

A Business Card Universal Turing Machine1
by Alvy Ray Smith

You have in your hands a simple device that can compute anything whatsoever that’s

computable. It’s a realization of one of the world’s great ideas—Alan Turing’s universal computer.
This piece of computer hardware is a business card with a hole in the center and one corner cut
off, as depicted here.

Imagine that there’s a paper tape running from left to right. It’s divided into squares, and you
can see one square through the hole in the card. The tape is mostly blank, but there are typically
one or more squares with symbols on them. In this implementation the symbols are the blank and
the numerals 1, 2, 3, 4, and 5. Here’s a picture of a tape with just four marks on it: 5155. The rest
of the tape is blank. The card is shown slightly transparent so that you can see the tape through it.

This business card computer works like this. Find the rule for the symbol in the hole. It’s the
one at the upper right in this case. (Pay no attention to rules written upside down.) It says to write

2 Aug. 2014 v2.2

A Business Card Universal Turing Machine

a 5 in the blank space, then move the card left by one square, then rotate the card to match the
little glyph which represents the card itself. Here’s the result.

The rule that now applies is the one at the lower right. (Recall that you are to ignore the rules
written upside down.) It says to replace the 5 with a 2, then move right one square. There’s no
little card glyph this time, so the card remains in the same orientation. Here’s the result.

Skipping ahead three steps gives this configuration.

And so on and on. If you pursue this further, you’ll find that the card will eventually end up in its
original orientation (the “back” position), with a 4 in the hole. The rule that applies in this case is
empty right of the colon, which means nothing else happens. The computation halts.

In the 1930s, a “computer” was a human—usually a woman. In 1936 Alan Turing captured
what a computer did with pencil and paper when she carefully executed a “systematic process”—
such as adding a list of several dozen numbers—perhaps interrupting the effort with a tea break. A
Turing machine was the model he devised that captured the essential simplicity of what she did.
He ignored her tedium as irrelevant.

Turing’s model of a “computer” was a very simple device—a nonphysical, mathematical idea—
which we now call a Turing machine. He defined each of his machines to have only four things: a

2

A Business Card Universal Turing Machine

one-dimensional tape divided into squares, a finite alphabet of symbols for it, a tape scanner with a
finite number of states, and an “instruction table” that determines what to do with each
combination of scanner state and tape symbol. And one other thing. The tape is as long as
necessary in either direction. There’s always another square if you need it. From this simple
machine concept came all of computing. It surprised Turing’s professor at Cambridge University
and might surprise you—because it truly is a very simple idea, with profound consequences.

To see that the business card device is a (realization of a) Turing machine, notice that the tape
scanner is the business card itself with a hole in it. The alphabet is the six symbols (counting the
blank). The four sets of rules form the instruction table.

The only part of Turing’s definition that you might find nonintuitive is “state.” That’s a
mathematical notion that captures, for example, the two stable positions of a light switch. In the
case at hand, the four possible vertical or horizontal orientations of the business card are its four
states.

But the business card device isn’t just any old ordinary Turing machine. It’s “universal.” What
does that mean?

Turing’s great idea wasn’t only that a Turing machine could execute a systematic process—that
what we mean by a “systematic process” is embodied exactly by a Turing machine. Turing’s master
stroke was to show that there was a single Turing machine that could do what any other Turing
machine could do. It could perform all systematic processes in other words. It’s one machine that
can compute anything whatsoever that’s computable. That’s what universal means in computation.
The modern computer is a descendant of this particular kind of Turing machine, the universal
Turing machine.

Turing’s trick for making one of his machines universal was clever and simple. He wanted his
universal machine to compute what any other Turing machine would compute. Let’s call this
arbitrary other machine T. So he placed a description of T’s instruction table—its set of rules—on
the tape of the universal machine. Then he designed the scanner of the universal machine—its
instruction table—to read the description of T off the tape and do what T would have done to the
tape. That’s a systematic process so has to be possible—exactly Turing’s key idea. The part of the
tape of the universal machine to the right of the description of T serves as T’s tape. In modern
terminology, Turing stored the program of T in the memory of the universal machine, and stored
the data there too. To change which machine the universal machine simulated—that is, which
computation it performed—he simply changed the program, the description part of the tape. His
universal Turing machine was what we now call a stored-program computer, since it stored the
program and the data in the same way, and both in the memory of the machine. This is what is
meant by a computer today.

The business card machine is a universal Turing machine, with four states and six symbols. The
point is that a computer is a simple idea. As you might suppose, it’s programming the computer
that’s the hard part. And although speed is not part of the idea of computation, it’s the vast
increase in speed—and concomitant decrease in size—that has made computers the useful and
ubiquitous companions they now are.

Acknowledgement: I based the design of this device on one of the simplest universal Turing machines ever
discovered, by Yurii Rogozhin in 1996.2 I thank my colleague Tom Griffiths of UC Berkeley for inspiring
me to realize Rogozhin’s UTM(4,6)—as it’s formally called—as a business card, with states represented by
orientation. I thank Dan Garcia of UC Berkeley for finding the example computation used here, and also

3

A Business Card Universal Turing Machine

for his elegant discovery that the four orientations could all be accomplished in landscape mode (an earlier
version used both landscape and portrait modes of the card). His complete simulation of the given example
follows. The second column of steps follows the first column, and then the third column follows them. The
first item in each step is the current orientation of the card (NE = front, with notch up right; SE = back,
with notch down right; SW = front, with notch down left; NW = back, with notch up left), and the
outlined square shows the hole location at each step:

SE 5 1 5 5 NW 5 1 2 3 3 1 5 1 NE 5 1 2 3 3 4
NW 5 1 5 5 5 SW 5 1 3 3 3 1 5 1 NE 5 1 2 3 3 4 4
NW 5 1 5 2 5 SW 5 1 3 3 3 1 5 1 NE 5 1 2 3 3 4 4 4
NW 5 1 5 2 2 SW 5 1 2 3 3 1 5 1 NE 5 1 2 3 3 4 4 4 4
NW 5 1 5 2 2 1 SW 5 1 2 2 3 1 5 1 NE 5 1 2 3 3 4 4 4 4 4
SW 5 1 5 2 3 1 SW 5 1 2 2 2 1 5 1 NE 5 1 2 3 2 4 4 4 4 4
SE 5 1 5 4 3 1 SW 5 1 2 2 2 1 5 1 NE 5 1 2 2 2 4 4 4 4 4
SE 5 1 5 4 4 1 NE 5 1 2 2 2 1 1 1 NE 5 1 3 2 2 4 4 4 4 4
SE 5 1 5 4 4 NE 5 1 2 2 2 1 1 4 NE 5 1 3 3 2 4 4 4 4 4
NW 5 1 5 4 4 5 NE 5 1 2 2 2 1 4 4 NE 5 1 3 3 3 4 4 4 4 4
NW 5 1 5 4 4 1 5 NE 5 1 2 2 2 4 4 4 NE 5 1 3 3 3 4 4 4 4
NW 5 1 5 4 3 1 5 NE 5 1 2 2 3 4 4 4 NE 5 1 3 3 3 4 4 4
NW 5 1 5 3 3 1 5 NE 5 1 2 2 3 4 4 NE 5 1 3 3 3 4 4
NW 5 1 2 3 3 1 5 NE 5 1 2 2 3 4 NE 5 1 3 3 3 4
NW 5 1 2 4 3 1 5 NE 5 1 2 2 3 NE 5 1 3 3 3
NW 5 1 2 4 4 1 5 NE 5 1 2 2 3 4 NE 5 1 3 3 3 4
NW 5 1 2 4 4 5 NE 5 1 2 2 3 4 4 NE 5 1 3 3 3 4 4
NW 5 1 2 4 4 2 NE 5 1 2 2 3 4 4 4 NE 5 1 3 3 3 4 4 4
NW 5 1 2 4 4 2 1 NE 5 1 2 2 3 4 4 4 4 NE 5 1 3 3 3 4 4 4 4
SW 5 1 2 4 4 3 1 NE 5 1 2 2 2 4 4 4 4 NE 5 1 3 3 3 4 4 4 4 4
NE 5 1 2 4 4 5 3 1 NE 5 1 2 3 2 4 4 4 4 NE 5 1 3 3 3 4 4 4 4 4 4
NE 5 1 2 4 4 5 2 1 NE 5 1 2 3 3 4 4 4 4 NE 5 1 3 3 2 4 4 4 4 4 4
SE 5 1 2 4 4 2 1 NE 5 1 2 3 3 4 4 4 NE 5 1 3 2 2 4 4 4 4 4 4
NW 5 1 2 4 4 5 1 NE 5 1 2 3 3 4 4 NE 5 1 2 2 2 4 4 4 4 4 4
NW 5 1 2 4 4 1 5 1 NE 5 1 2 3 3 4 NE 5 4 2 2 2 4 4 4 4 4 4
NW 5 1 2 4 3 1 5 1 NE 5 1 2 3 3 SE 4 2 2 2 4 4 4 4 4 4

1 Design 2014 by Alvy Ray Smith and Dan Garcia, protected under a Creative Commons copyright.
2 Rogozhin, Yurii. Small universal Turing machines. Theoretical Computer Science 168(1996):215–240.

4

