
Cayenne � a language with dependent types

Lennart Augustsson

Department of Computing Sciences
Chalmers University of Technology

S���� �� G�teborg	 Sweden
Email
 augustss�cs�chalmers�se

WWW
 http���www�cs�chalmers�se��augustss

Abstract� Cayenne is a Haskell�like language� The main di�erence be�
tween Haskell and Cayenne is that Cayenne has dependent types	 i�e�	 the
result type of a function may depend on the argument value	 and types of
record components which can be types or values� may depend on other
components� Cayenne also combines the syntactic categories for value
expressions and type expressions� thus reducing the number of language
concepts�

Having dependent types and combined type and value expressions makes
the language very powerful� It is powerful enough that a special mod�
ule concept is unnecessary� ordinary records su�ce� It is also powerful
enough to encode predicate logic at the type level	 allowing types to be
used as speci�cations of programs� However	 this power comes at a cost

type checking of Cayenne is undecidable� While this may appear to be a
steep price to pay	 it seems to work well in practice�

Keywords
 Type systems	 language design	 dependent types	 module
systems

� Introduction

Languages like Haskell �Hud��� and SML �MTH��� have type systems that are
among the most advanced of any language� Despite this there are things that are
inexpressible in these type systems� Dependent types� i�e�� having types depend
on values� increases the expressiveness of type systems and many of the problems
of Hindley	Milner typing can be overcome�

Cayenne is a Haskell	like language that combines dependent types and
rst
class types� i�e�� types can be used like values� The syntax for value and type
expressions is the same� Cayenne does not have a separate notion of modules�
records are used as modules� this means that the language for combining mod	
ules is also the usual expression language� This is in contrast with Haskell and
SML� Haskell has similar but di�erent syntax for type and value expressions and
de
nitions� SML has di�erent syntax for value� type� and module expressions
and de
nitions� It can be argued that they should look di�erent� because they
are di�erent� But we want to argue the opposite� the facilities for the three types
of expressions are similar� so why should they be di�erent In Cayenne they are

the same and exactly the same program constructs can be used on all levels�
thus reducing the number of concepts that you need to master�

Although dependent types have been used before in proof systems� e�g��
�CH���� to our knowledge this is the
rst time that the full power of depen	
dent types has been integrated into a programming language�

We will now give some motivating examples� where we show problems in
Haskell that are solved in Cayenne� The di�erences between Haskell and Cayenne
will be explained as they occur�

��� The type of printf

The C standard I�O library has a very useful function for doing output� namely
printf� The function printf takes a formatting string as the
rst argument
and then some additional arguments� The number of arguments and their types
depends on the formatting string� It is simple to write a similar function in
Haskell� but it will not type check��

printf fmt � pr fmt �� where

pr �� res � res

pr ������d��cs� res �

	 i
� pr cs �res �� show �i��Int��

pr ������s��cs� res �

	 s
� pr cs �res �� s�

pr ����� c �cs� res �

pr cs �res �� c��

pr �c�cs� res �

pr cs �res �� c��

This is a very simpli
ed version of printf� but as in the real version� the sub	
string ��d� marks an integer argument and ��s� marks a string argument� The
type of printf clearly varies with its
rst argument� e�g��

printf ��d� �� Int
� String

printf ��s owes �d SEK to �s� ��

String
� Int
� String
� String

As we can see� the function is easy to write and works perfectly� but cannot
be given a type in Haskell��

Cayenne solution The type of printf can easily be computed from the
rst
argument� All we need to do is to write a function that computes the right type�
The type of all types is called ���� in Cayenne�

� The code given here is very ine�cient	 but that is easy to remedy�
� Olivier Danvy has recently shown	 �Dan���	 that functions similar to printf can be
given a type with Hindley�Milner typing with a clever trick�

� We would like to use the more familiar notation ��� for the type of types� This might
be possible	 but it interacts badly with the use of ��� as an in�x operator�

PrintfType �� String
� �

PrintfType �� � String

PrintfType ������d��cs� � Int
� PrintfType cs

PrintfType ������s��cs� � String
� PrintfType cs

PrintfType ����� � �cs� � PrintfType cs

PrintfType � � �cs� � PrintfType cs

printf �� �fmt��String�
� PrintfType fmt

printf fmt � pr fmt ��

pr �� �fmt��String�
� String
� PrintfType fmt

pr �� res � res

pr ������d��cs� res �

	 �i��Int�
� pr cs �res �� show i�

pr ������s��cs� res �

	 �s��String�
� pr cs �res �� s�

pr ����� c �cs� res �

pr cs �res �� c��

pr �c�cs� res �

pr cs �res �� c��

The function PrintfType mimics the recursive structure of printf� but it com	
putes the type instead of the value� E�g��
PrintfType ��d� ��� Int
� String

The typing of printf is now
printf �� �fmt��String�
� PrintfType fmt

This example di�ers from Haskell in that the
rst argument �which has type
String� has a name� fmt� which can be used in the type expression� A minor
point to note is that �	expressions in Cayenne have an explicit type on the bound
variable� whereas they do not in Haskell�

Another example of a function with a dependent type can be found in ap	
pendix B�

��� The set �package�

Record types in Haskell �and SML� can contain values� but not types� sometimes
this can be inconvenient� To show an example of this we will use a simple set of
integers� It should support creating the empty set� the singleton set� taking union�
and testing for set membership� There are many possible ways to implement these
sets and sometimes you want to have multiple implementations in a program and
choose dynamically which one to use �e�g�� depending on the use pattern�� To be
able to do this we would like to be able to store di�erent set implementations in
a data structure�

We would want to de
ne the set type something like

data IntSet � IntSet �

type T�

empty �� T�

singleton �� Int
�T�

union �� T
�T
�T�

member �� Int
�T
�Bool

�

Unfortunately� this is not possible since we cannot have a type in a record and
the name T would also not be in scope� This kind of construct is only available at
the module level in Haskell� but modules are de
nitely not
rst class objects in
Haskell� there are no operations on modules except for the importation of them�
SML allows this kind of de
nitions on the module level and has a rich language
for combining them� but they are still not
rst class objects� so they cannot be
put in a run	time data structure��

Cayenne solution Cayenne records are di�erent from Haskell records in several
respects� Cayenne records are not data types� they can contain types� and when
de
ning a record object the labels are bound within the record expression� The
sig keyword starts a record type and the struct keyword starts a record value�

The IntSet type could be de
ned like this

type IntSet � sig

type T

empty �� T

singleton �� Int
�T

union �� T
�T
�T

member �� Int
�T
�Bool

An implementation could look like this

na�veSet �� IntSet

na�veSet � struct

abstract type T � Int
�Bool

empty x � False

singleton x x� � x �� x�

union s t x � s x �� t x

member x s � s x

This kind of record borrows features from Haskell modules� but they are still

rst class objects�

��� The Eq class

The Eq class in Haskell has the following de
nition��

� It is not obvious that the �rst class modules proposed here extend easily to a language
like SML that supports side e�ects�

� It also has a de�nition of ��	
	 but it is of no use in this example so we disregard it�

class Eq a where

���� �� a
� a
� Bool

This� quite correctly� states that ���� takes two arguments of the same type
and returns a boolean� but surely this is not all we expect from an equality� We
expect it to be a �real� equality� i�e�� we most likely want it to be an equivalence
relation�� The equivalence property of equality cannot be expressed in Haskell�
The best we can do is to have it as a comment� and hope that each equality
de
ned in the program is really an equivalence relation�

Cayenne solution Cayenne has no type classes so the Eq class problem must
be reformulated slightly� A class de
nition in Haskell would correspond to a type
de
nition of a record in Cayenne� and instance declarations in Haskell correspond
to values of that type� All dictionaries will thus be passed explicity in Cayenne�

The Eq �class� in Cayenne would be

type Eq a � sig

���� �� a
� a
� Bool

To include an equivalence proof we must
rst have a way of expressing logical
properties� This is� in fact� easy since Cayenne types can� through the Curry	
Howard isomorphism� encode predicate calculus as types� see
gure �� Terms of
the di�erent types correspond to the proof of the corresponding properties� This
is all well known from constructive type theory �NPS���� and well before that
�How����

Predicate calculus Cayenne type

� Absurd or any empty type�
� any non�empty type
x � y Either x y
x � y Pair x y
�x � A�P �x� �x��A
 �� P �x�
�x � A�P �x� x��A� y��P �x��

data Absurd 	

data Pair x y 	 pair x y

data Either x y 	 Left x � Right y

Fig� �� �Encoding� predicate logic as Cayenne types�

We encode the absurd proposition �i�e�� falsity� by the empty type� and all
types with elements encode truth� The dependent function type encodes uni	
versal quanti
cation and records encode existential quanti
cation� Proving a
property correspond to
nding an element �i�e�� constructing a value� in a type�

� Or	 even better	 a congruence relation�

Since false logical statements correspond to the empty type we cannot
nd any
values in them� but in �constructively� true logical statements we can�

One way of solving our problem in Cayenne is to extend the Eq type like this�

type Eq a � sig

���� �� a
� a
� Bool

equiv �� Equiv �LiftBin �����

LiftBin is a function that maps a binary operation yielding a Boolean into a
corresponding relation� Equiv is a predicate on relations stating that the relation
is an equivalence relation�

The following auxiliary de
nitions are used above� Further di�erences be	
tween Haskell and Cayenne appear below� type variables must be bound� but
are often used as hidden arguments� introduced by the �
� function arrow� see
section ��� for further discussion�

data Absurd 	

data Truth 	 truth

Lift �� Bool �� �

Lift �False
 	 Absurd

Lift �True
 	 Truth

LiftBin �� �a �� �
 ��� �a �� a �� Bool
 �� Rel a

LiftBin �a op 	 � �x��a
 �� � �y��a
 �� Lift �op x y

type Rel a 	 a �� a �� �

Refl �� �a �� �
 ��� Rel a �� �

Refl �a R 	 �x��a
 �� x �R� x

Symm �� �a �� �
 ��� Rel a �� �

Symm �a R 	 �x��a
 �� �y��a
 �� x �R� y �� y �R� x

Trans �� �a �� �
 ��� Rel a �� �

Trans �a R 	 �x��a
 �� �y��a
 �� �z��a
 ��

x �R� y �� y �R� z �� x �R� z

Equiv �� �a �� �
 ��� Rel a �� �

Equiv R 	 sig

refl �� Refl R

symm �� Symm R

trans �� Trans R

Appendix A contains the complete code for this example with some instances�

� Core Cayenne

Cayenne has three basic type forming constructs� dependent functions� data
types �sums�� and dependent records �products��� Core Cayenne is the subset
of Cayenne that has no syntactic bells and whistles� just the basic constructs�
We will start by looking at Core Cayenne and then at the various syntactic
shorthands� The syntax of Core Cayenne is given in
gure �� The grammar
disregards certain minor concrete syntax issues� There is no syntactic distinction
between expressions and types in Cayenne� as is re�ected in the grammar�

expr

� � varid �� type
 �� expr function type
� � varid �� type
 �� expr � expression
expr expr application
data � conid � type � � � sum type
conid � type constructor
case varid of � arm � �� type sum scrutinization
sig � sign � record type
struct � defn � record formation
expr � lblid record selection
id variable
�n type of types

arm

� � conid � varid �
 �� expr �
varid �� expr �

sign

� lblid �� type �

lblid �� type 	 expr �
defn

� vis lblid �� type 	 expr �
vis

� private � public abs
abs

� abstract � concrete
type

� expr
varid

� id
conid

� id
lblid

� id

Fig� �� Core Cayenne abstract syntax grammar� Metasyntax
 � � are used to denote
repetition of an arbitrary number of items�

��� Functions

Function expressions are written as �	expressions� The bound variable must be
given a type� The function type is written like the �	expression� but without the
leading �	��

� The terminology is a little confusing here	 what in constructive type theory is usually
called dependent products is called dependent functions in this paper and what in
CTT is called dependent sums is called dependent records here� The latter terminol�
ogy is more in the tradition of programming languages�

The big di�erence between the Cayenne function type and the Haskell func	
tion is that since the bound variable is available to the right of the arrow� the
result type of a function may depend on the value of the argument�

Function application is written with juxtaposition as usual�

Example�
	 �x��Int�
� inc x

which has type
�x��Int�
� Int

��� Data types

Unlike Haskell� a data type �sum type� does not have to be given a name� there
is an expression that denotes each data type� E�g�� �data False � True� is the
type of booleans�

Constructors are written in a way that is very di�erent from Haskell� The
constructor names used in a data type expression have no name restrictions
�unlike Haskell where they have to be capitalized� and need not be unique�
Consequently� given only the name of a constructor it is impossible tell what type
it constructs� Therefore� constructors are given with their types in Cayenne� E�g��
�True��data False � True�� is one of the constructors for the boolean type�
or� if �Bool� has been de
ned� it can be written �True�Bool�� Constructor names
are not part of the usual name space� they can only occur in ���	expressions and
case expressions and in the latter the type that they construct can be deduced�

Case expressions in Core Cayenne look a little di�erent from Haskell� Only
simple patterns are allowed and all constructor patterns have to be parenthesised
to distinguish them from variable patterns� Apart from the scrutinized variable
and the case arms� the case expression also has a type attached� This type
expression gives the type of the arms of the case expression� Note that this
expression can contain the scrutinized variable so the type may depend on it�
The reason for having this type is that with dependent types it is not in general
possible to
gure out the type of the case expression�

Example�
case l of

�Nil�
� True�

�Cons x xs�
� False�

�� Bool

An example with a dependent type�
case l of

�True�
� ��

�False�
� �Hello��

�� �case l of �True�
� Int�

�False�
� String�

��� Records

The record type �product type� in Cayenne is the most complicated of the type
formers� The reason for this is that records also serve the purpose of modules in
most other languages�

A record type is written as sig followed by a signature for each component
of the record� The signature normally gives only the type of the component� but
it can also give the value of it� This feature is sometimes called a translucent
sum� and is described in more detail in section ����

A record is formed by the struct keyword followed by bindings for all the
record components� Each binding gives the type and value of the component
as well as its visibility� The names of the record components �the labels� are in
scope within the record expression� This means that the bindings are mutually
recursive��

The visibility for a record component determines how it will show up in the
type of the record� A private component does not show up at all in the type
of the record� a public abstract component has only its type� and a public

concrete component has both its type and value in the type of the record�
A record component� which occurs in �i�e�� which is not private� the type

of the record� can be extracted with the usual dot notation�
Examples�

struct

private x �� Int � �

public abstract y �� Int � x��

public concrete z �� Int � x��

has type
sig

y �� Int

z �� Int��

Selection� r�y � r�z

��� The type of types

The type of types is ��� this type has type �� which has type �� etc� The reasons
for using a strati
ed type system are twofold�
rst� using �� �� �� would� even in
the absence of recursion� make the Cayenne type system unsound as a logic as it
would allow Girard�s paradox� second� the unstrati
ed type system would make
it impossible during type checking to determine if an expression corresponds to
a type or a real value and it would be impossible to remove the types at runtime�
see section ����

Note that there is no elimination construct for the � type� i�e�� no casetype

construct� It would be possible and useful to have such a construct� but Cayenne
currently lacks it� partly because having it would make it impossible to remove
runtime type information� see ����

� Though there are restrictions on how the recursion may occur in the signatures to
ensure that the type can be viewed as a �xpoint of a ��type�

� Full Cayenne

Using Core Cayenne would be feasible� but quite tedious� just like using the bare
�	calculus is� Cayenne has many syntactic constructs to make it more palatable
and closer to an ordinary functional language�

��� Hidden arguments

Many functions have type arguments that seem to serve no purpose� except to
irritate the user� E�g�
if �� �a �� ��
� Bool
� a
� a
� a

for each use of if the type of the two branches must be given as the
rst argu	
ment�

To lessen this problem Cayenne uses a mechanism for leaving out certain
arguments at the application site� However� the arguments still must be given
when the function is de
ned� Hidden arguments introduce a new version of the
function type� the function abstraction� and the function application�

The function arrow in both the type and abstraction notation is written
�
� for hidden arguments� Application of a hidden argument uses in
x �� but
normally a hidden argument does not need to be given at all�

In function de
nitions the hidden arguments should not be present on the left
hand side unless preceded by a �� i�e�� the left hand side looks like an application�

Example�

if �� �a �� �� �
� Bool
� a
� a
� a

if �True� x y � x

if �False� x y � y

This �if� function can the be used as �if True � ��� or more explicitly �if
�Int True � ���

The concept of hidden arguments is a syntactic device without any deep se	
mantic properties� The function type for hidden arguments should not be viewed
as a new type� It is completely compatible with the normal function type� It only
serves as a marker to aid the insertion of the hidden arguments� This view of
hidden arguments was presented in �ACN��� and later used in other systems like
Lego� �LP���� where the concept was formalized� Similar mechanism exist e�g��
in Quest� �Car���� and Russell� �BDD����

The current implementation of hidden arguments is quite weak and cannot
always
nd the hidden arguments even when it seems reasonable that it should�
It can
nd a hidden argument if the variable �a in the example� occurs in a
later argument type or the result type� In the future we will probably switch to
a more powerful method that introduces metavariables �in the sense of logical
frameworks� and tries to derive their values using more powerful methods such
as uni
cation�

��� Syntactic sugar

This is a brief list of syntactic extensions that can be regarded as mere �sugar��

� If the variable bound in the function type does not occur anywhere it can be
dropped and the function type is thus written as in Haskell� E�g� ��x��Int�
�Int�
can be written as �Int
�Int� instead�

� In
x operators �with a
xed set of precedences� can be used� The same
conventions as in Haskell are used�

� The patterns in case arms can be written in the normal Haskell style with
nested patterns etc� The type part of case expression is only necessary if the
type of the right hand sides depend on the scrutinized expression�

� public can be omitted� since it is the default� concrete is the default for
type de
nitions� and abstract for other de
nitions�

� Function de
nitions can be written in the normal Haskell style with type
signatures and pattern matching� E�g��

last �� �a���� �
� List a
� a �

	 �a �� �� �
� 	 �l��List a�
�

case l of

�x � �Nil��
� x

�x � xs�
� last xs

can be written

last �� �a���� �
� List a
� a

last �x � �Nil�� � x

last �x � xs� � last xs

� If a de
nition is preceded by the keyword type it is assumed to have type �
and all its arguments have default type �� E�g�
P �� �
� � � 	 �a �� ��
� a
�Bool

can be written
type P a � a
�Bool

� A data type de
nition can be written in the same way as in Haskell� This
corresponds to several bindings� First one for the type itself� then one for
each constructor in the type� E�g� the de
nition
data Maybe a � Nothing � Just a

correspends to the de
nitions

Maybe �� � �
� � �

	�a���� �
� data Nothing � Just a

Nothing �� �a���� �
� Maybe a �

	�a���� �
� Nothing��Maybe a�

Just �� �a���� �
� a
� Maybe a �

	�a���� �
� 	�x��a�
� Just��Maybe a� x

� Cayenne has a let expression that is like the Haskell let expression� This
can be translated into a record expression�

� To make access to record components more convenient there is an open ex	
pression that �opens� a record and makes its components available� The
open construct explicitly names the components that should be visible�
E�g� �open movePoint d p use x� y in dist x y�� The �open� expres	
sion can easily be translated to a �let� expression�

� A value of record type can be coerced to a value of a di�erent record type
if the result type is the same as the original except that it has fewer
elds�
The coercion is written �expr �� type� and translates to a let expression�

� Type signatures can be omitted in many places� Even if the basic rule is
that all Cayenne de
nitions should have a type signature it is easy to relax
this rule somewhat� With the relaxed rule Cayenne programs have about
the same number of type signatures as the corresponding Haskell program
would have and they place no big burden on the programmer�

� �� can be written as ��
� A Haskell	like �do� notation can be used for monads�
� The Haskell layout rule is used to avoid braces and semicolons� The keywords

case� do� let� sig� and struct triggers it�

��� Modules

Cayenne does not really have any modules in the traditional sense� all it has is
named expressions that exist in a global name space� Module names are distigu	
ished by having a ��� in their names� The module name space can be viewed as
hierarchical with ��� as the name separator �like how UNIX path names use ���
or how Java names use ����� Module identi
ers can be used freely in expressions
without any explicit import declaration �just as in Java��

A module de
nition looks like a simple de
nition except that it is preceeded
by the keyword module� The type in the de
nition is not necessary and it can
be left out� A module can also have concrete visibility� This plays the same
role here as it does for records� i�e�� you can make the value of a module known
instead of only its type�

Some sample modules�

module foo�bar � struct

data Nat � Zero � Succ Nat

module foo�baz �

open System�Int use Int� ��� in

struct

inc �� Int
� Int

inc x � x��

dec �� Int
� Int

dec x � x
�

Modules are the units of separate compilation� To compile a module� only
the types of the modules it refers to need be known�

� The Cayenne type system

��� Translucent sums

Many Haskell modules export types in a non	abstract way� i�e�� the type is ex	
ported so that not only the name of the type� but also its constructors are known�
E�g�

module Tree�Tree����� depth� where

data Tree a � Leaf � Node �Tree a� a �Tree a�

depth �� Tree a
� Int

depth Leaf � �

depth �Node l � r� � � � �depth l �max� depth r�

If we try to write the corresponding Cayenne record we get

module ex�Tree � struct

data Tree a � Leaf � Node �Tree a� a �Tree a�

depth �� �a �� �� �
� Tree a
� Int

depth �Leaf� � �

depth �Node l � r� � � � �depth l �max� depth r�

which has type

sig

Tree �� �
� �

depth �� �a �� �� �
� Tree a
� Int

This is de
nitely not what we had in mind� because from this signature we can
only see that Tree is a type constructor� but we cannot see its de
nition� We
could try and remedy this by saying that to use a module� not only must its
signature be known� but its actual value as well� This way� we would have the
de
nition of Tree available� But this is also not what we intended� because this
would reveal the de
nition of depth� which we may not want to reveal to users
of the ex�Tree module�

For this reason we introduce the possibility for each record component to
specify if it should be fully known or only known with its type� We then write	

module ex�Tree � struct

concrete

data Tree a � Leaf � Node �Tree a� a �Tree a�

abstract

depth �� �a �� �� �
� Tree
� Int

depth �Leaf� � �

depth �Node l � r� � � � �depth l �max� depth r�

	 The abstract and concrete keywords are actually super�uous in this example be�
cause the default visibility is the same as those indicated by the keywords�

which has type

sig

Tree �� �
� � �

data Leaf � Node �Tree a� a �Tree a�

Leaf �� �a���� �
� Tree a �

	 �a���� �
� Leaf��Tree a�

Node �� �a���� �
� Tree a
� a
� Tree a

� Tree a �

	 �a���� �
� 	 �l��Tree a�
� 	 �x��a�
�

	 �r��Tree a�
� Node��Tree a� l x y

depth �� �a �� �� �
� Tree a
� Int

This is a very peculiar type because it not only speci
es the types of the
Tree� Leaf� and Node components� but also their exact values� Any record of
this type will have a Tree etc� with exactly these values� whereas the value of
depth may di�er�

This idea comes from the type system for the SML module system where
these types are called translucent sums� �Lil���� or the similar notion of singleton
kinds� A similar construct is also present in Cardelli�s Quest� where it is called
manifest de
nitions� �Car����

��� Typing and evaluation rules

The Cayenne typing rules are given in table � and table ��
Some simpli
cations have been made to the typing rules for the purpose of

presentation� In data type each constructor has exactly one argument which
must be of value type� Furthermore� the order of the de
nitions in a struct�sig
does not matter in real Cayenne� where as they do in the rules�

The strati
cation showed in the typing rules is also a simpli
cation of the one
used in Cayenne� The type of types as used in the rules is �n� but in actuality
it is �n�m� The
rst subscript is derived as shown in the typing rules and the
second we get by replacing min by max in the Prod rule� The reason for two
subscripts is that the
rst number is necessary for getting the type erasure to
be possible� and the second one is necessary if we want the logic to be sound �if
recursion is removed��

The environment �or assumtions�� � � in the typing rules may contain vari	
ables with their types� as is usually the case� But they may also contain variables
with their types as well as their values� The reason for the values is that we some	
times need values to enable reductions during type checking� It is the Rec rule
that introduces values into � �

The fact that Cayenne has dependent types shows up in a few places in the
typing rules� In the App rule the term f a has a type that may depend on x� so
x is replaced with the actual value in B� Furthermore� in the Case rule in each
arm the type of the arm may depend of the scrutinized variable so a substitution
is performed here as well�

The translucent sums show up in the SelE rule where a term e�l can be
reduced even if only the type of e is known� This reduction is only performed
during type checking and never during normal reduction �execution��

Because of a lack of time� we have not yet proved essential theorems about
the Cayenne type system� such as soundness and the subject reduction theorem�
While we believe them to be true� and they have been proved similar systems�
they have not proved for a system with dependent types and translucent sums�

The Cayenne evaluation rules� table �� are unsurprising� Note that because
de
nitions in a struct are recursive some care has to be exercised�

A problem with substitution Substitution in Core Cayenne as described by
the rules in this section su�ers from a problem� it does not really work� there are
some unavoidable name clashes� We illustrate the problem with an example� To
make the example shorter we omit types and use a let expression which could
be translated to a record expression�

struct

x � �

z � let y � x

in struct x � y

As we can easily see the z component of this record is a record with an x

component with value �� Let us apply the standard reduction rule for let� namely
let x � e in e� ��� e��x �� e��

struct

x � �

z � struct x � x

This is clearly not the same value as we had before� the x has been captured
when it should not be� Note that we cannot rename either of the two xs since the
name of the labels appear in the type� renaming them would change the type�

This problem is annoying� but can be handled easily� All we need to do is to
have two di�erent names for all labels� One name is the label itself as it appears
in the type and the other name is the name that is bound inside the record�
The second name is not part of the type and can clearly be �	converted when
necessary� To avoid cluttering the typing rules even more we will not introduce
any notation for this in the rules� instead we assume that the problem can be
handled if needed� A similar solution is used in �Bet����

��� Type checking

Type checking of Cayenne is basically simple� just because it is type checking
rather than type deductions� like e�g� Haskell uses� Type checking proceeds in
a single traversal of the syntax tree� On the way down the environment �� �
is extended with the types �and sometimes values� of bound identi
ers� Since
Cayenne has explicit types the type of each bound identi
er is known� On the

� � �n � �n��
Star

� � A � s
�� x � A � x � A

Var

� � A � s �� x � A � B � t

� � �x��A���B � t
Pi

�� x � A � b � B � � �x��A���B � t

� ���x��A���b � �x��A���B
Lam

� � f � �x��A���B � � a � A

� � f a � B�x 	
 a�
App

� � A� � �� � � � � � An � ��

� � data C� A��� � �� Cn An � ��
Data

� � T � ��

� � Ck�T � Ak��T
Con

where T � data C� A��� � �� Cn An

� � x � data C� A��� � �� Cn An

�� x� � A� � e� � A�x 	
 C� x��
���

�� xn � An � en � A�x 	
 Cn xn�

� �case x of C� x���e��� � ��Cn xn��en���A� A
Case

� � A� � �u�
�� l� � A� � A� � �u�

���
�� l� � A�� � � � � ln�� � An�� � An � �un

���
�� l� � A�� � � � � ln � An � ej � Aj

���

� �sig l������� � � ln���n� � �minfuig
Prod

where each �i is either Ai or �Ai � ej�

� � A� � s�
��� � e� � A�

�� l� � A� � A� � s�
��� � e� � A�

���
�� l� � A�� � � � � ln�� � An�� � An � sn

��� � en � An

� �
struct p� a� l���A�	e��� � � pn an ln��An	en�

� sig � � � li���i�� � ��

Rec

where li is present i� pi � public	
�i is �Ai � ei� if ai � concrete otherwise Ai

� � l� � A� � e�� � � � � ln � An � en

� � e � sig � � � li���i�� � ��

� � e�li � Ai�� � � � lk 	
 e�lk� � � ��
Sel

Table �� Core Cayenne typing rules

� � a � A � � B � s � � A B
� � a � B

Conv

� � A � s � � 	
�� x � A � 	

Weak

� � a � A �� x � A � 	

�� x � A � a � 	
WeakE

Table �� Core Cayenne typing rules	 continued

� � a � A � � b � A � � a b

� � C�a� C�b�
Congr

where C�� is any context

� � a � A a 	�
 b
� � a b

Red

�� x � A � e � � � x e
Lookup

� � e � sig � � � li��Ai � ei�� � ��

�� l� � A�� � � � � ln � An � e�li ei
SelE

Table �� Core Cayenne equality rules

��x��t��f
e 	�
 f �x 	
 e�
e�lk 	�
 ek�� � � � lk 	
 e�lk� � � ��

where e � struct� � � public ak lk��tk	ek�� � ��
case Ck�t e of � � � Ck xk�� ek�� � � 	�
 ek�xk 	
 e�

Table �� Core Cayenne evaluation rules

���x��t���f��
 �x��f�	 if t � ��
���x��t���f��
 f�	 if t
� ��

�f e��
 f� e�	 if e � t and t � ��
�f e��
 f�	 if e � t and t
� ��

��x��t���f��
 �

struct l���t�	e��� � � ln��tn	en�
�

 struct� � � lk	e

�
k � � ��	 for those lk where tk � ��

�e�l��
 e��l
sig � � � ��
 �

�C�t��
 C
�case e of C� x��� e��� � � Cn xn�� en�

�

 case e� of C��� e

�
��� � � Cn�� e

�
n

data � � � �

 �

��n
 �

x�
 x	 if x � t� t � ��
x�
 �	 if x � t� t
� ��

Table �� Type erasure transformation

��x��f
e 	� f �x 	
 e�
e�lk 	� ek�� � � � lk 	
 e�lk� � � ��

where e � struct� � � ak lk	ek�� � ��
case Ck e of � � � Ck xk�� ek�� � � 	� ek�xk 	
 e�

Table �� Core Cayenne typeless evaluation rules

way up the type of each subexpression can the be computed and checked� A
complication arises when a typing rules has more than one occurence of a type�
like A in the App rule in table �� For these cases we need to check if the two
types derived from the bottom up derivation are the same� and if they are not
identical the Conv rule can be used to make them equal �assuming the program
is type correct�� For a strongly normalizing language without translucent types
the Conv rule is uses �� for �� This relation is easy to implement� just compute
the normal forms of the two types and compare those� Since Cayenne is not
strongly normalizing this is not an option� The equivalence of two arbitrary
expression is undeciable� For this reason� we can not implement anything but an
approximation of the Conv rule and the equality rules �table ��� This is a tricky
part of the Cayenne type checker since if the equivalence test is implemented in
a na�ve way type checking can easily loop�

��� Undecidability in practice

So type checking Cayenne is undecidable� This is unfortunate� but unavoidable
for a language like Cayenne� How bad is it in practice to have an undecidable
type checker This question can only be answered by practical experiments�
The Cayenne programs we have tried to date range from ordinary Haskell style
programs� to programs using dependent types� to proofs of mathematical propo	
sitions� The total size of these programs are only a few thousand lines� but so
far the experience shows that it works remarkably well�

Having undecidable type checking means that the type checker might loop�
This is clearly not a user friendly type checker� So instead the implemented
type checker has an upper bound on the number of reduction steps that it may
perform� If this limit is exceeded the type checker will report this� Most of
the type errors from the Cayenne compiler are similar to those that any other
language would give� Very infrequently does the type checker report that it did
not terminate within the prescribed number of steps� Most often� this is the
result of a type error� but sometimes the type expression is just too complicated
and the number of reduction steps must be increased �the number of reduction
steps is a compiler �ag��

The type checker can thus give one of three answers� type correct �meaning
that the program will not go wrong when run�� type incorrect� or �don�t know��
�

�
 On a real machine Hindley�Milner type checking has the same problem	 but the third
alternative is usually spelled �Out of memory� instead�

There are other languages with undecidable type checking� e�g�� Quest �Car���
�which has a type system based on F��� and Gofer �Jon���� but it is usually more
di�cult to make these systems loop�

� Cayenne as a proof system

Since Cayenne has unrestricted recursion� this means that every type is inhabited
by at least one element� namely �� Thus� proofs made in Cayenne cannot really
be trusted as proofs� since any proposition can be proved by �� If proper checking
is done� it is often�� possible to ensure that a proof is valid� but no such checking
is done at the moment�

Even if a proofs expressed in Cayenne cannot be trusted because they pass
the type checker it is still valuable to have the encoding of predicate logic in the
language� Firstly� it allows us to express properties about programs within the
language even if we provide no proofs at all� It is better to have this ability within
the language than to use comments or leave out those properties completely�
Secondly� even if a proof cannot be trusted one can argue that a proof that has
been checked� but may be �� is better than a proof that is not checked at all�

� Implementation

Implementing Cayenne is fairly straight forward� it is like any other functional
language� One decision that has to be made is what to do with types at runtime�

	�� Erasing types

Cayenne treats types like
rst class values� Does that mean that the types have
to be present at run time� passed around as arguments� stored in data structures�
etc No� they do not� There is no language construct� e�g�� casetype� that allows
a ground value � which is all that can be observed in a program � to depend
on a type� Hence� types do not have to be present at run time� Erasing types
consists of removing all arguments and record components that have type �n
or are functions computing something of type �n� In �Car��� it is claimed that
type erasing is not possible and that the distinction between compile	time and
run	time is blurred with dependent types� We claim that this is not the case
with the variant of dependent types used in Cayenne�

What we need to show is that evaluating an expression with types erased
yields the same result as evaluating it with the types left in�

De
nition An expression� e� has value type if e � t and t � ��
Theorem If e has value type and e ���� v then e� ��� v��
We
rst prove a useful lemma�
Lemma If e has value type� then e� contains no ��

�� Not always	 of course	 since then we would have to solve the halting problem�

Proof We assume that the expression to transform is of value type� and
show that each invocation of the transformation on a subexpression is also on
an expression of value type�

Cases A �	expression ��x��t�
�f has type �x��t�
�r� where r is the type
of f � According to the assumption �x��t�
�r has type �� and typing rule Pi

shows that then r has type �� as well� Thus the transformation of f is also on
an expression of value type�

For an application f e� according to the de
nition of �� the transformation
is only applied to e if it is of value type� f has type �x��t�
�r and f e has type
r� if r has type �� then� again according to typing rule Pi� �x��t�
�r has type
��� so the transformation of f ful
lls the assumption�

The transformation cannot be applied to a function type since this does not
have value type�

For a record value struct� � � � � the transformation is only applied to subex	
pressions of value type according to the de
nition of ��

If a record selection e�l is of value type then the
eld l must be of value type�
If one
eld of a record type type has type �� then the whole record type has
type �� according to typing rule Prod �which takes the min of all the types�� so
the subexpression e �of e�l� must have value type�

The transformation cannot be applied to a sig� � � � � value since it is not of
value type�

The lemma is trivially true for a contructor expression�
For a case expression the transformation is applied to the scrutinized ex	

pression� which is always of value type �typing rule Data� and to all the right
hand sides� The right hand sides are of value type if the whole case expressions
is�

The transformation cannot be applied to a data value since it is not of value
type�

The transformation cannot be applied �� since it is not of value type�
The lemma is true for variables according to the de
nition of ��
Corollary A transformed expression of value type contains no variables that

were not of value type in the original expression�
Proof Variables that are not of value types are translated to �� but there are

no � in the expression� hence there can be such variables�

Lemma The substitution lemma states that type erasure commutes with
substittion� �e�x �� t��� � e��x �� t���

Proof By structural induction over the expression syntax�

We can now return to proving the type erasure theorem� First we prove that
if e has value type and e ��� f then e� �� f� or e� � f�� The theorem then
follows simply by induction on the length of the reduction sequence�

The single step version of the theorem is proved by case analysis on the three
di�erent �typed� reduction kinds�

Cases If the reduction is ��x��t
�f�e ��� f �x �� e� then the translation of
the redex is either ��x
�f��e� in which case there is a corresponding untyped
reduction step �according to the substitution lemma�� Or the translation of the

redex is f �if x and e do not have value type�� In this case f� � f��x �� e���
since x does not occur in f� �according to the corollary��

If the reduction is a selection the selected label could either be left in the
transformed struct or it could have been erased� But since the expression e�l

has value type this means that the label has value type and it must thus be left
in the struct� There is then an exactly corresponding untyped reduction�

If the reduction is a case reduction there is an exactly corresponding untyped
reduction�

QED

	�� Keeping types

By keeping types at runtime it is possible to do computations on types and
base control decision on the dynamic type of values� With runtime types we
could have a casetype language construct� Keeping types around at runtime
have some advantages� like mostly tag	free garbage collection� as used in TIL�
�TMC����Mor� ��

	�� The current implementation

The current implementation of Cayenne is written in Haskell and translates
Cayenne to untyped LML� The compiler consists of about �� lines� a third
of which is the actual type checker� The compiler parses Cayenne� does type
checking and various other checks� erases types and then translates the resulting
code into LML� The LML code is then compiled with the LML compiler� �AJ����
with type checking turned o�� This works because the LML compiler does not
rely on a the fact that the program is type correct in the Hindley	Milner type
system� all the compiler assumes is that the program �makes sense��

A snapshot of the current implementation can be found on the Web at
http���www�cs�chalmers�se� augustss�cayenne��

� Related work

There are many logical frameworks �proof checking systems� that are based on
dependent types� Some examples� among many� are ALF �MN���Nor���ACN����
CoC �CH���CH���� ELF �Pfe���Fra���HHP���� Lego �Pol���� and NuPRL �Con����
All these systems are primarily designed for making �constructive� proofs even
if many of them can also execute the resulting proofs or extract a program
from them� Our approach is di�erent in that we want to make a programming
language� not a proof system� but of course there are big similarities�

There are few programming languages with dependent types� Cardelli�s Quest�
�Car���� have similarities with Cayenne� but the
nal version of Quest does not
have the full dependency where types can depend on values� Russell� �BDD����
has dependent types� but the notion of type equality is �name equality� rather
than the �structural equality� of Cayenne� Russell does not do full evaluation

during type checking so it would not be able to do� e�g�� the printf example�
Russell also has a di�erent notion of what a type is�

� Future work

There are many ways to continue the work on Cayenne and related languages�
First� and foremost� is to gain more experience with a language with dependent
types� both to see how dependent types can be used and to see how undecidable
type checking works out�

Another interesting line of work is to make a partial evaluator for this kind
of language� Since types and values are combined� a partial evaluator would
serve both as a type specializer �as used in� e�g�� �Aug���PJ���� and a traditional
partial evaluator�

To make the record types more useful� subtyping could be added� Subtyping
in the presence of dependent types has been studied in �Bet����

As a proof of concept the Cayenne compiler should� of course� be rewritten
in Cayenne�

	 Acknowledgments

A big thanks to Jessica for improving my English� The programming logic group
at Chalmers has over the years provided me with enough background material
to
nally try to make a programming language with dependent types� A special
thanks to Theirry Coquand for fruitful discussions and examples of how to write
type checkers for dependent types� Thomas Johnsson� Niklas R!jemo and Dan
Synek provided me with feedback on this paper as did the anonymous ICFP
referees�

References

�ACN��� L� Augustsson	 T� Coquand	 and B� Nordstr�m� A short description of An�
other Logical Framework� In Proceedings of the First Workshop on Logical
Frameworks� Antibes	 pages �����	 �����

�AJ��� L� Augustsson and T� Johnsson� The Chalmers Lazy�ML Compiler� The
Computer Journal	 ����
�� ����	 �����

�Aug��� Lennart Augustsson� Implementing Haskell Overloading� In Proc� �th Int�l
Conf� on Functional Programming Languages and Computer Architecture
�FPCA���		 pages �!� �� ACM Press	 June �����

�BDD��� H� Boehm	 A� Demers	 and J� Donahue� A Programmer"s Introduction to
Russell� Technical report	 Cornell University	 �����

�Bet��� Gustavo Betarte� Dependent Record Types and Algebraic Structures in Type
Theory� PhD thesis	 Department of Computing Science	 University of G�te�
borg	 G�teborg	 Sweden	 February �����

�Car��� Luca Cardelli� Phase Distinction in Type Theory� Research report	 DEC
SRC	 �����

�Car��� Luca Cardelli� The Quest Language and System� Research report	 DEC
SRC	 �����

�CH��� Thierry Coquand and G#rard Huet� The Calculus of Constructions� Tech�
nical Report !��	 INRIA	 Centre de Rocquencourt	 �����

�CH��� Thierry Coquand and G#rard Huet� The Calculus of Constructions� Infor

mation and Computation	 ��$��
�!����	 �����

�Con��� R� L� Constable et al� Implementing Mathematics with the NuPRL Proof
Development System� Prentice�Hall	 Englewood Cli�s	 NJ	 �����

�Dan��� Olivier Danvy� Formatting Strings in ML� Technical Report RS����!	
BRICS	 Department of Computer SCience	 University of Aarhus	 Denmark	
March �����

�Fra��� Logical Frameworks� Logic programming in the LF logical framework� In
G#rard Huet and Gordon Plotkin	 editors	 LICS���	 pages �������� Cam�
bridge University Press	 �����

�HHP��� Robert Harper	 Furio Honsell	 and Gordon Plotkin� A Framework for De�n�
ing Logics� JACM	 ����
�������	 �����

�How��� W� A� Howard� The formulae�as�types notion of construction� In J� P� Seldin
and J� R� Hindley	 editors	 To H�B� Curry� Essays on Combinatory Logic�
Lambda Calculus and Formalism	 pages � ������ Academic Press	 London	
�����

�Hud��� Paul Hudak et al� Report on the Programming Language Haskell� A Non

Strict� Purely Functional Language	 March ����� Version ���� Also in Sigplan
Notices	 May �����

�Jon��� Mark P� Jones� The implementation of the Gofer functional programming
system� Technical Report YALEUDCSRR�����	 Department of Com�
puter Science	 Yale University	 New Haven	 Connecticut	 USA	 May ����	
May ���

�Lil� � Mark Lillibridge� Translucent Sums� A Foundation for Higher
Order Mod

ule Systems� PhD thesis	 School of Computer Science	 Carnegie Mellon
University	 May ��� � CMU�CS�� �����

�LP��� Z� Luo and R� Pollack� LEGO Proof Development System
 User"s Manual�
Technical report	 LFCS Technical Report ECS�LFCS�������	 �����

�MN��� Lena Magnusson and Bengt Nordstr�m� The ALF proof editor and its proof
engine� In Types for Proofs and Programs	 LNCS	 pages ������ 	 Nijmegen	
����� Springer�Verlag�

�Mor�!� Greg Morrisett� Compiling with Types� PhD thesis	 Carnegie Mellon Uni�
versity	 ���!�

�MTH��� R� Milner	 M� Tofte	 and R� Harper� The Denition of Standard ML� MIT
Press	 �����

�Nor��� Bengt Nordstr�m� The ALF proof editor� In Proceedings ���� Informal
Proceedings of the Nijmegen workhop on Types for Proofs and Programs	
�����

�NPS��� Bengt Nordstr�m	 Kent Petersson	 and Jan M� Smith� Programming in
Martin
L�f�s Type Theory� An Introduction� Oxford University Press	 �����

�Pfe��� Frank Pfenning� Elf
 A language for logic de�nition and veri�ed meta�
programming� In LICS���	 pages �������� IEEE	 June �����

�PJ��� John Peterson and Mark P� Jones� Implementing Type Classes� In Proceed

ings of ACM SIGPLAN Symposium on Programming Language Design and
Implementation	 June �����

�Pol��� Robert Pollack� The Theory of Lego A Proof Checker for the Extended
Calculus of Constructions� PhD thesis	 University of Edinburgh	 �����

�TMC���� David Tarditi	 Greg Morrisett	 Pery Cheng	 Chris Stone	 Robert Harper	
and Peter Lee� TIL
 A Type�directed Optimizing Compiler for ML� Techni�
cal Report CMU�CS�������	 School of Computer Science	 Carnegie Mellon
University	 February �����

A The Eq class

module example�Eq 	
�include Prelude
struct

data Absurd 	

data Truth 	 truth

absurd �� �a �� �
 ��� Absurd �� a
absurd i 	 case i of �

type ��	�
 a b 	 sig impR �� a��b� impL �� b��a� �

concrete
Lift �� Bool �� �
Lift �False
 	 Absurd
Lift �True
 	 Truth

concrete
LiftBin �� �a�� �
 ��� �a �� a �� Bool
 �� Rel a
LiftBin �a op 	 ��x��a
 �� ��y��a
 �� Lift �op x y

type Rel a 	 a �� a �� �

concrete
Refl �� �a �� �
 ��� Rel a �� �
Refl �a R 	 �x��a
 �� x �R� x

concrete
Symm �� �a �� �
 ��� Rel a �� �
Symm �a R 	 �x�y��a
 �� x �R� y �� y �R� x

concrete
Trans �� �a �� �
 ��� Rel a �� �
Trans �a R 	 �x�y�z��a
 �� x �R� y �� y �R� z �� x �R� z

concrete
Equiv �� �a �� �
 ��� Rel a �� �
Equiv R 	 sig
refl �� Refl R
symm �� Symm R
trans �� Trans R

��������
�� The Eq �class�� with equivalence proof
type Eq a 	 sig
�		
 �� a �� a �� Bool
equiv �� Equiv �LiftBin �		

��������
�� Equality on Unit
Eq�Unit �� Eq Unit
Eq�Unit 	 struct

�		
 �unit
 �unit
 	 True

equiv 	 struct
refl �unit
 	 truth
symm �unit
 �unit
 p 	 p
trans �unit
 �unit
 �unit
 p q 	 p

��������
�� Equality on Bool
Eq�Bool �� Eq Bool
Eq�Bool 	 struct
�		
 �False
 �False
 	 True
�		
 �True
 �True
 	 True
�		
 � � 	 False

equiv 	 struct
refl �False
 	 truth
refl �True
 	 truth
symm �False
 �False
 p 	 p
symm �False
 �True
 p 	 absurd p
symm �True
 �False
 p 	 absurd p
symm �True
 �True
 p 	 p
trans �False
 �False
 �False
 p q 	 q
trans �False
 �False
 �True
 p q 	 absurd q
trans �False
 �True
 � p q 	 absurd p
trans �True
 �False
 � p q 	 absurd p
trans �True
 �True
 �False
 p q 	 absurd q
trans �True
 �True
 �True
 p q 	 q

��������

private
liftAndL �� �x�y��Bool
 ��

Lift �x �� y
 �� Pair �Lift x
 �Lift y

liftAndL �False
 � a 	 absurd a
liftAndL �True
 �False
 a 	 absurd a
liftAndL �True
 �True
 t 	 �t� t

private
liftAndR �� �x�y��Bool
 ��

Pair �Lift x
 �Lift y
 �� Lift �x �� y

liftAndR �False
 � �a� �
 	 a
liftAndR �True
 �False
 ��� a
 	 a
liftAndR �True
 �True
 �t� �
 	 t

private
isoEquiv �� �a �� �
 ���

�p� q �� Rel a
 �� ��x� y �� a
 ��
p x y �	� q x y
 �� Equiv p �� Equiv q

isoEquiv p q iso eqp 	 struct
refl x 	 �iso x x
�impR �eqp�refl x

symm x y lp 	

�iso y x
�impR �eqp�symm x y ��iso x y
�impL lp

trans x y z lp lq 	 �iso x z
�impR

�eqp�trans x y z ��iso x y
�impL lp
 ��iso y z
�impL lq

�� Equality on pairs�
Eq�Pair �� �a�b �� �
 ��� Eq a �� Eq b �� Eq �Pair a b

Eq�Pair eqa eqb 	 struct

�		
 �x� x�
 �y� y�
 	 eqa��		
 x y �� eqb��		
 x� y�

private
eq �� Pair a b �� Pair a b �� �
eq �x� x�
 �y� y�
 	

Pair �LiftBin eqa��		
 x y
 �LiftBin eqb��		
 x� y�

private
eqEq �� �x�y��Pair a b
 �� eq x y �	� Lift �x 		 y

eqEq �x� x�
 �y� y�
 	 struct

impR p 	 liftAndR �eqa��		
 x y
 �eqb��		
 x� y�
 p
impL p 	 liftAndL �eqa��		
 x y
 �eqb��		
 x� y�
 p

private
equivEq �� Equiv eq
equivEq 	 struct

refl �x� x�
 	 �eqa�equiv�refl x� eqb�equiv�refl x�

symm �x� x�
 �y� y�
 �pxy� pxy�
 	
�eqa�equiv�symm x y pxy� eqb�equiv�symm x� y� pxy�

trans �x� x�
 �y� y�
 �z� z�
 �pxy� pxy�
 �pyz� pyz�
 	
�eqa�equiv�trans x y z pxy pyz�
eqb�equiv�trans x� y� z� pxy� pyz�

equiv 	 isoEquiv eq �LiftBin �		

 eqEq equivEq

B The tautology function

module example�taut 	
�include Prelude
struct
data Nat 	 Zero � Succ Nat

concrete
TautArg �� Nat �� �
TautArg �Zero
 	 Bool
TautArg �Succ m
 	 Bool��TautArg m

taut �� �n��Nat
 �� TautArg n �� Bool
taut �Zero
 x 	 x
taut �Succ m
 x 	 taut m �x True
 �� taut m �x False

module example�tauttest 	
�include Prelude
open example�taut use Nat� Zero� Succ� taut� TautArg in

let id �� Bool �� Bool
id x 	 x

implies �� Bool �� Bool �� Bool

implies x y 	 not x �� y

equ �� Bool �� Bool �� Bool
equ x y 	 implies x y �� implies y x

in do Monad�IO
putStrLn �System�Bool�show �taut Zero True

putStrLn �System�Bool�show �taut �Succ Zero
 id

putStrLn �System�Bool�show �taut �Succ �Succ Zero

 equ

