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Abstract

Despite the widespread use of probabilistic latent variable models, identifying
the parameters of basic latent variable models continues to be an extremely chal-
lenging problem. Traditional maximum likelihood-based learning algorithms find
valid parameters, but suffer from high computational cost, slow convergence, and
local optima. In contrast, recently developed spectral algorithms are computation-
ally efficient and provide strong statistical guarantees, but are not guaranteed to
find valid parameters. In this work, we first use a spectral method of moments
algorithm to find a solution that is close to the optimal solution but not necessarily
in the valid set of model parameters. We then incrementally refine the solution via
an exterior point method until a local optima that is arbitrarily near the valid set
of parameters is found. Our experiments show that our approach is more accurate
than previous work, especially when training data is limited.

1 INTRODUCTION & RELATED WORK

Probabilistic latent variable models are a fundamental tool in statistics and machine learning that
have successfully been deployed in a wide range of applied domains including robotics, bioinfor-
matics, speech recognition, document analysis, social network modeling, and economics. Despite
their widespread use, identifying the parameters of basic latent variable models like multi-view
models and hidden Markov models (HMMs) continues to be an extremely challenging problem.
Researchers often resort to local search heuristics such as expectation maximization (EM) [9] that
attempt to find parameters that maximize the likelihood of the observed data. Unfortunately, EM
has a number of well-documented drawbacks, including high computational cost, slow convergence,
and local optima.

In the past 5 years, several techniques based on method of moments [15] have been proposed as
an alternative to maximum likelihood for learning latent variable models [11, 17, 19, 13, 14, 12, 1,
3, 2, 6, 7, 18]. These algorithms first estimate low-order moments of observations, such as means
and covariances, and then apply a sequence of linear algebra to recover the model parameters. Mo-
ment estimation is linear in the number of training data samples, and parameter estimation, which
relies on techniques like the singular value decomposition (SVD), is typically fast and numerically
robust. Spectral algorithms were recently extended to the more difficult problem of estimating the
parameters of latent variable models including the stochastic transition and observation matrices of
HMMs [3]. The resulting parameters can be used to initialize EM in a two-stage learning algo-
rithm [21, 5], resulting in the best of both worlds: parameters found by method of moments provide
a good initialization for a maximum likelihood approach.

Unfortunately, spectral method of moments algorithms and two-stage learning algorithms have
worked less well in practice. With finite samples, method of moments estimators are not guaranteed
to find a valid set of parameters. Although error in the estimated parameters are bounded, the pa-
rameters themselves may lie outside the class of valid models. To fix these problems, the method of
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moments solution is typically projected onto the `1-ball [10]. In this work, however, we directly ini-
tialize our optimization algorithm with the method of moments estimations. We propose a two-stage
algorithm for learning the parameters of latent variable models. In the first stage, the parameters are
estimated via a spectral method of moments algorithm (similar to [3]). In the second stage, unlike
previous work that projects method of moments onto the feasible space of model parameters and
then uses the projected parameters to initialize EM [21, 5], we use exterior point methods for non-
convex optimization directly initialized with the result of method of moments without modification.
The exterior point method iteratively refines the solution until a local optima that is arbitrarily close
to the valid set of model parameters is found. An important advantage of exterior point methods is
that they are likely to achieve a better local minimum than interior point methods when the feasible
set is narrow by allowing solutions to exist outside the feasible set during the intermediate steps of
the optimization [20].

2 PARAMETER ESTIMATION VIA METHOD OF MOMENTS

Method of moment parameter estimation serves an initial solution to our optimization algorithm.
Here we only highlight some important notations of multi-view model. For more details on multi-
view model and HMM parameter estimation using method of moment method, the reader may con-
sult [3]. In a multi-view model, observation variables o1, o2, . . . , ol are conditionally independent
given a latent variable h. Assume each observation variable can take one of n

o

different values. The
observation vector x

t

2 Rn

o is defined as follows:
x

t

= e

j

iff o
t

= j for 0 < j  n

o

, (1)

where e

j

is the j

th canonical basis. In this paper, we consider the case where l = 3, however,
the techniques can be easily extended to cases where l > 3. Let h 2 {1, . . . , n

s

} be a discrete
random variable and Pr {h = j} = (w)

j

, where w 2 �n

s

�1, then the conditional expectation of
observation vector x

t

for t 2 {1, 2, 3} is:
E[x

t

| h = i] = u

t

i

, (2)
where u

t

i

2 �n

o

�1. We define the observation matrix as U

t = [ut

1, . . . ,u
t

n

s

] for t 2 {1, 2, 3},
and the diagonal n

s

⇥n

s

⇥n

s

tensor H, where diag (H) = w for ease of notation. The following
proposition relates U ts and w to the moments of x

t

s.
Proposition 1. [2] Assume that columns of U t are linearly independent for each t = {1, 2, 3}.
Define M = E(x1 ⌦ x2 ⌦ x3), then (⇥

n

is n-mode product)

M = H⇥1 U
1 ⇥2 U

2 ⇥3 U
3 (3)

3 EXTERIOR POINT METHODS

Let v 2 Rn

s

(3n
o

+1) be a vector comprised of the parameters of the multi-view model
{U1

,U

2
,U

3
, diag(H)}, and R(v) = (M̂ �H ⇥1 U

1 ⇥2 U
2 ⇥3 U

3) be the residual estimation
tensor. For ease of notation, we also define function s(·) : Rn

s

(3n
o

+1) ! R3n
s

+1 that computes
column sum of U1, U2, U3, and diag(H). Since in practice method of moments works with esti-
mated empirical moment M̂ rather than the population moment M, the estimated parameters using
method of moments do not necessarily minimize the estimation error ||R(v)||

F

and also may violate
the constraints for the model parameters. With these limitations in mind, we rewrite the factorization
in Equation (3) in the form of an optimization problem:

minimize
1

2
||R(v)||2

F

.

s.t. v 2Rn

s

(3n
o

+1)
+ , s(v) = 1

(4)

Defining optimization problem in this form has the advantage over maximum likelihood optimiza-
tion schemes that the value of this objective function ||R(v)||

F

is also defined outside of the feasible
set. Instead of solving above constrained optimization problem, we solve the following uncon-
strained optimization problem:

minimize
1

2
||R(v)||2

F

+
�1

2
||s(v)� 1||2

p

+ �2|v|�, (5)
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Algorithm 1 The exterior point algorithm

Input: Estimated third order moment M̂, initial point (obtained from method of moments) v(0) is comprised
of {Û1

, Û2
, Û3

, diag(Ĥ)}, parameters �1, and �2, sequence {�k}, and constant c > 0
Output: Convergence point v⇤

——————————————————————-
k  0
while not converged do

k  k + 1
if |v(k�1)|� > 0 then

↵k  max{c,�k}
else

↵k  �k

end if
ṽ(k)  v(k�1) � ↵krg(v(k�1))
v(k)  prox(ṽ(k)) (see Equation (7))

end while

where |v|� is the absolute sum of all negative elements in the vector v, i.e., |v|� =
P

i

|(v)
i

|�. We
set p = 2 in our method. For p = 1, there exists a �1 and a �2 such that the solution to this uncon-
strained optimization is also the solution to the objective in Equation (4). Our approach, however,
is different in the sense that for p = 2 the solution of our optimization algorithm is not guaranteed
to satisfy the constraints in Equation (4), however, we show in Theorem 3 that the solution will be
arbitrarily close to the simplex. In return for this relaxation, the above optimization problem can be
easily solved by a standard forward-backward splitting algorithm [8]. In this method, the function
is split into a smooth part:

g(v) =
1

2
||R(v)||2

F

+
�1

2
||s(v)� 1||22 (6)

and a non-smooth part �2|v|�. We then minimize the objective function by alternating between a
gradient step on the smooth part rg(v) (forward) and proximal step of the non-smooth part (back-
ward). The overall algorithm is shown in Algorithm 1 where prox(ṽ(k)) function is defined as

v

(k) = argmin
y

(↵
k

�2|y|� +
1

2
||ṽ(k) � y||2

F

). (7)

We only need to find the gradient of function g(v) for the given model parameter v. Under certain
assumptions, by using the forward-backward splitting steps in Algorithm 1, we can show that there
are lower bounds for �1 and �2 in which the iterative algorithm converges to a local optimum
arbitrarily close to the simplex.
Corollary 2. For every v which is comprised of the multi-view parameters and is in the compact
set F = {v | 8i, 0 < i  n

s

, 1 < t  3 : ||(U t)
i

||2  L, ||diag(H)||2  L}, every element of the
gradient of the function r(v) is bounded as:

|@r(v)
@(v)

i

|  L

3||R(v)||
F

(8)

Theorem 3. Let ⌥ > sup
k

||R(v(k))||
F

. For every ✏1 > 0, set �1 >

L

3⌥
✏1

and �2 > L

3⌥ +

�1(
p
n

o

L + 1), in Equation (5). For the convergence point of the sequence {v(k)} ⇢ F which is
generated by Algorithm 1 we have: |v⇤|� = 0, ||s(v⇤)� 1||2  ✏1.

To summarize, we initiate our exterior point method with the result of the method of moments
estimator. By choosing large enough �1 and �2, the convergence point of the exterior point method
will be at a local optimum of g(v) with the constraint v 2 Rn

s

(3n
o

+1)
+ in which the column sum of

parameters set is arbitrarily close to 1. It is important to note that the proven lower bounds for �1,
and �2 are sufficient condition for the convergence. In practice, cross-validation can find the best
parameter to balance the speed of mapping to the simplex with optimizing the residual function.
This method can easily be extended to find HMM parameters. After finding HMM parameters from
the method of moments algorithm, Algorithm 1 can be used to further refine the solution. In order to
use this algorithm, we just need to define the residual estimation term for HMMs, define the function
g(·), and compute its gradient.
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4 EXPERIMENTAL RESULTS
We evaluate the performance of our proposed method (EX&SVD) on both synthetic and real world
datasets. We compare our approach to several state-of-the-art alternatives including EM initialized
with 10 random seeds (EM), EM initialized with the method of moments result described in Sec-
tion 2 after projecting the estimated parameters into simplex (EM&SVD), and the recently published
symmetric tensor decomposition method (STD) [2]. To evaluate the performance gain due to ex-
terior point algorithm, we also included results from method of moments without the additional
optimization (SVD) Section 2. Parameters �1, and �2 controls the speed of mapping parameters
into the simplex while estimation error term is optimized simultaneously. We find the best pa-
rameters using cross-validation. In our experiments, we sample N training and M testing points
from each model. For the evaluation we use M = 2000 test samples and calculate normalized `1

error = 1
M

P
M

i=1
|P(X

i

)�P̂(X
i

)|
P(X

i

) .

First, we study the performance of different methods in estimating multi-view model parameters
under different parameter set sizes. To this end, we sample N = 4000 training points from models
with different numbers of hidden states and evaluate the performance of different method in esti-
mating these models parameters. The average error of 10 independent runs is reported in figure 1
for different values of n

s

. In each case we set n
o

to twice the value of n
s

. As n

s

increases, the
number of model parameters also increases while the number of training points remains fixed. This
results in the estimation error increasing as the models get larger for all of the methods. However,
the difference between the performance of EX&SVD and other methods becomes more pronounced
with n

s

, which shows the effectiveness of our method in learning models with large state spaces and
relatively smaller datasets. Next, we evaluate the performance of our algorithm by estimating the
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Figure 1: Error vs. n
s

(left), time vs. n
s

(right) for multi-view model for #training = 4000.
parameters of HMMs on synthetic dataset. Similar to the multi-view case, we randomly sample pa-
rameters from two different classes of models to generate synthetic datasets. The first set of models
again has 5 hidden states and 10 discrete observations, and the second set of models has 10 hidden
states and 20 observations. Figure 2 shows the average error of the implemented algorithms run on
10 different datasets generated by i.i.d sampled models. Although, estimated parameters in the SVD
method do not have good performance in terms of normalized l1 error, using them to initiate an iter-
ative optimization procedure improves performance as demonstrated by both the EM&SVD and the
EX&SVD methods. On the other hand, our algorithm can also outperform EM&SVD, especially in
the low and medium sample size regions when the error of projection step is relatively high.
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Figure 2: Error vs. #training, and time vs. #training for HMM models. n
s

= 5, n
o

= 10 (images
#1, and #2), and n

s

= 10, n
o

= 20 (images #3, #4).

4



References
[1] A. Anandkumar, D. P. Foster, D. Hsu, S. M. Kakade, and Y. Liu. Two svds suffice: Spec-

tral decompositions for probabilistic topic modeling and latent dirichlet allocation. CoRR,
abs/1204.6703, 2012.

[2] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decompositions for
learning latent variable models. arXiv preprint arXiv:1210.7559, 2012.

[3] A. Anandkumar, D. Hsu, and S. M. Kakade. A method of moments for mixture models and
hidden markov models. In Proc. Annual Conf. Computational Learning Theory, pages 33.1–
33.34, 2012.

[4] K. Bache and M. Lichman. UCI machine learning repository, 2013.
[5] B. Balle, W. Hamilton, and J. Pineau. Methods of moments for learning stochastic languages:

Unified presentation and empirical comparison. In Proceedings of the International Confer-
ence on Machine Learning, pages 1386–1394, 2014.

[6] B. Balle, A. Quattoni, and X. Carreras. Local loss optimization in operator models: A new
insight into spectral learning. In Proceedings of the International Conference on Machine
Learning, 2012.

[7] S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. Ungar. Experiments with spectral
learning of latent-variable PCFGs. In Proceedings of NAACL, 2013.

[8] P. L. Combettes and J. Pesquet. Proximal splitting methods in signal processing. In Fixed-point
algorithms for inverse problems in science and engineering, pages 185–212. Springer, 2011.

[9] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society B, 39(1):1–22, 1977.

[10] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandrae. Efficient projections onto the `1-ball
for learning in high dimensions. In Proceedings of the International Conference on Machine
Learning, 2008.

[11] D. Hsu, S. Kakade, and T. Zhang. A spectral algorithm for learning hidden markov models. In
Proc. Annual Conf. Computational Learning Theory, 2009.

[12] D. Hsu and S.M. Kakade. Learning mixtures of spherical gaussians: moment methods and
spectral decompositions, 2012.

[13] A. Parikh, L. Song, and E. P. Xing. A spectral algorithm for latent tree graphical models. In
Proceedings of the International Conference on Machine Learning, 2011.

[14] A. P. Parikh, L. Song, M. Ishteva, G. Teodoru, and E.P. Xing. A spectral algorithm for latent
junction trees. In Conference on Uncertainty in Artificial Intelligence, 2012.

[15] K. Pearson. Contributions to the mathematical theory of evolution. Transactions of the Royal
Society of London, 185:71–110, 1894.

[16] S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization. Mathematical Programming, pages 1–41, 2013.

[17] S. Siddiqi, B. Boots, and G. J. Gordon. Reduced-rank hidden Markov models. In Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS-
2010), 2010.

[18] L. Song, A. Anamdakumar, B. Dai, and B. Xie. Nonparametric estimation of multi-view latent
variable models. In International Conference on Machine Learning (ICML), 2014.

[19] L. Song, B. Boots, S. Siddiqi, G. Gordon, and A. J. Smola. Hilbert space embeddings of hidden
markov models. In International Conference on Machine Learning, 2010.

[20] H. Yamashita and T. Tanabe. A primal-dual exterior point method for nonlinear optimization.
SIAM Journal on Optimization, 20(6):3335–3363, 2010.

[21] Y. Zhang, X. Chen, D. Zhou, and M. I Jordan. Spectral methods meet em: A provably optimal
algorithm for crowdsourcing. In Advances in Neural Information Processing Systems 14, pages
1260–1268, 2014.

5


	INTRODUCTION & RELATED WORK
	PARAMETER ESTIMATION VIA METHOD OF MOMENTS
	EXTERIOR POINT METHODS
	EXPERIMENTAL RESULTS

