
 
 
 
 
 
 

A Business Card Universal Turing Machine1 
by Alvy Ray Smith 

 
 
You have in your hands a simple device that can compute anything whatsoever that’s 

computable. It’s a realization of one of the world’s great ideas—Alan Turing’s universal computer. 
This piece of computer hardware is a business card with a hole in the center and one corner cut 
off, as depicted here. 

 

Imagine that there’s a paper tape running from left to right. It’s divided into squares, and you 
can see one square through the hole in the card. The tape is mostly blank, but there are typically 
one or more squares with symbols on them. In this implementation the symbols are the blank and 
the numerals 1, 2, 3, 4, and 5. Here’s a picture of a tape with just four marks on it: 5155. The rest 
of the tape is blank. The card is shown slightly transparent so that you can see the tape through it.  

 

This business card computer works like this. Find the rule for the symbol in the hole. It’s the 
one at the upper right in this case. (Pay no attention to rules written upside down.) It says to write 
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a 5 in the blank space, then move the card left by one square, then rotate the card to match the 
little glyph which represents the card itself. Here’s the result. 

 

The rule that now applies is the one at the lower right. (Recall that you are to ignore the rules 
written upside down.) It says to replace the 5 with a 2, then move right one square. There’s no 
little card glyph this time, so the card remains in the same orientation. Here’s the result. 

 

Skipping ahead three steps gives this configuration. 

 

And so on and on. If you pursue this further, you’ll find that the card will eventually end up in its 
original orientation (the “back” position), with a 4 in the hole. The rule that applies in this case is 
empty right of the colon, which means nothing else happens. The computation halts. 

In the 1930s, a “computer” was a human—usually a woman. In 1936 Alan Turing captured 
what a computer did with pencil and paper when she carefully executed a “systematic process”—
such as adding a list of several dozen numbers—perhaps interrupting the effort with a tea break. A 
Turing machine was the model he devised that captured the essential simplicity of what she did. 
He ignored her tedium as irrelevant. 

Turing’s model of a “computer” was a very simple device—a nonphysical, mathematical idea—
which we now call a Turing machine. He defined each of his machines to have only four things: a 
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one-dimensional tape divided into squares, a finite alphabet of symbols for it, a tape scanner with a 
finite number of states, and an “instruction table” that determines what to do with each 
combination of scanner state and tape symbol. And one other thing. The tape is as long as 
necessary in either direction. There’s always another square if you need it. From this simple 
machine concept came all of computing. It surprised Turing’s professor at Cambridge University 
and might surprise you—because it truly is a very simple idea, with profound consequences. 

To see that the business card device is a (realization of a) Turing machine, notice that the tape 
scanner is the business card itself with a hole in it. The alphabet is the six symbols (counting the 
blank). The four sets of rules form the instruction table. 

The only part of Turing’s definition that you might find nonintuitive is “state.” That’s a 
mathematical notion that captures, for example, the two stable positions of a light switch. In the 
case at hand, the four possible vertical or horizontal orientations of the business card are its four 
states. 

But the business card device isn’t just any old ordinary Turing machine. It’s “universal.” What 
does that mean? 

Turing’s great idea wasn’t only that a Turing machine could execute a systematic process—that 
what we mean by a “systematic process” is embodied exactly by a Turing machine. Turing’s master 
stroke was to show that there was a single Turing machine that could do what any other Turing 
machine could do. It could perform all systematic processes in other words. It’s one machine that 
can compute anything whatsoever that’s computable. That’s what universal means in computation. 
The modern computer is a descendant of this particular kind of Turing machine, the universal 
Turing machine. 

Turing’s trick for making one of his machines universal was clever and simple. He wanted his 
universal machine to compute what any other Turing machine would compute. Let’s call this 
arbitrary other machine T. So he placed a description of T’s instruction table—its set of rules—on 
the tape of the universal machine. Then he designed the scanner of the universal machine—its 
instruction table—to read the description of T off the tape and do what T would have done to the 
tape. That’s a systematic process so has to be possible—exactly Turing’s key idea. The part of the 
tape of the universal machine to the right of the description of T serves as T’s tape. In modern 
terminology, Turing stored the program of T in the memory of the universal machine, and stored 
the data there too. To change which machine the universal machine simulated—that is, which 
computation it performed—he simply changed the program, the description part of the tape. His 
universal Turing machine was what we now call a stored-program computer, since it stored the 
program and the data in the same way, and both in the memory of the machine. This is what is 
meant by a computer today. 

The business card machine is a universal Turing machine, with four states and six symbols. The 
point is that a computer is a simple idea. As you might suppose, it’s programming the computer 
that’s the hard part. And although speed is not part of the idea of computation, it’s the vast 
increase in speed—and concomitant decrease in size—that has made computers the useful and 
ubiquitous companions they now are. 

Acknowledgement: I based the design of this device on one of the simplest universal Turing machines ever 
discovered, by Yurii Rogozhin in 1996.2 I thank my colleague Tom Griffiths of UC Berkeley for inspiring 
me to realize Rogozhin’s UTM(4,6)—as it’s formally called—as a business card, with states represented by 
orientation. I thank Dan Garcia of UC Berkeley for finding the example computation used here, and also 
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for his elegant discovery that the four orientations could all be accomplished in landscape mode (an earlier 
version used both landscape and portrait modes of the card). His complete simulation of the given example 
follows. The second column of steps follows the first column, and then the third column follows them. The 
first item in each step is the current orientation of the card (NE = front, with notch up right; SE = back, 
with notch down right; SW = front, with notch down left;  NW = back, with notch up left), and the 
outlined square shows the hole location at each step: 
 

SE 5 1 5 5        NW 5 1 2 3 3 1 5 1    NE 5 1 2 3 3     4  
NW 5 1 5 5 5       SW 5 1 3 3 3 1 5 1    NE 5 1 2 3 3    4 4  
NW 5 1 5 2 5       SW 5 1 3 3 3 1 5 1    NE 5 1 2 3 3   4 4 4  
NW 5 1 5 2 2       SW 5 1 2 3 3 1 5 1    NE 5 1 2 3 3  4 4 4 4  
NW 5 1 5 2 2 1      SW 5 1 2 2 3 1 5 1    NE 5 1 2 3 3 4 4 4 4 4  
SW 5 1 5 2 3 1      SW 5 1 2 2 2 1 5 1    NE 5 1 2 3 2 4 4 4 4 4  
SE 5 1 5 4 3 1      SW 5 1 2 2 2 1 5 1    NE 5 1 2 2 2 4 4 4 4 4  
SE 5 1 5 4 4 1      NE 5 1 2 2 2 1 1 1    NE 5 1 3 2 2 4 4 4 4 4  
SE 5 1 5 4 4       NE 5 1 2 2 2 1 1 4    NE 5 1 3 3 2 4 4 4 4 4  
NW 5 1 5 4 4  5     NE 5 1 2 2 2 1 4 4    NE 5 1 3 3 3 4 4 4 4 4  
NW 5 1 5 4 4 1 5     NE 5 1 2 2 2 4 4 4    NE 5 1 3 3 3  4 4 4 4  
NW 5 1 5 4 3 1 5     NE 5 1 2 2 3 4 4 4    NE 5 1 3 3 3   4 4 4  
NW 5 1 5 3 3 1 5     NE 5 1 2 2 3  4 4    NE 5 1 3 3 3    4 4  
NW 5 1 2 3 3 1 5     NE 5 1 2 2 3   4    NE 5 1 3 3 3     4  
NW 5 1 2 4 3 1 5     NE 5 1 2 2 3       NE 5 1 3 3 3       
NW 5 1 2 4 4 1 5     NE 5 1 2 2 3    4   NE 5 1 3 3 3      4 
NW 5 1 2 4 4  5     NE 5 1 2 2 3   4 4   NE 5 1 3 3 3     4 4 
NW 5 1 2 4 4  2     NE 5 1 2 2 3  4 4 4   NE 5 1 3 3 3    4 4 4 
NW 5 1 2 4 4  2 1    NE 5 1 2 2 3 4 4 4 4   NE 5 1 3 3 3   4 4 4 4 
SW 5 1 2 4 4  3 1    NE 5 1 2 2 2 4 4 4 4   NE 5 1 3 3 3  4 4 4 4 4 
NE 5 1 2 4 4 5 3 1    NE 5 1 2 3 2 4 4 4 4   NE 5 1 3 3 3 4 4 4 4 4 4 
NE 5 1 2 4 4 5 2 1    NE 5 1 2 3 3 4 4 4 4   NE 5 1 3 3 2 4 4 4 4 4 4 
SE 5 1 2 4 4  2 1    NE 5 1 2 3 3  4 4 4   NE 5 1 3 2 2 4 4 4 4 4 4 
NW 5 1 2 4 4  5 1    NE 5 1 2 3 3   4 4   NE 5 1 2 2 2 4 4 4 4 4 4 
NW 5 1 2 4 4 1 5 1    NE 5 1 2 3 3    4   NE 5 4 2 2 2 4 4 4 4 4 4 
NW 5 1 2 4 3 1 5 1    NE 5 1 2 3 3       SE  4 2 2 2 4 4 4 4 4 4 

 

1 Design 2014 by Alvy Ray Smith and Dan Garcia, protected under a Creative Commons copyright. 
2 Rogozhin, Yurii. Small universal Turing machines. Theoretical Computer Science 168(1996):215–240. 
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