derived by applying
variational calculus as Dc = r ·N . Once a solution c of this
equation is found, an appropriate iso-value corresponding
to the surface is selected as the average (or median) of the
indicator function evaluated at P. The implicit function’s
gradient being well-constrained at the data points enforces
smoothness and a quality fit to the data and since the gradient
is assigned zero away from the point cloud, c is smooth and
well-behaved in such regions. Furthermore, for small scan
misalignment (see Figure 2(e)), normals tend to point in a
consistent direction, which yields a well-defined gradient fit
for the indicator function.

1
0

1

11

1

0

0

0
0

0

00

0

0

0

P,N rc cr

Figure 8: Taking the gradient of the indicator function c
reveals its connection to the point cloud normals. Poisson
reconstruction [KBH06] optimizes for an indicator function
whose gradient at P is aligned to N.

The approach of [Kaz05] solves the Poisson problem by
transforming it into the frequency domain, where the Fourier
transforms of Dc and r ·N result in a simple algebraic form
for obtaining the Fourier representation of c. By operating
in the frequency domain, however, it is necessary to use a
regular grid in order to apply the FFT, hence limiting spatial
resolution in the output. In order to scale to larger resolutions,
the method of [KBH06] directly solves for c in the spatial
domain via a multi-grid approach, hierarchically solving for
c in a coarse-to-fine resolution manner. An extension of this
method for streaming surface reconstruction, where the re-
construction is done on a subset of the data at a time, has also
been proposed [MPS08].

A known issue with the approach of [KBH06] is that fitting di-
rectly to the gradient of c can result in over-smoothing of the
data [KH13, Fig. 4(a)]. To address this, the method of [KH13]
directly uses the point cloud as positional constraints into the
optimization, resulting in the screened Poisson problem:

argmin
c

Z
krc(x)�N (x)k2

2 dx+l Â
pi2P

c2(pi)

Setting a large value for l ensures the zero-crossing of c will
be a tighter fit to the input samples P. While this can reduce
over-smoothing, it can also result in over-fitting in a manner
analogous to interpolatory methods. Similarly to [KH13],
the method of [CT11] incorporates positional and gradient
constraints:

argmin
c

Â
pi2P

krc(pi)�nik2
2 +l1 Â

pi2P
c2(pi)

+l2

Z
kHc(x)k2

F dx
(13)

where the third therm, a constraint on the Hessian of the
indicator function, can improve surface extrapolation in re-
gions of missing data [KH13, Fig. 6(a)]. The main difference
between the approaches is that [KH13] solves the problem
via a finite-element multi-grid formulation, whereas [CT11]
use finite-differences, due to the complexity in discretizing
the Hessian term; In particular, the screened Poisson for-
mulation [KH13] is up to two orders of magnitude faster
than [CT11], see [KH13, Table 1].

As all of the above approaches rely on oriented normals they
can only tolerate sparsely distributed normal orientation flips.
Large continuous clusters of improper normal orientation can
significantly impact these methods; see Figure 3 for an exam-
ple. To address this limitation, rather than using normals, the
method of [ACSTD07] uses covariance matrices to represent
unsigned orientations leading to the following optimization
problem:

argmin
c

Z
rcT (x)C(x)rc(x)+l1(Dc(x))2 +l2c(x)2 dx

In the energy above, the first terms penalizes the misalign-
ment of rc with the (unsigned) orientation represented in
principal component of the tensor C, computed via the sec-
ond order moments of the union of neighboring Voronoi cells;
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Figure 9: The reconstruction of an unoriented point cloud
(left) is achieved by seeking for an indicator function c (right)
whose gradients rc match the anisotropy of the given co-
variance matrices (middle, shown as pink ellipsoids). These
tensor constraints can be estimated from the second order
moments of the Voronoi diagram of P (middle) [ACSTD07].

see Figure 9. The anisotropy of the covariance acts as a no-
tion of normal confidence, where isotropic tensors have little
influence on the energy. The second term is a biharmonic
energy that measures the smoothness of rc; it is this en-
ergy that favors coherent orientations of rc, as incoherent
orientations would result in a significant increase in energy.
Finally, the third element is a data fitting term which improves
conditioning.

Volumetric segmentation. These methods perform recon-
struction via a hard labeling of a volumetric discretization,
where the goal is to label cells as being either interior or
exterior to the surface. The method of [KSO04] constructs a
graph Laplacian from the Delaunay triangulation of P, where
each node represents a tetrahedron of the triangulation and
each edge measures the likelihood of the surface passing
through the adjacent tetrahedra. The Laplacian eigenvector
with smallest nonzero eigenvalue then smoothly segments
tetrahedra into interior and exterior, as this eigenvector simul-
taneously seeks a smooth labeling and a partitioning with low
edge weights. This approach has shown to be robust to noise
and outliers without the use of normals, thanks to the robust-
ness of spectral partitioning. Since it produces an explicit
volume segmentation, it also ensures a watertight surface.
However, in regions of missing data, the discretization from
the Delaunay triangulation may be too coarse, giving a poor
approximation to the surface [KSO04, Fig. 6].

The method of [HK06] first estimates an unsigned distance
function |F(x)| from which the reconstructed surface S is
extracted as the minimizer of the following energy:

argmin
S

Z

S
|c(x)| dx+l

Z

S
dS

Provided viable sink/source nodes can be specified, energies
of this kind can be minimized by graph cut optimization.
The optimal cut results in a volumetric segmentation where
the surface is localized in the proximity of samples, where
|F(x)| ⇡ 0. The solution is also smooth, as the second term
of this energy enforces minimal surface area. A limitation
of [HK06] is that source/sink nodes are specified by first
defining a small crust on the exterior and interior through a

dilation operation on point-occupied voxels, where the crust
must reflect the topology of the shape for the graph cut to pro-
duce a topologically-correct surface. However, this method
does not use normals, as it only needs to compute an unsigned
distance. This results in robustness to nonuniform sampling,
noise, and misalignment. Furthermore, the regularization al-
lows for the method to handle missing data, where gaps are
inpainted by minimal surfaces.

4.3. Piecewise Surface Smoothness Priors

Moving from the smooth, closed case to the piecewise smooth
case (possibly with boundaries) is substantially harder as the
ill-posed nature of the problem applies to each sub-feature of
the inferred shape. The features of a piecewise smooth surface
range from boundary components, sharp creases, corners,
and more specific features such as tips, darts, and cusps.
In addition, the inferred surface may be either a stratified
manifold or a general surface with non-manifold features.
Another difficulty stems from the fact that a feature is a
notion that exists at specific scales, such that reconstruction
and feature approximation cannot be decoupled.

4.3.1. Partitioning-based approaches

A first class of approaches consists in explicitly segmenting
the input points with respect to sharp features. We distin-
guish methods depending on whether this segmentation is
performed locally or globally.

The Robust MLS (RMLS) method [FCOS05] reproduces fea-
tures by observing that points lying on two different smooth
components can also be seen as outliers with respect to each
other. They exploit this fact using a variant of the least me-
dian of squares (LMS) regression scheme where the sum-
mation in Equation 3 is replaced by a median. This strat-
egy is used to obtain an initial robust approximation of a
very small neighborhood which is then expanded as long as
the residual is below a given threshold. Such a partitioning
might not be consistent with respect to the evaluation point
x, thus leading to jagged edges. The Data-Dependent MLS
(DDMLS) [LCOL07] method overcomes this by first comput-
ing a singularity indicator field (SIF) estimating the proximity
of each point to a discontinuity as a lower bound of the deriva-
tives of the unknown signal. Then, this SIF is used as weights
to fit local univariate polynomials approximating the sharp
creases. They are used to segment the neighborhoods into
smooth components which are approximated by bivariate
polynomials constrained to interpolate the crease curves if
any. Corners are handled by applying this strategy recursively
to the one-dimensional components. In [WYZC13], a feature
preserving normal field is robustly computed using mean-
shift clustering and a LMS regression scheme to find inlier
clusters with scales from which a variant of RANSAC permits
to both extract the best tangent planes and their associated
connected points. This provides local partitions from which
edge-preserving smoothing is performed by fitting multiple
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quadrics similarly to previous methods. However, the locality
of the feature detection can still generate fragmented sharp
edges.

To reduce crease fragmentation, some approaches favor the
extraction of long sharp features. The method of [PKG03]
uses a multi-scale PCA to detect feature points and con-
structs a minimum-spanning tree to infer a feature graph.
In [DHOS07], RMLS is used to detect sharp creases and grow
an explicit set of polylines through feature points. In [JWS08],
feature curves as extracted by robustly fitting local surface
patches and computing the intersection of close patches with
dissimilar normals. In both techniques, the extracted feature
curves are then used to guide an advancing front meshing
algorithm [SSFS06].

4.3.2. Normal-field based approaches

Here we consider methods which do not make use of an
explicit partitioning but rather tackle the sharp feature recon-
struction problem by decoupling the computation of a sharp
normal-field from the computation of the surface location.

For instance, the Robust Implicit MLS (RIMLS)
method [OGG09] considers that points lying on two
different smooth components can been seen as outliers in
both the spatial and gradient domain. RIMLS uses j�type
M-estimators, replacing the standard least-square criterion
of Equation 3 by a suitable norm robust to outliers – taken
as the Welsch function. The sharpness of the reconstruction
depends on the bandwidth used in the gradient domain, as
well as the sharpness on the input normal field. For noisy
input, the quality of the normal field is improved by applying
a robust normal mollification. We note that this method
produces an implicit surface which is still differentiable
everywhere: it does not generate true discontinuities and
since the analysis is performed locally, a reconstructed
feature may exhibit a varying amount of sharpness (e.g.,
see [ASGCO10, Fig. 6]).

The approach of [ASGCO10] formalizes the sharp reconstruc-
tion problem as global `1 optimizations under the insight that
the set of all neighboring normal differences should be sparse,
with large differences reflecting sharp features. The method
starts by reconstructing a normal field N preserving sharp
features in the shape via `1 sparse reconstruction:

N = argmin
N

Â
i, j

w(n̄T
i n̄ j)kni �n jk , (14)

subject to the constraint 8ikni � n̄ik  g bounding the change
in orientation with respect to the initial normals n̄i. The sur-
face location is then reconstructed assuming a local planar
criteria leading to:

P = argmin
P

Â
i, j

w(ni
T n j)kni j

T (pi �p j)k , (15)

where each reconstructed sample position pi is constrained
to move along its normal direction, that is: pi = p̄i + aini.
These two steps are depicted in Figure 10.

Figure 10: Illustration of the `1 reconstruction method
of [ASGCO10]: the method starts by computing a sharp
normal field from which positions are optimized along the
normal directions.

Similar to the RIMLS approach, the edge-aware resampling
(EAR) method [HWG⇤13] employs a bilateral mechanism to
smooth normals while separating them across sharp features.
Then a variant of the LOP energy [LCOLTE07] is used to
robustly smooth and resample the points away from sharp
features, while a specific bilateral projection operator permits
to upsample the point cloud in the vicinity of sharp edges.
This operator is based on a planar fit similar to Equation 5
but using bilateral weights on normal differences to both
estimate a robust normal direction and average neighbors.
This procedure yields clean and dense point clouds which
can then be safely and much more accurately reconstructed
using, for instance, RIMLS.

4.3.3. Direct meshing

The recent approach of [DCSA⇤13] tackles the feature-
capturing surface reconstruction problem by directly turning
an input point cloud into a low triangle-count simplicial com-
plex. It starts with a simplicial complex filtered from a 3D
Delaunay triangulation of the input points. This initial approx-
imation is iteratively simplified based on an error metric that
measures, through optimal transport, the distance between
the input points and the current simplicial complex, both seen
as mass distributions. This approach exhibits both robustness
to noise and outliers, as well as preservation of sharp features
and boundaries.

4.3.4. Dictionary learning

The work of [XZZ⇤14] casts surface reconstruction as a prob-
lem of dictionary learning. Namely, the goal is to find a
surface mesh whose vertices V are the dictionary atoms, and
whose triangles are the sparse codes such that each point
in the input cloud is approximated by a single point on the
output triangle. This may be formulated as follows:

min
V,B

1
n

n

Â
i=1

kpi �Vbikq
2 +Ereg(V,B) (16)

s.t. 8i kbik0  3, kbik = 1, bi � 0, (17)

subject to manifold constraints on the mesh, where Ereg fa-
vors a uniform distribution in V. The constraints on each bi
enforce pi to map to a point on some triangle. The data fitting
term of kpi � Vbikq

2 uses a sparsity seeking lq norm, with
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Figure 11: Different sources of visibility information. Left:
Scanner Visibility from line of sight information. Middle:
Exterior Visibility using point visibility approximation. Right:
Parity from volumetric surface parity estimation.

q < 1, which is shown useful in both dealing with noise and
outliers, while preserving sharp features (see [XZZ⇤14] Fig-
ure 3). In practice, dictionary learning proceeds by alternating
between fixing V and optimizing for B via edge swaps, and
fixing B and finding V via sparse optimization.

5. Visibility Priors

Visibility has generally been used in three different ways –
see Figure 11. The first class of methods considers how to
use the visibility provided by the scanner that produced the
point cloud – this is used primarily to obtain the line of sight
associated with each sample; see Section 5.1. The second
class of methods uses line of sight that is not provided from
the scanner, but rather approximated from the exterior space;
see Section 5.2. The third class of methods uses visibility to
approximate parity – the number of times a ray intersects a
surface – in order to approximate the interior and exterior, as
discussed in Section 5.3.

5.1. Scanner Visibility

The most common method for using scanner visibility is the
merging of range scans. The approach of [CL96] incremen-
tally constructs a truncated signed distance function (TSDF)
localized to near the input points, built from individual TS-
DFs of each range scan. A scan’s TSDF is determined as the
distance between the scanner head and where a ray, originat-
ing at the scanner head, intersects the triangulated range scan.
By summing the distance functions, and appropriately weight-
ing each SDF by scanner confidence (c.f. Section 2.2.2), the
aggregated TSDF is found at a point x as the TSDF D(x) and
weight function W (x) representing certainty in the distance:

D(x) =
Âwi(x)di(x)

Âwi(x)
W (x) = Âwi(x) (18)

The confidence W is useful in combating noise inherent with
laser scanning, see [CL96, Fig. 4].

The sign of the distance function, indicating the orientation
of the surface can be obtained by performing space carv-
ing through line of sight information, via marking regions

of space observed by the scanner as empty. The approach
of [CL96] uses this information to extract geometry between
regions marked empty and regions that are unseen, where the
assumption is that unseen regions are the interior of the shape.
The interface between seen and unseen regions are reflected
through sign changes in the distance function.

For other forms of missing data, the approach of [CL96]
will typically preserve the hole as it does not enforce any
type of smoothness prior. It is possible to incorporate a mini-
mal surface area regularization to encourage smoothness in
regions of missing data, while using line-of-sight as a data-
fitting term. Existing approaches solve such a formulation
via level-set models [Whi98] and graph cuts [LB07]. The
method of [LPK09] seeks an interior and exterior labeling of
tetrahedra from a Delaunay triangulation of the point cloud,
formulated as a graph cut problem using line of sight informa-
tion. At each tetrahedron, the method accumulates evidence
for belonging to the exterior through line of sight of all range
scans, hence assuming outliers are randomly distributed, this
method is robust to such defects; see [LPK09, Fig. 13].

For scans that contain a high level of misalignment and struc-
tured outliers, the method of [ZPB07] approaches range scan
merging by using the l1 norm for the data term, and the min-
imization of the signed distance gradient magnitude as the
regularization term. This type of regularization, commonly
known as total variation denoising, allows the algorithm
to be robust to structured outliers and scan misalignment;
see [ZPB07, Fig. 4].

The method of [FG11] considers the case when range scans
have widely varying scales – range scans have very different
sampling densities. In such cases, merging multiple scans of
a coarse scale with a single scan at a fine scale can overly
smooth out the fine-grained detail. [FG11] extends [CL96]
by constructing a hierarchical signed distance field. This
permits retaining the high resolution detail of fine-scale scans,
while capturing the more general scene present in coarse-
scale scans. This was recently extended in [FG14] by using
a continous level of scale, where the surface is represented
as a sum of Gaussian basis functions centered at the points,
and each Gaussian’s bandwidth is determined by the point’s
scale.

5.1.1. Dynamic Reconstruction

With recent advancements in interactive depth acquisition,
such as the Microsoft Kinect or Intel’s RealSense, the TSDF
has become the predominant representation for performing
dynamic reconstruction with such devices. This can be seen
in the pioneering KinectFusion work [NDI⇤11], which ex-
tends [CL96] by incrementally fusing acquired depth scans
into a TSDF, using the implicit representation to improve the
registration of depth scans into the global scene. Follow up
work has focused on improving the scalability, for instance
through sparse voxel hashing [NZIS13], as well as improving
the registration through extraction and matching of stable
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(a) (b) (c)

Figure 12: The point cloud “hidden point removal” operator
from [KTB07] applied to an input (a) determines the subset
of visible points as viewed from a given viewpoint (b). Given
this labeling, a view-dependent on-the-fly reconstruction (c)
can be obtained by retaining the topology of well shaped
triangles from the convex hull of the spherical inversion.

and robust contour-based features [ZK15], helping to mini-
mize drift in long capture periods. Recent work [ZDI⇤15] has
demonstrated how to use the high-resolution images captured
in these devices to improve the geometric fidelity of the fused
low-resolution depth images via shading-based refinement.
Using a Lambertian reflectance model, they simultaneously
estimate a spatially-varying albedo, scene luminance, and
signed distance directly on the TSDF, which is demonstrated
to provide robustness compared to other image or mesh-based
representations (see [ZDI⇤15] Figure 8).

5.2. Exterior Visibility

It is possible to exploit visibility even in the absence of ex-
plicit information from the scanner. Given a chosen camera
position, point set visibility [KTB07] determines the portion
of the point cloud that is not self-occluded. First, a spherical
inversion of the point cloud with respect to the given query
point is computed. Then, visible points are simply identified
as those that lie on the convex hull of this set – see Figure 12.
While [MTSM10] extended this method to handle moder-
ate levels of noise, the input point cloud must respect strict
sampling assumptions to produce satisfactory results.

Occlusion culling. The method of [CCLN10] builds upon
these ideas and reconstructs a watertight surface by carving
the space occluded by the point cloud when observed by a
sufficiently large and randomly sampled set of directions.
Similarly to [KTB07], the input cloud has to satisfy certain
stringent sampling conditions. Conditions on sampling are
relaxed in [CLCL11] where inconsistencies are detected by
observing that if one point’s Voronoi pole [AB99] lies in the
exterior, the other Voronoi pole should be in the interior. If
both are occluded or visible via [KTB07], this indicates an
inconsistency. Unfortunately, since the method uses Voronoi
poles, which cannot always be robustly estimated in the pres-
ence of missing data, its applicability remains limited.

Figure 13: The approach of [MDGD⇤10] first computes a
robust unsigned distance function (left), and constructs an
interior/exterior labeling (middle), and associated confidence
(right) of the labeling. Note that low confidence is associated
with regions of missing data, such as the bottom of the scan.

Cone carving. The method of [SSZCO10] hypothesizes that
each point in the cloud must have been observed from the
scanner head. It computes high-likelihood visibility cones
originating at each sample and takes the boundary of the
union of all cones as an approximation to the surface. This
method can be used to infer the geometry in large regions
of missing data for challenging scenarios, i.e. two thin, spa-
tially close, and undersampled surface sheets – producing
topologically clean surfaces.

5.3. Parity

An alternative way of using visibility is to define a measure
of parity. Assuming a closed surface, the parity for a given
ray (point and direction) is defined as the number of times
the ray intersects the surface – if an odd number of times, this
indicates the point lies in the interior, otherwise the point is
in the exterior. This general idea can be extended to a point
cloud, giving rise to a notion of uncertainty in whether or not
a point belongs in the exterior or interior.

The approach of [MDGD⇤10] uses parity for estimating the
sign of a robust unsigned distance function. Namely, the
authors first construct a scalar field defined by the following
unsigned distance function:

dU (x) =

s
1
K Â

p2NK(x)
||x � p||2 (19)

A crust is then built around the surface from dU , followed by
stochastic ray shooting of the crust throughout the volume
in order to estimate the sign of dU . The uncertainty in this
estimate is given by 2max(e,o)/r �1 relating the number of
even e or odd 0 intersections with the crust and the number
of rays r. This uncertainty estimate is used in constructing
an implicit function, consisting of a data-fitting term and
a smoothness term, such that high smoothness constraints
will be assigned to regions that have high uncertainty (i.e.
high disagreement in parity). Figure 13 shows the unsigned
distance function for a challenging point cloud, along with
its sign estimate and confidence in sign.
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This approach is highly robust to noise, outliers, and missing
data, and since its regularization is spatially-varying accord-
ing to the uncertainty in parity, it will not over smooth the data
where it exists. However, since smoothness is enforced via a
Laplacian regularization, this could still result in poor behav-
ior in regions of missing data, giving the incorrect topology.
The method of [SY12] addresses this by performing space
carving, guided by a parity estimate, to only carve out space
where there does not exist highly confident interior regions.
This can better retain topological features such as tunnels,
where smoothness priors may erroneously over smooth and
fill these regions in.

A drawback of [MDGD⇤10] is that the noise/outlier level
must be known apriori via specification of K. The method
of [GCSA13] extends [MDGD⇤10] by adapting to vary-
ing noise levels within the point cloud. The key idea be-
hind [GCSA13] is to find the smallest neighborhood K such
that the apparent dimension defined via dU matches that of a
2-manifold. From this, the method produces a sign estimate
over a random collection of line segments in the volume. To
determine the parity for each line segment, rather than using
a crust as in [MDGD⇤10], they look at all local minima in
the unsigned distance along the segment, flip the function
according to the local minima, and of all possible flipped
minima choose the one that is smoothest.

Tomographic reconstruction. The recent work of [NOS15]
simulates the process of computed tomography to perform
surface reconstruction. Namely, for a given set of random
exterior views, a sinogram image is generated which mea-
sures, at each pixel, the thickness of the volume for a ray cast
through the pixel. Parity is used as a means to determine valid
pixels, as missing data may result in erroneous thickness mea-
sures. From this set of sinograms, tomogram reconstruction
is then performed to recover the surface.

6. Volumetric smoothness

In order to handle challenging forms of missing data, a com-
mon way to regularize surface reconstruction is to enforce
that the local shape thickness of a surface (i.e. a measure-
ment of its local volume) varies smoothly. For watertight
shapes, local thickness is measured by the radii of maximally
inscribed spheres of its medial axis transform. However, as
the medial axis is an alternative full representation of the
shape, determining the medial axis over which to perform
these measurements is an inherently difficult problem – as
difficult as the reconstruction problem itself.

Skeletal regularizers. The ROSA method from [TZCO09]
assumes that the medial axis of a shape can be approximated
by curves instead of surfaces, that is, by a curve-skeleton.
For organic geometry, a reconstruction of the skeleton can
be obtained even in the presence of missing data by exploit-
ing the redundancies of local rotational symmetry. ROSA
proceeds in three-steps (see Figure 14): first, the distance

(a) (b) (c) (d)
Figure 14: (a) Curve-skeleton prior for reconstruction from
an incomplete point cloud [TZCO09]. (b) The cylindrically
parametrized point-to-skeleton distance where missing data
is marked by black pixels. (c) In parameterization space,
the distance is inpainted into regions of missing data by
minimizing a thin-plate energy. (d) The inpainting and the
inverse parameterization allows the insertion of additional
samples to complete the geometry.

from the cloud to the curve-skeleton is cylindrically parame-
terized using the curve-skeleton itself as a parameterization
domain; then, an inpainting of the distance function is per-
formed in image space, the inpainted distance can be con-
verted to a 3D sample by using the inverse parameterization;
finally, the inpainted point cloud can be processed by one
of the algorithms in Section 4. It is important to note that
a cylindrical parameterization prior constrains the class of
shapes for which a reconstruction is possible to one having a
star-shaped cross section. In particular, joint regions do not
satisfy this requirement for which consequently a traditional
surface smoothness prior must be employed. While the skele-
ton extraction method in [TZCO09] suffered the limitation
of requiring oriented normals, subsequent research showed
how it is possible to extract skeletons directly from unstruc-
tured point clouds [CTO⇤10] and even in the presence of
outliers [HWCO⇤13].

Man-made skeletal geometry. To handle higher amounts
of missing data, the approach of [LLZM10] presents a de-
formable model for reconstructing skeletal curves of man-
made shapes composed of a collection of tubular components
such as metal rods and canes. The arterial snakes model is ob-
tained by sweeping a fixed-topology cross section through the
input point cloud. The sweep operation is guided by a smooth
version of the ROSA vector field [TZCO09] and starts simul-
taneously in all regions of high confidence (i.e. tubular areas
away from joints). At first, simple circular cross sections
are created by performing simple least squares circular fits.
Sweeping is alternatively executed with a topology correction
step to deal with colliding sweeping fronts and to model joint
regions. The simple circular cross-sections are then optimized
to fit the input point cloud while simultaneously satisfying a
number of priors including curve-skeleton smoothness, pla-
narity of cross sections and centricity of skeletal curves.

Organic skeletal geometry. Tubular components exhibiting
piecewise smooth radii variations are also suitable to model

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.



Berger et al. / A Survey of Surface Reconstruction from Point Clouds

organic and natural geometry, in particular trees [RFL⇤05,
NFD07, LYO⇤10]. In tree reconstruction, biological con-
straints are exploited to simplify the problem and increase
resiliency to data imperfections. The focus is on the recon-
struction of tree branches and recovering the full topological
skeletal structure of the tree. The skeleton is assumed to be
a directed acyclic graph rooted at the ground plane; limbs
are typically piecewise smooth and their thickness almost
everywhere smoothly varying, where a pipe-model [RFL⇤05]
controlling thickness variations can be used at branching lo-
cations. While a pair of orthogonal images have been shown
sufficient to hallucinate the 3D information with the help
of some user interaction [NFD07], recent research has at-
tempted to model the tree structure directly from 3D point
clouds [LYO⇤10].

Medial priors. Several methods exist for imposing volumet-
ric smoothness on the medial axis of the shape, supporting
a much broader class of shapes. The method of [BS12] ap-
proaches reconstruction by segmenting the point cloud into
volumetric regions and in each region taking the union of balls
to obtain a coarse surface representation. The union of these
regions then serves as an initial surface for the deformable
model method of [SLS⇤06], to recover fine details. Key to
their segmentation is a distance measure defined directly on
the point cloud that robustly measures the likelihood of a me-
dial ball being generated by any pair of points. This method
is robust to noise and missing data, particularly when there
exists nearby surface sheets, but can fail in regions where
parts of the surface corresponding to medial sheets are miss-
ing. The method of [TOZ⇤11] extends the ideas in [TZCO09]
to modeling local volume thickness directly from the (inter-
nal) medial axis. As incomplete point clouds do not possess a
well defined medial axis, [TOZ⇤11] proceeds by using a level-
set optimization where the intermediate solution (i.e. an iso-
surface) is watertight, thus allowing the computation of me-
dial measurements. Volumetric smoothness is then achieved
by inserting an energy, in addition to the previously discussed
fitting and surface smoothness terms, that attempts to perturb
the surface to achieve a provided local thickness measure-
ment. The target thickness value is obtained by diffusing
the computed medial radii values on the object surface. This
technique can prevent the formation of unnecessary holes
in thin surfaces due to under-sampling, as the formation of
a topological feature would correspond to a quickly vanish-
ing medial radii. Furthermore, since the medial axis encodes
local reflectional symmetry, this allows for information to
be effectively propagated throughout the surface permitting
the reconstruction of challenging data like the geometry of
the highly concave areas in a vase – see [TOZ⇤11, Fig.5].
While highly general, the instability of the medial axis to
surface-perturbations and the complexity of its computation
limit the applicability of the method.

Figure 15: (left) CAD models are often obtained by con-
structive solid geometry as a composition of simple prim-
itives: planes, spheres, cones, etc. (middle) Randomized
search [SWK07] can be used to detect such primitives in the
point cloud data even in the presence of noise, outliers and
missing data. (right) The primitives can then be extrapolated
to obtain a watertight surface from incomplete data [SDK09].

7. Geometric Primitives

The detection of simpler geometric structures in a point cloud
has shown to be particularly beneficial for surface recon-
struction. Knowledge of a surface that can be described as
the composition of canonical geometric primitives can be
extremely helpful for denoising and filling in missing data.
Not all shapes adhere to this prior, but typically CAD and
architectural models can be described in this manner.

Detecting primitives. The method of [SWK07] is an effec-
tive method for detecting geometric primitives in point sets.
It uses RANSAC to robustly find planes, spheres, cylinders,
cones, and torii, through an efficient means of sampling points
for fitting and evaluating scores, both based on locality sensi-
tive methods. Importantly, this method produces primitives
that partially match the point cloud – the collection of these
shapes can then be used for reconstruction. We note that
although this method can detect a small set of easily parame-
terizable shapes, efficient pose detection methods for arbitrary
shapes can also be used [DUNI10].

Primitive consolidation. The work of [JKS08] takes a set
of detected plane primitives and performs reconstruction by
aligning and merging the boundaries of adjacent primitives.
More specifically, the boundaries of the plane primitives are
extracted and an optimal configuration of boundaries is found
by imposing a data-fitting term to the original boundary as
well as a term that favors the snapping of boundary points
and corner points of neighboring planes. This method can
reconstruct CAD and architectural models alike, producing
a surface mesh that retains the detected primitive structures.
However, the method requires that adjacent primitive bound-
aries should be geometrically close to each other, which may
not be satisfied if primitive detection is noisy, or if data are
missing. The method of [SDK09] resolves this by explicitly
extrapolating shape primitives (of all kinds) and forming the
resulting output as the intersection of the extrapolated primi-
tives. This extrapolation of primitives is formulated as a graph
cut problem, where in addition to a standard minimal surface
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area term, a data fitting term is used that ensures the surface
normal at a given point (the edge in the graph) is aligned
with all intersecting primitives at that point. This does not
constrain the primitives in a local manner: primitives whose
boundaries are far away can eventually meet up and intersect
with this method, as illustrated in Figure 15. The approach
of [NSF14] is similar to [SDK09], but employs higher-order
potentials in a conditional random field model to complete
extracted contours which enforce scene relationships between
wall, ceiling, floor, and internal plane primitives.

Augmenting primitive information. Although the method
of [SDK09] can robustly handle missing data, it can be sensi-
tive to noisy primitives which may fail to define a coherent
model when extrapolated. The work of [CLP10] instead uses
line of sight information to help penalize poorly extrapo-
lated primitives. Namely, this work takes the set of primitives
as well as an additional set of primitives formed near the
boundaries of the input primitives and constructs a cell com-
plex reflecting the extrapolation of the primitives. An energy,
similarly solved via graph cuts is then formed, where the data-
fitting term uses line of sight information to penalize facets in
the complex lying in regions marked empty via space carving.
The method of [RKMP13] uses the point cloud, line of sight,
and edge features in corresponding RGB images to infer
constraints for finding the boundary of each input shape prim-
itive, consequently producing the reconstructed surface. In
addition to using planar primitives and line of sight, a recent
approach [BdLGM14] augments the set of detected primitives
by ghost plane hypotheses supported by the occluding edges
of primitives. Surface reconstruction is then formulated as
a discrete optimization problem based on both detected and
hypothesized planes. Departing from the usual area-based
regularization, the reconstructed surface is regularized with
respect to the length of sharp creases and number of corners,
which is shown to better capture low surface complexity of
man-made environments such as buildings.

Volumetric primitives. In the case of indoor scene recon-
struction, an alternative to surface primitives is to employ
volumetric primitives to model the interior space. In [XF12]
the volume is modeled by fitting cuboids to the empty space
defined by the boundaries of the scan data. A set of 2D con-
structive solid geometry (CSG) vertical slices are built by
incrementally adding and removing candidate rectangles that
best model the interior – a function of line of sight informa-
tion. A similar process is used to stack up these slices to build
a set of volumetric primitives, producing a 3D CSG model
that composes the interior.

Hybrid methods. A limitation of primitive-based methods is
that they do not degrade gracefully if certain portions of the
shape are poorly explained by a primitive, or if the shape de-
tection process is imperfect. The method of [LA13] resolves
this by introducing a hybrid approach to reconstruction: shape
primitives are used to resample the point cloud and enforce
structural constraints in the output, such as sharp features

between adjacent primitives and corners, while a visibility-
driven prior is employed in regions where a primitive fit is
not found. A similar approach was proposed in [vKvLV13],
where planar polygons of sufficient fitting quality are ex-
tracted and a conforming, constrained Delaunay triangula-
tion is constructed on the polygons and the remaining points
so that the polygons are preserved in the triangulation. A
visibility-driven graph cut problem is then solved, where the
extracted polygon primitives are retained, while the rest of
the points use line of sight information for reconstruction.

8. Global Regularities

The global regularity prior typically takes the form of three ba-
sic properties properties: symmetry, repetition, and canonical
relationships. Commonly associated with high-level shape
analysis [MWZ⇤13], these priors have also shown to be of
great use in handling severe defects in a point cloud.

8.1. Symmetry

Symmetry is a well-studied problem in shape analy-
sis [MPWC13]. Symmetry detection is focused on finding
transformations on the shape that maps the entire shape, or a
subset of the shape, onto itself. Finding such transformations
can be extremely useful for surface reconstruction in handling
noise and missing data.

The method of [PMW⇤08] finds repeating elements (small
subsets of the point cloud) that can be mapped onto one an-
other by local similarity transformations. They show that
the repetition of elements in a point cloud manifests as a
lattice structure in a suitable transformation space. In particu-
lar, partial matches become prominent in this transformation
space, hence repeating elements of varying levels of missing
data can be robustly detected and used to reconstruct incom-
plete regions. The method of [LCDF10] finds symmetries
in incomplete point clouds by constructing an affinity ma-
trix that measures how symmetric all pairs of points are. The
key insight made by [LCDF10] is that this matrix should be
block-diagonal for many types of symmetries – i.e. rotational,
bilateral, intrinsic. By considering powers of this matrix, the
authors demonstrate how incomplete matches become more
pronounced, allowing for a wide range of detected symme-
tries in challenging point clouds containing noise, outliers,
and missing data. These simpler forms of symmetry can be
generalized to a notion of subspace symmetries [BWM⇤11],
where a symmetry group is defined by a set of local transfor-
mations as well as a low-dimensional shape space, in order
to handle more general types of shapes.

8.2. Structural Repetition

In certain cases it is difficult to find repeating elements in a
point cloud through symmetry transformations. Instead, di-
rectly seeking repeating elements in a transformation-free
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input scan ransac globfit

Figure 16: From a set of misaligned scans shown on the
left, the primitives extracted via [SWK07] (middle) retain the
misalignment. Globfit [LWC⇤11] (right) is able to correct
misalignment by enforcing consistent canonical relationships
across primitives.

manner can provide us with more flexibility in the reconstruc-
tion process.

The method of [ZSW⇤10] utilizes this observation for recon-
struction of building facades in noisy terrestrial LiDAR scans,
where occlusions from vegetation or other objects result in
significant missing data. For a given type of facade element,
each elements’ planes are detected via [SWK07] and the in-
dividual elements are registered at a per-plane level. Once
registered, denoising is performed across all elements via the
individually registered planes and the consolidated facade el-
ement is projected back onto each instance for reconstruction.
The mutual use of information across all elements allows one
to robustly remove noise and fill in missing data.

A drawback to the approach of [ZSW⇤10] is the strict re-
quirement of user interaction. This limitation was addressed
in the work of [SHFH11] by adaptively partitioning facades.
The approach of [WS12] takes the consolidated point cloud
of [ZSW⇤10] and segments it into depth layers and uses a
grammar definition to individually segment each depth layer
into facades via the optimal sequence of grammar derivations.
Facades may be appropriately extruded at each depth layer
to obtain a polygonal representation of the building, at the
possible expense of detail in the geometry due to the lack of
expression in the shape grammar.

Another means of detecting regularity in incomplete scans is
to find regularity in associated RGB imagery, and propagate
this information back to the 3D scan to perform reconstruc-
tion. The approach of [LZS⇤11] achieves this by decompos-
ing the RGB image into depth layers via the 3D scan, and
upon detecting symmetries with respect to each layer, consoli-
dates all element instances to robustly denoise and fill in miss-
ing data across the instances. A recent approach [NSC14]
uses structural relationships in an RGB image to “lift” parts in
the image which were not scanned to recover 3D geometry.

8.3. Canonical Relationships

Another useful prior on global regularities is the canonical
intra-relationship between parts of a scene, or parts of a shape.

Such relationships can be parallel or coplanar parts, recurring
orthogonality between planes, concentric or co-axial parts,
and regularity in orientation. This often arises in CAD models
due to fabrication restrictions and budget considerations, as
well as urban environments due to functional constraints.

Manhattan constraints. Perhaps the simplest form of a
canonical relationship is the Manhattan-world (MW) as-
sumption: all planar primitives in a scene belong to one
of three mutually orthogonal planes. This can simplify
facade reconstruction, as in the aforementioned methods
of [ZSW⇤10, SHFH11, WS12, LZS⇤11]. In [VAB12], MW
is used for building reconstruction by first classifying points
by shape type – wall, edge, convex corner, or concave corner
– and clustering points of a similar type. After constructing
MW-aligned bounding boxes on all clusters, volume regions
are found via parity, where interior regions of consistent parity
are considered to belong to the building’s volume. As edges
and corners are detected via relationships between walls, this
method is robust to missing data, but may be sensitive to
noise for adjacent wall configurations.

Consolidating relationships. The method of [LWC⇤11] re-
constructs CAD shapes consisting of a much richer variety of
canonical relationships compared to MW. Namely, starting
from an initial set of detected primitives [SWK07], parallel,
orthogonal, angle-equality, and distance-equality relation-
ships are individually detected and carefully selected so as
to not cause any relationship conflicts. By enforcing these
relationships, structured noise such as scan misalignment can
be effectively handled – see Figure 16.

To handle large-scale scenes, the method of [OLA15] fo-
cuses on enforcing parallel and orthogonality constraints
in the detection of planes. They progressively extract and
regularize planes according to these constraints in order to
confidently extract relationships early on, helping to resolve
uncertain relationships later in the optimization. Regulariza-
tion is performed by finding a single plane jointly over all
parallel segments and their corresponding orthogonal seg-
ments. The RAPTER method [MMBM15] similarly seeks
a regular arrangement of planes, however as input, they ad-
ditionally take a user-prescribed set of angles which subsets
of pairs of planes should conform to. Plane relationships are
found by finding ordered pairs of planes such that one plane
is able to “explain” another (i.e. through a rotation). Their
problem formulation is specifically designed not to penalize
plane arrangements explained by a small minority of points,
which would otherwise be dominated by more prominent
relationships.

Canonical building relationships. The work of [LWC⇤11]
was extended to the case of reconstruction of buildings from
2.5D scans in [ZN12]. The basic observation in this approach
is that there exists three fundamental type of relationships in
buildings: roof-roof relationships that consist of orientation
and placement equalities, roof-roof boundary relationships
that consist of parallelism and orthogonality relationships,
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and boundary-boundary relationships that consist of height
and position equality. Upon finding the relationships via clus-
tering (i.e., clustering similar angles, equality, etc..), they are
used to inform the primitive fitting method so that the primi-
tives simultaneously fit to the data and to the relationships.

9. Data-driven priors

The previously discussed priors may not always be appropri-
ate and in practice, certain shapes may simply fail to adhere
to these priors. A more flexible method of specifying a prior
is through a data-driven means: using a collection of known
shapes to help perform reconstruction. This is beneficial for
scene reconstruction, where leveraging a database of objects
is useful for inference when there is large missing data as-
sociated with the scans. For the reconstruction of individual
objects, data-driven methods are useful by constraining the
reconstruction to belong to a suitable shape space.

Scene reconstruction by rigid retrieval. The method
of [SXZ⇤12] approaches this problem by first semantically
segmenting the point cloud and then finding a complete model
to replace each segment. More specifically, given a set of
scans and RGB images, a conditional random field class la-
beling problem is formulated, balancing two objectives: a
data fitting term based on a database of class-labeled objects
and a smoothness term favoring local consistency in appear-
ance and geometry. A training set of point clouds is built
from virtual range scans of objects in various poses. This
allows the model to be robust with regard to missing data, as
the input should map to one of these poses. A random forest
classification is built over this training set allowing for the
closest complete object to an incomplete scan to be retrieved.

Recent work has extended this idea to the real-time scanning
regime. The method of [KMHG13] interactively matches a
merged point cloud against a large collection of models in a
database, all of which have been virtually-scanned to best re-
flect the missing components of the input data. Geometric de-
scriptors based on the distribution of surface normals are then
quickly computed and efficiently matched, to permit interac-
tive retrieval. The method of [LDGN15] has extended this
to the more general setting of matching arbitrary models in
scene-based scanning via matching directly against the TSDF
of the captured scene, rather than the merged point cloud,
eliminating the segmentation requirement of [KMHG13].

Scene reconstruction by non-rigid retrieval. A natural ex-
tension of reconstruction by retrieval is to consider non-rigid
transformations of the template geometry to the input data.
This is addressed in [NXS12] where upon finding a certain
semantic class for a segmented object in the point cloud,
every model is non-rigidly deformed via localized scale de-
formations. The best match is identified as the model with the
smallest registration residual. This method approaches clas-
sification differently by building a semantically-labeled seg-
mentation through incremental selection of oversegmented

surface patches. A patch is chosen if the resulting merged
object has high confidence in its label. This is particularly ef-
fective in noisy, outlier-ridden highly cluttered environments
– see Figure 17. The authors of [KMYG12] extend these ideas
by noting that in indoor environments it is common to have
the same object in multiple poses. Their technique incorpo-
rates a deformation model directly into the segmentation and
classification problem, rather than as a post-processing step.
A deformation model is learned over multiple incomplete
scans for a given object, allowing the object to be identified
by incomplete observations of its parts. Given an input scan, it
is first over-segmented and then iteratively merged into parts,
where parts are matched against learned local deformation
modes of a model. Part relationships are then used to verify
the global quality of a match. Compared to [NXS12,SXZ⇤12],
this permits the reconstruction of a broad set of objects, less-
ening the need for a large object database.

Object reconstruction by part composition. A disadvan-
tage of the above approaches is that the granularity of the
reconstruction is at the level of a whole model, that is, com-
bining parts from different models is not possible. The ap-
proach of [SFCH12] overcomes this by combining individual
parts from different objects to best compose the input scan.
Namely, starting from a database of segmented models, 3D
data is combined with RGB imagery to find candidate parts
from the database matching the input. In particular, the use of
RGB data can help find parts that are completely missing in
the 3D scan. The best combination of candidates that closely
match the geometry, while consisting of a small intersection
with each other, composes the final model.

Reconstruction in shape spaces. A different line of data-
driven methods constrains the reconstruction to a shape space,
greatly regularizing the problem. For instance, [BNB13] per-
forms foliage reconstruction by interleaving the registration
of a set of segmented leaves to a single exemplar leaf with
the construction of a statistical shape model from the recon-
structed leaves in order to refine their geometry. The method
of [ZYFY14] reconstructs flower petals by instead starting
from a predefined shape space of exemplar petals and maps
each segmented petal into the space by enforcing botany-
specific priors (consistent roots, similarity in adjacent petals)
with respect to the model parameters.

10. User-Driven Methods

Incorporating the user in the process of surface reconstruc-
tion has shown to be extremely beneficial in dealing with
challenging point clouds. Many user-driven methods seek a
balance between level of intuition and user feedback which is
useful for the reconstruction technique. Successful methods
tend to tightly integrate the reconstruction algorithm with the
form of user interaction. Recent methods couple the scanning
process with the reconstruction method, where the user is
interactively involved in the acquisition.

Topology cues. The method of [SLS⇤07] presents a topology-
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Figure 17: From the incomplete and cluttered scan on the left, the approach of [NXS12] first oversegments the point cloud
(mid-left), then iteratively merges segments which agree on class labels (mid-right), and finally deforms a set of detected models
to best resemble their segmented objects (right).

(a) (b) (c)

Figure 18: Given an input point cloud, simple planar prim-
itives identified by RANSAC (a) may result in coarse and
incomplete geometry (b). By exploiting the user’s high-level
knowledge while remaining faithful to the input data (b) a
constrained optimization allows to recover a high-quality
model (c).

driven interaction scheme. The approach seeks watertight
and topologically correct reconstructions through the auto-
matic detection of topologically weak regions. These low-
confidence regions are then presented to the user to be re-
solved, via scribbles on a 2D tablet, which translate to interior
and exterior constraints, or potentially no constraints if the
user deems the region valid. The reconstruction is then up-
dated, and the process repeats through further user edits.

Morfit [YHZ⇤14] allows the user to interactively edit a skele-
tal representation of the surface to better reflect the overall
topology of the surface. Starting from an initial representa-
tion [HWCO⇤13], the user can break and mend branches in
the skeleton to accurately model the shape’s topology. Criti-
cal to the technique is an efficient scheme to reconstruct the
surface from the skeleton. For each branch in the skeleton,
this is achieved by interpolating well-sampled curve profiles
across the remainder of the branch, while simultaneously
fitting the interpolated profiles to the input data.

Structural repetition cues. For point clouds which exhibit
a high amount of structural repetition, yet whose structure
is challenging to extract, it is advantageous for the user to
provide structural cues to guide the algorithm. In [NSZ⇤10]
the authors present a technique to rapidly reconstruct archi-
tectural models, such as those acquired from the scanning of
large urban environments. The key idea of the approach is
to enable the user to define and manipulate simple geomet-

ric building blocks in the form of axis-aligned rectangular
cuboids named smartboxes. The user sequentially places the
smartboxes into the scene, where contextual regularities and
symmetries between boxes are automatically captured and
used to expedite the fitting process. The final placement of
the user manipulated primitives is determined through an
interactive optimization procedure that automatically adjusts
the location, orientation, and sizes of the box primitives by
considering how the cuboid fits the data and its relationship
in context with previously placed boxes.

Primitive relationship cues. Another important structural
cue is with respect to primitive relationships: if a shape is
composed of a set of adjoining primitives – planes composing
a building – then user feedback on primitive arrangements
can be highly beneficial in challenging point clouds. The
approach of [ASF⇤13] follows this by reconstructing a closed
polygonal model through snapping each polygon into align-
ment with neighboring primitives. This is achieved by solving
a combined optimization problem involving both local and
global spatial constraints – see Figure 18. The user can pro-
vide two forms of feedback. A polygon edit mode allows
the user to refine existing polygons by editing their bound-
aries and merging multiple disconnected polygons. A polygon
sketching mode allows the user to provide new polygons for
regions where automatic plane detection failed due to defects
in the data. For both modes, the user has to only provide
coarse edits, as the automatic snapping optimization is used
to align polygon boundaries based on both local and global
relations between primitives.

Interleaved scanning and reconstruction. Recent work
seeks to integrate the user with both scanning and recon-
struction, where these processes are interleaved. The method
of [YSL⇤14] allows for the user to interact with the objects
being scanned, where assuming that the user actions result
in smooth non-rigid motions of the objects, the method can
interactively update the reconstruction as the user scans and
modifies the scene. This allows for the acquisition and recon-
struction of “hidden” parts of objects, as the user may now
expose them. The approach of [WSL⇤14] prompts the user
for next-best views as the user is scanning the object. This
is accomplished through a Poisson-based uncertainty field,
estimating regions in which the reconstruction algorithm is
least confident.
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11. Evaluation of Surface Reconstruction

Given the wide diversity in reconstruction methods, the man-
ner in which one reconstruction is evaluated compared to
another may differ. In this section we look at different evalua-
tion criteria used in the surface reconstruction literature.

Geometric Accuracy. Perhaps the most common method of
evaluation is to directly compare the geometry of the recon-
struction output to the ground truth surface from which the
scan was obtained. Hausdorff distance, mean distance, as well
as measuring error in normals are common geometric error
measures in this scenario. However, it is often challenging to
obtain the notion of a ground truth surface from a physical
shape. Hence, computational representations of shapes are
typically used as the ground truth [Kaz05, MPS08], where
synthetic scanning of the digital representation can be used in
place of an actual scanner [BLN⇤13]. In some cases, a direct
comparison to ground truth data is insufficient when targeting
reconstruction under an error tolerance or comprising several
levels of details (LODs). This suggests evaluating instead
the complexity-distortion tradeoff, or the capability to gener-
ate LODs that are both controllable via intuitive parameters
and meaningful for the targeted applications. Such evalua-
tion criteria consist of the coherence of LODs across the
scene, the ability to incrementally refine the geometry, and
the level of abstraction provided by the LODs. See [VLA15]
for recent work in this vein for city-scale aerial reconstruc-
tion. The process of abstraction creates recognizable visual
depictions of known objects through compact descriptions in-
volving a handful of characteristic primitives such as curves,
icons or solids. Abstraction thus goes beyond simplification
as involves filtering, smoothing, and reinforcing the regular
structures.

Topological Accuracy. Another important evaluation criteria
is the recovery of higher-level information of the shape and
in particular, its topology. Certain methods are concerned
with reconstructing a shape with the correct genus [SLS⇤07],
while other methods that focus on recovering a skeletal repre-
sentation of the shape are more concerned with the topology
of the underlying skeletal structure – recovering important
branches and junctions in the skeleton. Such a topological
structure is of particular importance for structural shape edit-
ing applications [LLZM10]. However, we note that most
skeleton-based methods are often concerned with qualita-
tive evaluation, hence it can be difficult to compare different
skeleton extraction methods.

Structure Recovery. Beyond geometry and topology it is
also sometimes desirable to recover the structure during re-
construction. Beyond the simple notion of scene decomposi-
tion, the term structure has a broad meaning, ranging from the
dimension of geometric entities (manifolds, stratified man-
ifolds, non-manifold configurations) to adjacency relation-
ships through canonical geometric relationships (parallelism,
co-planarity, orthogonality, concentricity, co-axiality) and
regularities (repetitions, symmetries). In addition, controlling

the structure encompasses recovery, preservation, and rein-
forcement. Structure is especially relevant when dealing with
large-scale scenes, not just individual objects, where scenes
are composed of a collection of objects which may have
structural interrelationships. Structure as well as global regu-
larities are also a means to improve robustness and resilience
to missing data and go beyond reconstruction to consolidation
and abstraction.

Reproducibility An important consideration in evaluating
the quality of a reconstruction method is its level of repro-
ducibility. Perhaps the simplest means of determining re-
producibility is whether or not certain methods are made
publicly available or have been implemented by a third party,
as this can be an important indicator of implementation com-
plexity and algorithm robustness. For instance, Poisson sur-
face reconstruction [KBH06] is a widely used surface recon-
struction method as the code is highly stable and reliable.
The issue of reproducibility and provenance is well studied
in other areas, including visualization and scientific work-
flows [SFC07, FKSS08], and it has been shown to be useful
for studying 3D model construction [DKP11]. Given the in-
creasing complexity of reconstruction algorithms, the issue
of reproducibility is likely to be of increasing importance.

12. Conclusions

The area of surface reconstruction has grown from methods
that handle limited defects in point clouds while producing
detailed reconstructions, to methods that handle substantial
artifacts and produce high-level surface representations. Our
survey provides insight into this wide array of methods, high-
lighting strengths and limitations that currently exist in the
field. In doing so, our survey should also point the way to-
wards future work across all of the different priors – making
potential connections across input assumptions, point cloud
properties, and shape classes that have not been previously
considered.

Hints and solvers. In our survey of recent work we ob-
served how the surface reconstruction problem is often tack-
led through either increasingly sophisticated solvers or richer
reconstruction hints that make the problem easier to solve.
For example, the availability of oriented normals requires
only a linear solve through the Poisson reconstruction ap-
proach [KH13], while unoriented normals require solving for
a generalized eigenvalue problem [ACSTD07]. Other hints
such as generalized parity requires two linear solves: a first
solve to consolidate the local hints as sign guesses, and a sec-
ond solve to recover a signed implicit function [GCSA13].

Innovations in acquisition. As 3D acquisition methods con-
tinue to increase in variety and popularity, surface reconstruc-
tion will continue to be an important component in acquiring
real-world shapes. To provide some historical context, con-
sider the rise in accessibility of the optical laser-based trian-
gulation scanner: since such a device provides line of sight
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information, this resulted in a whole category of visibility
priors (Section 5) such as VRIP [CL96]. A more recent ex-
ample is the Microsoft Kinect: the real-time capture of depth
and RGB imagery has resulted in a new slate of techniques
for reconstructing indoor scenes through data-driven means
(Section 9) such as [SXZ⇤12, NXS12, KMYG12], since ob-
jects in indoor environments tend to satisfy such priors. As
novel acquisition sensors and modalities are developed, it
is likely that surface reconstruction will become even more
specialized in order to handle the nuances of the acquisition
type. In this setting our survey should prove useful in the
development of novel priors that need to handle such new
acquisition methods.

Acquisition ubiquity. Beyond the increasing variety of sen-
sors, we are also witnessing a rapid evolution of the acqui-
sition paradigms. The acquisition of our physical world can
now be complemented by exploiting the massive data sets
shared online, referred to as community data. We also predict
a future where geometric data are acquired through dissem-
inated sensors, yielding disseminated data. This evolution
translates into a paradox: despite expectations that technologi-
cal advances should improve quality, these data are hampered
with high variability and unprecedented amount and variety
of defects. In addition, we are observing a trend brought on by
the speed of technological progress: while many practitioners
use high-end acquisition systems, an increasing number of
them turn to consumer-level acquisition devices, willing to
replace an accurate albeit expensive acquisition by a series
of low-cost acquisitions – see recent work on 3D acquisi-
tion from mobile phones [TKM⇤13]. These new acquisition
paradigms translate into a lower control over the acquisition
process, which must be compensated by an increased robust-
ness of the algorithms and structural or physical a priori
knowledge.

Big data and online algorithms. The scale of acquired data
is also quickly growing: we no longer deal exclusively with
individual shapes, but with entire scenes, possibly at the
scale of entire cities with many objects defined as structured
shapes. Recovering not just the geometry but also the struc-
ture of such large scale scenes is a stimulating scientific
challenge. Last, we envision a future where the common
on-disk paradigm must be replaced by online algorithms
that perform reconstruction during acquisition. Recent works
such as Kinect Fusion [NDI⇤11] and extensions [NZIS13]
demonstrate the practicality of building such online systems.
There are applications such as aero-reconstruction for dis-
aster management where tight timing restrictions make an
online reconstruction approach indispensable. In particular,
we foresee a need to extend the surveyed priors into the on-
line setting, in order to support such challenging problems in
surface reconstruction.
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