DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

	A28NM
	Revision 9
Airbus	
A318 Series	A320 Series
A318 Model -111	A320 Model -111
A318 Model -112	A320 Model -211
	A320 Model -212
A319 Series	A320 Model -214
A319 Model -111	A320 Model -231
A319 Model -112	A320 Model -232
A319 Model -113	A320 Model -233
A319 Model -114	
A319 Model -115	A321 Series
A319 Model -131	A321 Model -111
A319 Model -132	A321 Model -112
A319 Model -133	A321 Model -131
	A321 Model -211
	A321 Model -231
	A321 Model -212
	A321 Model -213
	A321 Model -232
	March 23, 2007

TYPE CERTIFICATION DATA SHEET A28NM

This Data Sheet which is part of Type Certificate No. A28NM prescribes conditions and limitations under which the product for which the Type Certificate was issued meets the airworthiness requirements of the Federal Aviation Regulations.

Type Certificate Holder: Airbus

1, Rond-Point Maurice Bellonte

31707 Blagnac, France

Type Certificate Holder Record Name change from Airbus Industrie to Airbus January 2002

I. Type A318-100 Series Transport Category Airplanes

Model A318-111, Approved June 4, 2003; Model A318-112, Approved June 4, 2003;

Engines:

Model A318-111, Two CFMI Model CFM56-5B8/P Model A318-112, Two CFMI Model CFM56-5B9/P

Fuel:

See Installation Manual - Document CFM 2026

TYPE	SPECIFICATION (NAME)								
	FRAN	CE	US	SA	UK				
Kerosene	DCSEA 134		ASTM D 1655	(JET A) (JET A1)	DEF STAN 91/91	(AVTUR) (JET A1)			
			MIL - T -83133	(JP 8)	DEF STAN 91/87	(AVTUR) (JET A1) (AIA)			
Wide cut			ASTM D 1655	(JET B)	DEF STAN 91/88	(AVTAG)			
			MIL - T 5624	(JP 4)					
High flash point	DCSEA 144/A	(F-44) (XF-43)	MIL - T 5624	(JP 5)	DEF STAN 91/86	(AVCAT)			

Page No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Rev. No.	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Page No.	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Rev. No.	9	9	9	9	9	9	9	9	9	9	9	9	9	9

A28NM Page 2 of 28

Additives: See CFMI "Specific Operating Instructions," CMF TPOI-13. The above mentioned fuels and additives are also suitable for the APU.

Engine Limits:

	CFMI CFM56-5B8/P	CFMI CFM56-5B9/P
Engine	FAA Data Sheets	FAA Data Sheets
Limitation	E37NE E38NE	E37NE E38NE
Static Thrust at Sea Level		
- Take-off (5 min)**	9 608 daN (21,600 lb)	10 364 daN (23,300 lb)
(Flat rated 30°C)		
Maximum Continuous	8478 daN (19,060 1b)	9 008 daN (20,250 1b)
(Flat rated 25°C)		
Maximum Engine Speed		
- N1 rpm (%)	5,200 (104)	5,200 (104)
- N2 rpm (%)	15,183 (105)	15,183 (105)
Max Gas Temperature (°C)		
- Take-off (5 min)**	940	950
- Max Continuous	905	915
- Starting *	725	725
Max Oil Temperature		
(supply pump inlet; °C)		
- Take-off, Stabilized	140	140
- Transient (15 min max)	150	150
Min. Press. (PSID)	13	13
Approved Oils	See SB	See SB
	CFMI 79-001-0X	CFMI 79-001-0X

^{* 4} consecutive cycles of 2 minutes each.

<u>Airspeed Limits (Indicated Airspeed - IAS - Unless Otherwise Stated:</u>

Maximum Operating Mach
 Maximum Operating Speed
 VMO: 0.82
 VMO: 350 kt

- Maneuvering Speed VA:

- See Chapter 2.0 of the DGAC-approved Flight Manual

- Extended Flaps/Slats Speed - VFE

Configuration	Slats/Flaps	VFE (kt)	
1	18/0	230	Intermediate
			Approach
	*18/10	215	Take-off
2	22/15	200	Take-off and
			Approach
3	22/20	185	Take-off, Approach, and Landing
Full	27/40	177	Landing

^{*} Auto flap retraction at 210 kt in Take-off configuration.

Landing Gear:

- VLE - Extended: 280 kt/Mach 0.67

- VLO - Extension: 250 kt - Retraction: 220 kt

Tire Limit Speed (Ground Speed) = 195.5 kt (225 mph)

Maximum Weights:

A318-100

VARIANT	000		001		002		003		004	
	BASIC		MOD 31672		MOD 31673		MOD 31674		MOD 31675	
	(KG)	(LBS)	(KG)	(LBS)	(KG)	(LBS)	(KG)	(LBS)	(KG)	(LBS)
Max. Take-off Weight	59 000	130 071	61 500	135 583	63 000	138 890	64 500	142 197	66 000	145 504
Max. Landing Weight	56 000	123 458	56 000	123 458	57 500	126 765	57 500	126 765	57 500	126 765
Max. Zero Fuel Weight	53 000	116 844	53 000	116 844	54 500	120 151	54 500	120 151	54 500	120 151

^{** 10} minutes at take-off thrust allowed in case of engine failure (at take off and during go around).

A318-100 (continued):

VARIANT	005		006		007		008	
	MOD 31676		MOD 33235		MOD 33126		MOD 33128	
	(KG)	(LBS	(KG)	(LBS	(KG)	(LBS	(KG)	(LBS
Max. Take-off Weight	68 000	149 913	56 000	123 458	61 000	134 481	64 000	141 094
Max. Landing Weight	57 500	126 765	56 000	123 458	56 000	123 458	56 000	123 458
Max. Zero Fuel Weight	54 500	120 151	53 000	116 844	53 000	116 844	53 000	116 844

Minimum Weight:

A318-100

VARIANT	All				
	(KG) (LBS)				
Minimum Weight					
-	34,500 76,059				

Minimum Crew:

2 Pilots

Maximum Passengers:

136

Maximum Baggage:

CARGO COMPARTMENT	MAXIMUM LOAD (KG) (LBS)
Forward	1,614 3,558
Aft	2,131 4,698
Rear (Bulk)	1,372 3,025

For the positions and the loading conditions authorized in each position (references of containers, pallets, associated weights), see Weight and Balance Manual, Ref. 00P080A0001/C1S Chapter 1.10.

Fuel Capacity (0.8 kg/liter)

		3-Tank Airplane		
Tank	Usab	le Fuel	Unusa	ble Fuel
	Liters (kgs)	Gallons (lbs)	Liters (Kgs)	Gallons (lbs)
Wing	15,609	4,124	58.9	15.6
	(12,487)	(27,531)	(47.1)	(103.9)
Center	8,250	2,179	23.2	6.5
	(6,600)	(14,551)	(18.6)	(41.0)
TOTAL	23,859	6,303	82.1	20.8
	(19,087)	(42,082)	(65.7)	(144.9)

Oil Capacity

CFMI CFM56-5B - Engine Oil Capacity, 10 quarts/engine (9.46 liters).

Maximum Operating Altitude:

- 39,800 feet (12,200 m) clean
- 20,000 feet (6,500 m) Slats/Flaps extended.

Equipment:

The basic equipment as prescribed in the airworthiness regulations (see certification basis) must be installed in the aircraft for certification.

Refer to note 1 for list of A318 airplane model FAA Type Definitions.

Serial Numbers Eligible:

Until September 27, 2004, A318 aircraft, all series, all models, have been produced in Hamburg (Germany) under approval LBA.G.0009 or I-A9 issued by LBA to Airbus.

A28NM Page 4 of 28

Since September 27, 2004 A318 aircraft, all series, all models, are produced in Hamburg (Germany) under approval DE.21G.0009 issued by LBA to Airbus

A German Export Certificate of Airworthiness endorsed as noted under "Import Requirement," must be submitted for each individual aircraft for which application for U.S. certification is made.

Import Requirements:

A FAA Standard Airworthiness Certificate may be issued based on a German Export Certificate of Airworthiness (Export C of A), signed by a representative of the Luftfahrt-Bundesamt (LBA) of Germany on behalf of the European Community. The Export C of A should contain the following statement: "The aircraft covered by this certificate has been examined, tested, and found to conform to the Type Design approved under Type Certificate No. A28NM and to be in a condition for safe operation."

The U.S. airworthiness certification basis for aircraft type certificated under FAR Section 21.29 and exported by the country of manufacture is FAR Sections 21.183(c) or 21.185(c). The U.S. airworthiness certification basis for aircraft type certificated under FAR Section 21.29 exported from countries other than the country manufacture (e.g., third party country) is FAR Sections 21.183(d) or 21.185(b). Notwithstanding that FAR section 21.183(d) and 25.185(b) do not specifically address or require certification by the foreign civil airworthiness authority of the country of manufacture, such certification is the only practical way for an applicant to show, and the Federal Aviation Administration (FAA) to find conformity to the FAA-approved type design and condition for safe operation. Additional guidance is contained in FAA advisory Circular 21-23, Airworthiness Certification of Civil Aircraft, Engines, Propellers, and Related Products Imported into the United States.

Certification Basis:

- a. Part 25 of the FAR effective February 1, 1965, including Amendments 25-1 through 25-56 thereto.
 - a.1 Plus the following sections of Part 25 as amended by amendments 25-1 through 25-97 applied per the FAA derivative aircraft process to the changes and areas affected by the changes:

25.21, 25.23, 25.25, 25.27, 25.29, 25.31, 25.101, 25.103, 25.105, 25.107, 25.109, 25.111, 25.113, 25.115, 25.117, 25.119, 25.121, 25.123, 25.125, 25.143, 25.145, 25.147, 25.149, 25.161, 25.171, 25.173, 25.175, 25.177, 25.181, 25.201, 25.203, 25.207, 25.231, 25.233, 25.235, 25.237, 25.251(e), 25.253, 25.255, 25.571 (welded structure only), 25.801, 25.803, 25.807, 25.809, 25.810, 25.811, 25.812, 25.813, 25.855, 25.857, 25.858, 25.1501, 25.1517, 25.1583, 25.1587

a.2 Plus the following sections of Part 25 amended as indicated below per Airbus elect to comply:

25.305 Amdt. 86	25.415 Amdt 91
25.321 Amdt. 86	25.427 Amdt 86
25.331 Amdt. 91	25.445 Amdt 86
25.333 Amdt. 86	25.473 Amdt 91
25.335 Amdt. 91	25.479 Amdt 91
25.341 Amdt. 86	25.481 Amdt 91
25.343 Amdt 86	25.483 Amdt 91
25.345 Amdt 91	25.485 Amdt 91
25.349 Amdt. 86	25.491 Amdt 91
25.351 Amdt. 91	25.499 Amdt 91
25.363 Amdt 91	25.561(c) Amdt 91
25.371 Amdt 91	25.571 Amdt 86*
25.373 Amdt 86	25.735 Amdt 92
25.391 Amdt 86	25.853 Amdt 83
	25.1533 Amdt 92

- * Not applicable to welded structure
- a.3 Plus Section 25.772 & 25.795 amendment 25-106 per Airbus elect to comply.
- a.4 Plus portions of Section 25.562, Amendment 64, for the passenger seats only per Airbus elect to comply. FAR paragraphs 25.562(c)(5), (c)(6) do not apply.
- b. 14 CFR Part 34, effective September 10, 1990, including Amendments 34-1 through 34-3 thereto.
- c. 14 CFR Part 36, effective December 1, 1969, including Amendments 36-1 through 36-24 thereto.
- d. FAA Special Conditions issued for the A320 in accordance with Section 21.16 of the FAR and published in the Federal Register, as follows:

- d.1 25-ANM-23, January 27, 1989:
 - Electronic Flight Controls
 - Active Controls
 - Engine Controls and Monitoring
 - Protection from Lightning and Unwanted Effects of Radio Frequency (RF) Energy
 - Flight Characteristics
 - Flight Envelope Protection
 - Side Stick Controllers
 - · Flight Recorder.
- d.2 25-ANM-29, June 9, 1989:
 - Computerized Airplane Flight Manual
- For precision approach and landing, the applicable technical requirements are complemented by AC 120-29 and AC 120-28d

For the automatic flight control system, the applicable technical requirements are complemented by AC 20-57A for automatic landing and by AC 25.1329-1A for cruise.

Use of JAR AWO where applicable to the requirements above, is acceptable.

- f. The following paragraphs of the FAR have been complied with through equivalent safety demonstrations:
 - 25.783(f) for passenger doors
 - 25.807(c) for maximum passenger capacity
 - 25.811(e)(3) Type III emergency exit marking.
 - 25.813(c) for emergency exit access
 - 25.831 Ventilation Packs off takeoff
 - 25.933 for flight critical thrust reverser systems.
- g. Optional Requirements elected:
 - 25.801 for ditching.
 - 25.1419 for icing.
- h. Special Federal Aviation Regulation (SFAR) Number 88, Amendment 21-78, became effective June 6, 2001. SFAR No. 88, "Fuel Tank System Fault Tolerance Evaluation Requirements", is applicable to the Airbus Model A318. Airbus must satisfy the requirements of SFAR No. 88 within 18 months after the issuance of the amended type certificate.

Note 1:

The A318 basic definition for U.S. import certification is contained in the following documents:

-D03007678 for A318-111 & A318-112 models

Note 2:

If modifications 32997, 33310 & 33299 are embodied on models with CFM engines, the airplane is qualified for CAT III B precision approach. This does not constitute operational approval.

II. Type A319-100 Series Transport Category Airplanes

Model A319-112, Approved August 30, 1996;

Model A319-111, Approved June 20, 1997;

Model A319-113, Approved June 20, 1997;

Model A319-114, Approved June 20, 1997;

Model A319-131, Approved June 20, 1997;

Model A319-132, Approved June 20, 1997;

Model A319-115, Approved October 22, 2002;

Model A319-133, Approved October 22, 2002;

Engines:

Model A319-111, Two CFMI Model CFM56-5B5 or CFM56-5B5/P jet engines;

Model A319-112, Two CFMI Model CFM56-5B6 or CFM56-5B6/P or CFM56-5B6/2P jet engines;

Model A319-113, Two CFMI Model CFM56-5A4 or CFM56-5A4/F jet engines;

Model A319-114, Two CFMI Model CFM56-5A5 or CFM56-5A5/F jet engines;

Model A319-115, Two CFMI Model CFM56-5B7 or CFM56-5B7/P jet engines;

Model A319-131, Two IAE Model V2522-A5 jet engines;

Model A319-132, Two IAE Model V2524-A5 jet engines;

Model A319-133, Two IAE Model V2527M-A5 jet engines;

<u>Fuel:</u>
See Installation Manual - Documents CFM 2026 or IAE-0043

ТҮРЕ	SPECIFICATION (NAME)									
	FRAN	CE	US	SA	UK					
Kerosene	DCSEA 134		ASTM D 1655	(JET A) (JET A1)	DEF STAN 91/91	(AVTUR) (JET A1)				
			MIL - T -83133	(JP 8)	DEF STAN 91/87	(AVTUR) (JET A1) (AIA)				
Wide cut			ASTM D 1655	(JET B)	DEF STAN 91/88	(AVTAG)				
			MIL - T 5624	(JP 4)*						
High flash point	DCSEA 144/A	(F-44) (XF-43)	MIL - T 5624	(JP 5)	DEF STAN 91/86	(AVCAT)				

^{*} JP4 Fuel is not suitable for double annular combustor (DAC) engines.

Additives: See CFMI "Specific Operating Instructions," CMF TPOI-13 or IAE V2500 "Installation and Operating Manual" IAE-0043, 4.5. The above mentioned fuels and additives are also suitable for the APU.

Engine Limits:

Liighte Limits.				
	CFMI CFM56-5B5 or	CFMI CFM56-5B6 or	CFMI CFM56-5A4	CFMI
	- 5B5/P	-5B6/P or -5B6/2P		CFM56-5A4/F
Engine	FAA Data Sheets	FAA Data Sheets	FAA Data Sheet	FAA Data Sheet
Limitation	E37NE E38NE	E37NE E38NE	E28NE	E28NE
Static Thrust at Sea				
Level				
- Take-off (5 min)**	9 786 daN	10 453 daN	9 786 daN	9 786 daN
	(22,000 lb)	(23,500 lb)	(22,000 lb)	(22,000 lb)
(Flat rated 30°C)				
Maximum Continuous	9 008 daN	9 008 daN	9 195 daN	9 195 daN
	(20,250 1b)	(20,250 1b)	(20,670 1b)	(20,670 1b)
(Flat rated 25°C)				
Maximum Engine				
Speed				
- N1 rpm (%)	5,200 (104)	5,200 (104)	5,100 (102)	5,100 (102)
- N2 rpm (%)	15,183 (105)	15,183 (105)	15,183 (105)	15,183 (105)
Max Gas Temperature				Eng. Limit/ ECAM
(°C)				
- Take-off (5 min)**	950	950	890	915/890
- Max Continuous	915	915	855	880/855
- Starting *	725	725	725	725/725
Max Oil Temperature				
(supply pump inlet;				
°C)				
- Take-off, Stabilized	140	140	140	140
- Transient (15 min	155	155	155	155
max)				
Min. Press. (PSI)	13	13	13	13
Approved Oils	See SB	See SB	See SB	See SB CFMI
	CFMI 79-001-0X	CFMI 79-001-0X	CFMI 79-001-0X	79-001-0X

Engine Limits Continued:

Engine Limits Continued	:			
	CFMI CFM56-5A5	CFMI CFM56-5A5/F	IAE V2522-A5	IAE V2524-A5
Engine Limitation	FAA Data Sheets	FAA Data Sheet	FAA Data Sheets	FAA Data Sheets
8	E28NE (FAA)	E28NE (FAA)	E40NE (FAA)	E40NE (FAA)
Static Thrust at Sea	, ,	· /	, ,	, ,
Level				
- Take-off (5 min)**	10 453 daN	10 453 daN	10 249 daN	10 889 daN
` ,	(23,500 lb)	(23,500 lb)	(23,040 lb)	(24,480 lb)
(Flat rated 30°C)				
Maximum Continuous	9 195 daN	9 195 daN	8 540 daN	8 540 daN
	(20,670 1b)	(20,670 1b)	(19,200 1b)	(19,200 1b)
(Flat rated 25°C)				
Maximum Engine				
Speed				
- N1 rpm (%)	5,100 (102)	5,100 (102)	5,650 (100)	5,650 (100)
- N2 rpm (%)	15,183 (105)	15,183 (105)	14,950 (100)	14,950 (100)
Max Gas Temperature		Eng. Limit/ ECAM	Eng. Limit/ ECAM	Eng. Limit/ ECAM
(°C)				
- Take-off (5 min)**	890	915/890	625/635	635/635
- Max Continuous	855	880/855	610/610	610/610
- Starting *	725	725/725	635/635	635/635
Max Oil Temperature				
(supply pump inlet;				
°C)				
- Take-off, Stabilized	140	140	155	155
- Transient (15 min	155	155	165	165
max)				
Min. Press. (PSI)	13	13	60	60
Approved Oils	See SB	See SB CFMI	See Doc IAE 0043 Sec	See Doc IAE 0043 Sec
			4.9	4.9
	CFMI 79-001-0X	79-001-0X	(MIL-L-23699)	(MIL-L-23699)

	CFMI CFM56-5B7 or – 5B7/P	IAE V2527M-A5
Engine Limitation	FAA Data Sheets E37NE E38NE	FAA Data Sheet E40NE
Static Thrust at Sea Level		
- Take-off (5 min)**	12 010 daN (27,000 lb)	11 030 daN (24,800 lb)
(Flat rated 30°C)		
Maximum Continuous	10 840 daN (24,370 1b)	9 890 daN (22,240 1b)
(Flat rated 25°C)		
Maximum Engine Speed		
- N1 rpm (%)	5,200 (104)	5,650 (100)
- N2 rpm (%)	15,183 (105)	14,950 (100)
Max Gas Temperature (°C)		
- Take-off (5 min)**	950	645
- Max Continuous	915	610
- Starting *	725	650
Max Oil Temperature		
(supply pump inlet; °C)		
- Take-off, Stabilized	140	155
- Transient (15 min max)	155	165
Min. Press. (PSI)	13	60
Approved Oils	See SB	See Doc IAE 0043 Sec 4.9
	CFMI 79-001-0X	(MIL-L-23699)

st 4 consecutive cycles of 2 minutes each. st 10 minutes at take-off thrust allowed in case of engine failure (at take off and during go around).

Airspeed Limits (Indicated Airspeed - IAS - Unless Otherwise Stated:

Maximum Operating Mach
 Maximum Operating Speed
 VMO: 350 k

- Maneuvering Speed VA:

- See Chapter 2.0 of the DGAC-approved Flight Manual

- Extended Flaps/Slats Speed - VFE

Configuration	Slats/Flaps	VFE (kt)	
1	18/0	230	Intermediate Approach
	*18/10	215	Take-off
2	22/15	200	Take-off and Approach
3	22/20	185	Take-off, Approach, and Landing
Full	27/40	177	Landing

^{*} Auto flap retraction at 210 kt in Take-off configuration.

Landing Gear:

- VLE - Extended: 280 kt/Mach 0.67

- VLO - Extension: 250 kt - Retraction: 220 kt

Tire Limit Speed (Ground Speed) = 195.5 kt (225 mph)

Maximum Weights:

A319-100:

VARIANT	000 BASIC	001 Mod 25328	002 Mod 27112	005 Mod 28136
	(KG) (LBS)	(KG) (LBS)	(KG) (LBS)	(KG) (LBS)
Max. Take-Off Weight	64,000 141,090	70,000 154,322	75,500 166,447	70,000 154,322
Max. Landing Weight	61,000 134,480	61,000 134,480	62,500 137,787	62,500 137,787
Max. Zero Fuel	57,000 125.660	57,000 125,660	58,500 128,969	58,500 128,969
Weight				

Minimum Weight:

A319-100:

VARIANT	All	
	(KG) (LBS)	
Minimum Weight	35,400 78,042	

Minimum Crew:

2 Pilots

<u>Maximum Passengers:</u>

145

See note 12

Maximum Baggage:

CARGO COMPARTMENT	MAXIMUM LOAD
	(KG) (LBS)
Forward	2,268 5,000
Aft	3,020 6,660
Rear (Bulk)	1,497 3,300

For the positions and the loading conditions authorized in each position (references of containers, pallets, associated weights), see Weight and Balance Manual, Ref. 00J080A0001/C1S Chapter 1.10.

Fuel Capacity (0.8 kg/liter)

		3-Tank Airplane		
Tank	Usab	le Fuel	Unusal	ole Fuel
	Liters (kgs)	Gallons (lbs)	Liters (Kgs)	Gallons (lbs)
Wing	15,609	4,124	58.9	15.6
	(12,487)	(27,531)	(47.1)	(103.9)
Center	8,250	2,179	23.2	6.5
	(6,600)	(14,551)	(18.6)	(41.0)
TOTAL	23,859	6,303	82.1	20.8
	(19,087)	(42,082)	(65.7)	(144.9)

	4 to 9-Tank Airplane (*)					
Tank	Usab	le Fuel	Unusal	ble Fuel		
	Liters (kgs)	Gallons (lbs)	Liters (Kgs)	Gallons (lbs)		
TOTAL						
3-Tank	23,859	6,303	82.1	20.8		
Airplane	(19,087)	(42,082)	(65.7)	(144.9)		
ACT 1	3,121	824	17	4.3		
	(2,497)	(5,505)	(13.6)	(28.8)		
TOTAL						
4-Tank	26,980	7,128	99.1	25.1		
Airplane	(21,584)	(47,587)	(79.3)	(173.7)		
ACT 2	3,121	824	17	4.3		
	(2,497)	(5,505)	(13.6)	(28.8)		
TOTAL						
5-Tank	30,101	7,952	116.1	29.4		
Airplane	(24,081)	(53,092)	(92.9)	(202.5)		
ACT 3	2,186	577	22	5.6		
	(1,749)	(3,855)	(17.6)	(37.4)		
TOTAL						
6-Tank	32,287	8,530	138.1	35.0		
Airplane	(25,830)	(56,947)	(110.5)	(239.9)		
ACT 4	2,186	577	22	5.6		
	(1,749)	(3,855)	(17.6)	(37.4)		
TOTAL						
7-Tank	34,473	9,107	160.1	40.6		
Airplane	(27,579)	(60,803)	(128.1)	(277.3)		
ACT 5	3,046	804	12	3.1		
	(2,437)	(5,372)	(9.6)	(20.6)		
TOTAL						
8-Tank	37,519	9,912	172.1	43.7		
Airplane	(30,016)	(66,176)	(137.7)	(297.9)		
ACT 6	3,121	824	17	4.3		
	(2,497)	(5,505)	(13.6)	(28.8)		
TOTAL						
9-Tank	40,640	10,737	189.1	48.0		
Airplane	(32,513)	(71,681)	(151.3)	(326.7)		

(*) See note 8

Oil Capacity

CFMI CFM56-5B - Engine Oil Capacity, 10 quarts/engine (9.46 liters). IAE V2500-A5 - Engine Oil Capacity, 7 quarts/engine (6.6 liters)

Maximum Operating Altitude:

- 41,000 feet (12,600 m) clean if modification 28162 is embodied.
- 39,800 feet (12,200 m) clean if modification 30748 is embodied.
- 39,100 feet (12,000 m) clean.
- 20,000 feet (6,500 m) Slats/Flaps extended.

Equipment:

The basic equipment as prescribed in the airworthiness regulations (see certification basis) must be installed in the aircraft for certification.

Equipment approved for installation are listed in the definition of the reference model and the modifications applicable to it. Refer to Type Certification Standard Equipment Lists:

- -00J000A0012/C0S for A319-111 Model
- -00J000A0004/C0S for A319-112 Model
- $\hbox{-00J000A0113/C0S for A319-113 Model}\\$
- -00J000A0114/C0S for A319-114 Model
- -00J000A0131/C0S for A319-131 Model
- -00J000A0132/C0S for A319-132 Model
- -00J000A0115/C0S for A319-115 Model
- -00J000A0133/C0S for A319-133 Model

Refer to Note 1 for list of A319 airplane model FAA Type Definitions.

Serial Numbers Eligible:

Until September 27, 2004, A319 aircraft, all series, all models, have been produced in Hamburg (Germany) under approval LBA.G.0009 or I-A9 issued by LBA to Airbus.

Since September 27, 2004 A319 aircraft, all series, all models, are produced in Hamburg (Germany) under approval DE.21G.0009 issued by LBA to Airbus

A German Export Certificate of Airworthiness endorsed as noted under "Import Requirement," must be submitted for each individual aircraft for which application for U.S. certification is made.

Import Requirements:

A FAA Standard Airworthiness Certificate may be issued based on a German Export Certificate of Airworthiness (Export C of A), signed by a representative of the Luftfahrt-Bundesamt (LBA) of Germany on behalf of the European Community. The Export C of A should contain the following statement: "The aircraft covered by this certificate has been examined, tested, and found to conform to the Type Design approved under Type Certificate No. A28NM and to be in a condition for safe operation."

The U.S. airworthiness certification basis for aircraft type certificated under FAR Section 21.29 and exported by the country of manufacture is FAR Sections 21.183(c) or 21.185(c). The U.S. airworthiness certification basis for aircraft type certificated under FAR Section 21.29 exported from countries other than the country manufacture (e.g., third party country) is FAR Sections 21.183(d) or 21.185(b). Notwithstanding that FAR section 21.183(d) and 25.185(b) do not specifically address or require certification by the foreign civil airworthiness authority of the country of manufacture, such certification is the only practical way for an applicant to show, and the Federal Aviation Administration (FAA) to find conformity to the FAA-approved type design and condition for safe operation. Additional guidance is contained in FAA advisory Circular 21-23, Airworthiness Certification of Civil Aircraft, Engines, Propellers, and Related Products Imported into the United States.

Certification Basis:

- a. Part 25 of the FAR effective February 1, 1965, including Amendments 25-1 through 25-56 thereto.
- b.1 Plus the following sections of Part 25 as amended by amendments 25-1 through:
 - -25-58 (Section 25.812(e))
 - -25-63 (Section 25.25 (a)(3))
 - -25-67 (Section 25.807 (c)(7))

(Applied per FAA derivative aircraft policy – reference FAA order 8110.4A)

- b.2 Airbus elected to comply with the following sections of Part FAR 25 through Amendment 86:
 - 25.305(d), 25.321(c)/(d), 25.331(a)/(d), 25.333(a)/(c), 25.335(d), 25.341,
 - 25.343 (b)(1)(ii), 25.345(a)/(c), 25.349(b), 25.351(b), 25.371, 25.373(a),
 - 25.391(e), 25.427, 25.445(a), 25.571(b)(2)/(b)(3), 25.1517.
- b.3 Airbus elected to comply with portions of FAR 25.562, Amendment 64, for the passenger seats only. FAR paragraphs 25.562(c)(5), (c)(6) do not apply.
- c. Part 34 of the FAR effective Sept. 10, 1990, including amendment 34-1.
- d. Part 36 of the FAR effective December 1, 1965, including amendments 36-1 through 36-20 thereto.
- e. FAA Special Conditions issued for the A320 in accordance with Section 21.16 of the FAR and published in the Federal Register as follows:
 - (1) January 27, 1989:
 - Electronic Flight Controls
 - Active Controls
 - Engine Controls and Monitoring
 - Protection from Lightning and Unwanted Effects of Radio Frequency
 - (RF) Energy
 - Flight Characteristics

- Flight Envelope Protection
- Side Stick Controllers
- Flight Recorder
- (2) June 9, 1989:
- Computerized AFM
- f. For precision approach and landing, the applicable technical requirements are complemented by AC 120-29 and AC 120-28c.

For the automatic flight control system, the applicable technical requirements are complemented by AC 20-57A for automatic landing and by AC 25.1329-1A for cruise.

Use of JAR AWO where applicable to the requirements above, is acceptable.

- g. The following paragraphs of the FAR have been complied with through equivalent safety demonstrations:
 - 25.101, 25.105, 25.109, 25.113, 25.115, 25.735, for rejected takeoff and landing performance
 - 25.783(f) for passenger doors
 - 25.807(c) for maximum passenger capacity
 - 25.813(c) emergency exit access for a single 13 inch aisle
 - 25.933(a), 25.1309(b) for thrust reversing system
 - 25.811(e)(3) Type III emergency exit marking.
- h. Optional Requirements elected:
 - 25.801 for ditching
 - 25.1419 for icing

Note 1:

The A319 basic definition for U.S. import certification is contained in the following documents:

- -AI/EA-S 413.0969/96 for A319-111 model
- -AI/EA-S 413.1012/96 for A319-112 model
- -AI/EA-S 413.3100/96 (Mod 25699 supplement) for A319-112 model
- -AI/EA-S 413.2504/96 for A319-113 model
- -AI/EA-S 413.2505/96 for A319-114 model
- -AI/EA-S 413.2127/99 for A319-115 model
- -AI/EA-S 413.0393/97 for A319-131 model
- -AI/EA-S 413.0396/97 for A319-132 model
- -AI/EA-S 413.2128/99 for A319-133 model

Note 2:

If modification 25469 or 26968 is embodied on models with CFM engines, the airplane is qualified for CAT III B precision approach. This does not constitute operational approval.

Note 3:

Modification 25303 (for CFM engine) or 25302 (for IAE engine) are part of the FAA Type Design and shall be implemented on any A319 aircraft entered on the U.S. register, before the individual U.S. standard Certificate of Airworthiness can be issued.

Note 4:

If modification 25800 is embodied on models with CFM56-5B engines, the engine performance is improved. The engine denomination changes to /P.

CFM56-5B/"non-P" engine can be intermixed with CFM56-5B/P engine on the same aircraft.

Note 5:

If Modification 26716 or 26717 is embodied on models with IAE engines, the airplane is qualified for CAT III B precision approach. This does not constitute operational approval.

Note 6:

The type design definitions and certification standard equipment lists as referenced in Note 1 are complemented by document 00D000A0546/C0S "A319-100/A321-200 FMGC Type Standard Evolution" and document 00J000A0067/C0S "A319-111/112 ATC Transponder Type Standard Evolution".

Note 7:

A319 for Corporate Jet use are defined through the following set of modifications:

- Modification 28238 (0 to 6 ACTs)
- Modification 28162 (extension of flight envelope up to 41,000 ft)
- Modification 28342 (modification of CG limits)

note of

On A319 for Corporate Jet use, the certification of installing up to six Additional Center Tanks (ACT) in bulk version is defined by modification 28238. The approval together with structural and system provisions was subject of compliance demonstrated to Advisory Circular AC 25-8.

Note 9:

On A319 for Corporate Jet use, exemptions to the following paragraphs of the FAR have been granted when the airplane is not operated for hire or for public transport

(Granted APR 9, 2001, Exemption No. 7489):

25.785(h)(2) Flight Attendant seat locations which do not provide for direct view of the cabin

25.807(d)(7) Distance between exits

25.813(e) Installation of Interior Doors in between passenger compartments

Note 10:

If modification 26610 is embodied on A319-112 airplanes, the engine performance and gaseous emission levels are improved. The engine denomination changes to /2P (DAC IIC Dual Annual Combustor).

- CFM56-5B6/P engine can be intermixed with CFM56-5B6/2P (DAC IIC Dual Annual Combustor) engine on the same aircraft (AFM Supplement).
- CFM 56-5B/2 "non P" (DAC) engine can be intermixed with CFM 56-5B/2P (DAC II C) engine on the same aircraft (AFM supplement).
- CFM 56-5B/P or / "non P" (SAC) engine can be intermixed with CFM 56-5B/2P (DAC II C) engine on the same aircraft (AFM supplement).

Note 11:

If modification 23755 is embodied on A319-113 and A319-114 airplanes, the maximum permissible gas temperature for take-off and max. continuous operation is extended to 915° C and 880° C, respectively. However, the ECAM indication remains at 890° C and 855° C, respectively. The engine denomination changes to /F.

On A319-113, CFM 56-5A4 engines can be intermixed with CFM 56-5A4/F engine on the same aircraft.

On A319-114, CFM 56-5A5 engines can be intermixed with CFM 56-5A5/F engine on the same aircraft.

Note 12:

If modification 32208 is embodied on A319 airplanes, the aircraft is eligible for maximum capacity of 160 passengers. This modification consists in structural and system provision for the installation of second pair of overwing emergency exits.

III. Type A320-100/200 Series Transport Category Airplanes

Model A320-111, Approved December 15, 1988

Model A320-211, Approved December 15, 1988;

Model A320-231, Approved July 6, 1989;

Model A320-212, Approved November 26, 1990;

Model A320-232, Approved November 12, 1993;

Model A320-233, Approved November 17, 1995;

Model A320-214, Approved December 12, 1996.

Engines:

Model A320-111, Two CFMI Model CFM56-5A1 or CFM56-5A1/F jet engines;

Model A320-211, Two CFMI Model CFM56-5A1 or CFM56-5A1/F jet engines;

Model A320-212, Two CFMI Model CFM56-5A3 jet engines;

Model A320-214, Two CFMI Model CFM56-5B4 or CFM56-5B4/P or CFM56-5B4/2P jet engines;

Model A320-231, Two IAE Model V2500-A1 jet engines;

Model A320-232, Two IAE Model V2527-A5 jet engines;

Model A320-233, Two IAE Model V2527E-A5 jet engines;

<u>Fuel:</u>
See Installation Manual - Documents CFM 2026 or IAE-0043

TYPE	SPECIFICATION (NAME)					
	FRAN	FRANCE USA		UK		
Kerosene	DCSEA 134		ASTM D 1655	(JET A) (JET A1)	DEF STAN 91/91	(AVTUR) (JET A1)
			MIL - T -83133	(JP 8)	DEF STAN 91/87	(AVTUR) (JET A1) (AIA)
Wide cut			ASTM D 1655	(JET B)	DEF STAN 91/88	(AVTAG)
			MIL - T 5624	(JP 4)*		
High flash point	DCSEA 144/A	(F-44) (XF-43)	MIL - T 5624	(JP 5)	DEF STAN 91/86	(AVCAT)

^{*} JP4 Fuel is not suitable for double annular combustor (DAC) engines.

Additives: See CFMI "Specific Operating Instructions," CMF TPOI-13 or IAE V2500 "Installation and Operating Manual" IAE-0043, 4.5. The above mentioned fuels and additives are also suitable for the APU.

Engine Limits:

Engine Limits:						,
	CFMI	<u>CFMI</u>	CFMI	CFMI	IAE V2500-	IAE V2527-
	CFM56-5A1	CFM56-	CFM56-5A3	CFM56-5B4	<u>A1</u>	<u>A5</u>
		5A1/F		or -5B4/P or -		or V2527E-
				5B4/2P		A5
Engine	Data Sheets	Data Sheets	Data Sheets	Data Sheets	Data Sheets	Data Sheets
Limitation	Data Sheets	Data Sheets	Data Sheets	Data Sheets	Data Sheets	Data Sheets
Lillitation	EQONE (EAA)	EQONIE (EA A)	EQONIE (EAA)	E37NE E38NE	E21NE (EAA)	E40NE (EA A)
	E28NE (FAA)	E28NE (FAA)	E28NE (FAA)	FAA	E31NE (FAA)	E40NE (FAA)
Static Thrust at				IAA		
Sea Level						
	11 120 1 17	11 100 1 17	11.505.131	12 010 1 11	11 020 1 11	11.000 1.37
- Take-off (5	11 120 daN	11 120 daN	11 787 daN	12 010 daN	11 030 daN	11 030 daN
min)** (Flat rated	(25,000 lb)	(25,000 lb)	(26,500 lb)	(27,000 lb)	(24,800 lb)	(24,800 lb)
30°C)						
- Maximum	10 542 daN	10 542 daN	10 542 daN	10 840daN	9 890 daN	9 890 daN
Continuous	(23,600 lb)	(23,600 lb)	(23,600 lb)	(24,370 lb)	(22,240lb)	(22,240lb)
(Flat rated 25°C)						
Maximum Engine						
Speed						
- N1 rpm (%)	5,100 (102)	5,100 (102)	5,100 (102)	5,200 (104)	5,465 (100)	5,650 (100)
- N2 rpm (%)	15,183(105)	15,183(105)	15,183(105)	15,183(105)	14,915(100)	14,950(100)
112 Ipiii (70)	13,103(103)	Eng. limit/	Eng. limit/	13,103(103)	14,515(100)	Eng. limit/
Max Gas		ECAM	ECAM			Eng. minu ECAM
		ECAM	ECAM			ECAM
Temp.(°C)	000	015/000	017/000	0.50	625	645/605
- Take-off (5	890	915/890	915/890	950	635	645/635
min)**						
- Max Continuous	855	880/855	880/855	915	610	610/610
- Starting*	725	725/725	725/725	725	635	635/635
Maximum Oil						
Temp.						
(Supply Pump						
Inlet; °C)						
-Takeoff,	140	140	140	140	155	155
Stabilized						
-Transient	155	155	155	155	165	165
(15 min max)	100	155	155	155	100	100
Min. Press. (PSI)	13	13	13	13	60	60
Approved oils	See SB	See SB	See SB	See SB	See doc IAE	See doc IAE
Approved ons						
	CFMI 79-001-	CFMI 79-001-	CFMI 79-001-	CFMI 79-001-	0043 (MIL-L	0043 (MIL-L
	0X	0X	0X	0X	23699)	23699)

* 4 consecutive cycles of 2 minutes each.

** 10 minute at take-off thrust allowed in case of engine failure (at take-off and during go-around)

<u>Airspeed Limits (Indicated Airspeed - IAS - Unless otherwise Stated:</u>

- Maximum Operating Mach - Maximum Operating Speed - VMO: 350 kt

- Maneuvering Speed VA:
- See Chapter 2.0 of the DGAC-approved Flight Manual

- Extended Flaps/Slats Speed - VFE

Configuration	Slats/Flaps	VFE (Kt)	
1	18/0	230	Intermediate
			Approach
	*18/10	215	Take-off
2	22/15	200	Take-off and
			Approach
3	22/20	185	Take-off,
			Approach, and
			Landing
Full	27/35	177	Landing

^{*} Auto flap retraction at 210 kt in Take-off configuration.

Landing Gear:

- VLE - Extended 280 Kt/Mach 0.67

- VLO - Extension 250 kt - Retraction 220 kt

Tire Limit Speed (Ground Speed) = 195.5 kt (225 mph)

Minimum Control Speed:

A320-100:

- VMCA (Air): 105 kt

- VMCG (Ground): 102 kt (all config.)

A320-200:

- VMCA (Air) and VMCG (Ground): See TAB program issue M or N with associated A/C performances module

Maximum Weights:

A320-100:

	000
VARIANT	(BASIC)
	(KG) (LBS)
Max. Ramp Weight	68,400 150,820
Max. Take-off Weight	68,000 149,940
Max. Landing Weight	63,000 138,915
Max. Zero Fuel Weight	59,000 130,100

A320-200:

FAA	000	001	003	007	008	009	010	011	012	013	014	015
Approved	BASIC											
Weight												
Variants												
A320-211	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	
A320-212	YES		YES									
A320-214	YES		YES									
A320-231	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	
A320-232	YES		YES									
A320-233	YES		YES									

A320-200 Continued:

A320-200 Continucu.							
VARIANT	000	001	003	007	008	009	010
	BASIC						
	(KG)						
	(LBS)						
Max. Take-off Weight	73500	68000	75500	77000	73500	75500	77000
	162068	149940	166478	169785	162068	166478	169785
Max. Landing Weight	64500	64500	64500	64500	64500	64500	64500
	142223	142223	142223	142223	142223	142223	142223
Max. Zero Fuel	60500	60500	60500	60500	61000	61000	61000
Weight	133403	133403	133403	133403	134505	134505	134505

VARIANT	011	012	013	014	015
	(KG)	(KG)	(KG)	(KG)	(KG)
	(LBS)	(LBS)	(LBS)	(LBS)	(LBS)
Max. Take-off Weight	75500	77000	71500	73500	78,000
	166478	169785	157631	162068	171,958
Max. Landing Weight	66000	66000	64500	64500	64,500
	145505	145505	142223	142223	142,223
Max. Zero Fuel	62500	62500	61000	61500	61,000
Weight	137789	137789	134505	135584	134,505

Minimum Weight:

A320-100:

VARIANT	000
	(BASIC)
	(KG) (LBS)
Minimum Weight	36,750 81,030

A320-200:

VARIANT	All		
	(KG) (LBS)		
Minimum Weight	37,230 82,080		

Minimum Crew:

2 Pilots

Maximum Passengers:

179

Maximum Baggage:

CARGO COMPARTMENT	MAXIMUM LOAD
	(KG) (LBS)
Forward	3,402 7,500
Aft	4,536 10,000
Rear (Bulk)	1,497 3,300

For the positions and the loading conditions authorized in each position (references of containers, pallets, and associated weights), see Weight and Balance Manual, ref. 00D080A0001/C1S Chapter 1.10.

Fuel Capacity (0.8 kg/liter):

A320-100:

2-Tank Airplane						
Tank	Usabl	e Fuel	Unusat	ole Fuel		
	Liters (kgs)	Gallons (lbs)	Liters (Kgs)	Gallons (lbs)		
Wing	15,843 (12,674)	4,185 (27,946)	57.3 (45.8)	15.1 (101.0)		
Total	15,843 (12,674)	4,185 (27,946)	57.3 (45.8)	15.1 (101.0)		

3-Tank Airplane						
Tank	Usab	le Fuel	Unusal	ble Fuel		
	Liters (kgs)	Gallons (lbs)	Liters (Kgs)	Gallons (lbs)		
Wing	15,843	4,185	58.9	15.6		
	(12,674)	(27,946)	(47.1)	(103.9)		
Center	8,250	2,179	23.2	6.1		
	(6,600)	(14,484)	(19.6)	(43.2)		
TOTAL	24,093	6,364	82.1	21.7		
	(19,274)	(42,430)	(65.7)	(147.1)		

A320-200:

	3-Tank Airplane			4-Tank Airplane (*)				
	Usabl	e Fuel	Unusab	le Fuel	Usable Fuel		Unusable Fuel	
	Liters	Gallons	Liters	Gallons	Liters	Gallons	Liters	Gallons
	(kgs)	(lbs)	(kgs)	(lbs)	(kgs)	(lbs)	(kgs)	(lbs)
Wing	15,843	4,185	58.9	15.6	15,843	4,185	58.9	15.6
	(12,674)	(27,946)	(47.1)	(103.9)	(12,674)	(27,946)	(47.1)	(103.9)
Center	8,250	2,179	23.2	6.1	8,250	2,179	23.2	6.1
	(6,600)	(14,484)	(19.6)	(43.2)	(6,600)	(14,484)	(19.6)	(43.2)
ACT (*)					2,900	767	17.0	4.4
					(2,320)	(5,114)	(13.6)	(29.9)
Total	24,093	6,364	82.1	21.7	26,993	7,131	99.1	26.1
	(19,274)	(42,430)	(65.7)	(147.1)	(21,594)	(47,544)	(80.3)	(177.0)

(*) see note 8

Oil Capacity:

CFMI CFM56-5A/5B - Engine Oil Capacity, 10 quarts/engine (9.46 liters).

IAE V2500-A5 - Engine Oil Capacity, 7 quarts/engine (6.6 liters)

Maximum Operating Altitude:

- 39,800 feet (12,200 m) clean if modification 30748 is embodied.
- 39,100 feet (12,000 m) clean.
- 20,000 feet (6,500 m) Slats/Flaps extended.

Equipment:

The basic equipment as prescribed in the airworthiness regulations (see certification basis) must be installed in the aircraft for certification.

Equipment approved for installation are listed in the definition of the reference model and the modification applicable to it. Refer to Type Certification Standard Equipment List 00D000A0101/C1S.

Refer Note 1 for list of A320 airplane model FAA Type Definitions.

Serial Numbers Eligible:

Until September 27, 2004, A320 aircraft, all series, all models, have been produced in Blagnac (France) under approval P09 or F.G.035 issued by DGAC to Airbus.

Since September 27, 2004, A320 aircraft, all series, all models, are produced Blagnac (France) under approval FR.21G.0035 issued by DGAC to Airbus.

A French "Certificat de Navigabilite pour Exportation," endorsed as noted under "Import Requirement," must be submitted for each individual aircraft for which application for U.S. certification is made.

Import Requirements:

A FAA Standard Airworthiness Certificate may be issued based on a French "Certificat de Navigabilite pour Exportation," (Export C of A) signed by a representative of the Direction Generale de l'Aviation Civile (DGAC) of France on behalf of the European Community. The Export C of A should contain, containing the following statement: "The Airplane covered by this certificate has been examined, tested, and found to conform to the Type Design approved under Type Certificate No. A28NM and to be in condition for safe operation."

The U.S. airworthiness certification basis for aircraft type certificated under FAR Section 21.29 and exported by the country of manufacture is FAR Sections 21.183(c) or 21.185(c). The U.S. airworthiness certification basis for aircraft type certificated under FAR Section 21.29 exported from countries other than the country manufacture (e.g., third party country) is FAR Sections 21.183(d) or 21.185(b). Notwithstanding that FAR section 21.183(d) and 25.185(b) do not specifically address or require certification by the foreign civil airworthiness authority of the country of manufacture, such certification is the only practical way for an applicant to show, and the Federal Aviation Administration (FAA) to find conformity to the FAA-approved type design and condition for safe operation. Additional guidance is contained in FAA advisory Circular 21-23, Airworthiness Certification of Civil Aircraft, Engines, Propellers, and Related Products Imported into the United States.

Certification Basis

- a. Part 25 of the FAR effective February 1, 1965, including Amendments 25-1 through 25-56 thereto.
- b. Special Federal Aviation Regulation (SFAR) No.27 effective February 1, 1974, including Amendments 27-1 through 27-5.
- c. Part 36 of the FAR effective December 1, 1969, including Amendments 36-1 through 36-12.
- d. FAA Special Conditions issued for the A320 in accordance with Section 21.16 of the FAR and published in the Federal Register, as follows:
 - (1) January 27, 1989:
 - Electronic Flight Controls
 - Active Controls
 - Engine Controls and Monitoring
 - Protection from Lightning and Unwanted Effects of Radio Frequency (RF) Energy
 - Flight Characteristics
 - Flight Envelope Protection
 - Side Stick Controllers
 - Flight Recorder.
 - (2) June 9, 1989:
 - Computerized Airplane Flight Manual
- e. For precision approach and landing, the applicable technical requirements are complemented by AC 120-29 and AC 120-28c.

For the automatic flight control system, the applicable technical requirements are complemented by AC 20-57A for automatic landing and by AC 25.1329-1A for cruise.

Use of JAR AWO where applicable to the requirements above, is acceptable.

- f. The following paragraphs of the FAR have been complied with through equivalent safety demonstrations:
 - 25.783(e) for cargo doors
 - 25.783(f) for passenger doors and bulk cargo door
 - 25.813(c) for emergency exit access
 - 25.811(e)(3) Type III emergency exit marking.
- g. Optional Requirements elected:
 - 25.801 for ditching.
 - 25.1419 for icing.

Note 1:

The A320 basic definition for U.S. import certification is contained in the following documents:

- AI/A 414.282/88 for the A320 Models -111 and -211
- AI/EA-A 413.628/89 for the A320 Model -231
- AI/EA-A 412.1631/90 for the A320 Model -212
- AI/EA-A 414.0665/93 for the A320 Model -232
- AI/EA-S 413.2143/95 for the A320 Model -233
- AI/EA-S 413.0150/95 for the A320 Model -214
- AI/EA-S 413.3004/96 (supplement) for the A320 Model -214.

Note 2:

If modification 20758 is embodied, the airplane is certified for CAT III B precision approach (fail operational) and landing. This does not constitute an operational approval.

Note 3:

All Models of A320 airplanes manufactured after January 1, 1997 must have either modification 25302 (for IAE engines) or 25303 (for CFM engines) installed, before the individual U.S. standard Certificate of Airworthiness can be issued.

Note 4:

If modification 25800 is embodied on models with CFM56-5B engines, the engine performance is improved. The engine denomination changes to /P.

CFM56-5B/"non-P" engine can be intermixed with CFM56-5B/P engine on the same aircraft.

Note 5:

If modification 26610 is embodied on A320-214 airplanes, the engine performance and gaseous emission levels are improved. The engine denomination changes to /2P (DAC IIC Dual Annual Combustor).

- CFM56-5B4/P engine can be intermixed with CFM56-5B4/2P (DAC IIC Dual Annual Combustor) engine on the same aircraft (AFM Supplement).
- CFM 56-5B/2 "non P" (DAC) engine can be intermixed with CFM 56-5B/2P (DAC II C) engine on the same aircraft (AFM supplement).
- CFM 56-5B/P or / "non P" (SAC) engine can be intermixed with CFM 56-5B/2P (DAC II C) engine on the same aircraft (AFM supplement).

Note 6:

For A320-200 series airplanes with OCTOPUS Airplane Flight Manual, Airbus elected to comply with Part 25 Amendment 25-92.

Note 7:

If modification 23755 is embodied on A320-111 and A320-211 airplanes, the maximum permissible gas temperature for take-off and max. continuous operation is extended to 915° C and 880° C, respectively. However, the ECAM indication remains at 890° C and 855° C, respectively. The engine denomination changes to /F.

A320-111/-211 CFM 56-5A1 engine can be intermixed with CFM 56-5A1/F engine on the same aircraft.

Note 8:

On A320-200 series aircraft, one Additional Center Tank (ACT) in bulk version is defined by modification 34456 (low pressure system). The approval together with structural and system provisions was subject of compliance demonstrated to Advisory Circular AC 25-8.

<u>Note 9:</u>

A320-231 with modification 23872 (EGT redline increase for IAE engines):

- for consolidated bump rating operation (mod 22461 or 23408), the maximum permissible gas temperature is extended to 650° C at take-off. The ECAM indication remains at 635°;
- for non rating bump operation, the maximum permissible gas temperature is extended to 640° C at take-off. The ECAM indication remains at 635° C;
- for maximum continuous and take-off operation, the maximum permissible gas temperature is extended to 615° C. The ECAM indication remains at 610° C.

Note 10:

A320-231 with modification 25000 (FADEC Standard SCN12C for IAE engines) :

- for take-off operation, the maximum permissible gas temperature is extended to 650° C. The ECAM indication remains at 635°C;
- for maximum continuous operation, the maximum permissible gas temperature is extended to 625° C. The ECAM indication remains at 610° C.

IV. Type A321-100/200 Series Transport Category Airplanes

Model A321-111, Approved December 20, 1995;

Model A321-112, Approved December 20, 1995;

Model A321-131, Approved December 20, 1995;

Model A321-211, Approved September 18, 1997;

Model A321-231, Approved September 18, 1997:

Model A321-212, Approved May 20, 2005; Model A321-213, Approved May 20, 2005;

Model A321-232, Approved May 20, 2005.

Engines:

Model A321-111 & A321-212, Two CFMI Model CFM56-5B1 or CFM56-5B1/P or CFM56-5B1/2P jet engines;

Model A321-112 & A321-213, Two CFMI Model CFM56-5B2 or CFM56-5B2/P jet engines;

Model A321-131 & A321-232, Two IAE Model V2530-A5 jet engines

Model A321-211, Two CFMI Model CFM56-5B3/P or CFM56-5B3/2P jet engines

Model A321-231, Two IAE Model V2533-A5 jet engines

See Note 10 for description of "P" engine designations

See Installation Manual - Documents CFM 2026 or IAE-0043

TYPE	SPECIFICATION (NAME)								
	FRAN	ICE	E USA			K			
Kerosene	DCSEA 134		ASTM D 1655	(JET A) (JET A1)	DEF STAN 91/91	(AVTUR) (JET A1)			
			MIL - T -83133	(JP 8)	DEF STAN 91/87	(AVTUR) (JET A1) (AIA)			
Wide cut			ASTM D 1655	(JET B)	DEF STAN 91/88	(AVTAG)			
			MIL - T 5624	(JP 4)*					
High flash point	DCSEA 144/A	(F-44) (XF-43)	MIL - T 5624	(JP 5)	DEF STAN 91/86	(AVCAT)			

^{*} JP4 Fuel is not suitable for double annular combustor (DAC) engines.

Additives: See CFMI "Specific Operating Instructions," CFM TPOI-13 or IAE V2500 "Installation and Operating Manual" IAE-0043, 4.5. The above mentioned fuels and additives are also suitable for the APU.

Engine Limits

Digitic Diffits			
	CFMI CFM56-5B1 or -5B1/P	CFMI CFM56-5B2 or -5B2/P	CFMI CFM56-5B3/P
	or -5B1/2P		or -5B3/2P
Engine Limitation	Data Sheets	Data Sheets	Data Sheets
	E37NE E38NE (FAA)	E37NE E38NE (FAA)	E37NE E38NE (FAA)
Static Thrust at Sea Level			
- Take-off (5 min)**	13 344 daN (30,000 lb)	13 789 daN (31 000 lb)	14 234 daN (32,000 lb)
(Flat rated 30°C)			
Maximum Continuous	12 940 daN (29,090 1b)	12 940 daN (29,090 1b)	12940 daN (29,090 lb)
(Flat rated 25°C)			
Maximum Engine Speed			
- N1 rpm (%)	5,200 (104)	5,200 (104)	5,200 (104)
- N2 rpm (%)	15,183 (105)	15,183 (105)	15,183 (105)
Max Gas Temperature			
(°C)			
- Take-off (5 min)**	950	950	950
- Max Continuous	915	915	915
- Starting *	725	725	725

Engine Limits (continued)

_ 8	-		
Max Oil Temperature			
(Supply Pump Inlet; °C)			
- Take-off, Stabilized	140	140	140
- Transient (15 min max)	155	155	155
Min. Press. (PSI)	13	13	13
Approved Oils	See SB CFMI 79-001-OX	See SB CFMI 79-001-OX	See SB CFMI 79-001-OX

	IAE V2530-A5	IAE V2533-A5
Engine Limitation	Data Sheets E40NE (FAA)	Data Sheets E40NE (FAA)
Static Thrust at Sea Level		
- Take-off (5 min)**	13 300 daN (29,900 lb)	14 055 daN (31,600 lb)
(Flat rated 30°C)		
Maximum Continuous	11 988 daN (26,950 1b)	11 988 daN (26,950 lb)
(Flat rated 25°C)		
Maximum Engine Speed		
- N1 rpm (%)	5,650 (100)	5,650 (100)
- N2 rpm (%)	14,950 (100)	14,950 (100)
Maximum Gas Temperature (°C)	Eng. Limit/ ECAM	Eng. Limit/ ECAM
- Take-off (5 min)**	650/650	670/650
- Max Continuous	610/610	610/610
- Starting *	635/635	635/635
Maximum Oil Temperature		
(Supply Pump Inlet; °C)		
- Take-off, Stabilized	155	155
- Transient (15 min max)	165	165
Min. Press. (PSI)	60	60
Approved Oils	See Doc IAE 0043 Sec 4.9	See Doc IAE 0043 Sec 4.9
	(MIL-L-23699)	(MIL-L-23699)

^{* 4} Consecutive cycles of 2 minutes each.

<u>Airspeed Limits (Indicated Airspeed - IAS - Unless otherwise Stated:</u>

Maximum Operating Mach
 Maximum Operating Speed
 VMO: 350 kt

- Maneuvering Speed VA:
- See Chapter 2.0 of the DGAC-approved Flight Manual

- Extended Flaps/Slats Speed - VFI

Configuration	Slats/Flaps	VFE (Kt)	
1	18/0	230**	Intermediate Approach
	18/10	215**	Take-off
2	22/14	205	Take-off and Approach
		215*	
3	22/21	195	Take-off, Approach, and
			Landing
Full	27/25	190	Landing

^{*} See Note 12

Landing Gear:

- VLE - Extended: 280 Kt/Mach 0.67

- VLO - Extension: 250 kt - Retraction: 220 kt

Tire Limit Speed (Ground Speed) = 195.5 kt (225 mph)

Minimum Control Speed:

- VMCA (Air): 105 kt

- VMCG (Ground): 102 kt (all config.)

^{**10} minutes at take-off thrust allowed only in case of engine failure (at take-off or during go-around)

^{**} See Note 18

Maximum Weights:

A321-100:

VARIANT	000 BASIC	002 Mod 24178	003 Mod 24899
VIRIANI	(KG) (LBS)	(KG) (LBS)	(KG) (LBS)
Max. Take-off Weight	83,000 182,983	83,000 182,983	85,000 187,391
Max. Landing Weight	73,500 162,040	74,500 164,243	74,500 164,243
Max. Zero Fuel Weight	69,500 153,220	70,500 155,424	70,500 155,424

A321-211 & 231:

	000	001	002	
VARIANT	BASIC	Mod 28960	Mod 28721	
	(KG) (LBS)	(KG) (LBS)	(KG) (LBS)	
Max. Take-off Weight	89,000 196,210	93,000 205,027	89,000 196,208	
Max. Landing Weight	75,500 166,448	77,800 171,517	77,800 171,517	
Max. Zero Fuel Weight	71,500 157,629	73,800 162,699	73,800 162,699	

A321-212, 213 & 232:

	000	002	007	011
VARIANT	BASIC	Mod 28721	Mod 31617	Mod 32456
	(KG) (LBS)	(KG) (LBS)	(KG) (LBS)	(KG) (LBS)
Max. Take-off Weight	89,000 196,210	89,000 196,208	83,000 182,983	93,000 205,027
Max. Landing Weight	75,500 166,448	77,800 171,517	73,500 162,040	77,800 171,517
Max. Zero Fuel Weight	71,500 157,629	73,800 162,699	69,500 153,220	73,800 162,699

Minimum Weight:

VARIANT	All	
	(KG) (LBS)	
Minimum Weight	47,500 104,718	

Minimum Crew:

2 Pilots

Maximum Passengers:

220

Maximum Baggage:

CARGO COMPARTMENT	MAXIMUM LOAD
	(KG) (LBS)
Forward	5,670 12,500
Aft	5,670 12,500
Rear (Bulk)	1,497 3,300

For the positions and the loading conditions authorized in each position (references of containers, pallets, and associated weights), see Weight and Balance Manual, ref. 00E080A0001/C1S Chapter 1.10.

Fuel Capacity (0.8 kg/liter): A321-100 and A321-200:

3-Tank Airplane				
Tank	Usab	Usable Fuel		ole Fuel
	Liters (kgs)	Gallons (lbs)	Liters (Kgs)	Gallons (lbs)
Wing	15,500	4,094	22.6	6
	(12,400)	(27,331)	(18)	(39.6)
Center	8,200	2,166	23.2	6.1
	(6,560)	(14,460)	(18.6)	(40.97)
TOTAL	23,700	6,260	45.8	12.1
	(18,960)	(41,791)	(36.6)	(80.62)

A321-200:

	·	4-Tank Airplane (high pressure ACT system)			
Tank	Usab	Usable Fuel		Unusable Fuel	
	Liters (kgs)	Gallons (lbs)	Liters (Kgs)	Gallons (lbs)	
Wing	15,500	4,094	22.6	6	
	(12,400)	(27,331)	(18)	(39.6)	
Center	8,200	2,166	23.2	6.1	
	(6,560)	(14,460)	(18.6)	(40.97)	
ACT	2,900	766	17	4.5	
	(2,320)	(5,114)	(13.6)	(29.96)	
TOTAL	26,600	7,026	62.8	16.6	
	(21,280)	(46,905)	(50.2)	(110.58)	

4 to 5-Tank Airplane (low pressure ACT system)				
Tank	Usab	le Fuel	Unusable Fuel	
	Liters (kgs)	Gallons (lbs)	Liters (Kgs)	Gallons (lbs)
TOTAL				
3-Tank	23,700	6,260	45.8	12.1
Airplane	(18,960)	(41,791)	(36.6)	(80.62)
ACT 1	2,992 (2,393)	790 (5,274)	17 (13.6)	4.5 (29.96)
TOTAL				
4-Tank	26,692	7,050	62.8	16.6
Airplane	(21,353)	(47,065)	(50.2)	(110.58)
ACT 2	2,992 (2,393)	790 (5,274)	17 (13.6)	4.5 (29.96)
TOTAL				
5-Tank	29,684	7,840	79.8	21.1
Airplane	(23,746)	(52,339)	(63.8)	(140.54)

Oil Capacity:

 $CFMI\ CFM56\text{-}5B\ -\ Engine\ Oil\ Capacity,\ 10\ quarts/engine\ (9.46\ liters).$

IAE V2500-A5 - Engine Oil Capacity, 7 quarts/engine (6.6 liters)

Maximum Operating Altitude:

- 39,800 feet (12,200 m) clean if modification 30748 is embodied.
- 39,100 feet (12,000 m) clean.
- 20,000 feet (6,500 m) Slats/Flaps extended.

Equipment:

The basic equipment as prescribed in the airworthiness regulations (see certification basis) must be installed in the aircraft for certification. Equipment approved for installation are listed in the definition of the reference model and the modification applicable to it. Refer to Type Certification Standard Equipment Schedule Lists:

- 00E000A0007/C1S for A321-111 Model
- 00E000A0006/C1S for A321-112 Model

- 00E000A0004/COS for A321-131 Model
- 00E000A0211/COS for A321-211 Model
- 00E000A0231/COS for A321-231 Model
- 00E000A0212/C0S for A321-212 Model
- 00E000A0213/C0S for A321-213 Model
- 00E000A0232/COS for A321-232 Model

Refer to Note 1 for list of A321 airplane model FAA Type Definitions.

Serial Numbers Eligible:

Until September 27, 2004, A321 aircraft, all series, all models, have been produced in Hamburg (Germany) under approval LBA.G.0009 or I-A9 issued by LBA to Airbus.

Since September 27, 2004 A321 aircraft, all series, all models, are produced in Hamburg (Germany) under approval DE.21G.0009 issued by LBA to Airbus

A German Export Certificate of Airworthiness endorsed as noted under "Import Requirement", must be submitted for each individual aircraft for which application for U.S. certification is made.

Import Requirements:

A FAA Standard Airworthiness Certificate may be issued based on a German Export Certificate of Airworthiness (Export C of A), signed by a representative of the Luftfahrt-Bundesamt (LBA) of Germany on behalf of the European Community. The Export C of A should contain the following statement: "The aircraft covered by this certificate has been examined, tested, and found to conform to the Type Design approved under Type Certificate No. A28NM and to be in a condition for safe operation."

The U.S. airworthiness certification basis for aircraft type certificated under FAR Section 21.29 and exported by the country of manufacture is FAR Sections 21.183(c) or 21.185(c). The U.S. airworthiness certification basis for aircraft type certificated under FAR Section 21.29 exported from countries other than the country manufacture (e.g., third party country) is FAR Sections 21.183(d) or 21.185(b). Notwithstanding that FAR section 21.183(d) and 25.185(b) do not specifically address or require certification by the foreign civil airworthiness authority of the country of manufacture, such certification is the only practical way for an applicant to show, and the Federal Aviation Administration (FAA) to find conformity to the FAA-approved type design and condition for safe operation. Additional guidance is contained in FAA advisory Circular 21-23, Airworthiness Certification of Civil Aircraft, Engines, Propellers, and Related Products Imported into the United States.

Certification Basis (A321-100 and A321-200)

- a. Part 25 of the FAR effective February 1, 1965, including amendments 25-1 through 25-56 thereto.
- b.1. Plus the following sections of Part 25 as amended by amendments 25-1 through:
 - 25-58 (Section 25.812(e))
 - 25-63 (Section 25.25(a)(3))
 - 25-67 (Section 25.807(c)(7))
 - 25-70 (Section 25.1411(a)(2))

(Applied per FAA derivative aircraft policy – reference FAA order 8110.4A)

- b.2. Airbus elected to comply with portions of FAR 25.562, Amendment 64, for the passenger seats only. FAR paragraphs 25.562(c)(5) and 25.562(c)(6) do not apply.
- c. Part 34 of the FAR effective September 10, 1960, including amendments 34-1.
- d. Part 36 of the FAR effective December 1, 1965, including amendments 36-1 through 36-20 thereto.
- e. FAA Special Conditions issued for the A320 in accordance with Section 21.16 of the FAR and published in the Federal Register as follows:
 - 1) January 27, 1989:
 - Electronic Flight Controls
 - Active Controls
 - Engine Controls and Monitoring
 - Protection from Lightning and Unwanted Effects of Radio Frequency (RF) Energy
 - Flight Characteristics
 - Flight Envelope Protection
 - Side Stick Controllers
 - Flight Recorder.
 - (2) June 9, 1989
 - Computerized Airplane Flight Manual
- f. For precision approach and landing, the applicable technical requirements are complemented by AC 120-29 and AC 120-28c.

For the automatic flight control system, the applicable technical requirements are complemented by AC 20-57A for automatic landing and by AC 25.1329-1A for cruise.

Use of JAR AWO where applicable to the requirements above, is acceptable.

- g. The following sections of the FAR have been complied with through equivalent safety demonstrations in addition to the equivalent safety findings applicable from the original A320 certification basis:
 - 25.101, 25.105, 25.109, 25.113, 25.115, 25.735, for rejected take-off and landing performance
 - -25.305, 25.331, 25.333, 25.335, 25.341, 25.345, 25.349, 25.351, 25.371, 25.373, 25.391, 25.427, for design gust criteria
 - -25.783(e) bulk cargo door
 - 25.783(f) for passenger doors
 - 25.807(c) for maximum passenger capacity
 - 25.933(a) for thrust reversing system.
- h. Optional requirements elected:
 - 25.801 for ditching.
 - 25.1419 for icing.

Note 1:

The A321 basic definition for U.S. import certification is contained in the following documents:

- 00E000A0010/C11 for A321-111 model
- 00E000A0011/C11 for A321-112 model
- 00E000A0012/C11 for A321-131 model
- AI/EA-S 413.3365/96 (supplement) for A321-111/112/131 models
- AI/EA-S 413.0401/97 for A321-211 model
- AI/EA-S 413.0399/97 for A321-231 model
- AI/EA-S 413.1641/01 for A321-212 Model
- AI/EA-S 413.1642/01 for A321-213 Model
- AI/EA-S 413.1639/01 for A321-232 Model

Note 2:

Door 2 and/or Door 3 may be derated to Type III.

Note 3:

If modifications 24173 and 22853 are embodied on models with IAE engines, the aircraft is qualified for Cat II precision approach. This does not constitute operational approval.

Note 4:

If modification 24064 is embodied on models with CFM engines, the aircraft is qualified for Cat III precision approach. This does not constitute operational approval.

Note 5:

If modification 24066 is embodied on models with IAE engines, the aircraft is qualified for Cat III precision approach. This does not constitute operational approval.

Note 6:

If modification 25199 is embodied on models with CFM engines, the aircraft is qualified for Cat III B precision approach. This does not constitute operational approval.

Note 7:

If modification 25200 is embodied on models with IAE engines, the aircraft is qualified for Cat III B precision approach. This does not constitute operational approval.

Note 8:

If FWC Standard D2 and FAC standard BAM 0510 are fitted on A321 aircraft, VFE speed in configuration 2 is increased from 205kts to 215kts (as identified by speed limitation placard installed by modification 24641).

Note 9:

Modifications 25302 (for IAE engine) and 25303 (for CFM engine) are part of the FAA Type Design, and shall be implemented on any A321 aircraft entered on the U.S. register, before the individual U.S. standard Certificate of Airworthiness be issued.

Note 10

If modification 25800 is embodied on models with CFM56-5B engines, the engine performance is improved. The engine denomination changes to /P.

CFM56-5B/"non-P" engine can be intermixed with CFM56-5B/P engine on the same aircraft.

Note 11:

On the series A321-200, one Additional Center Tank (ACT) in bulk version is defined by modification 25453 (high pressure system). Its approval together with structural and system provisions was subject of compliance demonstrated to Advisory Circular (AC) 25-8.

Note 12:

The type design definitions and certification standard equipment lists as referenced in Note 1 above are complemented by document 00D000A0546/C0S "A319-100/A321-200 FMGC Type Standard Evolution".

Note 13:

On the series A321-200, one or two Additional Center Tanks (ACT) in bulk version are defined by modification 30422 (low pressure system). Their approval together with structural and system provisions was subject of compliance demonstrated to AC 25-8

Note 14:

On the series A321-200, Weight Variant 001, VFE speed in Configuration 1 is increased from 230 to 235 kts, and in Configuration 1+F increased from 215 to 225 kts (as identified by speed limitation placard installed by modification 28960).

Note 15:

If modification 26610 is embodied on A321-111 airplanes, the engine performance and gaseous emission levels are improved. The engine denomination changes to /2P (DAC IIC Dual Annual Combustor).

- CFM56-5B1/P engine can be intermixed with CFM56-5B1/2P (DAC IIC Dual Annual Combustor) engine on the same aircraft (AFM Supplement).
- CFM 56-5B/2 "non P" (DAC) engine can be intermixed with CFM 56-5B/2P (DAC II C) engine on the same aircraft (AFM supplement).
- CFM 56-5B/P or / "non P" (SAC) engine can be intermixed with CFM 56-5B/2P (DAC II C) engine on the same aircraft (AFM supplement).

Note 16:

If modification 27640 is embodied on A321-211airplanes, the engine performance and gaseous emission levels are improved. The engine denomination changes to /2P (DAC IIC Dual Annual Combustor).

CFM56-5B3/P engine can be intermixed with CFM56-5B3/2P (DAC IIC Dual Annual Combustor) engine on the same aircraft (AFM Supplement).

DATA PERTINENT TO ALL MODELS

Auxiliary Power Unit (APU)

	A318	A319	A320	A321
	-111/-112	All models	All models	All models
HONEYWELL AIRESEARCH GTCP 36-300 (A) (Spec. 31-5306 B)	Basic		Basic	
APIC APS 3200 (Spec. ESR 0802, Rev. A)	Option Option (Mod 22562 or 35864)		4)	
AlliedSignal 131-9[A] (Spec. 4900 M1E 03 19 01)	Option (Mod 25888)			

Note: APU APIC APS 3200 (Mod 35864) is the production standard from:

- MSN 2686 for A318 models,
- MSN 2643 for A319 models,
- MSN 2645 for A320 models,
- MSN 2653 for A321 models.

APU Limits:

GTCP 36-300 (A)

- Maximum Allowable Speed 69,204 rpm (107 %)

- Maximum Gas Temperature

at turbine outlet (ISA + 35° C)

rated output 638°C overtemp. shutdown 711°C Maximum on starting 1038°C

APS 3200

- Maximum Rotor Speed 49,300 rpm (105 %)

- Maximum EGT 742°C

- Maximum for Start 900°C at altitudes below 25000 ft 982°C at altitudes below 25000 ft

131-9[A]

- Maximum Allowable Speed Nominal 51,728 rpm (106 %) Overshoot 53,875 rpm (110 %)

- Maximum Gas Temperature

at turbine outlet 675°C rated output (ISA + 23°C) 585°C overtemp. shutdown (ISA) 706°C

maximum on starting (ISA) 1080°C below 35000 ft, 1108°C above 35000 ft

(ISA + 40°C) 1090°C below 35000 ft,

1120°C above 35000 ft

APU Approved oils:

See GARRETT Report GT-7800 or in conformity with MIL-L-IAS, MIL-L23699 or DERD 2487 for the GTCP 36-300, Usable Capacity: 5.8 liters

See APIC Maintenance Manual for approved oils for the APS 3200

See Model Specification 31-12048A-3B for Allied Signal 131-9[A]

Center of Gravity Range (% Mean Aerodynamic Chord):

See DGAC-Approved Airplane Flight Manual, U.S. Version.

Hydraulic Fluids:

- Type IV Specification NSA 30.7110.
- Capacity (Reservoirs and Systems):

System	Liters	Gallons
Green	100	26
Yellow	75	20
Blue	60	16

Pressure: $3000 \pm 200 \text{ PSI } (207 \pm 4 \text{ bar})$

Tires:

- See Airbus Service Bulletin (SB) A320-32-1007

Datum:

Station 0 (100 inches forward of fuselage nose).

Reference Mean Aerodynamic Chord (MAC):

165.10 inches / 4.1935 m (leading edge of MAC: Sta. 700.85 inches).

Leveling Means:

Clinometer on the cabin seat track rails.

Service Information:

Each of the documents listed below that contain a statement that it is approved by the European Aviation Safety Agency (EASA) - or for approvals made before September 28, 2003 - by the DGAC France, are accepted by the FAA and are considered FAA approved. Additionally, approvals issued by Airbus under the authority of EASA approved Design Organization EASA.21J.031 - or for approvals made before September 28, 2003 - under the authority of DGAC Design Organization Approval No. C01, or JAA Design Organization Approval No. F.JA.02 are considered FAA approved. These approvals pertain to the type design only.

- Airbus Service bulletins, except as noted below
- Structural repair manuals
- Vendor manuals referenced in Airbus Service Bulletins
- Aircraft flight manuals, and
- Repair Instructions

Design changes that are contained in Airbus service bulletins and that are classified as Level 1 Major in accordance with either the US/French or US/EASA Bilateral Aviation Safety Agreement Implementation Procedures for Airworthiness must be approved by the FAA.

Historical Transition Statement:

The Direction Generale de l'Aviation Civile (DGAC) of France originally type certified these aircraft under its Type Certificate Number 180. The FAA validated these products under U.S. Type Certificate Number A28NM. Effective September 28, 2003, EASA began oversight of these products on behalf of France.

Note 1 - Weight and Balance

- a. Current weight and balance report including list of equipment, entitled "Aircraft Inspection Report" included in certificated empty weight, and loading instructions, must be in each aircraft at the time of original certification and at all times thereafter, except in the case of operators having an approved weight control system. Airbus report, "Weight and Balance Manual," contains loading information for each airplane and interior arrangement configuration as delivered. This report contains, or refers to, information relative to location of all passengers and crew member seats, location and capacity of all cargo and baggage compartments, buffets, storage spaces and coat rooms, location and capacity of lounges, lavatories, and the required placards in the passenger compartment.
- b. The airplane must be loaded so that the CG is within specified limits at all times, considering fuel loading usage, gear retraction and movement of crew and passengers from their assigned positions.
- c. The weights of system fuel and oil, as defined below, and hydraulic fluid, all of which must be included in the airplane empty weight, are listed for each airplane in the Weight and Balance Manual specified in paragraph a. above.
- d. System fuel is the weight of all fuel required to fill a lines and tanks up to zero-fuel point on the fuel gauges in the most critical flight attitude, including the unusable tank fuel as defined by FAR part 25.959. (The usable fuel in the crossfeed manifold lines, manifolds, and engine that is not part of the system fuel must be included in the total usable fuel to obtain correct weight and CG for take-off.)
- e. The unusable fuel is that amount of fuel in the tanks which is unavailable to the engines under critical flight conditions as defined in FAR Part 25.959. This "unusable" fuel is included in System Fuel as indicated in paragraph d. above, and need not be accounted for separately.
- f. System oil is the weight of all remaining in the engine, constant speed drive, lines, and tanks after subtracting the oil in the tanks which is above the standpipe (zero gauge) levels. The engine oil capacities shown elsewhere in this data sheet include only the usable oil for which the tanks must be placarded.

Note 2:

The aircraft must be operated in accordance with the DGAC or EASA -approved FAA Airplane Flight Manual. ("DGAC or EASA-approved" is considered equivalent to "FAA-approved".)

Note 3:

Maintenance criteria to comply with certification requirements for:

- safe-life structure are given in Airbus document 00D050A0M91/C0S "A318/A319/A320/A321 Airworthiness Limitations Section" Subparts 1-2 and 1-3 (ALS Part 1),
- damage-tolerant structure are given in Airbus document AI/SE-M4/95A.0252/96 "Airworthiness Limitation Items" (ALI),
- systems are given in Airbus document AI/ST4/955.061/89 "Certification Maintenance Requirements (FAA version)" (CMR).

For all this documents, "EASA-approved" is considered equivalent to "FAA-approved".

Note 4:

If modification 25861 is embodied (for A319 and A320 series aircraft) or if modification 25952 is embodied (for A321 series aircraft), the aircraft is qualified for operation in conditions of reduced vertical separation minimum of 1000 ft between flight levels 290 and 410 (RVSM). If modification 25910 is embodied the aircraft is qualified for operation in conditions of RVSM with ADIRU 1 and 2 only. All A318 series aircraft are qualified for operation in conditions of RVSM with ADIRU 1 and 2 only. This does not constitute operational approval.

Note 5:

If modification 36664 is embodied (for A318, A319, A320, and A321 series aircraft) the aircraft is qualified for FAA extended range twin-engine airplane operations (ETOPS) of 180 min. If modification 36667 is embodied (for A318, A319, A320, and A321 series aircraft) the aircraft is qualified for FAA ETOPS of 120 min. This does not constitute operational approval. The configuration, Maintenance and Procedure Standards for ETOPS are contained in the document AI/EA 4000.

Note 6:

If modification 35944 (FADEC Standard "SCN19" for aircraft equipped with IAE engines) or modification 36462 (FADEC Standard "5BM" for aircraft equipped with CFM engines) is embodied the aircraft is eligible for the following improvements of thrust management:

- Derate Take-Off (DTO) capability up to 40% (Modification 35932 (IAE) or Modification 36481 (CFM))
- Flexible Take-Off capability up to 40% (Modification 36750)

----END----