
The Complexity of Finite Functions

Ravi B. Boppana *

Department of Computer Science

New York University

New York, NY 10012

Michael Sipser **

Mathematics Department

Massachusetts Institute of Technology

Cambridge, MA 02139

August 1989

Abstract: This paper surveys the recent results on the complexity of Boolean

functions in terms of Boolean circuits, formulas, and branching programs. The

primary aim is to give accessible proofs of the more di�cult theorems proving

lower bounds on the complexity of speci�c functions in restricted computational

models. These include bounded depth circuits, monotone circuits, and bounded

width branching programs. Application to other areas are described including

Turing machine complexity, relativization, and �rst order de�nability.

Keywords: Alternation, Approximation, Boolean Circuit, Boolean Formula,

Boolean Function, Branching Program, Clique Function, Connectivity Function,

Depth, Fanin, Fanout, First Order De�nability, Gate, Log Time Hierarchy, Major-

ity Function, Monotone Circuit, Monotone Function, Nonconstructive Proof, Non-

determinism, Oracle, Parity Function, Polynomial Time Hierarchy, Relativization,

Restriction, Size, Slice Function, Space, Sunower, Symmetric Function, Thresh-

old Function, Time, Turing Machine.

* Supported by an NSFMathematical Sciences Postdoctoral Fellowship and NSF Grant CCR-

8902522.

** Supported by NSF Grant DCR-8602062 and Air Force Contract AFOSR-86-0078.

1. Introduction

The classi�cation of problems according to computational di�culty comprises

two subdisciplines of di�erent character. One, the theory of algorithms, gives up-

per bounds on the amount of computational resource needed to solve particular

problems. This endeavor has enjoyed much success in recent years with a large

number of strong results and fruitful connections with other branches of mathe-

matics and engineering. The other, called the theory of computational complexity,

is an attempt to show that certain problems cannot be solved e�ciently by es-

tablishing lower bounds on their inherent computational di�culty. This has not

been as successful. Except in a few special circumstances, we have been unable to

demonstrate that particular problems are computationally di�cult, even though

there are many which appear to be so. The most fundamental questions, such as

the famous P versus NP question which simply asks whether it is harder to �nd a

proof than to check one, remain far beyond our present abilities. This chapter sur-

veys the present state of understanding on this and related questions in complexity

theory.

The di�culty in proving that problems have high complexity seems to lie

in the nature of the adversary: the algorithm. Fast algorithms may work in a

counterintuitive fashion, using deep, devious, and �endishly clever ideas. How

does one prove that there is no clever way to quickly solve a problem? This is

the issue confronting the complexity theorist. One way to make some progress on

this is to limit the capabilities of the computational model, thereby limiting the

class of potential algorithms. In this way it has been possible to achieve some

interesting results. Perhaps these may lead the way to lower bounds for more

powerful computational models.

There is by now an extensive literature on bounds for various models of com-

putation. We have excluded some of these from this survey using the following

criteria. First, we will concentrate on recent, mostly combinatorial bounds for

Boolean circuits, formulas, and branching programs. We will not include the older

work on lower bounds via the diagonalization method. Though important early

progress was made in that way, the relativization results of Baker, Gill, and Solo-

vay (1975) show that such methods from recursive function theory are inadequate

for the remaining interesting questions. Second, we will mostly focus on bounds

1

that di�erentiate polynomial from nonpolynomial rather than lower level bounds.

This reects our feeling that this type of result is closer to the interesting unsolved

questions. Finally, in several cases we refrain from giving the tightest result known

to keep the exposition as clear as possible.

1.1. Brief History

Circuit complexity theory dates from Shannon's seminal 1949 paper. There he

proposed the size of the smallest circuit computing a function as a measure of

its complexity. His motivation was simply to minimize the hardware necessary for

computation. He proved an upper bound on the complexity of all n input functions

and used a counting argument to show that for most functions this bound is not

too far o�.

The 1960's saw the introduction of the algorithm as a way of measuring the

complexity of functions. Edmonds (1965) gave a polynomial time algorithm for

the matching problem and foresaw the issue of polynomial versus exponential com-

plexity. Hartmanis and Stearns (1965) formalized this measure as time on a Turing

machine. Savage (1972) established a close relationship between the time required

to compute a function on a Turing machine and its circuit complexity. At this

point the importance of proving good lower bounds on circuit size was apparent,

but it was also becoming clear that this was going to be di�cult to accomplish.

See Harper and Savage (1972) for a discussion of this. By the end of the 1970's es-

sentially the only results known were the linear lower bound of Paul (1977) and the

nearly quadratic lower bound of Ne�ciporuk (1966) for the special case of formula

size.

A new direction in the 1980's brought on a burst of activity. By placing

su�ciently strong restrictions on the class of circuits it became possible to prove

strong lower bounds. The �rst results of this kind were independently obtained

by Furst, Saxe, and Sipser (1984) and Ajtai (1983) for the bounded depth circuit

model. Razborov (1985a) and subsequently Andreev (1985) gave strong lower

bounds for the monotone circuit model. Numerous papers strengthening these

results and giving others in the same vein have since appeared.

Our chapter emphasizes this latter work giving only a sketchy overview of the

proceeding period. For a more comprehensive discussion of the earlier work see

the survey paper of Paterson (1976), and the book of Savage (1976). Much of the

2

recent work also is covered in the books of Wegener (1987) and Dunne (1988).

3

Contents

1. Introduction

2. General Circuits

1. Boolean Circuits and Turing Machines

2. Nonexplicit Lower Bounds

3. Explicit Lower Bounds

3. Bounded Depth Circuits

1. De�nitions

2. Restrictions

3. Hastad Switching Lemma

4. Lower Bound for the Parity Function

5. Depth Hierarchy

6. Monotone Bounded Depth Circuits

7. Probabilistic Bounded Depth Circuits

8. Razborov-Smolensky Lower Bound for Circuits with MOD

p

Gates

9. Applications

1. Relativization of the Polynomial Time Hierarchy

2. Log time Hierarchy

3. First Order De�nability on Finite Structures

4. Monotone Circuits

1. Background

2. Razborov Lower Bound for Monotone Circuit Size

3. Lower Bound for the Clique Function

4. Polynomial Lower Bounds

5. Formulas

1. Karchmer and Wigderson Lower Bound for Monotone Formula Size

2. Lower Bound for the Connectivity Function

3. Nonmonotone Formulas

4. Symmetric Functions

6. Branching Programs

1. Relationship with Space Complexity

2. Bounds on Size

7. Conclusion

4

2. General Circuits

In an early paper Shannon (1949) considered the size of Boolean circuits as a

measure of computational di�culty. Circuits are an attractive model for proving

lower bounds for several reasons. They are closely related in computational power

to Turing machines so that a good lower bound on circuit size directly gives a

lower bound on time complexity. Among computational models the circuit model

has an especially simple de�nition and so may be more amenable to combinatorial

analysis. Even so, we are currently able to prove only very weak lower bounds on

circuit size.

A Boolean circuit is a directed acyclic graph. The nodes of indegree 0 are

called inputs, and are labeled with a variable x

i

or with a constant 0 or 1. The

nodes of indegree k > 0 are called gates and are labeled with a Boolean function

on k inputs. We refer to the indegree of a node as its fanin and its outdegree as its

fanout. Unless otherwise speci�ed we restrict to the Boolean functions AND, OR,

and NOT. One of the nodes is designated the output node. The size is the number

of gates, and the depth is the maximum distance from an input to the output. A

Boolean formula is a special kind of circuit whose underlying graph is a tree.

A Boolean circuit represents a Boolean function in a natural way. Let N

denote the natural numbers, f0; 1g

n

the set of binary strings of length n, and f0; 1g

�

the set of all �nite binary strings. Let f : f0; 1g

n

! f0; 1g. Then C(f) is the size

of the smallest circuit representing f . Let g: f0; 1g

�

! f0; 1g and h:N ! N . Say

g has circuit complexity h if for all n, C(g

n

) = h(n) where g

n

is g restricted to

f0; 1g

n

. A language is a subset of f0; 1g

�

. The circuit complexity of a language is

that of its characteristic function.

5

2.1. Boolean Circuits and Turing Machines

In this subsection we establish a relationship between the circuit complexity of a

problem and the amount of time that is required to solve it. First we must select

a model of computation on which to measure time. The Turing machine (Tm)

model was proposed by Alan Turing (1936) as a means of formalizing the notion

of e�ective procedure. This intuitively appealing model serves as a convenient

foundation for many results in complexity theory. The choice is arbitrary among

the many polynomially equivalent models. The complexity of Turing machine

computations was �rst considered by Hartmanis and Stearns (1965). We briey

review here the variant of this model that we will use. For a more complete

introduction see Hopcroft and Ullman (1979) or the chapter on machine models in

this handbook by van Emde Boas (1989).

A deterministic Turing machine consists of a �nite control and a �nite col-

lection of tapes each with a head for reading and writing. The �nite control is a

�nite collection of states. A tape is an in�nite list of cells each containing a sym-

bol. Initially, all tapes have blanks except for the �rst, which contains the input

string. Once started, the machine goes from state to state, reading the symbols

under the heads, writing new ones, and moving the heads. The exact action taken

is governed by the current state, the symbols read, and the next move function of

the machine. This continues until a designated halt state is entered. The machine

indicates its output by the halting condition of the tapes.

In a nondeterministic Turing machine the next move function is multivalued.

There may be several computations on a given input, and several output values.

We say the machine accepts its input if at least one of these outputs signals accep-

tance. An alternating Turing machine is a nondeterministic Turing machine whose

states are labeled ^ and _. Acceptance of an input is determined by evaluating

the associated ^;_ tree of computations in the natural way. A �

i

(�

i

) Turing

machine is an alternating Turing machine which may have at most i runs of _ and

^ states and must begin with _ (^) states. See Chandra, Kozen, and Stockmeyer

(1981) for more information about alternating Turing machines.

Say a Turing machineM accepts languageA ifM accepts exactly those strings

in A. We now de�ne Turing machine computations within a time bound T . Let

T :N ! N . A deterministic, nondeterministic, or alternating Turing machine M

6

runs in time T (n) if for every input string w of length n, every computation of M

on w halts within T (n) steps. We de�ne the time complexity classes.

TIME(T (n)) =fA: some deterministic Tm accepts A in time O(T (n))g

NTIME(T (n)) =fA: some nondeterministic Tm accepts A in time O(T (n))g

ATIME(T (n)) =fA: some alternating Tm accepts A in time O(T (n))g

�

i

TIME(T (n)) =fA: some �

i

Tm accepts A in time O(T (n))g

�

i

TIME(T (n)) =fA: some �

i

Tm accepts A in time O(T (n))g

P =

[

k

TIME(n

k

)

NP =

[

k

NTIME(n

k

)

�

i

P =

[

k

�

i

TIME(n

k

)

�

i

P =

[

k

�

i

TIME(n

k

)

The connection between circuit complexity and Turing machine complexity

was �rst shown by Savage (1972). The bound in the following theorem is due to

Pippenger and Fischer (1979).

Theorem 2.1: If language A is in TIME(T (n)) then A has circuit complexity

O(T (n) log(T (n))).

Proof sketch: To see the main idea of the simulation we �rst prove the weaker

bound O(T

4

(n)). Let M accept A in time T (n). Convert M to a 1-tape machine.

This increases the time to O(T

2

(n)). View a computation ofM on some input as a

table where row i is the tape at the ith step. At any point in time we will consider

7

the cell currently scanned by the head to contain a symbol representing both the

actual symbol and the state of the machine. Let cell(i; j) be the contents of the ith

cell at time j. It is easy to see that cell(i; j) only depends upon its predecessors

cell(i � 1; j � 1), cell(i; j � 1), and cell(i + 1; j � 1). We may encode the possible

values of a cell in binary and build a small circuit for each cell which computes its

value from its predecessors. Assuming the machine indicates its acceptance in the

1st tape cell upon halting, we designate the appropriate gate from cell(1; l) to be

the output where l is the index of the last row. Since the total number of cells is

O((T

2

(n))

2

) = O(T

4

(n)), the simulating circuit has size O(T

4

(n)).

To obtain the tighter bound of the theorem, we �rst modify the original ma-

chine so that it is oblivious, i.e., the head motions are only dependent upon the

length of the input but not the input itself. An O(T (n) log T (n)) time simula-

tion using two tapes accomplishes this. Once the motions of the heads are known

the above construction may be repeated, except now it is only necessary to build

circuitry for the cells which contain the head because the others do not change

symbol.

Thus every language in P has polynomial circuit complexity. The converse of

this is false since there are nonrecursive languages with low circuit complexity. To

obtain a converse we de�ne the nonuniform extension of P. Alternatively, we may

impose a uniformity condition on the circuit families saying that the nth circuit

is easy to �nd as a function of n. But, since lower bounds for nonuniform classes

imply lower bounds for the corresponding uniform classes, we only consider the

former here.

De�nitions: Let f :N ! N . An f(n)-advice sequence is a sequence of binary

strings A = (a

1

; a

2

; : : :), where ja

n

j � f(n). For a language B � f0; 1;#g

�

let

B@A = fxj x#a

jxj

2 Bg. Let P=f(n) = fB@A: B 2 P and A is an f(n)-

advice sequenceg. Let P/poly=

S

k

P=n

k

. Apply this notation to other complexity

classes, e.g., NP/poly. These classes are sometimes referred to as \nonuniform P"

or \nonuniform NP".

Theorem 2.2: C is in P/poly i� C has polynomial circuit complexity.

Proof: If C is in P/poly then C = B@A for some B in P and polynomial advice

sequenceA. By the above theoremB has polynomial circuit complexity. Presetting

8

the advice strings into the appropriate inputs of the circuits for B obtains the

polynomial size circuits for C.

For the other direction we encode the polynomial size circuits for C as an

advice sequence.

Thus one may hope to show P 6= NP by giving a superpolynomial lower bound

on circuit size for an NP problem. Of course, it may be that all NP problems have

polynomial circuit complexity even though P 6= NP. The following theorem of

Karp, Lipton, and Sipser (1982) shows that if this were the case then there would

be other peculiar consequences.

Theorem 2.3: If NP � P/poly then the polynomial time hierarchy collapses to

�

2

P.

2.2. Nonexplicit Lower Bounds

Although we are mostly concerned with explicit problems (i.e., those in NP), it is

worth understanding what can be said about nonexplicit problems. Muller (1956),

based on an argument of Shannon (1949), proved an exponential lower bound on

the circuit complexity of a nonexplicit problem. We prove this lower bound below.

Counting arguments can help establish lower bounds for nonexplicit problems.

On one hand, there are not too many small circuits; on the other hand, there are

very many Boolean functions of n variables. Thus some Boolean function must

require circuits of exponential size. Muller obtains the following result.

Theorem 2.4: Almost every Boolean function of n variables requires circuits of

size
(2

n

=n).

Proof: We �rst show the number of circuits with n variables and size s is bounded

above by (2 � (s + 2n + 2)

2

)

s

. Each gate in a circuit is assigned an AND or OR

operator that acts on two previous nodes. Each previous node can either be a

previous gate (at most s choices), a literal, i.e., a variable or its negation (2n

choices), or a constant (2 choices). Thus each gate has at most 2 � (s + 2n + 2)

2

choices. Compounding these choices for all s gates gives the claimed upper bound.

Notice that for s = 2

n

=(10n), the above bound is approximately 2

2

n

=5

� 2

2

n

.

Since there are 2

2

n

Boolean functions of n variables, almost every Boolean function

requires circuits of size larger than 2

n

=(10n).

9

The above lower bound is optimal up to a constant factor. Expressed in

disjunctive normal form (i.e., as an OR of ANDs of literals), every Boolean function

has circuits of size O(2

n

� n). By being more careful, Muller showed that every

Boolean function has circuits of size O(2

n

=n).

Theorem 2.4 shows the existence of a Boolean function with exponential circuit

complexity, but says nothing about the explicitness of the function. The theorem

can be sharpened to yield a Boolean function computable in exponential space

but requiring exponential-size circuits. Let f

n

be the lexically-�rst function of n

variables that requires circuits of size 2

n

=(10n), and let f be the union of these

functions over all n. By de�nition f requires circuits of exponential size. By

enumerating in lexical order all functions of n variables, and also enumerating all

small circuits, we can compute f in space O(2

n

). Unfortunately, this argument

fails to provide an example of a problem in NP (or even in exponential time) that

provably requires circuits of superpolynomial size.

As we did for circuit complexity above, one can ask about the complexity

of most Boolean functions under other complexity measures. For example, the

formula complexity (de�ned in section 5) of almost every Boolean function is

�(2

n

= logn). The branching program complexity (de�ned in section 6) of almost

every Boolean function is �(2

n

=n).

10

2.3. Explicit Lower Bounds

Despite the importance of lower bounds on the circuit complexity of explicit prob-

lems, the best bounds known are only linear. Blum (1984), improving a bound

of Paul (1977), proved a 3n � o(n) lower bound. In this subsection, we prove a

weaker but easier lower bound of size 2n �O(1). These bounds apply to circuits

with all binary gates allowed.

The proofs of these lower bounds use the following gate-elimination method.

Given a circuit for the function in question, we �rst argue that some variable (or

set of variables) must fan out to several gates. Setting this variable to a constant

will eliminate several gates. By repeatedly applying this process, we conclude that

the original circuit must have had many gates. As an example, we apply the gate-

elimination method to threshold functions. Let TH

k;n

be the function that outputs

1 i� at least k of its n variables are 1. We have the following lower bound.

Theorem 2.5: For n � 2, the function TH

2;n

requires circuits of size at least

2n� 4.

Proof: The proof is by induction on n. For n = 2 and n = 3, the bound is

trivial. Otherwise, let C be an optimal circuit for TH

2;n

, and suppose without loss

of generality that the bottom-most gate of C acts on variables x

i

and x

j

(where

i 6= j). Notice that under the four possible settings of x

i

and x

j

, the function

TH

2;n

has three possible subfunctions (namely TH

0;n�2

, TH

1;n�2

, and TH

2;n�2

).

It follows that either x

i

or x

j

fans out to another gate in C, for otherwise C would

have only two inequivalent subcircuits under the settings of x

i

and x

j

; suppose it is

x

i

that fans out to another gate. Setting x

i

to 0 will eliminate the need for at least

two gates from C. The resulting function is TH

2;n�1

, which by induction requires

circuits of size 2(n� 1)� 4. Adding the two eliminated gates to this bound shows

that C has at least 2n� 4 gates, which completes the induction.

11

3. Bounded Depth Circuits

As we have seen in the previous section, our methods for proving lower bounds

on the circuit complexity of explicit Boolean functions are presently very weak. We

have only been able to obtain strong lower bounds by imposing sharp limitations

on the types of computation performed by the circuit. In this and the next section

we will survey the results on two types of limited circuit model, bounded depth

circuits and monotone circuits.

The �rst strong lower bounds for bounded depth circuits were given by Furst,

Saxe, and Sipser (1984) and Ajtai (1983) who demonstrated a superpolynomial

lower bound for constant depth circuits computing the parity function. Subse-

quently Yao (1985), by giving a deeper analysis of the method of Furst, Saxe, and

Sipser, was able to give a much sharper exponential lower bound. Hastad (1989)

further strengthened and simpli�ed this argument, obtaining near optimal bounds.

Ajtai used di�erent but related probabilistic combinatorial methods in his proof.

We present Hastad's proof here.

3.1. De�nitions

In this section we consider circuits whose depth is very much smaller than n, the

number of inputs. We allow arbitrary fanin so that the circuit may access the entire

input. Equivalently one may allow only bounded fanin and measure alternation

depth.

For the following de�nitions we assume that the circuits are of the special form

where all AND and OR gates are organized into alternating levels with edges only

between adjacent levels and all negations appear only on the inputs. Any circuit

may be converted to one of this form without increasing the depth and by at most

squaring the size.

De�nitions: A circuit C is called a �

S

i

circuit if it has a total of at most S gates

organized into at most i levels with an OR gate at the output. Say C is a �

S;t

i

circuit if there are a total of at most S gates organized into at most i + 1 levels

with an OR gate at the output and gates of fanin at most t at the input level. Call

C a t-open circuit if it is �

S;t

1

for some S, i.e., an OR of ANDs of fanin at most t.

Dually de�ne �

S

i

, �

S;t

i

, and t-closed by exchanging AND and OR.

12

A peculiar feature of these de�nitions is that we de�ne a �

S;t

i

circuit to be one

of depth i + 1. We defend this terminology by noting the analogy of unbounded

fanin gates to unbounded quanti�ers and bounded fanin gates to bounded quanti-

�ers. Generally the subscript in the �

i

symbol refers to the number of unbounded

quanti�ers. A further justi�cation is that the statements of a number of the coming

theorems are rendered more elegantly by adopting this convention.

In the remainder of this section the statements made regarding � circuits have

a natural dual form for � circuits. To avoid continual repetition we omit this dual

form where obvious.

We will speak of t-open, t-closed, �

S

i

, and �

S;t

i

functions and subsets of f0; 1g

n

as those which are de�ned by the respective type of circuits.

A family of circuits is a sequence (C

1

; C

2

; : : :) where C

n

takes n input vari-

ables. A family may be used to de�ne a language (subset of f0; 1g

�

) or a function

from f0; 1g

�

to f0; 1g. We may use the notation t(n)-open, t(n)-closed, �

f(n)

i

, and

�

f(n);t(n)

i

to describe the complexities of families and their associated languages

and functions. Occasionally we will use �

f(n)

i

, or �

f(n);t(n)

i

to mean the collection

of such families, languages, or functions. A uniform family is one where the de-

scription of C

n

may be easily computed from n. Since the lower bounds we present

later in the chapter apply even in the stronger nonuniform case we will not occupy

ourselves further with notions of uniformity.

Let �

poly

i

and �

poly;const

i

mean

S

k

�

n

k

i

and

S

k

�

n

k

;k

i

respectively.

De�nition: Let AC

0

=

S

i

�

poly

i

. The classes NC

i

and AC

i

for i � 0 were

proposed by Pippenger (1979) and Cook (1985) to be those functions computable

by a uniform family of polynomial size, O(log

i

n) depth circuits with constant and

unbounded fanin respectively. For the remainder of this chapter we ignore the

uniformity condition.

Thus AC

0

is the class of polynomial size, constant depth, unbounded fanin

circuits. This is equivalent to the above de�nition. NC

0

is the class of functions

depending upon a number of input variables which is a constant, independent of

n. As an aside to our main story, the following theorem, discovered independently

by a number of people, is an interesting exercise:

Theorem 3.1: NC

0

= �

poly;const

1

\�

poly;const

1

.

In fact, one may prove the following stronger separation property.

13

Theorem 3.2: If A and B are disjoint �

poly;const

1

languages then there is an

NC

0

language C separating them, i.e., A � C � B.

This theorem is false for disjoint �

poly;const

1

languages.

3.2. Restrictions

Furst, Saxe, and Sipser introduced the method of probabilistic restrictions as a way

of proving lower bounds on the size of bounded depth circuits. Here a randomly

selected subset of the variables is preset so that some of the gates in the circuit

become determined, resulting in a simpler circuit on fewer variables.

De�nition: Let X = fx

1

; : : : ; x

n

g be the input variables to a circuit C computing

a function f . A restriction � is a mapping from X to f0; 1; �g.

We interpret � as presetting the variables assigned 0 or 1 and leaving variable

those assigned star. Under � we may simplify C by eliminating gates whose val-

ues become determined. Call this the induced circuit Cj

�

computing the induced

function f j

�

.

In the probabilistic arguments to follow we will be selecting restrictions from

certain probability distributions. Fix 0 < p < 1. Let R

p

be the probability

distribution on restrictions over X where each x

i

2 X is independently assigned

a value in f0; 1; �g so that Pr [�(x

i

) = �] = p and Pr [�(x

i

) = 0] = Pr [�(x

i

) = 1] =

(1�p)

2

.

14

3.3. Hastad Switching Lemma

The following lemma of Hastad (1989) states that a t-closed function is very likely

to become s-open under a restriction chosen at random from a suitable probability

distribution.

Lemma 3.3: Let f be a t-closed function and � a random restriction from R

p

.

Then

Pr [f j

�

is not s-open] � �

s

where � = pt and = 2= ln� � 4:16 for � = (1 +

p

5)=2, the golden ratio.

Proof: We introduce some notation. A minterm of f is a minimal assignment

to some subset of the variables which determines f to be 1. Say that min(f) is

the size of the largest minterm of f . By showing that min(f j

�

) � s we show that

f j

�

is s-open because a function may be written as an OR of its minterms. Below

we will prove that the slightly stronger inequality min(f j

�

) < s occurs with high

probability.

To better understand the proof of this lemma it is helpful to �rst consider a

special case. Say f is given by a t-closed circuit C where we assume that all of

the ORs of C are on disjoint sets of variables. Then the following straightforward

induction on l, the number of ORs in C, gives the lemma. The intuition behind

this induction is easy. Consider the ORs one by one. If some variable in an OR

gets a 1 under � then the OR is determined to be 1 and it contributes nothing

to any minterm. Only a starred variable in an OR without 1's may be part of a

minterm. But such an OR is more likely to get all 0's. If this ever happens then

the function is determined to be 0 and has no minterms at all. Thus it is very

unlikely that there will be large minterms. The details follow.

Basis: (l = 0). Obvious since f is the constant function.

Induction: (Assume for l � 1 and prove for l). Let C

1

be the �rst OR in C. By

renaming variables we may assume that all of the variables in C

1

occur without

negation. Let D be C without C

1

. Then

Pr [min(Cj

�

) � s] = Pr [C

1

j

�

� 1] � (A) + Pr [C

1

j

�

6� 1] � (B)

where

(A) = Pr

�

min(Cj

�

) � s

�

�

C

1

j

�

� 1

�

15

and

(B) = Pr

�

min(Cj

�

) � s

�

�

C

1

j

�

6� 1

�

:

Since the right hand side is a weighted average of (A) and (B) it is su�cient to

show that both (A) and (B) are at most �

s

to conclude that the left hand side is

at most �

s

. Here and in all expressions throughout the proof of lemma 3:3 and

3:3

0

we adopt the convention that Pr[AjB] = 0 if Pr[B] = 0.

Bounding (A): If C

1

j

�

� 1 then C

1

will not contribute to the minterm and so

min(Cj

�

) = min(Dj

�

). Since we are assuming that the ORs are disjoint, the

conditioning is irrelevant and so (A) = Pr [min(Dj

�

) � s]. Now the bound follows

from the induction hypothesis.

Bounding (B): We �rst divide up the probability, summing it according to the

number of stars in C

1

. Since the number of stars in C

1

is an upper bound on its

contribution to any minterm we have (B) �

P

t

k>0

(C) � (D) where

(C) = Pr

�

C

1

j

�

gets k stars

�

�

C

1

j

�

6� 1

�

:

and

(D) = Pr

�

min(Dj

�

) � s� k

�

�

C

1

j

�

gets k stars and C

1

j

�

6� 1

�

:

Actually 1 is an upper bound on the contribution of C

1

so we can say something a

bit stronger here. We chose to estimate it this way to preserve the similarity with

the following lemma 3:3

0

. It is important to note that the term k = 0 is excluded

from the above sum since it implies that C

1

j

�

and hence Cj

�

are equivalent to 0.

To bound (C) observe that the condition C

1

j

�

6� 1 is equivalent to saying that

all variables in C

1

receive 0 or star in �. The conditional probability that a variable

receives a star is

p

1� (1� p)=2

=

p

(1 + p)=2

=

2p

1 + p

� 2p:

So (C) �

�

t

k

�

(2p)

k

.

To bound (D), again observe that the conditioning has no e�ect under the

16

disjointness assumption, so by induction (D) � �

s�k

: Therefore,

(B) �

t

X

k>0

�

t

k

�

(2p)

k

�

s�k

= �

s

t

X

k>0

�

t

k

�

(2p=�)

k

= �

s

((1 + 2p=�)

t

� 1) = �

s

((1 + 2p=(pt))

t

� 1) = �

s

((1 + 2=t)

t

� 1)

� �

s

(e

2=

� 1)

< �

s

:

To eliminate the disjointness assumption we may no longer ignore the condi-

tioning which occurs in (A) and (B). To handle this we will prove a version of the

lemma with a stronger induction hypothesis. The intuition behind this is that at

every stage in the induction the only information about the probability distribution

that is known is that it sets certain variables to star, others to 0 or 1, and that

some ORs are determined to be 1. Conditioning on some variable being set to star

does not hurt since these variables were already counted. The other conditioning

does not hurt since it can only make it less likely that a variable is starred and

contributes to a big minterm. In the following lemma, F is an arbitrary function

de�ned on X = fx

1

; : : : ; x

n

g the variables of C, as well as any other variables.

Stronger Lemma 3.3

0

: Let f be a t-closed function, F an arbitrary function,

and � a random restriction from R

p

. Then

Pr

�

f j

�

not s-open

�

�

F j

�

� 1

�

� �

s

where � = pt and = 2= ln� � 4:16 for � = (1 +

p

5)=2, the golden ratio.

Proof: Let C be a t-closed circuit for f . We modify the �rst equation in the

previous argument to include the new condition F j

�

� 1 in all probability state-

ments. As before, we assume that the �rst OR, C

1

, has only positive occurrences

of variables. Again we show that the modi�ed (A) and (B) are at most �

s

.

Pr

�

min(Cj

�

) � s

�

�

F j

�

� 1

�

=

Pr

�

C

1

j

�

� 1

�

�

F j

�

� 1

�

� (A) + Pr

�

C

1

j

�

6� 1

�

�

F j

�

� 1

�

� (B)

17

where

(A) = Pr

�

min(Cj

�

) � s

�

�

C

1

j

�

� 1 and F j

�

� 1

�

and

(B) = Pr

�

min(Cj

�

) � s

�

�

C

1

j

�

6� 1 and F j

�

� 1

�

:

Bounding (A): Pr

�

min(Cj

�

) � s

�

�

C

1

j

�

� 1 and F j

�

� 1

�

is clearly equivalent

to Pr

�

min(Dj

�

) � s

�

�

(C

1

^ F)j

�

� 1

�

: This is bounded by �

s

using the induction

hypothesis.

Bounding (B): Recalling (B) we have

(B) = Pr

�

min(Cj

�

) � s

�

�

C

1

j

�

6� 1 and F j

�

� 1

�

:

In the special case of the lemma we estimated (B) by breaking up the probability,

dividing the minterms according to the number of variables in C

1

that they contain.

Now we must use a �ner scalpel and divide the minterms according to precisely

which variables in C

1

they contain.

Let T be the collection of variables in C

1

and let Y � T . Let min

Y

(C) be

the size of the largest minterm of C which sets all of the variables of Y and no

others in T . Let � 2 f0; 1g

Y

be an assignment of Y to 0 and 1. Let min

Y �

(C)

be the size of the largest minterm of C which sets all of the variables in Y to �

and sets no other variables in T . Both min

Y

(C) and min

Y �

(C) are de�ned to

be 0 if such minterms do not exist. Let �(Y) = � denote the event that � assigns

star to all variables in Y .

Then we can write

(B) = Pr

�

min(Cj

�

) � s

�

�

C

1

j

�

6� 1 and F j

�

� 1

�

�

X

Y�T

Pr

�

min

Y

(Cj

�

) � s

�

�

C

1

j

�

6� 1 and F j

�

� 1

�

=

X

Y�T

0

@

Pr

�

�(Y) = �

�

�

C

1

j

�

6� 1 and F j

�

� 1

�

� Pr

�

min

Y

(Cj

�

) � s

�

�

�(Y) = � and C

1

j

�

6� 1 and F j

�

� 1

�

1

A

:

We estimate the �rst term in this sum using an elementary fact from proba-

bility theory.

18

Lemma 3.4: For arbitrary events A and B

Pr[A

�

�

B] � Pr[A] () Pr[B

�

�

A] � Pr[B]:

This is easily veri�ed using the de�nition of conditional probability.

Lemma 3.5: Pr

�

�(Y) = �

�

�

C

1

j

�

6� 1 and F j

�

� 1

�

� (2p)

jY j

:

Proof: Without the condition F j

�

� 1 that lemma would follow immediately. We

have already done essentially that calculation in the proof of lemma 3.3. The

present lemma also holds in the presence of the extra condition because the condi-

tion can only decrease the probability and so works in our favor. Intuitively, this

is true because knowing that a restriction forces some function to 1 can not make

it more likely that any given variable is assigned star. To prove this formally we

use the previous lemma. Let A be the event �(Y) = � and B the event F j

�

� 1.

To show

Pr

�

�(Y) = �

�

�

F j

�

� 1 and C

1

j

�

6� 1

�

� Pr

�

�(Y) = �

�

�

C

1

j

�

6� 1

�

:

it is enough to show that

Pr

�

F j

�

� 1

�

�

�(Y) = � and C

1

j

�

6� 1

�

� Pr

�

F j

�

� 1

�

�

C

1

j

�

6� 1

�

:

This last inequality holds because the condition C

1

j

�

6� 1 means that � assigns the

variables in T either 0 or star and the condition �(Y) = � means that the variables

in the subset Y of T must all be star. Any restriction � satisfying both conditions

corresponds to a set of 2

jY j

restrictions satisfying only the condition C

1

j

�

6� 1. If

F j

�

� 1 then F

�

0

� 1 for every �

0

in that set, since any restriction forcing F to be

1 still does even if some of the starred variables are assigned 0.

We now estimate the second term of the sum in (B). That is

(D) = Pr

�

min

Y

(Cj

�

) � s

�

�

�(Y) = � and C

1

j

�

6� 1 and F j

�

� 1

�

:

First we further divide it according to how the minterm sets Y .

(D) �

X

�2f0;1g

Y

� 6=0

Y

Pr

�

min

Y �

(Cj

�

) � s

�

�

�(Y) = � and C

1

j

�

6� 1 and F j

�

� 1

�

:

The case � = 0

Y

is excluded because a minterm must set some variable in Y to 1.

19

Estimating (D) is now greatly simpli�ed. Break up the restriction � into �

1

which assigns values to T and �

2

which assigns values to the remaining variables.

Then

(D) �

X

�2f0;1g

Y

� 6=0

Y

max

�

1

Pr

�

2

�

min

Y �

(Cj

�

) � s

�

�

�(Y) = � and C

1

j

�

6� 1 and F j

�

� 1

�

:

The maximum is taken over all �

1

assigning 0's and stars to the variables in T

and only stars to the variables in Y . Having now �xed how �

1

sets the variables

in C

1

we would like to estimate the above probability over �

2

using the induction

hypothesis. To do this we must set all of the variables that �

1

assigns star to be 0

or 1. For the variables in Y we take the assignments given by �. For the variables

in T � Y we take the worst case setting � of these variable to 0 and 1.

Fix � and �

1

. Let W be the variables in T � Y that are assigned star by

�

1

. Recall that D is C without C

1

. We may obtain an upper bound on the above

probability by writing,

max

�2f0;1g

W

Pr

�

2

�

min((Dj

���

1

)j

�

2

) � s � jY j

�

�

�(Y) = � and C

1

j

�

6� 1 and F j

�

� 1

�

:

Since the probability is only over �

2

and the �rst two conditions do not depend

upon �

2

they may be dropped. Fixing the maximizing � this is

Pr

�

2

�

min((Dj

���

1

)j

�

2

) � s� jY j

�

�

(F j

�

1

)j

�

2

� 1

�

:

By induction this is at most �

s�jY j

.

Pulling this together we get

(D) �

X

�2f0;1g

Y

� 6=0

Y

max

�

1

�

s�jY j

=

X

�2f0;1g

Y

� 6=0

Y

�

s�jY j

= (2

jY j

� 1)�

s�jY j

20

and thus

(B) �

X

Y�T

(2p)

jY j

(2

jY j

� 1)�

s�jY j

= �

s

X

k�0

�

jT j

k

�

(2p)

k

(2

k

� 1)=�

k

� �

s

0

@

X

k�0

�

t

k

�

(4p=�)

k

�

X

k�0

�

t

k

�

(2p=�)

k

1

A

= �

s

((1 + 4=t)

t

� (1 + 2=t)

t

)

� �

s

(e

4=

� e

2=

)

� �

s

(recalling = 2= ln�):

3.4. Lower Bound for the Parity Function

Now we use the Hastad switching lemma to derive a lower bound for small depth

circuits computing the parity function.

Theorem 3.6: For all p; d; (0 � k � d � 1), if f is �

S;t

d

then for a random �

from R

p

k

Pr

h

f j

�

is not �

S;t

d�k

i

< S(pt)

t

where = 2= ln� � 4:16.

Proof: Consider the random restriction � as being composed from k restric-

tions � = �

1

�

2

� � � �

k

each drawn from R

p

. Obtain the sequence of functions

f = f

1

; f

2

; : : : ; f

k+1

where f

i+1

= f

i

j

�

i

. At each step of this sequence there is

a collection of t-open (or t-closed if d � i is odd) bottom level subcircuits in the

circuit for f

i

which may become t-closed (or t-open) under �

i

and then merge with

the gates above them. If this successfully occurs for each subcircuit in every f

i

then f

k+1

is �

S;t

d�k

. The probability that it fails at any particular subcircuit is at

most (pt)

t

by the Hastad switching lemma. Hence the probability that it fails at

any of the at most S subcircuits encountered is bounded above by S(pt)

t

.

21

The following corollary is independently interesting as a type of Ramsey the-

orem (see Graham, Rothschild, and Spencer (1980)).

Corollary 3.7:If f is �

S;t

d

where t � logS then there is a restriction � assigning

at least n=3(10t)

d�1

� t stars such that f j

�

is a constant function.

Proof: By the theorem above, if p = 1=10t and � is drawn from R

p

d�1 then

the probability that f j

�

is not �

S;t

1

is at most S(pt)

t

= S�

t

� (2�)

t

where

� = =10 < :42 . Hence Pr[f j

�

is not �

S;t

1

] < :84 . Furthermore, � is expected

to have np

d�1

stars. An easy calculation shows that Pr[� has fewer than np

d�1

=3

stars] < :15 . Since the sum of these probabilities is less than 1, there is a restriction

� for which neither event occurs. Finally, since any nonconstant �

S;t

1

function may

be forced to 1 by setting at most t inputs we may extend � by including these t

additional settings and guarantee that f j

�

is constant.

Using the preceding corollary we now can obtain the desired lower bounds for

the parity function, PARITY(x

1

; : : : ; x

n

) =

P

x

i

mod 2.

Theorem 3.8: For all n; d > 0; PARITY is not �

S;logS

d

where S < 2

1

10

n

1=d

.

Proof: If PARITY were �

S;logS

d

for S < 2

1

10

n

1=d

then by the above corollary there

would be a restriction � assigning at least one star such that PARITYj

�

is constant.

This contradiction proves the theorem.

Corollary 3.9: PARITY62 AC

0

.

Corollary 3.10: Polynomial size parity circuits must have depth at least

log n

c+log logn

for some constant c.

The bound in the above theorem cannot be signi�cantly improved as it is quite

close to the easily obtained upper bound.

Theorem 3.11: For all n and d, PARITY is �

S;logS

d

where S = n2

n

1=d

.

We may also derive lower bounds for other simple Boolean functions as a

corollary to the lower bound for the parity function, using the notion of AC

0

-

reducibility. This notion was proposed by Furst, Saxe, and Sipser who gave a

few examples of reductions and further investigated by Chandra, Stockmeyer, and

Vishkin (1984) who gave additional examples.

De�nition: Let f; g: f0; 1g

�

! f0; 1g

�

. Say f is AC

0

-reducible to g if there is a

family of constant depth, polynomial size circuits computing f using AND, OR,

22

and NOT gates, and polynomial fanin gates computing g.

As an example it is easy to see that PARITY is AC

0

-reducible to the majority

function MAJORITY(x

1

; : : : ; x

n

) which is 1 i� at least half of the x

i

are 1.

Corollary 3.12: MAJORITY62 AC

0

.

3.5. Depth Hierarchy

Thus far, restrictions have been used to establish the limitations of small, shallow

circuits. In a similar way they may be used to show that the power of small circuits

forms a hierarchy according to depth. Sipser (1983) showed that �

poly

d+1

6= �

poly

d

for

every d. It follows as an easy corollary that �

poly;const

d

6= �

poly;const

d

for every d.

Exponential lower bounds for the depth d to d�1 conversion were claimed without

proof by Yao (1985) and proved by Hastad (1989) as a consequence of a variant

of his switching lemma.

Let

f

m

d

=

^

i

1

�m

1

_

i

2

�m

2

^

i

3

�m

3

� � �

K

i

d

�m

d

[x

i

1

:::i

d

= 1] ;

where

J

=

V

or

W

depending on the parity of d. The variables x

1

; : : : ; x

n

appear

as x

i

1

;:::;i

d

for i

j

� m

j

where m

1

=

p

m= logm, m

2

= m

3

= � � � = m

d�1

= m,

m

d

=

p

dm logm=2, and m = (n

p

2=d)

1=(d�1)

. Since (

Q

i�d

m

i

) = n we see that

f

m

d

is �

n

d

.

Theorem 3.13: For every m;d > 1 the function f

m

d

is not �

S;log S

d

for S <

2

1

20

n

1=2d

(logn)

�1=2

.

23

3.6. Monotone Bounded Depth Circuits

Monotone circuits have AND and OR but not NOT gates. Boppana (1986) and

Klawe, Paul, Pippenger, and Yannakakis (1984) were the �rst to obtain strong

lower bounds on the size of constant depth monotone circuits. Boppana gave an

exponential lower bound for the majority function and Klawe, Paul, Pippenger

and Yannakakis showed that the depth d to d� 1 conversion is exponential. These

results were superseded by the previously described results of Yao and Hastad.

Ajtai and Gurevich (1987) and Okol'nishnikova (1982) consider the relative power

of monotone and general circuits for computing monotone functions. They give the

following family of AC

0

functions not computable by monotone, constant depth,

polynomial size circuits.

For each m we de�ne the function f

m

(x

1

; : : : ; x

n

) where n = m logm. Index

the variables x

1

; : : : ; x

n

as x

ij

for i � logm and j � m. For each row i let s

i

be

the index of the last 1 such that there are no 0's preceding it in that row and set

s

i

= 0 if the row has all 0's. Then f

m

is 1 if

P

s

i

�

n

2

.

3.7. Probabilistic Bounded Depth Circuits

A probabilistic circuit is one which has in addition to its standard inputs some

specially designated inputs called random inputs. When these random inputs are

chosen from a uniform distribution the output of the circuit is a random variable.

We say a probabilistic circuit (a; b)-accepts a language if it outputs 1 with probabil-

ity at most a for strings not in the language and outputs 1 with probability at least

b for strings in the language. The circuit accepts with �-error if it (�; 1� �)-accepts

and it accepts with �-advantage if it (

1

2

;

1

2

+ �)-accepts.

A simple nonconstructive argument due to Adleman (1978) and Bennett and

Gill (1981) shows that any language accepted by polynomial size probabilistic cir-

cuits with (1=n

k

)-advantage for any �xed k may also be accepted by polynomial

size deterministic circuits. Ajtai and Ben-Or (1984) consider the analogous ques-

tion for constant depth circuits and give a similar answer provided the advantage

is at least 1= log

k

n.

Theorem 3.14: Every probabilistic circuit C of size s and depth d that accepts

a language with (log

�k

n)-advantage (for �xed k) has an equivalent deterministic

circuit of size poly(n) � s and depth d+ 2k + 2.

24

Proof: Our plan is to �rst amplify the advantage until the error is exponentially

small. Then there exists a setting of the random inputs which always gives the

correct answer. In order to amplify the advantage we de�ne two mappings on

circuits. Let and

l

(C) =

V

1�i�l

C

i

and or

l

(C) =

W

1�i�l

C

i

where each C

i

is an

independent copy of C sharing the same standard inputs but with its own set

of random inputs. It is easy to see that if C is (a; b)-accepting then and

l

(C)

is (a

l

; b

l

)-accepting and or

l

(C) is

�

1� (1� a)

l

; 1� (1� b)

l

�

-accepting. It follows

that for k > 1 if C accepts with (log

�k

n)-advantage then or

l

2

(and

l

1

(C)) accepts

with (log

�(k�1)

n)-advantage for l

1

= 2 logn and l

2

= n

2

ln 2. If C accepts with

(log

�1

n)-advantage then or

l

4

(and

l

3

(or

l

2

(and

l

1

(C)))) has error at most e

�n

< 2

�n

for l

1

= 2 logn, l

2

= 2n

2

logn, l

3

= n

3

, and l

4

= n.

3.8. Razborov-Smolensky Lower Bound for Circuits with MOD

p

Gates

A natural way to extend the results of the last few subsections is to obtain lower

bounds for more powerful circuit models. Razborov (1987) took an important step

in this direction when he proved an exponential lower bound for computing the

majority function with small depth circuits having AND, OR, and PARITY gates.

His method is similar to that of his earlier paper on monotone circuits for the clique

function, described in section 4. Subsequently, Smolensky (1987) simpli�ed and

strengthened this theorem showing that for any p and q powers of distinct primes,

the MOD

p

function cannot be computed with AND, OR, NOT, MOD

q

circuits of

polynomial size and constant depth.

The majority function is the Boolean function MAJORITY(x

1

; : : : ; x

n

) = 1

i�

P

x

i

� n=2. The MOD

p

function is the Boolean function which is 1 i�

P

x

i

6�

0(mod p). We will prove the special case of the Razborov-Smolensky theorem

where p = 2 and q = 3.

Theorem 3.15: The MOD

2

function cannot be computed with a size

1

50

2

1

2

n

1=2d

,

depth d circuit of AND, OR, NOT, and MOD

3

gates for su�ciently large n.

Proof: Let C be a depth d circuit computing MOD

2

with these types of gates.

Think of the gates of C as operating on functions rather than merely on Boolean

values. Our plan is to slightly adjust the results of each of the AND and OR

operators in such a way that 1) each adjustment alters the output of C on few

input settings, while 2) the end result is a function which di�ers from MOD

2

in

25

many input settings. Hence many adjustments must occur. This gives a lower

bound on the circuit size.

More precisely, we will assign to each subcircuit of C a new function called a b-

approximator. A b-approximator is a polynomial on the input variables x

1

; : : : ; x

n

of degree at most b over GF(3), the three element �eld f�1; 0; 1g, where on inputs

from f0; 1g it takes values in f0; 1g. A subcircuit of height h is assigned an n

h=2d

-

approximator. The assignments are done inductively, �rst to the inputs, then

working up to the output. Each assignment introduces some error which is the

number of output deviations between it and the result of applying the true operator

at that gate to the approximators of the subcircuits feeding into it, looking only at

inputs drawn from f0; 1g

n

.

Let D be a subcircuit of C all of whose proper subcircuits have been assigned

b-approximators. If the top gate of D is a NOT gate and the unique subcircuit

feeding into it has approximator f , then we assign the b-approximator 1 � f to

D. Since f and 1 � f are correct on the same input settings, this approximator

introduces no new error. If the top gate of D is a MOD

3

gate and its inputs have

b-approximators f

1

; : : : ; f

k

then we assign the 2b-approximator (

P

f

i

)

2

to D. Since

0

2

= 0 and �1

2

= 1

2

= 1 this introduces no new error.

Before considering the case where the top gate is an AND or an OR let us

examine how these operators a�ect degree. If f

1

; : : : ; f

k

are Boolean functions that

are polynomials of degree at most b then AND(f

1

; : : : ; f

k

) is represented by the kb

degree polynomial f

1

� f

2

� : : : � f

k

. Since f

i

and :f

i

= 1� f

i

have the same degree,

OR(f

1

; : : : ; f

k

) also has degree at most kb. We cannot in general use this as an

approximator because k may be polynomial in n and this bound is too large to

use directly. To �nd a low degree approximation for the results of these operators

we will allow some error to be introduced. Let us �rst �x a parameter l which

determines the tradeo� between error and degree.

If the top gate of D is an OR and its subcircuits have approximators f

1

; : : : ; f

k

then we �nd a 2lb-approximator for D as follows. Select F

1

; : : : ; F

l

subsets of ff

i

g,

let g

i

= (

P

f2F

i

f)

2

, and let a = OR(g

1

; : : : ; g

l

). For an appropriate choice of

F 's, the polynomial a is the desired 2lb-approximator. To bound the error observe

that if for a particular input setting, OR(f

1

; : : : ; f

k

) = 0 then all f

i

and hence all

g

i

are 0 and so a is 0. To analyze the case where the OR is 1 take the F 's to

26

be independently selected random subsets of ff

i

g. Since at least one f

i

is 1 each

g

i

independently has at least a

1

2

chance of being 1, so Pr[a = 0] � 2

�l

. By an

averaging argument there must be some collection of F 's so that the number of

input settings on which OR(f

1

; : : : ; f

k

) = 1 and a = 0 is at most 2

n�l

. A dual

argument applies if the top gate of D is an AND gate using the identity :f = 1�f .

Thus, in either case, the approximator introduces at most 2

n�l

error. This gives

the following lemma.

Lemma 3.16: Every circuit C of depth d has a (2l)

d

-approximator di�ering with

C on at most size(C) � 2

n�l

input settings.

Proof: The inputs to C are assigned the corresponding 1-approximators. Each

level increases the degree of the approximators by a factor of at most 2l. Each

assignment of an approximator contributes at most 2

n�l

error.

Fixing l = n

1=2d

=2 we obtain a

p

n-approximator for C.

Lemma 3.17: Any

p

n-approximator a di�ers from the MOD

2

function on at

least

1

50

2

n

input settings for su�ciently large n.

Proof: Let U be the 2

n

possible input settings and G � U be the settings on

which a agrees with MOD

2

. For each input variable x

i

let y

i

= x

i

+ 1. Consider

MOD

2

as a function from f�1; 1g

n

! f�1; 1g under this change of variables.

We may write MOD

2

(y

1

; : : : ; y

n

) as the nth degree polynomial

Q

y

i

. Since this

change of variables does not alter the degrees of polynomials, a is a polynomial

of degree at most

p

n which agrees with

Q

y

i

on G. Let F

G

be the collection of

f :G ! f�1; 0; 1g. Since jF

G

j = 3

jGj

we may bound the size of G by showing

that jF

G

j is small. We do this by assigning each f 2 F

G

a di�erent polynomial of

degree at most

n

2

+

p

n and then estimating the number of such polynomials.

Let f 2 F

G

. Extend it in an arbitrary way to an

�

f :U ! f�1; 0; 1g. Let p

be a polynomial in the y variables representing

�

f . Let cy

i

1

� � � y

i

l

be a term of p

where c 2 f�1; 1g. Notice that it is multilinear, i.e. without powers higher than

1, since y

2

= 1 for y 2 f�1; 1g. Let Y = fy

1

; : : : ; y

n

g and T � Y be the set of

y

i

j

appearing in this term and T = Y � T . Then we may rewrite this term c

Q

T

as c

Q

Y

Q

T again using y

2

= 1. Within G this is equivalent to the polynomial

c � a �

Q

T of degree

p

n + (n � jT j). If we rewrite in this way all terms in p of

degree greater than

n

2

we obtain a polynomial that agrees with p in G and hence

27

with f . It has degree at most (n �

n

2

) +

p

n =

n

2

+

p

n.

The number of multilinear monomials of degree at most

n

2

+

p

n is

P

n

2

+

p

n

i=0

�

n

i

�

which for large n is approximately :9772 � 2

n

<

49

50

2

n

. The number of polynomials

with monomials of this kind is thus less than 3

49

50

2

n

, so this is an upper bound on

the size of F

G

. Hence jGj = log

3

jF

G

j �

49

50

2

n

. Therefore the number of input

settings where a di�ers from MOD

2

is at least 2

n

�

49

50

2

n

=

1

50

2

n

.

Now we may conclude the proof of the theorem. We know that size(C) is at

least the total error introduced divided by the error introduced at each assignment

of an approximator. Thus

size(C) �

1

50

2

n

2

n�l

�

1

50

2

1

2

n

1=2d

:

3.9. Applications

In this subsection we give some consequences of the previous lower bounds for

relativized computation, log-time computation, and �rst order de�nability.

3.9.1. Relativization of the Polynomial Time Hierarchy

Baker, Gill, and Solovay (1975) proposed relativization as a means of showing

that many familiar problems in complexity theory cannot be settled within pure

recursive function theory. Among their results they give oracles under which P

=? NP has an a�rmative and a negative answer. They leave open the problem of

�nding an oracle under which the levels of the polynomial time hierarchy are all

distinct. Baker and Selman (1979) extended this giving an oracle separating �

2

P

from �

2

P. Furst, Saxe, and Sipser established a connection between exponential

lower bounds for constant depth circuits and the existence of the sought after

oracle. The bounds given by Yao and Hastad settled this question.

Theorem 3.18: There is an oracle A such that for every i, �

i

P

A

6= �

i

P

A

.

28

3.9.2. Log Time Hierarchy

Chandra, Kozen, and Stockmeyer (1981) introduced the notion of alternating Tur-

ing machines operating in sub-linear time. In their de�nition the sub-linear time

alternating Turing machine may access the input in a random access manner by

specifying the address of the bit to be read on a special address tape which by

convention is reset to blank after each read. The alternating log time hierarchy is

de�ned by analogy with the polynomial time hierarchy. Sipser (1983) showed that

as a consequence of the AC

0

hierarchy theorem, the levels of the log time hierarchy

are all distinct.

Theorem 3.19: �

i

TIME(logn)=poly = �

poly;const

i

.

Proof: Given a �

i

TIME(logn) machine M we may convert it to a machine M

0

which reads its input at most once on any computation path and then only after all

nondeterministic branches have been made. M

0

operates by simulatingM except

that it guesses the answer whenever M reads the input. The guesses are made

with the same type of branching (^ or _) in e�ect at the time. Then M

0

accepts

i� M accepted on that branch and all guesses g

1

; : : : ; g

c

are correct or if the �rst

incorrect guess was made with ^-branching. Since M runs in time O(log n) and

each input address has length logn, we know that c is bounded above by a constant

independent of n.

We convert M

0

to a �

poly;const

i

circuit family by taking its _-^ computation

tree, collapsing adjacent _'s and adjacent ^'s on every branch and adding subcir-

cuits to check the g's. This gives a level of gates for each non-alternating run of

M

0

where the fanin is given by the number of possible con�gurations (excluding

the input tape) of M

0

, except for the lowest level of the circuit where the g's are

checked with �xed size subcircuits. Then the inputs to the circuit corresponding

to the advice may be preset accordingly.

For the other direction, we may represent each circuit in a �

poly;const

i

circuit

family as an advice string of polynomial length in such a way that a �

i

TIME(logn)

may use its alternation to select a path of the circuit to one of the constant size

subcircuits and then evaluate it deterministically.

Corollary 3.20:For all i, �

i

TIME(logn) 6= �

i

TIME(logn).

Proof: The function f

i

is in �

i

TIME(logn) but by theorem 3.13 not in �

poly;const

i

29

and hence not in �

i

TIME(log n).

3.9.3. First Order De�nability on Finite Structures

As observed by Ajtai (1983) and Immerman (1987) there is a close correspondence

between the descriptive power of �rst order sentences and AC

0

. By a �rst order

sentence we mean an expression built up from relations, equality, quanti�ers rang-

ing over a speci�ed universe, and variables taking values in the speci�ed universe

all appearing within the scope of some quanti�er. A structure speci�es the universe

and the values of the relations. We say a structureM satis�es a sentence �, or also

� is true in M, writtenM j= �, if it speci�es all of the relation symbols appearing

in � and � is true in the familiar mathematical sense with these speci�cations.

To develop the relationship with AC

0

let us focus on structures with universes

U of �nite cardinality. We �x a special relation symbol R to be used as the

input relation. The other predicate symbols S

1

; : : : ; S

l

are called the built-in

relations. Given a sentence �, if we specify U and the values of the S

i

then we may

associate with � the collection of R values which, together with the prespeci�ed S

i

values, make � true. For example, if � = 8x8y [(S(x) ^ :S(y))! :R(x; y)] and

the universe U

n

= f1; : : : ; ng with S = f1; : : : ; bn=2cg then � de�nes the class of

labeled directed graphs associated with R which contain no edges from the �rst

half of the nodes to the second half. More precisely, if S = fS

1

;S

2

; : : :g where

each S

n

= hS

n1

; : : : ; S

nl

i and each S

ni

is a value for the relation symbol S

i

in the

universe U

n

and if R = fR

1

;R

2

; : : :g where each R

n

= fR

n1

; R

n2

; : : :g and each

R

ni

is a value for R in the universe U

n

then we say � de�nes R given S if for each

n the structure hU

n

; S

n1

; : : : ; S

nl

, Ri j= � i� R 2 R

n

.

Say � is �

d

if it is in prenex normal form, i.e., all quanti�ers out in front,

and has d alternating blocks beginning with 9. Such an R above is then called

nonuniformly �

d

�rst order de�nable. Say that R is nonuniformly �rst order

de�nable if there exists a d such that it is nonuniformly �

d

�rst order de�nable. The

built-in predicates S

ni

play the same role in providing the nonuniform information

as does the advice in nonuniformTuring machines. We identify collections of sets of

relations R with the language A

R

by encoding each relation with its characteristic

binary string.

Theorem 3.21: For each d, R is nonuniformly �

d

�rst order de�nable i� A

R

is in �

poly;const

d

.

30

Proof: The easier direction (!) of this equivalence is seen by constructing circuits

simulating a given sentence �. Each non-alternating block of quanti�ers becomes a

level of unbounded gates, the quanti�er free part of � becomes �xed size subcircuits,

each atomic formula S

i

(x

1

; : : : ; x

j

i

) becomes a preset input to the circuit and each

R(x

1

; : : : ; x

k

) becomes an input variable.

For the other direction we are given a �

n

l

;c

d

circuit C to convert to a �

d

sentence �. The variables of � are w

i

and x

i

for 1 � i � c and y

jk

for 1 � j � d,

and 1 � k � l. Let y

j

denote the sequence y

j1

; : : : ; y

jl

, and y denote the sequence

y

1

; : : : ; y

d

. For quanti�er Q write Qy

j

as a shorthand for Qy

j1

Qy

j2

� � �Qy

jk

. Then

� is 9y

1

8y

2

� � �Qy

d

[] where will be described shortly.

Expand all gates of C, except those at the bottom level, so that they have

fanin n

l

, by adding redundant copies of subcircuits. Then each value for y gives

a path through C from the output gate to one of the bottom gates of size at most

c. For each y, let g

y

denote the associated gate. Expand all bottom gates, by

adding redundant variables if necessary, so that each contains exactly c exclusively

positive variables, exactly c exclusively negative variables, or a combination of c

positive and c negative variables. Call these gates of type p; n,and np respectively.

Now we de�ne several relations. Let w denote the sequence w

1

; : : : ; w

c

and x the

sequence x

1

; : : : ; x

c

.

I

n

= fy: g

y

is type ng

I

p

= fy: g

y

is type pg

I

np

= fy: g

y

is type npg

P = f(y; x): x

1

; : : : ; x

c

are the positive variables in g

y

g

N = f(y; x): x

1

; : : : ; x

c

are the negative variables in g

y

g

To complete the description of �, if d is odd we let = 9w9x[�] where

� =

2

6

6

6

6

6

6

6

6

6

4

0

@

�

I

p

(y) _ I

np

(y)

�

!

�

P (y;w) ^

^

b�c

R(w

b

)

�

1

A

^

0

@

�

I

n

(y) _ I

np

(y)

�

!

�

N(y; x) ^

^

b�c

:R(x

b

)

�

1

A

3

7

7

7

7

7

7

7

7

7

5

:

31

If d is even we let = 8w8x[�] where

� =

2

6

6

6

6

6

6

6

6

6

4

0

@

�

I

p

(y) _ I

np

(y)

�

!

�

P (y;w) !

_

b�c

R(w

b

)

�

1

A

^

0

@

�

I

n

(y) _ I

np

(y)

�

!

�

N(y; x) !

_

b�c

:R(x

b

)

�

1

A

3

7

7

7

7

7

7

7

7

7

5

:

As a corollary to this theorem and theorem 3.8 we have the theorem

of Ajtai (1983) that parity is not nonuniformly �rst order de�nable. Let

ODD=fR

1

;R

2

; : : :g where R

n

= fR:R is a unary relation on U

n

de�ning a set of

odd cardinalityg.

Corollary 3.22:ODD is not nonuniformly �rst order de�nable.

We also obtain a hierarchy theorem as a corollary to the �

poly;const

d

hierarchy

theorem.

Corollary 3.23:For all d there is a class of �

d

�rst order de�nable relations which

is not nonuniformly �

d

�rst order de�nable.

It is interesting to contrast these results about nonuniform de�nability over

�nite structures with results about de�nability with built-in relations over in�nite

structures. For example let G = fR:R is a binary relation representing a connected

in�nite graphg. It is easy to show that G is not �rst order de�nable. But if we

build in the + and � relations then all recursive, in fact all arithmetic, relations

are de�nable including G. In essence, the sentence G�odel-encodes a path from a

to b as a single integer. The �nite analog of G is not �rst order de�nable with any

built-in relations since, by reduction from parity, we know that connectedness is

not in AC

0

. The same proof fails because the encoded path is an exponentially

large integer not representable in the �nite universe.

32

4. Monotone Circuits

4.1. Background

This section will survey the lower bounds known for monotone circuits. A mono-

tone circuit is a circuit with AND gates and OR gates, but with no NOT gates;

the gates may have fanin two and unlimited fanout. A Boolean function f is

called monotone if x � y implies that f(x) � f(y), under the usual Boolean order-

ing. Notice that the only functions computable by monotone circuits are monotone

functions. The monotone circuit complexity of a monotone function is the size of

the smallest monotone circuit computing it.

Many important functions in complexity theory are monotone. As an exam-

ple, consider the clique function from graph theory. The clique function (written

CLIQUE

k;n

) has

�

n

2

�

variables, one for each potential edge in a graph on n vertices,

and outputs 1 i� the associated graph contains a clique (complete subgraph) on

some k vertices. The clique function is monotone because setting more edges to 1

can only increase the size of the largest clique.

Strong lower bounds are known for monotone circuits. Razborov (1985a), in

a major breakthrough, obtained a superpolynomial lower bound of size n

(logn)

for the monotone circuit complexity of the clique function. (To appreciate the sig-

ni�cance of this result, note that the best previous lower bound on the monotone

circuit complexity of an explicit, single-output, monotone problem was only 4n,

due to Tiekenheinrich (1984).) Shortly thereafter, Andreev (1985), using meth-

ods similar to Razborov, proved an exponential (not just superpolynomial) lower

bound for a monotone problem in NP. This implies an exponential lower bound

for the clique function since the clique function is complete (with respect to poly-

nomial monotone projections) for \monotone NP" (see Valiant (1979) and Skyum

and Valiant (1985)). Alon and Boppana (1987), by strengthening the combinatorial

arguments of Razborov, proved a lower bound for CLIQUE

k;n

(where k = n

2=3

)

of size exponential in
((n= log n)

1=3

).

If general circuits computing monotone functions could be converted into

equivalent monotone circuits with only a polynomial blowup in size, then the above

lower bounds would extend to general circuit complexity. Razborov (1985b), us-

ing methods similar to his clique lower bound, dashed this possibility by proving

that the perfect matching problem for bipartite graphs, known to be in P, requires

33

monotone circuits of superpolynomial size. Tardos (1988) improved the gap to

truly exponential for another monotone problem in P.

In spite of the exponential gap between monotone and general circuit complex-

ity, there is a special class of functions for which the two complexities are polyno-

mially related. This is the class of slice functions introduced by Berkowitz (1982).

A function f is called a slice function if for some integer k, the value of f(x) is

0 when the number of 1's in x is fewer than k, and f(x) is 1 when the number

is more than k (but f(x) may be arbitrary when the number is exactly k). Al-

though slice functions may appear to be limited, there do exist NP-complete slice

functions. Berkowitz showed that a general circuit computing a slice function can

be converted into a monotone circuit by adding only a polynomial number of ex-

tra gates. Superpolynomial lower bounds on the monotone circuit complexity of

explicit slice functions would thus imply that P 6= NP.

4.2. Razborov Lower Bound for Monotone Circuit Size

To prove lower bounds on monotone circuit complexity, the behavior of small

monotone circuits must be shown to be constrained. In Razborov's method to

be described below, certain input settings will be designated \test" inputs that

compare the circuit's behavior with the behavior of the clique function.

A positive test graph is a graph on n vertices that consists of a clique on some

set of k vertices, and no other edges; these graphs are called \positive" because the

function CLIQUE

k;n

outputs 1 on them. Observe that there are

�

n

k

�

such graphs.

A negative test graph is formed by assigning each vertex a color from the set

f1; 2; : : : ; k � 1g, and then putting edges between those pairs of vertices with dif-

ferent colors; these graphs are called \negative" because the function CLIQUE

k;n

outputs 0 on them. There are (k � 1)

n

possible colorings, and although di�erent

colorings can lead to the same graph, negative test graphs formed from di�erent

colorings will be considered di�erent for counting purposes.

Positive and negative test graphs are designed to measure how closely a circuit

agrees with the function CLIQUE

k;n

. The main goal of Razborov's method is the

following.

Goal: Show that every small monotone circuit either outputs 0 on most positive

test graphs or outputs 1 on most negative test graphs.

34

How can the goal be established? Monotone circuits can be amorphous, so to

analyze their behavior directly is di�cult. Instead, every small monotone circuit

will be approximated by a special type of monotone circuit, called an approximator

circuit. The behavior of approximator circuits will be much easier to analyze than

the behavior of arbitrary monotone circuits.

The class of approximator circuits will now be de�ned. For a subset X of

vertices, set the clique indicator of X (written dXe) to be the function of

�

n

2

�

variables that is 1 if the associated graph contains a clique on the vertices X, and

is 0 otherwise. An approximator circuit is an OR of at most m clique indicators,

each of whose underlying vertex sets have cardinality at most l. Here l � 2 and

m � 2 will have �xed values, depending only on the values of k and n.

Approximator circuits will be important for establishing the goal. Every mono-

tone circuit C will be assigned an approximator

e

C. The goal will be proved by

dividing it into the following two subgoals.

Subgoal 1: Show that if C is a small monotone circuit, then C �

e

C holds for

most positive test graphs, and C �

e

C holds for most negative test graphs.

Subgoal 2: Show that every approximator either outputs 0 on most positive test

graphs or outputs 1 on most negative test graphs.

How can arbitrary monotone circuits be approximated by such special approx-

imator circuits? The approach to be taken is a \bottom-up" construction. Every

subcircuit of the original circuit is assigned its own approximator, starting from

the input variables and then working up. An input variable is of the form x

i;j

,

where i and j are two di�erent vertices; it is equivalent to the clique indicator

dfi; jge. Hence an input variable is already an approximator.

Suppose that each proper subcircuit of a circuit C has been assigned an ap-

proximator circuit. What approximator should be assigned to the entire circuit?

Assume, for argument's sake, that the top gate of the circuit C is an OR gate. One

natural idea to form the desired approximator is to OR together the approxima-

tors of the two subcircuits feeding into the top gate. Let the two approximators be

denoted by A =

W

r

i=1

dX

i

e and B =

W

s

i=1

dY

i

e, where r and s are at most m. The

OR of the two approximators is an OR of r + s clique indicators. Unfortunately,

r + s can be as large as 2m, so the OR of the two approximators need not be an

approximator itself.

35

How can the number of clique indicators be reduced? The procedure used here

is to replace several clique indicators with their \common" part. To implement this

procedure, a combinatorial object called a sunower is introduced. A sunower is

a collection of distinct sets Z

1

, Z

2

, : : : , Z

p

, called petals, such that the intersection

Z

i

\ Z

j

is the same for every pair of distinct indices i and j; the common part

Z

i

\ Z

j

is called the center of the sunower. In the application to approximator

circuits, each petal will be a subset of vertices.

Sunowers can be used to reduce the number of clique indicators. Fix a value

for p � 2, and look at the current collection of vertex sets fX

1

; : : : ;X

r

; Y

1

; : : : ; Y

s

g.

If some p of these vertex sets form a sunower, replace these p sets with their center.

This operation is called a plucking. Repeatedly perform such pluckings until no

more are possible. This entire procedure is called the plucking procedure. Since

the number of vertex sets decreases with each plucking, at most 2m pluckings will

occur. Regarding the number of vertex sets remaining after the plucking procedure

is completed, the following combinatorial lemma on sunowers is useful, due to

Erd}os and Rado (1960).

Lemma 4.1: Let Z be a collection of sets each of cardinality at most l. If jZj >

(p � 1)

l

� l!, then the collection contains a sunower with p petals.

Proof: The proof is by induction on l. The case l = 1 is obvious. For l � 2,

let M be a maximal subcollection of disjoint sets in Z, and let S be the union

of the sets in M. If jMj � p, then M itself forms the desired sunower and we

are done. Otherwise we have jSj � (p � 1)l. Since M is maximally disjoint, the

set S intersects every set in Z. By averaging, some element i in S intersects a

fraction at least

1

(p�1)l

of the sets in Z. Consider the following collection of sets of

cardinality at most l � 1:

Z

0

= fZ � fig : i 2 Z and Z 2 Zg:

From the choice of i, we have

jZ

0

j �

jZj

(p� 1)l

> (p� 1)

l�1

� (l � 1)!:

Thus by induction, the collection Z

0

contains a sunower with p petals. Adding i

back to all these petals gives the desired sunower in Z.

36

To apply the Erd}os{Rado lemma to the present situation, set m = (p�1)

l

� l!.

The lemma implies that after the plucking procedure is completed, at most m

vertex sets remain. The clique indicators of the remaining vertex sets are then

ORed together to form the approximator for the entire circuit. The resulting

approximator is called the approximate OR of the two approximators A and B,

written A t B.

The second case to consider is when the top gate is an AND gate; again, let

A =

W

r

i=1

dX

i

e andB =

W

s

i=1

dY

i

e be the approximators of the two subcircuits feed-

ing into the top gate. (For technical reasons, assume without loss of generality that

none of the sets X

i

or Y

i

are singleton sets.) Forming the AND of the two approx-

imators yields, by the distributive law, the expression

W

r

i=1

W

s

j=1

(dX

i

e ^ dY

j

e).

Two reasons why this expression is not an approximator itself are that the term

dX

i

e ^ dY

j

e is not a clique indicator and that there can be as many as m

2

terms.

To overcome these di�culties, apply the following three steps. First, replace

the term dX

i

e ^ dY

j

e by the clique indicator dX

i

[Y

j

e. Second, erase those clique

indicators dX

i

[Y

j

e for which the cardinality of X

i

[Y

j

is more than l. Finally,

apply the plucking procedure (described above for OR gates) to the remaining

clique indicators; there will be at most m

2

pluckings. These three steps guarantee

that a valid approximator is formed. The resulting approximator is called the

approximate AND of the approximators A and B, written A uB.

The two operations described above, approximate OR and approximate AND,

complete the bottom-up construction of the approximator

e

C from the monotone

circuit C.

37

4.3. Lower Bound for the Clique Function

The previous subsection observed that lower bounds on the monotone circuit com-

plexity of the clique function follow from proving two subgoals. In this subsection,

the two subgoals will be formally stated and proved. The proof given here will

combine Razborov's original proof with some of the improvements due to Alon

and Boppana. The second subgoal is demonstrated �rst, since it is the easier of

the two subgoals.

Lemma 4.2: Every approximator circuit either is identically 0 or outputs 1 on

at least

h

1�

�

l

2

�

=(k � 1)

i

� (k � 1)

n

of the negative test graphs.

Proof: Let A =

W

r

i=1

dX

i

e be an approximator circuit. If A is identically 0, then

the �rst conclusion holds. If not, then A � dX

1

e. A negative test graph is rejected

by the clique indicator dX

1

e i� its associated coloring assigns some two vertices of

X

1

the same color. Suppose a random coloring is chosen, with each of the (k�1)

n

possible colorings equally likely. The probability that some two vertices of X

1

are assigned the same color is bounded above by

�

jX

1

j

2

�

=(k � 1) �

�

l

2

�

=(k � 1).

Hence the probability that dX

1

e outputs 1 on the associated negative test graph

is at least 1 �

�

l

2

�

=(k � 1). Rewriting this probabilistic statement as a counting

statement yields the desired result.

Subgoal 1 will be established by the following two lemmas on the relationship

of a circuit C to its approximator

e

C.

Lemma 4.3: For every monotone circuit C, the number of positive test graphs

for which the inequality C �

e

C does not hold is at most size(C) �m

2

�

�

n�l�1

k�l�1

�

.

Proof: Let A =

W

r

i=1

dX

i

e and B =

W

s

i=1

dY

i

e be two approximators. Both of

the inequalities A _ B � A t B and A ^ B � A u B will be shown to fail for at

most m

2

�

�

n�l�1

k�l�1

�

positive test graphs. This will imply the lemma because in the

transformation from C to

e

C there are size(C) approximate AND and OR gates.

The inequality A _ B � A t B is always true, since A t B is obtained from

A _ B by the plucking procedure. Each plucking can only enlarge the class of

accepted graphs.

Next, consider the inequality A^B � AuB. The �rst step in the transforma-

tion from A^B to AuB is to replace dX

i

e^dY

j

e by dX

i

[Y

j

e. These two functions

behave identically on positive test graphs. The second step is to erase those clique

38

indicators dX

i

[Y

j

e for which jX

i

[Y

j

j � l+1. For each such clique indicator, at

most

�

n�l�1

k�l�1

�

of the positive test graphs are lost. Since there are at most m

2

such

clique indicators, at most m

2

�

�

n�l�1

k�l�1

�

positive test graphs are lost in the second

step. The third and �nal step, applying the plucking procedure, only enlarges the

class of graphs accepted, as noted in the previous paragraph. Summing up the

three steps, at most m

2

�

�

n�l�1

k�l�1

�

positive test graphs fail to satisfy A^B � AuB,

completing the proof.

Lemma 4.4: For every monotone circuit C, the number of negative test graphs

for which C �

e

C does not hold is at most size(C) �m

2

�

h

�

l

2

�

=(k � 1)

i

p

� (k � 1)

n

.

Proof: Let A =

W

r

i=1

dX

i

e and B =

W

s

i=1

dY

i

e be two approximators. The in-

equalities A _ B � A t B and A ^ B � A u B will be shown to fail for at most

m

2

�

h

�

l

2

�

=(k � 1)

i

p

� (k � 1)

n

negative test graphs. As in the proof of lemma 4.3,

this will imply the desired result.

First, consider the inequality A_B � AtB. Recall that AtB is obtained by

performing at most 2m pluckings on A_B. Each plucking will be shown to accept

only a few additional negative test graphs. Color the vertices randomly, with all

(k� 1)

n

possible colorings equally likely, and let G be the associated negative test

graph. Let Z

1

, Z

2

, : : : , Z

p

be the petals of a sunower with center Z. What is the

probability that dZe accepts G, but none of the terms dZ

1

e, dZ

2

e, : : : , dZ

p

e accept

G? This event occurs i� the vertices of Z are assigned distinct colors (called a

proper coloring, or PC), but every petal Z

i

has two vertices colored the same. We

have

Pr[Z is PC and Z

1

; : : : ; Z

p

are not PC] � Pr[Z

1

; : : : ; Z

p

are not PCjZ is PC]

=

p

Y

i=1

Pr[Z

i

is not PCjZ is PC]

�

p

Y

i=1

Pr[Z

i

is not PC]:

The �rst inequality holds by the de�nition of conditional probability; the second

inequality holds by the mutual independence of the events fZ

i

is not PCjZ is PCg;

39

and the third inequality holds because the event \Z is PC" is negatively correlated

with the other events.

As in the proof of lemma 4.2, we have Pr[Z

i

is not PC] �

�

l

2

�

=(k�1). Substi-

tuting this inequality into the chain of inequalities in the previous paragraph shows

that

Pr[Z is PC and Z

1

; : : : ; Z

p

are not PC] �

��

l

2

�

=(k � 1)

�

p

:

Thus to the class of negative test graphs accepted each plucking adds at most

h

�

l

2

�

=(k � 1)

i

p

� (k � 1)

n

new graphs. There are at most 2m pluckings, so the

number of negative test graphs violating the inequality A _ B � A tB is at most

2m �

h

�

l

2

�

=(k � 1)

i

p

� (k � 1)

n

. This settles the case of approximate ORs.

Next, consider the inequality A^B � AuB. In the transformation from A^B

to AuB, the �rst step introduces no new violations, since dX

i

e^dY

j

e � dX

i

[Y

j

e.

The second step of erasing large clique indicators also introduces no new violations.

Only the third step, the plucking procedure, introduces new violations. This step

was analyzed in the previous two paragraphs; the only di�erence now is that there

can be m

2

pluckings instead of just 2m. This settles the case of approximate

ANDs, thus completing the proof.

Subgoals 1 and 2 have thus been proved; combining them yields the following

exponential lower bound on the monotone circuit complexity of the clique function.

Theorem 4.5: For k � n

1=4

, the monotone circuit complexity of the function

CLIQUE

k;n

is n

(

p

k)

.

Proof: Set l = b

p

kc and p = d10

p

k log

2

ne, and recall that m = (p� 1)

l

� l!. Let

C be a monotone circuit that computes the function CLIQUE

k;n

. By lemma 4.2,

the approximator

e

C either is identically 0 or outputs 1 on at least

1

2

� (k � 1)

n

of

the negative test graphs. If the former case holds, then apply lemma 4.3 to obtain

size(C) �m

2

�

�

n� l � 1

k � l � 1

�

�

�

n

k

�

:

A simple calculation shows that in this case size(C) is n

(

p

k)

. Suppose instead

40

that the latter case holds. Applying lemma 4.4 shows that

size(C) �m

2

� 2

�p

� (k � 1)

n

�

1

2

� (k � 1)

n

:

Another simple calculation shows that in this case size(C) is n

(

p

k)

.

4.4. Polynomial Lower Bounds

This subsectionwill describe the known results on functions with polynomial mono-

tone circuit complexity. We present results for both single-output functions and

multi-output functions.

Before Razborov's work, only linear lower bounds were known for the mono-

tone circuit complexity of single-output monotone functions in NP. Tiekenhein-

rich (1984) gave a 4n monotone lower bound for a simple explicit function.

Dunne (1984) proved a 3:5n lower bound on the monotone circuit complexity of

the majority function. Majority is known to have monotone circuits of O(n log n)

size by the work of Ajtai, Koml�os, and Szemer�edi (1983) discussed below.

Turning to multi-output functions, consider the Boolean sorting problem:

given n Boolean variables, output their values in nondecreasing order. Boolean

sorting is the same problem as simultaneously computing the threshold func-

tions TH

k;n

(de�ned in subsection 2.3) for all k between 1 and n. Ajtai, Koml�os,

and Szemer�edi (1983) gave a very clever construction of monotone circuits of

size O(n log n) for Boolean sorting. Lamagna and Savage (1974) established an

(n logn) lower bound on the monotone circuit complexity of Boolean sorting.

Later, Pippenger and Valiant (1976) and Lamagna (1979) independently showed

that Boolean merging, a special case of Boolean sorting, has monotone circuit com-

plexity
(n logn). Muller and Preparata (1975) observed that Boolean sorting has

nonmonotone circuits of linear size, exposing a small gap between monotone and

general circuit complexity.

A larger gap was obtained for the problem of Boolean matrix multiplication.

This problem takes two n-by-n Boolean matrices as input, and outputs their n-by-

n Boolean matrix product. It is trivial to show that Boolean matrix multiplication

has monotone circuits of size 2n

3

� n

2

. Pratt (1974) was the �rst to demon-

strate that its monotone circuit complexity is
(n

3

). Later, Paterson (1975) and

41

Mehlhorn and Galil (1976) independently showed that its monotone circuit com-

plexity is exactly 2n

3

� n

2

. Interestingly enough, its general circuit complexity

is known to be asymptotically smaller. For example, Coppersmith and Wino-

grad (1987) show that Boolean matrix multiplication has nonmonotone circuits of

size O(n

2:38

).

Wegener (1982) has proved monotone circuit lower bounds for a generaliza-

tion of matrix multiplication, called Boolean direct product, which takes as input

several n-by-n matrices. Wegener's results on Boolean direct product give an

(n

2

= logn) lower bound on the monotone circuit complexity of an explicit mono-

tone problem with n inputs and n outputs.

Finally, lower bounds have been discovered for a class of multi-output func-

tions called Boolean sums. A Boolean sum has n inputs and n outputs, each

output being an OR of some subset of the inputs. Ne�ciporuk (1969) constructed

an explicit Boolean sum that has
(n

3=2

) monotone circuit complexity. Later,

Mehlhorn (1979) and Pippenger (1980) independently obtained
(n

5=3

) monotone

lower bounds for another explicit Boolean sum. Since then, Andreev (1986) has ex-

plicitly contructed, for every �xed � > 0, a Boolean sum with monotone complexity

(n

2��

).

42

5. Formulas

A formula is the special type of circuit whose gates have fanout 1, i.e., a cir-

cuit whose underlying graph is a tree. The main motivation for studying formulas

is their close relationship to circuit depth. Spira (1971) showed that, over a com-

plete basis, a Boolean function is computable by polynomial-size formulas i� it is

computable by logarithmic-depth circuits. Wegener (1983) showed the analogous

result for the monotone basis, and Ugol'nikov (1987) announced the analogous

result for all �xed bases. Thus strong lower bounds on formula size may lead to

lower bounds on circuit depth. In this section, we present the major results known

on lower bounds for formula size.

The size of a formula is de�ned to be the number of occurrences of literals

(variables or their negations) in the formula. Notice that the size of a formula with

binary gates is precisely one more than the number of gates in the formula. Given

a collection of Boolean functions
, called a basis, de�ne the formula complex-

ity L

(f) to be the size of the smallest formula with gates from
 computing the

Boolean function f .

We will consider three bases: the full binary basisB consisting of all 16 binary

gates, the DeMorgan basis D = fAND, OR, NOTg, and the monotone basisM =

fAND, ORg. We refer to formulas over these bases as binary formulas, DeMorgan

formulas, and monotone formulas respectively. Trivially we have L

B

� L

D

� L

M

.

Pratt (1975) showed that L

D

� O(L

B

c

) for c = log

3

10 � 2:09.

The best explicit lower bound known di�ers for the three bases. For mono-

tone formulas, Karchmer and Wigderson (1988) showed a superpolynomial lower

bound on a problem with polynomial monotone circuits. For DeMorgan formulas,

Andreev (1987) showed a lower bound of size
(n

5=2��

) for every �xed � > 0. For

binary formulas, Ne�ciporuk (1966) showed an
(n

2

= logn) lower bound. All of

these results will be proved in this section.

43

5.1. Karchmer and Wigderson Lower Bound for Monotone Formula Size

This subsection deals with lower bounds on the size of monotone formulas. Of

course, the lower bounds for monotone circuits discussed in section 4 imply as

a special case lower bounds for monotone formulas. In fact, Razborov (1989b)

gives a simpler proof that some monotone NP problems require monotone formu-

las of superpolynomial size. Nevertheless, these results leave open the question of

whether some problem with monotone circuits of polynomial size requires mono-

tone formulas of superpolynomial size. Karchmer and Wigderson (1988) answered

this question a�rmatively.

The graph s-t connectivity function (written CONNECT

n

) takes as input an

undirected graph on n ordinary vertices and two distinguished vertices s and t; the

function outputs 1 i� the graph has a path from s to t. This function is well-known

to be computable in polynomial time, to have monotone circuits of polynomial size

and O((log n)

2

) depth, and to have monotone formulas of size n

O(logn)

. Karchmer

and Wigderson originally proved that this function requires monotone circuits of

depth
((log n)

2

= log logn) depth and monotone formulas of n

(logn= log logn)

size.

Later R. Boppana and J. Hastad independently simpli�ed the proof and improved

the bounds to the optimal
((log n)

2

) depth and n

(log n)

formula size. By the

result of Wegener (1983), the depth bound and size bound are actually equivalent,

so the proof just focuses on circuit depth. Below we give an overview of the proof,

and in the next subsection we give the complete proof.

The Karchmer-Wigderson method uses certain graphs to test a circuit's be-

havior. An l-path graph consists of a path from s to t with a sequence of l or-

dinary vertices (not necessarily distinct) in between, and no other edges. (If the

same vertex appears in two consecutive positions of the sequence, then ignore that

edge.) There are n

l

possible sequences, and though two of them can lead to the

same graph, graphs formed from di�erent sequences will be considered di�erent

for counting purposes. A cut graph is formed by partitioning the vertices into two

components, with s and t in di�erent components, and placing edges between those

vertex pairs in the same component. There are 2

n

possible cut graphs.

These test graphs will measure how closely a circuit agrees with the func-

tion CONNECT

n

. Say that a monotone circuit is an (�; �) separator if it outputs

1 for a fraction at least � of the l-path graphs, and outputs 0 for a fraction at least

44

� of the cut graphs. The main goal of the proof is to show that no shallow mono-

tone circuit can be a good separator; the goal will be established by a \top-down"

argument on the structure of a circuit.

Assume C is a shallow monotone circuit computing the function CONNECT

n

;

clearly C is a (1,1) separator. We will explore C from top to bottom. If the top

gate of C is an OR gate, then it is easy to see that one of the two subcircuits

feeding into this gate must be a (

1

2

; 1) separator. Similarly, if the top gate of C is

an AND gate, one of the two subcircuits must be a (1;

1

2

) separator. In either case,

this subcircuit is certainly a (

1

2

;

1

2

) separator. By repeating this argument j times,

we see that one of the subcircuits j levels from the top is a (2

�j

; 2

�j

) separator.

Unfortunately, repeating the above argument too many times makes the path-

accepting and cut-rejecting densities too low to be of interest. Is there a way

to increase the densities? Yes, as follows. Select

p

n vertices at random and

collapse them into vertex s, identifying their edges with the corresponding edges

of s. Similarly, select

p

n other vertices at random and collapse them into vertex t.

At the same time, halve the value of the path length l. The crucial fact, and

the hardest one to prove, is that performing this vertex-collapsing step will likely

convert an (�; �) separator into a (

p

�

2

;

�

n

) separator. In other words, the path-

accepting density increases greatly, while the cut-rejecting density decreases only

slightly.

With the above tools, the proof outline becomes clearer. We constantly strive

to maintain a high path-accepting density. When the path-accepting density be-

comes too low, we apply a vertex-collapsing step to make it high again. The cut-

rejecting density constantly, but controllably, decreases. When we �nally reach

the bottom of the circuit, we will have a depth-0 monotone circuit that is a good

separator; since we assumed the original circuit was shallow, the path length l will

still be large. But a depth-0 monotone circuit is too limited to be a good separator,

yielding a contradiction. Thus the original circuit must have been deep to begin

with.

A similar top-down method was used by Klawe, Paul, Pippenger, and Yan-

nakakis (1984) to prove a lower bound for monotone constant-depth circuits. Both

they and Karchmer-Wigderson point out a connection between circuit depth and

communication complexity.

45

5.2. Lower Bound for the Connectivity Function

This subsection will present a formal proof of the Karchmer-Wigderson's lower

bound for the graph s-t connectivity function, based on the above proof overview.

De�nitions: Let f be a monotone Boolean function acting on graphs with n

ordinary vertices and two distinguished vertices. Say that f is an (n; l; �) path

acceptor if it outputs 1 on a fraction at least � of the l-path graphs. Say that f

is an (n; �) cut rejector if it outputs 0 on a fraction at least � of the cut graphs.

Finally, say that f is an (n; l; �; �) separator if it is both an (n; l; �) path acceptor

and an (n; �) cut rejector.

De�nition: Let f be a function acting on graphs with vertex set V , and let �

be a mapping from V to V

0

. The induced function f

�

is the following function

acting on graphs with vertex set V

0

. Given a graph G = (V

0

; E

0

), form the graph

G

�

= (V;E) by setting fi; jg 2 E i� �(i) = �(j) or f�(i); �(j)g 2 E

0

. The value of

f

�

on G is assigned the value of f on G

�

.

De�nition: Let V be a vertex set with two distinguished vertices s and t. The

probability distribution R

k

of mappings � is de�ned as follows. First, choose a

random k-subsetW of V �fs; tg. Second, place each vertex ofW into either setW

s

or set W

t

, randomly and independently. Finally, form the mapping �:V ! V �W

by mapping all of W

s

into s, mapping all of W

t

into t, and mapping every other

vertex to itself.

Our �rst lemma shows that the path-accepting density of a function is likely

to increase greatly by switching to a randomly induced function.

Lemma 5.1: Let f be an (n; l; �) path acceptor, and let � be a random mapping

from R

k

. Suppose that

100l

�

� k �

n

100l

. Then with probability at least

3

4

, the

induced function f

�

is an (n� k;

l

2

;

p

�

2

) path acceptor.

Proof: Let V be the set of n ordinary vertices. Let P be the collection of l-

path graphs that f accepts; we will identify each l-path graph with its sequence

of intermediate vertices. Let L = f1; : : : ;

l

2

g and R = f

l

2

+ 1; : : : ; lg. Given a

subpath p in V

L

(or V

R

), an extension of p is a path in V

l

that agrees with p on L

(R). De�ne P

L

(P

R

) to be the collection of subpaths in V

L

(V

R

) with more than

�

4

n

l=2

extensions in P .

46

We �rst show that either P

L

or P

R

is large. Observe that every path in P is

either: (a) an element of P

L

�P

R

, or (b) an extension of some subpath in V

L

�P

L

,

or (c) an extension of some subpath in V

R

�P

R

. The number of type-(a) paths in

P is at most jP

L

j � jP

R

j. The number of type-(b) paths in P is at most

�

4

n

l

, since

there are at most n

l=2

subpaths in V

L

�P

L

each with at most

�

4

n

l=2

extensions in

P . Similarly, the number of type-(c) paths in P is at most

�

4

n

l

. In total we obtain

jP j � jP

L

j � jP

R

j +

�

2

n

l

. On the other hand, by hypothesis we have jP j � �n

l

.

Comparing the two bounds, it follows that jP

L

j � jP

R

j �

�

2

n

l

. Hence either P

L

or

P

R

has size at least

p

�

2

n

l=2

; without loss of generality, suppose it is P

L

.

Next, consider the following collection of

l

2

-subpaths:

P

�

= fp 2 P

L

: p 2 (V �W)

L

and 9p

0

2 (W

t

)

R

such that (p; p

0

) 2 Pg:

From the de�nition of f

�

, it is straightforward to see that f

�

accepts all paths in

P

�

. Thus we only need show that P

�

is large with high probability.

Toward this goal, we estimate the probability that an arbitrary path p in P

L

belongs to P

�

. The probability that p =2 (V �W)

L

is at most

l

2

�

k

n

, since there

are

l

2

coordinates and each has probability

k

n

of being in W . This probability is

at most

1

200

by hypothesis.

We next estimate the probability that p fails the second condition of being in

P

�

. Since W

t

is a random subset of W , it has size at least

k

4

with exponentially

high probability. In that case, let X be a random

k

4

-subset of W

t

; observe that

X has the distribution of a random

k

4

-subset of V . One way to form such a

random

k

4

subset is as follows: select

k

2l

subpaths p

0

1

, p

0

2

, : : : , p

0

k=2l

randomly and

independently from V

R

. Obtain X by taking the union of the vertices of all these

subpaths, and if necessary randomly adding new vertices until there are

k

4

vertices.

The probability that p fails the second condition of P

�

is

Pr[6 9p

0

2 (W

t

)

R

s.t. (p; p

0

) 2 P] � Pr[jW

t

j < k=4] + Pr[6 9i s.t. (p; p

0

i

) 2 P]

� 2

�k=10

+

�

1�

�

4

�

k=2l

�

1

200

:

47

We now complete the proof. Combining the two estimates above shows that

p belongs to P

�

with probability at least 1�

1

200

�

1

200

=

99

100

. Hence the expected

size of P

�

is at least

99

100

jP

L

j. On the other hand, we always have jP

�

j � jP

L

j. Thus

with probability at least

3

4

we have jP

�

j �

24

25

jP

L

j, which is greater than

p

�

2

n

l=2

by our prior estimate of jP

L

j. This is what we wanted to prove.

Our second lemma shows that the cut-rejecting density of a function is likely

to decrease only slightly by switching to a randomly induced function.

Lemma 5.2: Let f be an (n; �) cut rejector, and let � be a random mapping from

R

k

. Suppose that � � 2 � (

3

4

)

n=k

. Then with probability at least

3

4

, the induced

function f

�

is an (n � k;

�k

2n

) cut rejector.

Proof: Again let V be the set of n ordinary vertices. Let Q be the collection of

cut graphs that f rejects; we will identify each cut graph with a vector in fs; tg

V

.

Given a k-subset X of V and a vector x in fs; tg

X

, an extension of x is a cut in

fs; tg

V

that agrees with x on X. De�ne Q(X) to be those vectors in fs; tg

X

with

more than

�k

2n

� 2

n�k

extensions in Q.

Our �rst goal is to show that jQ(X)j has large expectation for a random k-

subset X. Consider an arbitrary partition of V into

n

k

subsets X

1

, : : : , X

n=k

each

of size k. A similar argument to the �rst part of the proof of lemma 5.1 will show

that jQ(X

1

)j : : : jQ(X

n=k

)j �

�

2

2

n

. From the arithmetic-geometric mean inequality,

we obtain

jQ(X

1

)j+ � � �+ jQ(X

n=k

)j

n=k

�

�

jQ(X

1

)j : : : jQ(X

n=k

)j

�

k=n

�

�

�

2

2

n

�

k=n

�

3

4

2

k

:

This bound holds for an arbitrary such partition, so by averaging over all such

partitions, the expected size of Q(X) is at least

3

4

2

k

, where X is a random k-

subset of V .

48

We use this estimate to complete the proof. Let x be the vector in fs; tg

W

that

is s on W

s

and t on W

t

. Consider the set Q

�

of subcuts q in fs; tg

V�W

such that

(q; x) is in Q. From the de�nition of f

�

, it is straightforward to see that f

�

rejects

all the cuts in Q

�

. It thus su�ces to show that Q

�

is large with high probability.

Notice that the event \jQ

�

j >

�k

2n

� 2

n�k

" is identical to the event \x 2 Q(W)".

Thus by the previous paragraph, we have

Pr[jQ

�

j >

�k

2n

� 2

n�k

] = Pr[x 2 Q(W)] =

E[Q(W)]

2

k

�

3

4

;

which completes the proof.

Combining lemmas 5.1 and 5.2 yields the following corollary showing how to

improve a separator.

Corollary 5.3: Let f be an (n; l; �; �) separator. Suppose that

100l

�

� k �

n

100l

and � � 2 � (

3

4

)

n=k

. Then for some mapping � in the support of R

k

the induced

function f

�

is an (n � k;

l

2

;

p

�

2

;

�k

2n

) separator.

We �nally prove the superlogarithmic lower bound on the monotone depth

complexity of the graph s-t connectivity function.

Theorem 5.4: CONNECT

n

requires monotone circuits of depth
((log n)

2

).

Proof: Let C be a monotone circuit for CONNECT

n

, and assume it has depth

at most

1

25

(log

2

n)

2

, for n su�ciently large. Adding dummy gates if necessary,

we can suppose that the underlying graph of C is a complete binary tree of depth

1

25

(log

2

n)

2

. Set the path length l = n

1=4

and the path density � =

1

4

n

�1=5

.

We do a top-down exploration of the circuit C. The circuit C is an (n; l; 1; 1)

separator, and in particular is an (n; l; �; 1) separator. Break C into

1

5

log

2

n blocks

of

1

5

log

2

n gate levels each. By following C down one block as described in the

proof overview, we obtain a subcircuit that is an (n; l; �n

�1=5

; n

�1=5

) separator.

Applying corollary 5.3 gives a new subcircuit that is an (n�n

2=3

;

l

2

; �; n

�1

) sepa-

rator. Notice that the path-accepting density is back up to �.

Repeat the above process successively for each block of the circuit. Upon

reaching the bottom of the circuit, we end up with a monotone depth-0 circuit that

is an (n

0

; l

0

; �; n

� log

2

n

) separator, where n

0

= n �

1

5

n

2=3

log

2

n and l

0

= l=n

1=5

=

n

1=20

.

49

A monotone depth-0 circuit is either a single input variable or a constant. An

input variable x

i;j

, for fi; jg \ fs; tg = ;, accepts a fraction at most l

0

=

�

n

0

2

�

of the

l

0

-path graphs. An input variable of the form x

s;i

or x

i;t

accepts a fraction at most

1=n

0

of the l

0

-path graphs. A constant either rejects all l

0

-path graphs or accepts all

cut graphs. None of these cases gives a good separator, so we have a contradiction.

Thus the original circuit C must have had depth larger than

1

25

(log

2

n)

2

.

5.3. Nonmonotone Formulas

This subsection will prove the largest lower bounds known for nonmonotone for-

mulas, the results of Andreev and Ne�ciporuk.

Let us start with lower bounds for DeMorgan formulas. Observe that negations

in DeMorgan formulas may always be pushed down to the bottom level. Random

restrictions, as they were for bounded depth circuits (section 3), will be useful here.

The probability distributionR

k

of restrictions used here is the following: randomly

assign k variables to be �, and assign all other variables to be 0 or 1 randomly

and independently. Intuitively, a random restriction should reduce considerably

the size of a formula. The following lemma of Subbotovskaya (1961) makes this

intuition precise.

Lemma 5.5: Let f be a Boolean function of n variables, and let � be a random

restriction from R

k

. Then with probability at least

3

4

,

L

D

(f j

�

) � 4 �

�

k

n

�

3=2

� L

D

(f):

Proof: Let F be an optimal DeMorgan formula for the function f , of size s =

L

D

(f). Construct the restriction � in n�k stages as follows. At any stage, choose

a variable randomly from the ones remaining, and assign it 0 or 1 randomly. We

analyze the e�ect of this restriction stage-by-stage.

Suppose the �rst stage chooses the variable x

i

. When the variable x

i

is set, the

literals x

i

and x

i

will disappear from the formula F . By averaging, the expected

number of such literals is

s

n

.

In fact, the formula is likely to be reduced even further. For each of the literals

x

i

or x

i

, consider the gate which it feeds into. For example, suppose the gate is

50

x

i

^ G for some subformula G. We may assume without loss of generality that

G does not contain the literals x

i

or x

i

. If the variable x

i

is assigned 0, then

the subformula G will disappear from the formula F , thereby erasing at least one

more literal. Since x

i

is assigned 0 or 1 randomly, we expect at least

1

2

�

s

n

literals

to disappear because of these secondary e�ects. In total, we thus expect at least

s

n

+

1

2

�

s

n

=

3

2

�

s

n

literals to disappear in the �rst stage, yielding a new formula

with expected size at most s � (1� 3=(2n)) � s � (1� 1=n)

3=2

.

The succeeding stages of the restriction can be analyzed in the same way.

After each stage the number of variables decrements by one. Hence the expected

size of the �nal formula is

E[L

D

(f j

�

)] � s �

�

1�

1

n

�

3=2

�

�

1�

1

n� 1

�

3=2

� � � � �

�

1�

1

k + 1

�

3=2

= s �

�

k

n

�

3=2

:

The probability that L

D

(f j

�

) is more than 4 times its expected value is less than

1

4

, which completes the proof.

Lemma 5.5 is useful for proving lower bounds on formula size. For example,

Subbotovskaya (1961) applied it to show that the parity function of n variables

requires DeMorgan formulas of size
(n

3=2

). Khrapchenko (1971) later improved

the parity lower bound to
(n

2

) using a method we describe in subsection 5.4. For

now we show how Andreev (1987) used lemma 5.5 to prove an
(n

5=2��

) lower

bound for another explicit function.

First we de�ne Andreev's function. Given a Boolean function f of b variables,

let f

�m

be the Boolean function of bm variables de�ned by:

f

�m

(x

1

; : : : ; x

bm

) = f(x

1

�� � ��x

m

; x

m+1

�� � ��x

2m

; : : : ; x

(b�1)m+1

�� � ��x

bm

):

The variables x

(i�1)m+1

, : : : , x

im

are said to form the ith block. Andreev's function,

denoted A

b;m

, is a Boolean function of 2

b

+ bm variables. The �rst 2

b

variables

of A

b;m

will specify a Boolean function of b variables by listing its truth table;

call the resulting function f . The value of A

b;m

is then obtained by applying the

51

function f

�m

to the last bm variables of A

b;m

. The collection of functions fA

b;m

g

is easy to compute in time polynomial in the number of variables. Andreev proved

the following lower bound for A

b;m

over the DeMorgan basis.

Theorem 5.6: Let b = blog

2

n�1c and m = bn=(2b)c. Then the function A

b;m

of

at most n variables requires DeMorgan formulas of size
(n

5=2��

) for every �xed

� > 0.

Proof: Let f be the Boolean function of b variables that requires the largest

DeMorgan formulas. An argument analogous to that of theorem 2.4 will show that

L

D

(f) is �(2

b

= log b). Since f

�m

is a subfunction of A

b;m

, we have L

D

(A

b;m

) �

L

D

(f

�m

). Let � be a random restriction from R

k

for k = db ln(4b)e.

Applying lemma 5.5, with probability at least

3

4

we have

L

D

(f

�m

j

�

) � 4 �

�

k

bm

�

3=2

� L

D

(f

�m

):

An easy probability calculation shows that, also with probability at least

3

4

, the

restriction � assigns at least one � to each of the b blocks of variables. Some

restriction � will thus satisfy both conditions. From the second condition, we have

L

D

(f

�m

j

�

) � L

D

(f). Combining the above inequalities, we obtain

L

D

(A

b;m

) � L

D

(f

�m

)

�

1

4

�

�

bm

k

�

3=2

� L

D

(f)

=

�

bm

k

�

3=2

�

2

b

log b

!

=
(n

5=2��

):

This establishes the theorem.

52

We next turn to lower bounds for binary formulas. Let f be a Boolean function

on a variable set X. A subfunction of f on Y � X is a function obtained from f by

setting the variables of X � Y to constants. Let N

Y

(f) be the number of di�erent

nonconstant subfunctions of f on Y . Intuitively, if f has many subfunctions,

then it is complicated and hence should require large formulas. This intuition

was made precise by Ne�ciporuk (1966) who proved the following theorem with a

weaker constant factor; the version below is due to M. Paterson (unpublished) and

Zwick (1987).

Theorem 5.7: Let f be a Boolean function on a variable set X, and let Y

1

, Y

2

,

: : : , Y

k

be disjoint subsets of X. Then

L

B

(f) �

k

X

i=1

log

5

[2N

Y

i

(f) + 1]:

Proof: Let S

Y

(f) be the collection of nonconstant functions g on a variable set Y

for which either g or :g is a subfunction of f . Clearly N

Y

(f) � jS

Y

(f)j. Let

size

Y

(F) be the number of occurrences of variables of Y in a Boolean formula F .

It is simple to see that the theorem follows from the claim below.

Claim 5.8: For every binary formula F and every variable set Y , we have

2jS

Y

(F)j + 1 � 5

size

Y

(F)

:

The claim is proved by induction on the size of F . The base case F = x

i

divides into two subcases (i 2 Y or i =2 Y); both subcases satisfy the claim.

Assume by induction that F = F

1

� F

2

, where F

1

and F

2

satisfy the claim and �

is a binary operator. For brevity let S

1

= S

Y

(F

1

) and S

2

= S

Y

(F

2

). Consider the

following two collections of Boolean functions on Y :

T = fg

1

� g

2

: g

1

2 S

1

and g

2

2 S

2

g

e

T = f:g : g 2 Tg:

53

It is straightforward to check that

S

Y

(F) � T [

e

T [S

1

[S

2

;

and therefore

2jS

Y

(F)j + 1 � 2 � (jT j+ j

e

T j+ jS

1

j+ jS

2

j) + 1

� 4jS

1

jjS

2

j+ 2jS

1

j+ 2jS

2

j+ 1

= (2jS

1

j+ 1) � (2jS

2

j+ 1)

� 5

size

Y

(F

1

)

� 5

size

Y

(F

2

)

= 5

size

Y

(F)

:

This completes the proof of the claim and hence the proof of the theorem.

Theorem 5.7 can be used to prove lower bounds of size
(n

2

= logn) for many

explicit functions. For instance, it applies to Andreev's function A

b;m

, where each

subset Y

i

consists of one variable from every block. The theorem also applies to

the element distinctness function de�ned in section 6. Unfortunately the theorem

is inherently unable to give a lower bound larger than �(n

2

= logn).

54

5.4. Symmetric Functions

Symmetric functions are those Boolean functions whose value only depends on the

number of variables that are 1. Being so natural, symmetric functions have been

studied by many researchers in formula complexity. In this subsection, we present

the best upper and lower bounds known on the formula complexity of symmetric

functions.

We start with upper bounds. That all symmetric functions have polynomial-

size formulas is implicit in the work of Ofman (1962) and Wallace (1964), who

independently showed how to add n integers with n bits each in logarithmic depth.

The best bounds known are due to Khrapchenko (1972) and Peterson (1978).

Khrapchenko showed that all symmetric functions have DeMorgan formulas of

size O(n

4:93

). Peterson, improving constructions of Pippenger (1974) and Pa-

terson (1977), showed that all symmetric functions have binary formulas of size

O(n

3:37

).

For monotone symmetric functions (i.e., threshold functions), it seems more

natural to use monotone formulas. Valiant (1984), using an elegant argument,

shows that all threshold functions have monotone formulas of size O(n

5:3

). Bop-

pana (1989), improving results of Khasin (1969) and Friedman (1986), showed

that the threshold function TH

k;n

has monotone formulas of size O(k

4:3

n logn).

Unfortunately, all these results use probabilistic methods and hence do not ex-

plicitly construct the formulas. Ajtai, Koml�os, and Szemer�edi (1983) give a very

clever explicit construction of polynomial-size monotone formulas for all threshold

functions, where the degree of the polynomial is a large constant. Using their con-

struction, Friedman (1986) explicitly constructed monotone formulas for TH

k;n

of

size O(k

c

n logn) for a large constant c.

What about lower bounds for symmetric functions? Over the DeMorgan basis,

Khrapchenko (1971) presented a method for obtaining lower bounds of size
(n

2

)

for certain symmetric functions, which we describe next. Let A and B be two

disjoint subsets of f0; 1g

n

. A Boolean formula F separates A and B if it outputs

0 for every input in A and outputs 1 for every input in B. De�ne the set

A
B = f(a; b) : a 2 A and b 2 B and a � bg;

where a � b means that the inputs a and b di�er on exactly one bit. Intuitively, if

A
B is large, then every formula separating A and B should be large, since the

55

formula must distinguish many pairs of adjacent inputs. The following theorem of

Khrapchenko makes this intuition precise.

Theorem 5.9: Let F be a DeMorgan formula that separates A and B. Then

size(F) �

jA
Bj

2

jAj � jBj

:

Proof: (due to M. Paterson) The proof is by induction on the size of F . If the

size of F is 1, then F is just a single literal. In that case, it is easy to see that

jA
Bj � jAj and jA
Bj � jBj, settling the base case of the induction.

Assume by induction the theorem holds for all formulas smaller than F , and

suppose that F = F

1

^ F

2

(the case F = F

1

_ F

2

is similar). De�ne

A

1

= fa 2 A : F

1

(a) = 0g

A

2

= A �A

1

:

Notice that F

i

is a separator of A

i

andB for i = 1; 2. De�ne a

i

= jA

i

j, c

i

= jA

i

Bj,

and b = jBj. Applying the induction hypothesis to the subformula F

i

yields

size(F

i

) �

c

i

2

a

i

� b

:

Thus we obtain

size(F) = size(F

1

) + size(F

2

)

�

c

1

2

a

1

� b

+

c

2

2

a

2

� b

�

(c

1

+ c

2

)

2

(a

1

+ a

2

) � b

where the last inequality can be established by cross-multiplication. Since c

1

+c

2

=

jCj and a

1

+ a

2

= jAj, this completes the induction step for F .

56

Khrapchenko's theorem shows that the parity function of n variables requires

DeMorgan formulas of size
(n

2

), which is tight. It also shows that the threshold

function TH

k;n

requires DeMorgan formulas of size
(k � (n�k+1)). For 2 � k �

n � 1, Krichevskii (1963) showed that TH

k;n

requires DeMorgan formulas of size

(n logn), which beats the Khrapchenko bound for small k.

Over the full binary basis, the best lower bounds known for symmetric func-

tions are of size
(n logn), due to Fischer, Meyer, and Paterson (1982). Their

bound applies to the majority function and many other symmetric functions.

Pudl�ak (1984a), improving a result of Hodes and Specker (1968), showed that

all symmetric functions of n variables, except for 16 of them having linear-size

binary formulas, require binary formulas of size
(n log logn). This bound applies

for instance to the function TH

k;n

for 2 � k � n� 1.

57

6. Branching Programs

Branching programs are a natural model on which to investigate the amount

of space necessary to compute various functions.

De�nitions: A branching program is a directed acyclic graph all of whose nodes

of nonzero outdegree are labeled with a variable x

i

and whose nodes of outdegree

zero are labeled with an output value. The edges are labeled by 0 or 1. One of the

nodes is designated the start node. A setting of the inputs determines a collection

of paths from the start node to output nodes giving a collection of output values.

The branching program is deterministic if every nonoutput node has exactly one

0 edge and one 1 edge leaving it. Otherwise it is nondeterministic. It accepts

its input if at least one path leads to an accepting output node. The size of a

branching program is the number of nodes. The branching program complexity of

functions and languages is de�ned analogously with that of circuits. If the nodes

are arranged into a sequence of levels with edges going only from one level to the

next, then the width is the size of the largest level.

6.1. Relationship with Space Complexity

We again select Turing machines as a formal model to de�ne space complexity.

Designate one of the tapes to be a read-only input tape and call the others work

tapes. The space used by this machine on a given input is de�ned to be the number

of work tape cells scanned by a head at any point in the computation. De�ne

the deterministic, nondeterministic, and alternating space complexity classes by

analogy with the time complexity classes. Of particular interest are:

L =SPACE(log n)

NL =NSPACE(log n)

PSPACE =

[

k

SPACE(n

k

)

The following connection between the size of branching programs and space

complexity was �rst observed by Masek (1976).

Theorem 6.1: For S(n) � logn, if A 2 SPACE(S(n)) then A has branching

program complexity at most c

S(n)

for some constant c.

58

Proof: The possible con�gurations of the machine on an input of length n form

the nodes of a branching program operating on inputs of length n. Place an edge

labeled 0 or 1 from a node a to node b if con�guration a reading 0 or 1 respectively

can yield con�guration b.

The above theorem also applies for nondeterministic space and nondetermin-

istic branching programs.

Theorem 6.2: For S(n) � logn, if A 2 NSPACE(S(n)) then A has nondeter-

ministic branching program complexity at most c

S(n)

for some constant c.

Thus every language in L has polynomial branching program complexity. We

may obtain a converse by extending L to the nonuniform class L/poly.

Theorem 6.3: A 2L/poly i� A has polynomial branching program complexity.

Theorem 6.4: A 2NL/poly i� A has polynomial nondeterministic branching

program complexity.

6.2. Bounds on Size

There have been a number of results bounding the size of branching programs with

various restrictions. None of these is yet strong enough to have any implications

for space complexity. Just as for Boolean circuits, we know via a counting argu-

ment that most functions have exponential branching program complexity. The

best lower bound for an explicit function is

�

n

2

log

2

n

�

due to Ne�ciporuk (1966).

Using the same method Beame and Cook (unpublished) have observed that the

following \element distinctness" function may be proved to require large branch-

ing programs. Consider the input to represent m strings s

1

; : : : ; s

m

each of length

2 logm where n = 2m logm. De�ne the function so that it is 1 i� the s

i

are all

distinct.

Theorem 6.5: The element distinctness function requires branching programs

of size
(

n

2

log

2

n

).

Proof: We show that a function is hard if its inputs may be partitioned into

blocks b

i

so that there are a large number of functions on each block b

i

obtained

by setting the remaining variables. By letting b

i

be the inputs for s

i

we see that

the given function has this property. For each b

i

there are

�

m

2

m�1

�

ways of setting

the remaining s's distinctly and each way gives a di�erent induced function. Each

59

such setting also yields an induced branching program on the nodes labeled from

b

i

plus an accept and a reject node. Say there are h

i

such nodes. The number of

branching programs on h

i

nodes is at most n

h

i

h

2h

i

i

. Thus n

h

i

h

2h

i

i

�

�

m

2

m�1

�

and so

h

i

� m=2. The total size of the original branching program is

P

(h

i

� 2)+ 2 since

the accept and reject nodes are common but the others are not. This is
(m

2

)

and hence
(

n

2

log

2

n

).

Since stronger lower bounds on general branching programs seem hard to

come by, researchers have turned to restricted versions. Furst, Saxe, and Sipser

(1984) and Borodin, Dolev, Fich, and Paul (1983) conjectured that the majority

function required superpolynomial size if the width of the branching program is

held �xed. Partial progress was made by Chandra, Furst, and Lipton (1983) who

gave a superlinear lower bound. Pudlak (1984b) improved this by eliminating

the width restriction. Then Barrington (1989), with a surprising construction,

disproved this conjecture. He showed that constant width branching programs are

unexpectedly powerful, being able to accept all NC

1

languages.

Theorem 6.6: A language has polynomial size, width 5 branching programs i�

it is in nonuniform NC

1

.

Proof: One direction (!) is easy since a �xed amount of circuitry can compose

two levels into one. Doing this in parallel across the branching program and

repeating it O(logn) times yields the desired NC

1

circuit.

For the other direction we construct a special kind of width 5 branching pro-

gram from the O(logn) depth circuit. All levels have 5 nodes and all nodes in a

given level are labeled with the same variable. Additionally, at each level the 0

edges and the 1 edges going to the next level form permutations. Then an input

setting yields a permutation which is the composition of the selected permutations

at each level. Call such a branching program p a permuting branching program

and let p(x) be the resulting permutation on input x. For a language B and per-

mutation � say that branching program p �-accepts B if for each string x 2 B we

have p(x) = � and for each x 62 B we have p(x) = e, the identity permutation.

A permutation is cyclic if it is composed of a single cycle on all of its elements.

In the following lemmas let � and � be cyclic permutations, B and C be languages,

and p and q be permuting branching programs.

Lemma 6.7: If p �-accepts B then there is a permuting branching program of the

60

same size � -accepting B.

Proof: Since � and � are cyclic we may write � = �

�1

for some permutation

. Then simply reorder the left and right nodes of p according to to obtain the

� -accepting branching program.

Lemma 6.8: If p �-accepts B then there is a permuting branching program of the

same size �-accepting B.

Proof: Use the previous lemma to obtain a �

�1

-acceptor for B. Then reorder the

�nal level by � so that it becomes a �-acceptor for B.

Lemma 6.9: If p �-accepts B and q � -accepts C then there is a permuting branch-

ing program ���

�1

�

�1

-accepting B \ C of size 2(size(p) + size(q)).

Proof: Use lemma 6.7 to get a �

�1

-acceptor for B and a �

�1

-acceptor for C. Now

compose these 4 acceptors in the order �; �; �

�1

; �

�1

. This has the desired e�ect

because replacing either � or � by e in ���

�1

�

�1

yields e.

Lemma 6.10: There are cyclic permutations � and � in S

5

such that ���

�1

�

�1

is cyclic.

Proof: (12345)(13542)(54321)(24531) = (13254).

The above lemma is the only place where the value 5 is important.

Now we may �nish the proof of the theorem. If a depth d circuit contains only

NOT gates and AND gates of fanin 2, then it is easily seen by the above lemmas

that we may construct a width 5 branching program of length at most 4

d

. Hence,

if the depth is O(logn) then the branching program has polynomial size.

61

7. Conclusion

Let us speculate on the future for research on lower bounds on the complexity

of �nite functions. Looking back, it is clear that the last decade has seen some

important progress on restricted models of computation. It is hard to say whether

this has any bearing on the unrestricted case. An optimist might argue that

by considering models with weaker and weaker restrictions one may incrementally

approach the unrestricted case. A very recent result of Razborov (1989a) indicates

however that the unrestricted case may be qualitatively di�erent from the cases that

have been successfully treated so far. This result shows that the \approximation

method," which lies at the heart of all of the strong lower bounds presented in

this chapter except for the Karchmer-Wigderson monotone depth bound, cannot

be used to prove superpolynomial lower bounds on the size of general circuits. It

seems that a fundamentally di�erent idea is needed.

A di�erent approach was proposed by Sipser (1981). Using an analogy

between countability and polynomiality one may derive a suggestive correspon-

dence between �nite complexity and de�nability in descriptive set theory (see

Moschovakis (1980) for a comprehensive treatment). In this way the class AC

0

corresponds to the class of Borel sets and the class NP corresponds to the class of

analytic sets. The former correspondence played a critical role in the discovery of

the proof of the theorem of Furst, Saxe, and Sipser (1984). By �rst formulating

and solving an in�nite version of their conjecture about the parity function they

were guided in the search for a solution to the conjecture.

The latter correspondence may have more direct bearing on the P=NP, or

more precisely, the NP=co-NP problem. Sipser (1984) gives a new proof of the

classical theorem due to Lebesgue (1905) stating that the analytic sets are not

closed under complement. There is a possibility that this proof contains a hint of

how to proceed with showing that NP is not closed under complement.

Acknowledgements

We wish to thank M. Karchmer, M. Paterson, N. Pippenger, A.A. Razborov and

U. Zwick for extensive comments on an earlier draft of this paper.

62

8. References

L. Adleman (1978), \Two theorems on random polynomial time," Proceedings

of 19th Annual IEEE Symposium on Foundations of Computer Science, 75{83.

M. Ajtai (1983), \�

1

1

-formulae on �nite structures," Annals of Pure and Ap-

plied Logic 24, 1{48.

M. Ajtai and M. Ben-Or (1984), \A theorem on probabilistic constant depth

circuits," Proceedings of 16th Annual ACM Symposium on Theory of Computing,

471{474.

M. Ajtai and Y. Gurevich (1987), \Monotone versus positive," Journal of the

ACM 34:4, 1004{1015.

M. Ajtai, J. Koml�os, and E. Szemer�edi (1983), \An O(n logn) sorting net-

work," Proceedings of 15th Annual ACM Symposium on Theory of Computing,

1{9. Journal version in Combinatorica 3:1, 1{19.

N. Alon and R. B. Boppana (1987), \The monotone circuit complexity of

Boolean functions," Combinatorica 7:1, 1{22.

A. E. Andreev (1985), \On a method for obtaining lower bounds for the com-

plexity of individual monotone functions," Doklady Akademii Nauk SSSR 282:5,

1033{1037 (in Russian). English translation in Soviet Mathematics Doklady 31:3,

530{534.

A. E. Andreev (1986), \On a family of Boolean matrices," Vestnik

Moskovskogo Universiteta, Matematika 41:2, 97{100 (in Russian). English trans-

lation in Moscow University Mathematics Bulletin 41:2, 79{82.

A. E. Andreev (1987), \On a method for obtaining more than quadratic ef-

fective lower bounds for the complexity of �-schemes," Vestnik Moskovskogo Uni-

versiteta, Matematika 42:1, 70{73 (in Russian). English translation in Moscow

University Mathematics Bulletin 42:1, 63{66.

T. P. Baker, J. Gill, and R. Solovay (1975), \Relativizations of the P =?NP

question," SIAM Journal on Computing 4:4, 431-442.

T. P. Baker and A. L. Selman (1979), \A second step toward the polynomial

hierarchy," Theoretical Computer Science 8, 177{187.

D. A. Barrington (1989), \Bounded-width polynomial-size branching pro-

grams recognize exactly those languages in NC

1

," Journal of Computer and Sys-

tem Sciences 38, 150{164.

63

C. Bennett and J. Gill (1981), \Relative to a random oracle A, P

A

6= NP

A

6=

co-NP

A

with probability 1," SIAM Journal on Computing 10, 96{113.

S. J. Berkowitz (1982), \On some relationships between monotone and non-

monotone circuit complexity," Technical Report, Computer Science Department,

University of Toronto.

N. Blum (1984), \A Boolean function requiring 3n network size," Theoretical

Computer Science 28, 337{345.

R. B. Boppana (1986), \Threshold functions and bounded depth monotone

circuits," Journal of Computer and System Sciences 32:2, 222{229.

R. B. Boppana (1989), \Ampli�cation of probabilistic Boolean formulas," Ad-

vances in Computer Research, Volume 5 on Randomness and Computation, Editor

S. Micali, JAI Press, to appear.

A. Borodin, D. Dolev, F. E. Fich, and W. J. Paul (1983), \Bounds for width

two branching programs,"Proceedings of 15th Annual ACM Symposium on Theory

of Computing, 87{93.

A. K. Chandra, M. L. Furst, and R. J. Lipton (1983), \Multiparty protocols,"

Proceedings of 15th Annual ACM Symposium on Theory of Computing, 94{99.

A. K. Chandra, D. Kozen, and L. Stockmeyer (1981), \Alternation," Journal

of the ACM 28, 114{133.

A. K. Chandra, L. J. Stockmeyer, and U. Vishkin (1984), \Constant depth

reducibility," SIAM Journal on Computing 13:2, 423{439.

S. A. Cook (1985), \A taxonomy of problems with fast parallel algorithms,"

Information and Control 64, 2{22.

D. Coppersmith and S. Winograd (1987), \Matrix multiplication via arith-

metic progressions," Proceedings of 19th Annual ACM Symposium on Theory of

Computing, 1{6.

P. E. Dunne (1984), \Lower bounds on the monotone network complexity of

threshold functions," Proceedings of 22nd Annual Allerton Conference on Com-

munication, Control and Computing, 911{920.

P. E. Dunne (1988), The Complexity of Boolean Networks, Academic Press.

J. Edmonds (1965), \Paths, trees, and owers," Canadian Journal of Mathe-

matics, 17, 449{467.

P. van Emde Boas (1989), \Machine models and simulations," this handbook.

64

P. Erd}os and R. Rado (1960), \Intersection theorems for systems of sets,"

Journal of London Mathematical Society 35, 85{90.

M. J. Fischer, A. R. Meyer, and M. S. Paterson (1982), \
(n logn) lower

bounds on length of Boolean formulas," SIAM Journal on Computing 11:3, 416{

427.

J. Friedman (1986), \Constructing O(n log n) size monotone formulae for the

k-th elementary symmetric polynomial of n Boolean variables," SIAM Journal on

Computing 15:3, 641{654.

M. Furst, J. Saxe, and M. Sipser (1984), \Parity, circuits and the polynomial

time hierarchy," Mathematical Systems Theory 17, 13{27.

R. L. Graham, B. L. Rothschild, and J. H. Spencer (1980), Ramsey Theory,

John Wiley & Sons, New York.

L. H. Harper and J. E. Savage (1972), \The complexity of the marriage prob-

lem," Advances in Mathematics 9, 299{312.

J. Hartmanis and R. E. Stearns (1965), \On the computational complexity of

algorithms," Transactions of the AMS 117, 285{306.

J. Hastad (1989), \Almost optimal lower bounds for small depth circuits,"

Advances in Computer Research, Volume 5 on Randomness and Computation,

Editor S. Micali, JAI Press, to appear. See also Computational Limitations for

Small Depth Circuits, MIT Press, 1986.

L. Hodes and E. Specker (1968), \Length of formulas and elimination of quan-

ti�ers I," Contributions to Mathematical Logic, Editors H. A. Schmidt, K. Schutte,

and H.-J. Thiele, North-Holland, Amsterdam, 175{188.

J. E. Hopcroft and J. D. Ullman (1979), Introduction to Automata Theory,

Languages, and Computation, Addison-Wesley.

N. Immerman (1987), \Languages that capture complexity classes," SIAM

Journal on Computing 16:4, 760{778.

M. Karchmer and A. Wigderson (1988), \Monotone circuits for connectivity

require super-logarithmic depth," Proceedings of 20th Annual ACM Symposium

on Theory of Computing, 539{550.

R. M. Karp and R. Lipton (1982), \Turing machines that take advice,"

L'enseignment Mathematique 28, 191{209.

L. S. Khasin (1969), \Complexity bounds for the realization of monotone sym-

65

metrical functions by means of formulas in the basis +, �, �," Doklady Akademii

Nauk SSSR 189:4, 752{755 (in Russian). English translation in Soviet Physics

Doklady 14:12 (1970), 1149{1151.

V. M. Khrapchenko (1971), \A method of determining lower bounds for the

complexity of �-schemes," Matematicheskie Zametki 10:1, 83{92 (in Russian).

English translation inMathematical Notes of the Academy of Sciences of the USSR

10:1, 474{479.

V. M. Khrapchenko (1972), \The complexity of the realization of symmetrical

functions by formulae,"Matematicheskie Zametki 11:1, 109{120 (in Russian). En-

glish translation in Mathematical Notes of the Academy of Sciences of the USSR

11:1, 70{76.

M. Klawe, W. J. Paul, N. Pippenger, and M. Yannakakis (1984), \On mono-

tone formulae with restricted depth," Proceedings of 16th Annual ACM Symposium

on Theory of Computing, 480{487.

R. E. Krichevskii (1963), \Complexity of contact circuits realizing a function

of logical algebra," Doklady Akademii Nauk SSSR 151:4, 803{806 (in Russian).

English translation in Soviet Physics Doklady 8:8 (1964), 770{772.

E. A. Lamagna (1979), \The complexity of monotone networks for certain

bilinear forms, routing problems, sorting and merging," IEEE Transactions on

Computing 28, 773{782.

E. A. Lamagna and J. E. Savage (1974), \Combinational complexity of some

monotone functions," Proceedings of 15th Annual IEEE Symposium on Switching

and Automata Theory, 140{144.

H. Lebesgue (1905), \Sur les fonctions repr�esentables analytiquement," Jour-

nal de Math. 6

e

serie 1, 139{216 (in French).

W. Masek (1976), \A fast algorithm for the string editing problem and de-

cision graph complexity," M.S. thesis, Department of Electrical Engineering and

Computer Science, Massachusetts Institute of Technology.

K. Mehlhorn (1979), \Some remarks on Boolean sums," Acta Informatica 12,

371{375.

K. Mehlhorn and Z. Galil (1976), \Monotone switching circuits and Boolean

matrix product," Computing 16, 99{111.

Y. N. Moschovakis (1980), Descriptive Set Theory, North-Holland.

66

D. E. Muller (1956), \Complexity in electronic switching circuits," IRE Trans-

actions on Electronic Computers 5, 15{19.

D. E. Muller and F. P. Preparata (1975), \Bounds to complexities of networks

for sorting and switching," Journal of the ACM 22:2, 195{201.

E. I. Ne�ciporuk (1966), \A Boolean function," Doklady Akademii Nauk SSSR

169:4, 765{766 (in Russian). English translation in Soviet Mathematics Doklady

7:4, 999{1000.

E. I. Ne�ciporuk (1969), \On a Boolean matrix," Problemy Kibernetiki 21,

237{240 (in Russian). English translation in Systems Theory Research 21 (1971),

236{239.

Yu. Ofman (1962), \On the algorithmic complexity of discrete functions,"

Doklady Akademii Nauk SSSR 145:1, 48{51 (in Russian). English translation in

Soviet Physics Doklady 7:7 (1963), 589{591.

E. A. Okol'nishnikova (1982), \On the inuence of negations on the complexity

of a realization of monotone Boolean functions by formulas of bounded depth,"

Metody Diskretnogo Analiza 38, 74{80 (in Russian).

M. S. Paterson (1975), \Complexity of monotone networks for Boolean matrix

product," Theoretical Computer Science 1:1, 13{20.

M. S. Paterson (1976), \An introduction to Boolean function complexity,"

Ast�erisque 38{39, 183{201.

M. S. Paterson (1977), \New bounds on formula size," Proceedings of 3rd GI

Conference on Theoretical Computer Science, Lecture Notes in Computer Science

48, Springer-Verlag, Berlin, 17{26.

W. J. Paul (1977), \A 2:5n lower bound on the combinational complexity of

Boolean functions," SIAM Journal on Computing 6:3, 427{443.

G. L. Peterson (1978), \An upper bound on the size of formulae for symmetric

Boolean functions," Technical Report 78-03-01, Department of Computer Science,

University of Washington.

N. Pippenger (1974), \Short formulae for symmetric functions," IBM Re-

search Report RC{5143, Yorktown Heights.

N. Pippenger (1979), \On simultaneous resource bounds," Proceedings of 20th

Annual IEEE Symposium on Foundations of Computer Science, 307{311.

N. Pippenger (1980), \On another Boolean matrix," Theoretical Computer

67

Science 11, 49{56.

N. Pippenger and M. J. Fischer (1979), \Relations among complexity mea-

sures," Journal of the ACM 26, 361{381.

N. Pippenger and L. G. Valiant (1976), \Shifting graphs and their applica-

tions," Journal of the ACM 23, 423{432.

V. R. Pratt (1974), \The power of negative thinking in multiplying Boolean

matrices," SIAM Journal on Computing 4, 326{330.

V. R. Pratt (1975), \The e�ect of basis on size of Boolean expressions," Pro-

ceedings of 16th Annual IEEE Symposium on Foundations of Computer Science,

119{121.

P. Pudl�ak (1984a), \Bounds for Hodes-Specker theorem," Proceedings of

Symposium on Rekursive Kombinatorik, Lecture Notes in Computer Science 171,

Springer-Verlag, Berlin, 421{445.

P. Pudl�ak (1984b), \A lower bound on complexity of branching programs,"

Proceedings of 11th Mathematical Foundations of Computer Science, Lecture Notes

in Computer Science 176, Springer-Verlag, Berlin, 480{489.

A. A. Razborov (1985a), \Lower bounds on the monotone complexity of some

Boolean functions," Doklady Akademii Nauk SSSR 281:4, 798{801 (in Russian).

English translation in Soviet Mathematics Doklady 31, 354{357.

A. A. Razborov (1985b), \A lower bound on the monotone network complexity

of the logical permanent," Matematicheskie Zametki 37:6, 887{900 (in Russian).

English translation inMathematical Notes of the Academy of Sciences of the USSR

37:6, 485{493.

A. A. Razborov (1987), \Lower bounds on the size of bounded depth networks

over a complete basis with logical addition," Matematicheskie Zametki 41:4, 598{

607 (in Russian). English translation in Mathematical Notes of the Academy of

Sciences of the USSR 41:4, 333{338.

A. A. Razborov (1989a), \On the method of approximations," Proceedings of

the 21st Annual ACM Symposium on Theory of Computing, 167{176.

A. A. Razborov (1989b), \Applications of matrix methods to the theory of

lower bounds in computational complexity," Combinatorica, to appear.

J. E. Savage (1972), \Computational work and time on �nite machines," Jour-

nal of the ACM 19:4, 660{674.

68

J. E. Savage (1976), The Complexity of Computing, Wiley.

C. E. Shannon (1949), \The synthesis of two-terminal switching circuits," Bell

Systems Technical Journal 28:1, 59{98.

M. Sipser (1981), \On polynomial vs. exponential growth," unpublished.

M. Sipser (1983), \Borel sets and circuit complexity," Proceedings of 15th

Annual ACM Symposium on Theory of Computing, 61{69.

M. Sipser (1984), \A topological view of some problems in complexity theory,"

Colloquia Mathematica Societatis J�anos Bolyai 44, 387{391.

S. Skyum and L. G. Valiant (1985), \A complexity theory based on Boolean

algebra," Journal of the ACM 32:2, 484{502.

R. Smolensky (1987), \Algebraic methods in the theory of lower bounds for

Boolean circuit complexity," Proceedings of 19th Annual ACM Symposium on The-

ory of Computing, 77{82.

P. M. Spira (1971), \On time-hardware complexity tradeo�s for Boolean func-

tions," Proceedings of 4th Hawaii Symposium on System Sciences, Western Peri-

odicals Company, North Hollywood, 525{527.

B. A. Subbotovskaya (1961), \Realizations of linear functions by formulas

using +, �, �," Doklady Akademii Nauk SSSR 136:3, 553{555 (in Russian). English

translation in Soviet Mathematics Doklady 2, 110{112.

�

E. Tardos (1988), \The gap between monotone and non-monotone circuit

complexity is exponential," Combinatorica 8:1, 141{142.

J. Tiekenheinrich (1984), \A 4n lower bound on the monotone network com-

plexity of a one-output Boolean function," Information Processing Letters 18, 201{

202.

A. M. Turing (1936), \On computable numbers with an application to the

Entscheidungsproblem," Proceedings of the London Mathematical Society 2:42,

230{265. Correction in ibid. 2:43, 544{546.

A. B. Ugol'nikov (1987), \Complexity and depth of formulas realizing func-

tions from closed classes," Proceedings of Fundamentals of Computation Theory,

Lecture Notes in Computer Science 278, Springer-Verlag, Berlin, 456{461.

L. G. Valiant (1979), \Completeness classes in algebra," Proceedings of 11th

ACM Annual Symposium on Theory of Computing, 249{261.

L. G. Valiant (1984), \Short monotone formulae for the majority function,"

69

Journal of Algorithms 5, 363{366.

C. S. Wallace (1964), \A suggestion for a fast multiplier," IEEE Transactions

on Computers 13:1, 14{17.

I. Wegener (1982), \Boolean functions whose monotone complexity is of size

n

2

= logn," Theoretical Computer Science 21, 213{224.

I. Wegener (1983), \Relating monotone formula size and monotone depth of

Boolean functions," Information Processing Letters 16, 41{42.

I. Wegener (1987), The Complexity of Boolean Functions, Wiley-Teubner.

A. C. Yao (1985), \Separating the polynomial-time hierarchy by oracles," Pro-

ceedings of 26th Annual IEEE Symposium on Foundations of Computer Science,

1{10.

U. Zwick (1987), \Optimizing Ne�ciporuk's theorem," Ph.D. thesis, Depart-

ment of Computer Science, Tel Aviv University.

70

