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Abstract

Workload consolidation, whether via use of virtualization or
with lightweight, container-based methods, is critically im-
portant for current and future datacenter and cloud comput-
ing systems. Yet such consolidation challenges the ability of
current systems to meet application resource needs and iso-
late their resource shares, particularly for high core count or
’scaleup’ servers. This paper presents the ’Merlin’ approach
to managing the resources of multicore platforms, which sat-
isfies an application’s resource requirements efficiently — us-
ing low cost allocations — and improves isolation — mea-
sured as increased predictability of application execution.
Merlin (i) creates a virtual platform (VP) as a system-level
resource commitment to an application’s resource shares, (ii)
enforces its isolation, and (iii) operates with low runtime
overhead. Further, Merlin’s resource (re)-allocation and iso-
lation methods operate by constructing online models that
capture the resource ’sensitivities’ of the currently running
applications along all of their resource dimensions. Elevat-
ing isolation into a first-class management principle, these
sensitivity- and cost-based allocation and sharing methods
lead to efficient methods for shared resource use on scaleup
server systems. Experimental evaluations on a large core-
count machine demonstrate improved performance with re-
duced performance variation and increased system through-
put and efficiency, for a wide range of popular datacenter
workloads, compared with the methods used in prior work
and with the state-of-art Xen hypervisor.

Categories and Subject Descriptors D.4.2 [Operating Sys-
tems]: Performance

Keywords Virtualization, Performance isolation
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1. Introduction

Datacenter servers are routinely used to run multiple dis-
parate application workloads. Analysis performed by Google
show, for instance, components (i.e., processes) of up to 19
distinct applications to be co-deployed on a single multicore
node [13]. Virtualization and container technologies both
enable and further encourage this trend, increasing platform
utilization via higher levels of workload consolidation.

Multicore platforms and their current hypervisor- or OS-
level management methods continue to be challenged in
their ability to meet the performance needs of multiple con-
solidated workloads. This is because an application’s perfor-
mance is determined not only by its use of CPU and mem-
ory capacities, which can be carefully allocated and parti-
tioned [1, 10, 35], but also by its use of shared platform re-
sources, which are neither easily assessed nor controlled, in-
cluding caches, memory bandwidth, and I/O resources. Fur-
ther complications arise from application elasticity concern-
ing their multi-dimensional resource needs [23], made more
complex by the fact that changes in one resource dimension
can also indirectly perturb resource use along other dimen-
sions. For instance, a change in compute and/or memory re-
source shares for a web-server to service a volume spike [33]
may lead to an associated increase in its cache and memory
bandwidth usage. This may in turn cause arbitrary hurt to
other applications sharing cache and memory bandwidth re-
sources with the web-server.

With phase transitions [11], load fluctuations in both short
and long time-scales [6, 23], or changes in relative impor-
tance compared to its co-runners being commonplace in
cloud workloads, it is critical for system-level resource man-
agement, therefore, to continuously and efficiently deal with
isolation and sharing. It must be aware of (i) inter-resource
dependencies within the platform architecture, (ii) how these
resources are shared across applications that have certain
levels of ’sensitivities’ to each of the shared resource types,
and (iii) it must be efficient, by effectively using resources
to meet different applications’ needs and by incurring low
costs in reconfiguring their ‘elastic’ resource shares. Con-
sider, for instance, NUMA-aware scheduling [2, 16], which
because it attempts to always allocate application memory



local to its CPU placement, causes dynamic thread migra-
tion to be inevitably followed by page memory migrations
to keep accesses local. Since page migration is costly, as it
consumes both memory bandwidth and CPU resources, un-
necessary migrations lead (i) to inefficient, costly platform
management, and (ii) may even cause hurt to other applica-
tions that are sharing the resources consumed during migra-
tion.

In summary, resource management in operating systems
or hypervisors must manage resource shares for individual,
elastic applications along ‘all’ of their resource dimensions,
and they must do so in ways that consider the runtime costs
of meeting their resource needs and understand the perfor-
mance implications on other running applications due to in-
direct inter-resource dependencies.

Prior research on server resource management has prin-
cipally focused on isolation, particularly for memory re-
sources [2, 17, 18, 25, 39]. Such work aims to increase over-
all system throughput, but it does not consider individual
application needs, nor does it take into account application-
specific sensitivities to the resources being shared. Recent
work addressing foreground/background processing seeks to
prioritize a latency-sensitive workload over other applica-
tions [21, 37], but has no methods for explicitly dealing with
per application sensitivities and inter-resource dependencies.
Yet it is precisely those methods that are needed to ensure
that say, multiple Hadoop jobs of differing importance are
co-run efficiently, along with additional web server-based
applications, and others.

The Merlin resource allocator presented in this pa-
per meets the requirements articulated above. For multicore
server platforms, Merlin (1) manages application resource
shares for all resource dimensions — compute, memory, and
memory bandwidth (last-level caches (LLC), memory con-
trollers (MC), and interconnects (IC)). (2) Aware of each
application’s resource mappings, when resource shares must
be reconfigured, Merlin offers arbitration methods that are
guided by online models that capture both (i) the cost of re-
configuration and (ii) the multi-dimensional sensitivities of
other applications to the resource types affected by reconfig-
urations. Stated intuitively, when reconfiguring an applica-
tion, Merlin’s management methods seek improved platform
efficiency through ‘effective’ actions that choose the ‘lowest
cost’ allocations that also cause the ‘least amount of hurt’
to all other applications. (3) Merlin can also accommodate
differences in application importance and priority.

Key elements of Merlin and its approach are as follows.

1. Efficiency: a multi-resource dimensional manager for
multicore servers that controls application resource shares,
takes into account their resource sensitivities, and the costs
of management actions.

2. Virtual Platforms (VPs): a per-application resource
share abstraction for its multiple resource dimensions: CPU,
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NUMA Socket NUMA Socket
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NUMA topology with two Both apps (1) and (2) are allocated
CPU and Memory on Node-(a), while App-3 is allocated Node-(b).
All cores in one socket also share one LLC.

Figure 1: Two applications contained within individual VMs
running on a 2-socket NUMA platform

memory, and memory bandwidth resource types. Merlin
manages and isolates application VPs.

3. Model-guided management: as the theoretical un-
derpinnings for online resource management, observation-
based models and metrics capture the dynamic resource
needs of application VPs at system level, namely, for com-
pute, LLC, MC and IC resource types. Using per-application
performance counters, they also capture the costs of manage-
ment, by assessing runtime-varying application sensitivities
along with knowledge of the innate costs of various manage-
ment actions.

4. A hypervisor-level implementation: a Xen-based real-
ization of Merlin and VPs is validated experimentally for an
Intel x86-based multicore platform. Evaluations use repre-
sentative server workloads, including a commercially used
key-value store, a streaming server, and multiple MapRe-
duce application tasks. Performance results demonstrate that
with Merlin, multicore resources in consolidated systems
can be shared with low levels of performance degradation
across all applications hosted (up to 25%), while efficiently
using platform resources. This, then, directly impacts the ap-
proach’s ability to support high degrees of workload consol-
idation.

In the remainder of this paper, Section 2 demonstrates
how both cost and sensitivity driven management approaches
are needed to manage platforms more efficiently and meet
application performance needs. This is followed by a de-
scription of Merlin’s management architecture and its online
models in Section 3. Section 4 describes the system im-
plementation, followed by experimental evaluations in Sec-
tion 5. Related work and conclusions appear at the end.

2. Motivating the Merlin Approach

Consider the two-node multicore server shown in Figure 1.
As seen in the figure, two applications, App-1 and App-2,
are allocated CPU and memory resources on Node-(a), while
App-3 is hosted on Node-(b). App-1 and App-2 also share
the LLC and memory subsystem of Node-(a). If App-1 needs
more CPU resources, we compare Merlin’s approach against
three other widely used allocation policies for NUMA mul-



ticore systems (henceforth, we refer to the NUMA node that
hosts all of an application VM’s VCPUs as its ‘home’ node,
and all other nodes as ‘remote’; Node-(a) is hence App-1’s
home node):

(1) Local policy: always allocates memory pages on the
application’s home node. In order to avoid remote access la-
tencies, if a CPU is allocated on a remote node, this policy
also migrates memory pages to the remote node. Represen-
tative of previous NUMA-aware allocation methods [2, 16],
with this policy, when App-1 requests an increased CPU al-
location and if a remote CPU is allocated on Node-(b), then
its memory is also migrated to Node-(b). The policy’s de-
fault memory migration actions, therefore, may incur waste-
ful and costly migrations if application performance is not
actually sensitive to remote access latencies.

(2) Random policy: allocates compute and memory re-
sources randomly amongst nodes based on availability. This
policy is unaware of platform topology and application sen-
sitivities to different resource types. It represents the one
used by the current Xen CPU scheduler balancing CPU
queues based on system load. In the example of Figure 1,
the random policy may choose any CPU available on Node-
(a) or Node-(b).

(3) Low cost policy: always allocates compute and mem-
ory resources using the ‘lowest cost’ method first. In this pol-
icy, the software methods used to allocate and/or reconfigure
an application’s resource shares are ranked in order of their
increasing resource consumption cost as follows: (i) increas-
ing the CPU caps of an application’s VCPUs; (ii) allocating
a local CPU on a ‘home’ node; (iii) allocating a remote CPU
and further migrating the application VCPUs to a remote
node; and (iv) migrating an application’s memory pages to
a remote node. This policy is cost-efficient, but it may not
always be effective, as it disregards applications’ and their
co-runners’ sensitivities to shared resource types. For exam-
ple, in Figure 1, App-1 will be allocated a local CPU, which
may increase its cache usage and/or memory subsystem us-
age on Node-(a), thereby potentially hurting App-2 if it is
sensitive to either of these resource types.

A concrete experiment demonstrating the effects of the
different policies listed above runs a Matrix-Multiplication
MapReduce code [27] (App-1), collocated with the Volde-
mort [20] key-value store (App-2), with each application
hosted in a separate VM, and in a configuration as the one
shown in Figure 1 (but eliding App-3). We derive app sen-
sitivities in Section 3 using online metrics, but it is useful
to note here that both applications are LLC-sensitive, and
Voldemort is also sensitive to the MC resource type. Figure 2
depicts the performance levels seen for the two applications
when given resources using the above policies, normalized
to when running alone (the first bar in Figure 2). The error
bars denote performance variability across 20 runs.

When Matrix-Multiplication needs more CPU during its
execution, we first use the ‘local’ policy to allocate an ad-
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Figure 2: Reconfiguration of CPU resource shares for
Matrix-Multiplication hurt Voldemort due to consequent in-
crease in LLC and MC usage.

ditional local core on Node-1. However this leads to an in-
crease in response time latencies for Voldemort, by almost
22%(second bar); and its response time variability increases
to about 10%. This is caused by Matrix-Multiplication’s in-
direct increase in LLC and MC usage on Node-1, to which
Voldemort’s performance is sensitive. In other words, the
‘local’ policy’s sole consideration of Matrix-Multiplication’s
sensitivity ends up being hurtful to other applications. The
same holds for the "low cost’ allocation policy (fourth bar in
Figure 2), which by allocating the local CPU, causes similar
performance degradation for Voldemort: it also ignores other
applications and their sensitivities. Finally, the ‘random’ al-
location policy (the third bars in the figure) may allocate a
local or a remote CPU from Node-(a) or (b) with equal prob-
ability. When allocated a local CPU, Voldemort response
times are hurt due to its sensitivity to increased memory in-
tensity at Node-(a); when a remote CPU is allocated, how-
ever, this policy ends up hurting Matrix-Multiplication, as
its VCPUs end up being divided between two the LLCs
of Nodes- (a) and (b), thus hurting Matrix-Multiplication’s
cache sensitivity.

In contrast to the methods shown above, Merlin’s alloca-
tion are much superior: their use results in the least perfor-
mance degradation (~3-5%) and variability (fifth bar). This
is because (1) Merlin considers the multi-dimensional sen-
sitivities of both applications, so avoids causing ‘hurt’ to
Voldemort’s LLC shares by allocating it a remote CPU and
by migrating all VCPUs of Matrix-multiplication to Node-b.
Further, (2) while Merlin incurs the cost of VCPU migration
to a remote node, it avoids the costly subsequent migration
of memory pages, by considering Matrix-multiplication’s in-
sensitivity to the MC resource type. Generalizing from this
example, Merlin’s resource management succeeds for mul-
tiple reasons. First, it operates across multiple resource di-
mensions, being aware of all inter-resource dependencies
between compute, LL.C, and MC/IC resources. Second, it
accounts for collocated applications and their sensitivities



to shared resource types. Third, the costs of reconfigura-
tion are considered, along with sensitivity information, so
as to choose the reconfiguration that is ’right’ for all applica-
tions. In the above example, for instance, choosing a remote
CPU for matrix-multiplication is ideal: it uses the low-cost
VCPU migration and considers both applications’ sensitivi-
ties (thus ’fairly’ degrading each). The remainder of this pa-
per explains the methods used by Merlin for making desir-
able decisions like those above.

3. Merlin Resource Manager

Merlin represents the resources it maintains for specific ap-
plications — sets of VMs — as virtual platforms (VPs). Each
application has its own VP, and it is Merlin’s obligation to
allocate and manage the resources of all current VPs. Specif-
ically, arbitrating across different applications’ resource re-
quirements, Merlin (i) deals with their multiple resource di-
mensions of compute, memory, and memory bandwidth, (ii)
accounts for the cost of management actions, and (iii) con-
siders application sensitivities to different resource types.
Generalizing on previous work [22, 36], Merlin’s arbitration
goal is: fo allocate compute, memory, and memory band-
width resource shares, i.e., VP shares, to all applications,
while minimizing the maximum difference between poten-
tial levels of performance degradation, i.e., ‘unfairness’,
imposed on all applications. When resources are oversub-
scribed in any or all dimensions, Merlin can also accom-
modate application priorities or weights when making allo-
cation decisions, thus making it easy to specify the relative
importance of some application vs. others. Stated more for-
mally, for all applications ‘i’ and ‘j” in the system, the fol-
lowing linear program captures this goal:

maxz wWill;

wi(1—(u;)) —w;(1—(u;)) < &,Vi,j...(1)

where, w; represents the relative application weight, and
u; represents the normalized performance of application;
relative to its ideal performance when it is not collocated
with other applications (i;). u; is a function of the applica-
tion’s VP, i.e., its resource shares at time — epochy [25, 38]:

up = %Y[CPU [k], Memory[k], Memory_BW [k]]...(2)

The term ‘(1 - u;)’ in Equation-(1) represents the appli-
cations degradation from its ideal performance ;. To max-
imize applications’ performance and minimize their perfor-
mance degradation, Merlin must assess (i) applications’ re-
source usage, as a measure of their performance needs, (ii)
their resource sensitivity, as a measure of the potential hurt
that can be caused by resource reconfigurations, and (iii) fur-
ther consider the cost of VP configurations, for efficiency.

Merlin performs all such actions and carries out arbitra-
tion periodically: at the end of every time epoch ‘k’, Mer-
lin arbitrates VP resource shares (Equation-2) for the next
epoch, always minimizing the maximum weighted differ-
ence in degradation across all applications.

3.1 Tracking VP Resource Shares

Defining an application’s performance in terms of its shares
of all resources, including caches, memory, and interconnect
bandwidth ideally requires these quantities to be precisely
measured and controlled [12]. Since contemporary hardware
does not offer such functionality, a technical contribution of
our work are observation-based techniques that approximate
an application’s use of these resources. In our experimen-
tal Westmere NUMA platform, for instance, each physical
core has an independent L1 and L2 cache, while the last-
level L3 cache is shared among all cores in the same socket.
These caches are inclusive, so an L2 miss will always ac-
cess the L3. Merlin can therefore, approximate the L3 usage
of an application as being equivalent to L2misses - L3misses
(where cache miss values are all evaluated per 1000 instruc-
tions — i.e., MPKI). Further, using L3 MPKI as an indica-
tor of bandwidth intensity (as also done in [2, 32]), Merlin
then expresses the local and remote memory bandwidth in-
tensity in a NUMA platform as local L3 MPKI and remote
L3 MPKI.

Merlin also tries to understand the relative importance
of one shared resource vs. another, by measuring the ratio
of each application’s cache vs. memory (MC/IC) usage. In
other words, by considering this ratio, we can assess an
application’s relative ‘sensitivity’ to cache vs. to MC and IC
contention (as will be shown in more detail below). For each
application, we measure its Memory Factor (MF), which
is determined by the fraction of L2misses that end up as
memory accesses, represented as L3/L2 MPKI. This metric
can be generalized to other platforms as LLC/LLC-1) MPKI,
where ‘LLC-1" denotes the previous cache in the hierarchy.
Intuitively, a low value of MF denotes higher cache reuse,
while a higher value denotes higher usage of MC and IC
vs. less cache reuse, since a higher fraction of its misses are
served as memory accesses.

Summarizing, an application’s use of shared resources
can be approximated by assessing the following two met-
rics: (i) L3 MPKI a measure of absolute MC/IC usage, and
(i) MF: a relative measure of cache vs. MC/IC usage. Also
important (but not novel) are Merlin’s use of CPU and mem-
ory utilization to denote the application VP’s aggregate CPU
and memory resource usage.

3.2 Assessing VP Sensitivities to Resource Types

An application can be termed ‘sensitive’ to its share of some
resource type if a reduction in that share causes ’signifi-
cant’ performance degradation. Typically, such performance
“hurt’ ((1-u;)) is caused by other applications imposing on its
sensitive resource shares, implying a less than ideal alloca-



tion of platform resources to these applications. Specifically,
we use both (i) the MF value of an application and (ii) its
LLC MPKI to ascertain an application’s sensitivity to each
of the shared resource points (cache, MC, IC) as follows:

e Sensitivity to cache resource. Applications with low MF
value and relatively high memory intensity exhibit high
cache footprint reuse. They are more susceptible to losing
their cache-shares in the presence of co-running cache-
intensive applications.

o Sensitivity to MC/IC resources. Applications with high
MF values, e.g., close to 1, and large L3 MPKI values for
their memory intensity, are RL, MC, and IC-contention
sensitive. For SMP platforms, applications sensitive to
MC contention will also be sensitive to FSB contention.

e [nsensitive applications are those with low MF and
L3 MPKI values: they use less of both caches and MC, IC
and therefore, are relatively immune to hurt from these
resource types.

To assess sensitivity to CPU usage, Merlin uses the follow-
ing metric: CPU_utilization / Allocated CPU. To illustrate,
consider a web-serving application allocated two physical
cores, but with utilization equivalent to only one physical
core; this equates its sensitivity to 0.5 toward the CPU re-
source. For the memory resource type, we devise a similar
metric: Memory_utilization / Memory pages initially allo-
cated, it is used to assess memory-related sensitivity.

Application classification. Given the experimental plat-
form used in our work, there are three classes of memory
intensity, based on (local/remote) L3 MPKI: ‘low’ having
<2, ‘medium’ having > 2 and < 15, and ‘high’ having >15
L3 MPKI. MF values are also factored into three classes:
low MF < 0.25, medium MF > 0.25 but < 0.6, and high
MF > 0.6. We determine these platform-dependent thresh-
olds by profiling them with well-understood benchmarks
like the ‘Stream’ memory benchmark. Based on the runtime
values of MF and L3 MPKI metrics and these a priori de-
termined thresholds, Merlin measures application resource
usage and sensitivities in every epoch. For instance, an ap-
plication with MF>0.6 and having ‘high’ memory intensity
is determined as ‘highly MC/IC sensitive’.

3.3 Costs of Resource Reconfiguration

Reconfiguring the resource shares of an application’s VP,
incurs costs in terms of the resources consumed by recon-
figuration actions. As stated in Section 2, Merlin ranks re-
configuration methods in terms of their increasing cost of
resource consumption, which are (from lowest to highest):
(1) increase or decrease CPU shares, by using CPU capping;
(2) migrate the VCPUs of VMs within and across NUMA
nodes, by allocating local vs. (3) remote node CPUs; and
(4) migrate memory pages across nodes. This ranking is be-
cause of the absolute costs associated with each reconfigu-
ration action: increasing or decreasing the CPU shares of an
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Figure 3: State Transition model capturing possible interfer-
ence at shared resource points: Cache, MC, IC.

application costs only a few CPU cycles; migrating an appli-
cation’s VCPUs to another node requires performing VCPU
state transfers and later moving cache lines to the remote
node over the off-chip interconnect [19]; migrating an appli-
cation’s memory pages consumes memory bandwidth and
memory subsystem resources of the source and destination
memory controllers, memory buses, and interconnects (and
the compute capacity used for memory-copying). In addition
to such direct costs, Merlin also considers the fact that cer-
tain reconfigurations, like those in which memory pages are
migrated, can impose hurt on the sensitive resource shares
of other applications.

In summary, to maintain the goal stated in Equation-1,
Merlin factors in both the cost of reconfiguration and the
possible hurt caused by reconfiguration actions, the latter de-
pending on the sensitivities of all applications in the system,
We next describe how Merlin uses observation-based meth-
ods to determine the need for VP reconfiguration.

3.4 Triggers for Resource Reconfiguration

Sections 3.1 and 3.2 describe Merlin’s use of system-level
metrics to assess an application’s current resource usage and
resource sensitivities. On this basis, for all resource types,
Merlin detects the dynamic, elastic nature of an applica-
tion VP’s resource requirements: via runtime tracking of its
transitions in resource usage and sensitivities. For instance,
for the CPU, when utilization nears the VP’s actual allo-
cated CPU shares (CPU_sensitivity > 0.8), the application
is deemed as being highly sensitive to the CPU resource
type. This hightened sensitivity also indicates to Merlin the
need to allocate additional CPU capacity. To assess the need
for additional cache and MC/IC resources, Merlin builds for
each application a two-dimensional characterization of its
MF metrics and absolute L3 MPKI values. This yields the
9-state transition matrix shown in Figure 3, based on the
profile-based classification thresholds seen in Section 3.2.



Transitions between two states in Figure 3 denote an ap-
plication’s change in resource usage as well as a change in
its resource needs. In particular, when an application tran-
sitions towards the ‘right’ (i.e., towards State-2,5,8), this
signifies an increase in its absolute L3 MPKI values, i.e.,
increased MC/IC usage. When an application transitions
‘along the downward dimension’ of MF, this signifies an in-
crease in MC/IC accesses, without a corresponding change
in L2miss counts, thus indicating contention at the LL.C and
the need for more LLC resources. Upon detecting such a
transition, Merlin attempts to re-allocate cache shares for
cache-sensitive applications.

Transitions to the left and upward signify that cache de-
mands have been met. Finally, ‘downward’ transitions can-
not be detected for State-7,8 applications, as they are com-
pletely cache-insensitive. These states correspond to being
MC/IC- and RL-sensitive. Merlin detects possible MC/IC re-
source needs by periodically aggregating the memory load
information (L3 MPKI) of all VPs sharing each NUMA
node’s MC and IC link. For our experimental server system,
if the total L3 MPKI of a NUMA node is greater than 100
(this value is derived from the Stream benchmark’s L3miss
counts), Merlin takes that as an indication of the applica-
tion’s VP requiring additional MC/IC resources.

Upon identifying these triggers when an application is
highly sensitive to a certain required resource type, Merlin is
responsible for determining the right reconfiguration action
that meets the application VP’s resource needs. By consid-
ering both the cost-related metrics (Section 3.3) and the sen-
sitivities (Sections 3.1 and 3.2) of all applications to all re-
source types affected by the reconfiguration, Merlin chooses
the lowest cost reconfiguration option that also causes the
least hurt to all applications affected by the reconfiguration,
hence maintaining its arbitration goal seen in Equation-(1).

3.5 Choosing the Right Reconfiguration

Figure 4 illustrates arbitration steps and their timeline. We
use the term ‘application-set (S)’ to denote the set of appli-
cations whose resource demands must be met in the current
arbitration epoch (t). At time instant (t), Merlin considers a
single requesting VP’s (App-1’s) resource re-allocation need
(as determined using methods described in Section 3.4).
Hence, the application set (S) contains App-1 at time (t).
Merlin first assesses the availability of free resource capacity
on the application’s local node, as local resource allocation
is low cost and causes least hurt to applications in set (S), in
this case - App-1. For the CPU resource type, Merlin allo-
cates an additional local CPU to App-1’s VP. For the cache
and MC/IC resource types, Merlin applies the lowest cost al-
location, by ‘freeing up’ local cache and MC/IC resources by
capping the CPU usage of other corunning applications, as
an indirect method of limiting their cache and MC/IC usage.

Unfortunately and as seen in Section 2, choosing lo-
cal free resources may be hurtful to co-running applica-
tions. For example, an additional core allocated to App-1’s
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Figure 4: Merlin arbitration steps and timeline

VP may lead to increased LLC/MC/IC usage, thus hurting
co-running applications’ resource shares. Capping the CPU
shares of applications sensitive to the CPU resource type
may hurt their performance. To monitor for potential ‘hurt’
caused to co-running applications, after a reconfiguration in
an epoch, Merlin denotes a time-interval (y) within its next
arbitration epoch (t+1) as a ‘repercussion interval’ phase.
During this phase, any sensitivity state transitions (see Fig-
ure 3 and Section 3.4) detected for any corunning applica-
tions are attributed by Merlin to the reconfiguration actions
performed at the beginning of the current epoch. Only if
there are no transitions, the reconfiguration action is deemed
successful, and Merlin proceeds to the next arbitration epoch
(t+1). Else, when there are state transitions that denote ‘hurt’
caused to other corunners, Merlin adds those applications to
the set (S) of the current epoch and reassesses its reconfigu-
ration, as explained next.

Consider Figure 1. If App-2 is ‘hurt’ due to resource-
reallocation for App-1, the set of applications (S) to be con-
sidered for reconfiguration becomes (App-1, App-2). For
this set, Merlin attempts to apply the next cheaper recon-
figuration option: allocating remote CPU on a remote node,
if available (Node-b in the figure), and this reconfiguration
is applied to the more MC/IC insensitive application from
set (S), so as to minimize hurt caused to the migrated ap-
plication, while also keeping the cost of reconfiguration low
(for MC/IC insensitive applications, memory migration can
be avoided). If however, there is no remote CPU available,
Merlin next attempts to find an MC/IC-insensitive applica-
tion on a remote node (e.g., App-3 in Figure 1). If App-
3 is also MC/IC insensitive, Merlin ‘swaps’ App-3’s CPU



resources with the chosen MC/IC insensitive application’s
CPUs in set (S), to create the next ‘ideal’ reconfiguration
minimizing ‘hurt’ and ‘cost’ for all applications in (S). LLC
re-allocation for an application is performed similarly, us-
ing the above steps as allocating CPUs on a remote node
is equivalent to allocating LLC shares on that node. How-
ever, if none of the applications in set (S) are MC/IC insensi-
tive, and hence, unsuitable for VCPU migration alone, Mer-
lin uses the final reconfiguration option: migrating memory
pages. Using further migration-related optimizations, such
as choosing the application in set (S) having fewer memory
pages to migrate, and ‘phased-out migration’ (as seen next),
Merlin again attempts to reduce the overall ‘hurt’ and ‘cost’
incurred by page migration.

MC/IC Re-allocation. The need for memory-reallocation
may arise when an application’s VP has ‘remote’ memory
that must be reconfigured to ‘local’, because of the applica-
tion’s high MC/IC sensitivity, or when the total MC/IC miss
counts at a NUMA node are > 100 (see Section 3.4). Mem-
ory re-allocation is the most expensive management option,
so Merlin uses certain cost-based optimizations to attempt to
minimize the ‘hurt’ caused to other applications due to the
operation’s high memory intensity and sensitivity.

First, if a VM’s memory must be migrated from one
memory node to another, in order to resolve contention at
the memory controller resource between two or more ap-
plications, Merlin will migrate the application VM with the
smaller memory footprint. Second, Merlin executes page mi-
gration amongst NUMA nodes in cycles of migrating and
copying 1024 pages per iteration. These iterations may be
further phased out in time if applications at the source and/or
the destination memory controllers are highly memory in-
tensive and are also sensitive to the memory subsystem re-
sources (MC/IC). Because this technique may hurt the per-
formance of the application being migrated, Merlin resorts
to using application priorities to decide which of the appli-
cations can be hurt. Finally, if such hurt is not acceptable,
and memory migration being the final reconfiguration op-
tion available, Merlin may resort to notifying higher-level
schedulers to migrate an application to other servers in the
datacenter.

Summarizing, Merlin’s resource allocation and arbitra-
tion methods factor in both the cost of management opera-
tions and the sensitivity of applications to all resource types,
to make reconfiguration decisions to maintain its goal de-
fined in Equation-(1). Finally, considering the scalability of
Merlin to high core count platforms, consider an experimen-
tal platform of ‘n® NUMA nodes. Here, the number of dif-
ferent CPU and memory configurations for an application
VP are on the order of O(n?). Merlin prunes this decision
space by discarding the wasteful configurations (based on
cost) and the hurtful ones (based on sensitivity). This helps
it choose more effective configurations for its workloads and
more efficiently manage application VPs.
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Figure 5: Merlin and VP Implementation in Xen

4. Implementation

Figure 5 depicts the different implementation components of
Merlin and its virtual platforms, realized in the Xen hypervi-
sor. The Merlin Manager is a user-level multi-threaded pro-
cess in the privileged management domain, Dom0. It carries
out the following management functions.

Virtual Platform Creation. Applications are deployed
within sets of VMs, illustrated in Figure 5 for 1 multi-VM
and 3 single-VM applications. Each application’s initial allo-
cation requirements are specified in a configuration file that
states its CPU and memory requirements as numbers of VC-
PUs and memory size, respectively. Merlin uses this data
to allocate requested CPU and memory resource shares to
the application VM(s), always attempting to allocate local
CPU cores and memory, by sequentially traversing sockets.
CPU sharing is controlled by pinning VCPUs to indepen-
dent physical cores within a socket. A modified NUMA-
aware version of the Xen memory manager [28] confines
VM memory pages to particular NUMA nodes. Our memory
allocator also supports a percentage-split of a VM’s memory
footprint across a configurable number of multiple NUMA
nodes. The initial mapping of application VPs to shared re-
sources such as LL.Cs and MC/IC resource types in the plat-
form is hence known to Merlin at the time of VP creation.
After creating the application VMs and finalizing their re-
source allocations, Merlin spawns a per-VP thread in Dom0O
to periodically inspect hardware performance counters for
monitoring VPs’ resource shares.

Monitoring application resource shares and sensitivi-
ties. Per-VP user-level threads in Dom0 are responsible for
monitoring periodically the application resource usage and
sensitivities, using black-box monitoring techniques. Per-
VP monitor threads periodically (every 1 second) collect
relevant performance counters, including unhalted CPU cy-
cles, instructions retired, L2 cache misses, local L3 cache
misses resulting in local node memory accesses, and remote
L3 cache misses resulting in remote node memory accesses.
Per-VCPU monitoring history of up to one second is stored
in Xen kernel data structures that are then exported to the
user-level (Dom0) monitors via newly introduced Xen hy-
percalls. The per-VP monitor also calculates L3 MPKI and



MF values and uses the state model described in Section 3.4
to detect state transitions that indicate potential VP need for
specific resource types. These are then conveyed to the Mer-
lin manager process using shared memory message queues.

Merlin management. After allocating initial VP resource
shares and their monitors, the Merlin Manager polls for in-
puts from VP-monitors in case resource need is detected.
This configurable polling period is currently set it to 1 sec-
ond. Next, using the arbitration techniques described in Sec-
tion 3.5, Merlin attempts to choose the lowest cost manage-
ment method for reconfiguration that will also cause the least
amount of hurt to ‘all’ applications. The management mech-
anisms are implemented as follows. Merlin caps CPU shares
by adjusting Xen CPU scheduler parameters for the appli-
cation VM’s VCPUs: this parameter increases or decreases
the percentage value of running time for the VCPUs in each
Xen scheduling epoch, hence affecting the VP’s CPU usage.
The default capping percent is 10% per epoch. In order to
migrate VCPUs, Merlin changes the CPU assignment of the
application VM’s VCPUs using Xen hypercalls. Finally, we
have implemented new functionality in Xen with which Mer-
lin can live-migrate and copy VM memory pages in batches
of 1024 pages between NUMA nodes. Each such migration
round can be delayed by up to 1 second in order to account
for MC/IC sensitivities of other application VPs.

Recall that Merlin also keeps track of per NUMA node
L3 MPKI. Currently, if this value exceeds 100 for a NUMA
node, Merlin interprets this as need for additional MC/IC
resource shares. The implementation of this functionality
consults per-VP monitors of the relevant VPs sharing the
NUMA node for their L3 MPKI counts, with subsequent
reconfigurations using the MC/IC reallocation algorithms
described in Section 3.5.

5. Experimental Evaluation

The evaluation of the Merlin resource allocator seeks to
answer two key questions.

1) How does the use the cost and sensitivity related met-
rics improve state-of-art resource management, and how im-
portant are they for choosing more ‘effective’ reconfigura-
tions for applications?

2) Are platforms managed with Merlin’s methods ‘better-
managed’ systems i.e., managed effeciently to obtain high
application performance with good isolation and low over-
heads?

5.1 Experimental Methodology

Merlin’s allocation methods are evaluated on the experi-
mental platform used is as described in Section 2: a 32-core
Westmere platform with 128GB physical RAM, with both
its CPUs and memory divided equally amongst 4 NUMA
nodes, each with a 24MB LLC. Representative cloud work-
loads are constructed from application mixes containing
both latency-sensitive and batch applications [13]: (1) the
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Figure 6: Variable CPU demand of Mapreduce codes

latency-sensitive Voldemort key value store, co-running
with throughput-intensive mapreduce codes [27], and (2)
latency- and throughput-demanding data streaming work-
loads [7] co-running with throughput-oriented data-mining
benchmarks [24]. With resource demands dynamically var-
ied along multiple dimensions, Merlin is compared against
the ‘local’, ‘random’, and ‘low-cost’ representative policies
mentioned in Section 2. Merlin’s benefits and ‘effectiveness’
are assessed by observing performance degradation for all
applications in the workload mix, along with other system-
level metrics like observed CPU and memory utilization, the
number of VCPU and memory migrations undertaken, and
the resources consumed, L3 MPKI as well as the Memory
Factor (MF) values of applications. A Platform Efficiency
metric computed for each allocation policy demonstrates
the efficiency and effectiveness of Merlin’s management op-
erations. Performance degradation results are reported as
h-spread distributions.

5.2 Importance of Multi-dimensional Sensitivity

This section’s experiments validate that multi-dimensional
sensitivity knowledge enables resource management to choose
the ‘right’ allocations for ‘all’ applications, and to do effi-
ciently by also reducing the number of costly operations like
memory migration.

5.2.1 Considering Multi-dimensional Sensitivity when
Allocating CPU Resources.

In order to demonstrate how allocation policies differ in al-
locating additional dynamic CPU capacity, our first exper-
iment uses with the first workload mix: (1) Voldemort key
value stores, collocated with mapreduce codes. This mix is
representative of workloads with a latency sensitive applica-
tion and parallel batch workloads collocated together. How-
ever, unlike previous work [21], Merlin does not assume that
the latency sensitive application is the only foreground work-
load. Instead, Merlin makes cost and sensitivity related con-
siderations for ‘all’ applications in managing their dynamic
allocations along ‘all’ dimensions. In the first experiment,
we execute Voldemort key value store within two virtual ma-
chines, each with 2 GB of physical memory, and 2 VCPUs
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Figure 7: Considering multi-dimensional sensitivity is im-
portant when reallocating CPU shares

each. An external machine hosts a Voldemort client which
generates key-value requests (with a value size of 1IMB) for
the Voldemort server. Voldemort server application is collo-
cated with 3 copies of Matrix Multiplication codes, each de-
ployed in separate VMs of 4 VCPUs each and 4GB each; and
2 copies of Wordcount codes also deployed in separate VMs
of the same configuration. Each Matrix-Multiplication and
Wordcount VM are allocated 2 physical cores each initially,
and Dom-0 executes alone in Node-0 of the four-node West-
mere platform (see Section 2). We execute the application-
mix choosing different startup order of applications every
run so as to not bias colocation on the same NUMA node.

Figure 6 shows how the Mapreduce codes (Matrix-
multiplication and Wordcount) vary their CPU demand over
time brought about by the non-uniform distribution of input
data amongst its compute threads. Due to initial allocation
of two physical cores, when the CPU demand increases be-
yond 200, the application’s VP monitor thread will request
an additional core (Section 4).

Figure 7 shows the performance degradation experienced
by the application mix depicted via the h-spread of the
degradation amounts, and Table 1 shows additional metrics
that help evaluate the effectiveness and efficiency of each al-
location policy studied. Total number of VCPU and memory
migrations shown in Table 1 depict the total number of re-
configurations that each allocation policy performed while
re-allocating resources to applications, while CPU utiliza-
tion is the average overall CPU usage observed during the
execution. It is important to note that the CPU usage also
includes CPU usage attributed to the management opera-
tions such as performing memory migrations. Table 1 also
introduces a new metric, Platform Efficiency (PE), which
we define as the (normalized performance improvement for
all applications / normalized total CPU utilization). In our
evaluation, performance improvement is the inverse of the
performance degradation values shown in Figure 7 (e.g., for
Voldemort in the local case it is evaluated as 1/1.23, and in
the Merlin-case, it is evaluated as 1/1.06, etc.). The CPU

Table 1: Platform Efficiency (PE) and other metrics for each
allocation policy.

Policy CPU- No. of No. of PE. L3MPKI CPI
Util VCPU Mem-
Migra- ory
tions migra-
tions
Mix-1
Local 2370 28 7 220 165 3.172
Low- 2140 22 0 253 135 2.556
Cost
Random 2150 42 0 248 145 2.568
Merlin 2190 20 2 270 108 2.078
Mix-2
Local 1985 20 5 3.17 140 3.281
Low- 1900 O 0 328 125 2.476
Cost
Random 1920 38 0 323 147 2.654
Merlin 1925 12 0 339 117 1.989
Mix-3
Local 2390 36 12 228 187 3.356
Low- 2240 20 0 241 167 2.842
Cost
Random 2250 22 0 238 178 2.756
Merlin 2285 20 5 242 134 2.439

utilization shown in Table 1 is normalized to 2400, for 24
cores of three NUMA nodes used for running application
VMs. A higher platform efficiency metric for a resource al-
location policy indicates (a) improved performance per unit
of resource (CPU) usage; hence demonstrating (b) improved
ability to deal with dynamic resource allocations by choos-
ing both cheaper and more effective reconfiguration options
which cause less overall hurt. Finally, we also show the
L3 MPKI and CPI (Cycles per instruction) metric to show re-
spectively the shared LLC/MC/IC behavior and the absolute
instruction performance in each policy case. Both these met-
rics are affected by management operations of the policies:
as VCPU and memory migrations also trigger L3misses,
lower L3misses and CPI values are demonstrative of fewer
VCPU and memory migrations. Next, we make the follow-
ing key observations from the performance and efficiency
metrics.

1) Local policies may hurt other applications and over-
all platform efficiency. In the Local allocation policy case,
whenever Matrix-multiplication is collocated with Volde-
mort codes and needs more compute capacity, its VMs are
allocated CPU from the local node, in order to preserve their
memory affinity to local accesses. However, this policy hurts
collocated applications such as Voldemort (suffering up to
23% degradation in response times) due to increased mem-
ory intensity at the node cache and memory controllers, re-
sources that Voldemort is sensitive to. Next, when local com-
pute resources are unavailable, the local policy allocates re-



mote CPU (on remote node), however in addition also mi-
grates the application’s pages to the remote node. As seen in
Table 1, local policy allocation performs 7 VM memory mi-
grations, and 28 VCPU migrations during the execution run;
the number of memory migrations being the highest from
amongst all policies. Some of these migrations may be su-
perfluous as for e.g., both matrix-multiplication and Wor-
dount are insensitive to remote memory latency, and hence
do not benefit from local memory accesses. The cost of these
superfluous migrations is seen in both the increased resource
consumption (up to 2 additional physical CPUs usage com-
pared to other allocation policies in Table 1), and increased
variability (up to 13%) in performance degradation across
runs for all Mapreduce codes as seen in Figure 7.

2) Low-cost allocations may not always be most effective.
In the low-cost allocation policy case, VP reconfigurations
are performed based on their cost of allocation. As seen in
Table 1, this policy incurs no memory migrations, as it uses
VCPU migrations alone (within a node, and next, across
nodes) unlike the local policy which also migrates mem-
ory pages. However, this policy also disregards sensitivity
of other applications to shared resource types, hence caus-
ing performance hurt. Voldemort incurs up to 22% degrada-
tion in response time latencies when collocated with Matrix-
multiplication codes. Though low cost allocation policy in-
curs lower costs of reconfiguration (observed via lower CPU
usage in Table 1 vs. local policy , and lower performance
variability across applications in Figure 7), the degradation
caused to Voldemort is substantial, and is caused due to dis-
regard for its resource sensitivities.

3) Multi-dimensional sensitivity and cost knowledge
guides Merlin toward better reconfiguration decisions. Mer-
lin considers both sensitivity and costs of reconfiguration to
make re-allocation decisions. When Matrix-multiplication
is collocated with Voldemort and needs more CPU, it first
allocates local CPU. However in the ‘repercussions’ time
phase (Section 3.5), it observes that Voldemort undergoes a
state-transition to become ‘highly’ MC/IC sensitive due to
increase in L3 MPKI brought about by increased memory in-
tensity of Matrix-multiplication. This leads Merlin to choose
a remote CPU on a remote node for Matrix-multiplication
codes. Merlin further incorporates the MC/IC insensitivity
knowledge of Matrix-multiplication to avoid costly mem-
ory migrations with VCPU migrations; unlike the local pol-
icy. In the event that remote CPU is unavailable, Merlin
migrates the Wordcount application to Voldemort’s node,
hence creating CPU availability for Matrix-multiplication
codes; Wordcount being less memory intensive tends to
not hurt Voldemort. As seen in Figure 7, Voldemort’s re-
sponse times suffer only up to 6% degradation due to Mer-
lin’s actions, while the degradation of other applications is
also limited to 10%. This also satisfies our goal of min-
imizing the maximum difference in degradation amounts
across all applications. Table 1 shows that the platform ef-
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Figure 8: Reconfigurations due to cache and memory band-
width re-allocation

ficiency metric is the highest for Merlin showing improved
ability to manage dynamic resource allocations. The two
memory migrations are invoked by Merlin only when the
memory intensity (L3misses/1000inst) at a NUMA node in-
creases beyond 100 L3misses (see Section 3.4), which may
hurt applications sensitive to memory controller resources.
For e.g., when Voldemort is collocated with two Matrix-
multiplication codes, Merlin migrates one of the Matrix-
Multiplication VMs to a remote node while also migrating
its pages. As seen in Table 1, this leads to slight increase in
CPU usage for Merlin, however traded by improved perfor-
mance, variability and platform efficiency.

Finally, as seen in Table 1, L3 MPKI and CPI metrics are
the lowest for Merlin resource allocation policy, demonstrat-
ing absolute lower memory subsystem usage (due to invok-
ing memory migrations only when needed, and better collo-
cations suited to sensitivities of all applications), and there-
fore higher raw instruction throughput.

5.2.2 Considering multi-dimensional Sensitivity when
Reallocating LL.C and MC/IC Demands

Our next experiment demonstrates how Merlin compares
against other allocation policies when applications need re-
configuration of their cache or MC/IC resource types. This
experiment also shows the generality of Merlin’s methods in
managing multi-dimensional allocations. In this experiment,
we use different VM configurations for the same application
mix using the Voldemort key value store (split across 2 VMs
with 2 VCPUs each), corunning with batch processing work-
loads using four copies of Matrix-Multiplication MapRe-
duce codes (each in one VM of 2 VCPUs and 4GB memory)
and two copies of Wordcount codes in separate VMs of four
VCPUs and 4GB memory. Unlike the first experiment, all
applications are allocated physical cores equal to their VC-
PUs. Figure 8 shows the performance degradation results of
Merlin compared with ‘local’, ‘low-cost’ and ‘Random’ al-
location policies for all applications, while ‘Mix-2’ in Ta-
ble 1 shows efficiency metrics. In this mix, when Voldemort
is collocated with a plurality of Matrix-multiplication codes,



the per-VP monitor observes a ‘downward’ transition for an
initially cache and MC/IC sensitive Voldemort application.
This is interpreted as ‘need’ for more cache resources (Sec-
tion 3.4), and all allocation policies use their respective al-
gorithms to allocate more LLC to Voldemort’s VP.

‘Local’ policy migrates one Matrix-Multiplication VM
to another remote node, also migrating its memory. Fur-
ther migrations for Matrix-multiplication VMs may occur
if collocated with other Matrix-multiplication codes to al-
leviate contention for cache resource, an ideal configuration
being collocation with Wordcount instead (Wordcount is less
cache-intensive than Matrix-multiplication). As seen in Fig-
ure 8, these migrations lead to performance variability for
Matrix-multiplication, and also Voldemort and Wordcount
due to memory migration overheads at source and destina-
tion memory controllers. An indication of these overheads
can also be seen in Table 1 for ‘Mix-2" where Local pol-
icy has the highest L3 MPKI amounts, and highest CPU us-
age needed to migrate memory pages. Local policy is also
the least efficient shown by its lowest P.E metric. If is in-
teresting to observe that despite having lower performance
variability than ‘low-cost’ and ‘random’ policies as seen in
Figure 1, the local policy is still least efficient due to its
high resource management costs. This makes a case for cost-
aware resource management. Next, ‘low-cost’ policy uses
CPU-capping of Matrix-multiplication VMs as the cheap-
est method to indirectly free up cache usage for Voldemort
VP. However, though this leads to low performance degra-
dation for Voldemort, it causes significant hurt to Matrix-
Multiplication VMs. This hence shows that ignoring CPU
sensitivity of Matrix-multiplication is not an effective pol-
icy, and makes a case for ‘sensitivity-aware’ resource man-
agement. Random policy chooses a random node to migrate
Matrix-multiplication VCPUs. This causes variability for all
applications; Mapreduce codes are hurt due to their VCPUs
separated across multiple caches hurting their cache sensi-
tivities, while Voldemort response times are hurt (by up to
23%) when collocated with Matrix-multiplication codes dis-
regarding its cache and MC/IC sensitivity. Finally, Merlin
does not cap CPU for Matrix-multiplication accounting for
its CPU sensitivity. It migrates Matrix-multiplication VC-
PUs to a remote node instead, while not migrating its pages
due to knowledge of its MC/IC insensitivity. An ideal config-
uration involves one of the Matrix-multiplication and Word-
count code VCPUs to be placed remote. As seen in Fig-
ure 8, this causes some hurt to MM-4 and WC-1, however
the degradation amounts are limited to 9%. As seen in Ta-
ble 1, no superfluous memory migrations are triggered in
Merlin’s case, leading to highest P.E and lowest CPI metrics.

5.3 Importance of cost efficiency

In the next experiment, we execute a multithreaded Darwin
Streaming Server from Cloudsuite [8] inside a VM with 4
VCPUs and 4GB of memory collocated with 3 copies of
ScalParc and 2 copies of Fuzzy-Kmeans applications from
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Figure 9: Reconfigurations occur due to cache and memory
bandwidth re-allocation

the MineBench data mining suite. The MineBench VMs are
each configured with 4 VCPUs and 4GB memory. The Dar-
win Streaming Server is allocated 2 physical cores initially
and its CPU demand is varied using an external client work-
load which simulates 100 clients and requests low-bit rate
(480Kbps) and high bit-rate (720Kbps) media streams of 1-
min and 5-min durations over the experiment run. Serving
higher bitrate streams with good fidelity increases CPU re-
quirement at the server end. Similar to the first experiment,
the streaming server’s VP monitor will request additional
cores when CPU capacity exceeds 200. All workloads in this
mix exhibit high MC/IC sensitivity and intensity.

Figure 9 shows performance degradation amounts for all
applications across all allocation policies while ‘Mix-3’ in
Table 1 shows corresponding efficiency metrics. Local pol-
icy first allocates local CPU to Darwin Server VP, how-
ever this leads to an increase in its MC/IC usage. In its
global memory load balancing algorithm [2], local policy
periodically rebalances memory-intensive workloads across
NUMA nodes, by migrating their VCPUs and memory
pages. This policy hurts Darwin Server showing degradation
up to 17% in its bit-rates. As seen in Table 1, local policy
undertakes highest number of memory migrations leading to
high CPU usage and low efficiency (as seen from the low-
est P.E metric). Low-cost policy disregards CPU sensitivity
of ScalParc and Fuzzy-KMeans, when attempting to alle-
viate MC/IC usage by indirectly capping their CPU usage,
while Random policy disregards all workloads’ sensitivity
to MC/IC resources by choosing random NUMA nodes to
migrate their VCPUs. Both policies hence lead to increased
variability in performance. Finally, Merlin first allocates lo-
cal CPU to Darwin Streaming server, similar to local policy.
However in the ‘repercussions’ phase (Section 3.5), upon
observing that the subsequent MC/IC usage hurts the Scal-
Parc workloads, Merlin needs to re-do the reconfiguration
for Darwin server. Leveraging the MC/IC sensitivity knowl-
edge of all workloads, Merlin has no option but to migrate
either Darwin server VP or data-mining workload to another



node. The results in Figure 9 show degradations for when
Merlin chooses to switch ScalParc VP (instead of Darwin
server) with Fuzzy-KMeans VP. Migrating Darwin server
instead causes 13% degradation to its bit-rates, higher than
that caused to data-mining workloads. We postulate that the
decision to migrate Darwin or data-mining workloads can be
arbitrated via Merlin’s use of priorities; or via application-
level performance monitors providing feedback to Merlin’s
management. Efficiency metrics show that Merlin has the
highest P.E metric despite undertaking migrations. This is
due to Merlin’s methods of tracking per-application VP re-
source needs and sensitivities which lead to management
operations only when needed; instead of triggering more
frequent global reconfigurations such as in local policy. This
also leads to fewer costly memory migrations.

Re-allocation overheads. Finally, overheads in moving
an applications VCPU to a different socket are small, on the
order of 3780 CPU cycles or 1.78 microseconds on our West-
mere processor. These include only the cost of migrating the
VCPU to another CPU and associated synchroniza- tion, and
do not include overheads of losing cache-locality. Copying
one 4kb page needs 430ns on our Westmere system. When
page migration is inevitable, such as in the above exam-
ple, up to 11% migration overheads are observed. However,
these are incurred for the right workloads using Merlin’s
cost-awareness. Merlin’s sensitivity knowledge can help cap
overheads up to 4% by avoiding migrations. This motivates
support for lower cost memory migration in future hardware.

Summarizing, knowledge of costs of allocation and multi-
dimensional resource sensitivities helps Merlin in eliminat-
ing the less effective configurations and choosing the more
effective ones for all applications while always seeking im-
proved platform efficiency. This is shown via low perfor-
mance degradation, variability and low costs of manage-
ment. Consistently higher P.E metrics demonstrate that plat-
forms and their consolidated VPs managed via Merlin’s
methods are indeed ‘better managed’ systems.

6. Related Work

Prior work on isolation [3, 9, 12, 14, 26] has devised hard-
ware solutions to enforce applications’ and virtual plat-
forms’ [26] cache and bandwidth shares. Memory schedul-
ing policies [15] in hardware maximize fairness and overall
system throughput for collocated workloads. While Merlin
already leverages existing hardware support for partitioning
CPU and memory resources, and cache/MC/IC resources at
a NUMA node level, further improvements can be gained
from additional hardware features for fine-grained alloca-
tion of cache/MC/IC resources. Complementing such gains
from potential hardware advancements, with Merlin, we can
also flexibly choose and vary the software policies that adapt
to changing application dynamics.

Previous work addressing consolidated workloads [2,
4, 17, 18, 29, 31, 39] uses a combination of techniques

like workload characterization and online prediction of
LLC miss-rates to distribute applications’ memory intensity
across an entire platform, thereby increasing total system
throughput. Merlin’s evaluations against ‘local’ throughput-
oriented policies [2] demonstrate the importance of consid-
ering sensitivity knowledge of individual applications for
more efficient platform management. Recent work also ex-
plores sensitivity-driven interference mitigation, for fore-
ground/background applications [5, 21, 37]. None of these
solutions, however, cater to individual applications, offer a
single unified approach to dynamic multi-dimensional re-
source allocation for multicore machines, or study the im-
plications on other resource types when adjusting resource
allocation along some resource dimension. Further, they do
not enhance sensitivity knowledge with cost-based optimiza-
tion, to make platform management more efficient. Finally,
in the presence of future hardware support for isolation, pre-
vious work [30, 34] in reserving application software shares
can be further augmented with Merlin’s arbitration methods
to manage their multi-dimensional elasticity.

7. Conclusions and Future Work

The Merlin resource allocator for server platforms offers
unique new functionality to address the increasing degrees of
workload consolidation in today’s datacenter systems. First,
it manages entire applications, through its *virtual platform’
(VP) management abstraction. Second, management con-
siders all resource dimensions affecting application perfor-
mance on single multicore servers, including its compute,
memory, and memory bandwidth resources (LLC, MC and
IC resource types). Third, its automated methods for appli-
cation reconfiguration use arbitration guided by online mod-
els capturing both the cost of VP reconfigurations and the
sensitivities of other application VPs to the resource types
affected by these reconfigurations. The outcome, guided by
these two metrics, are management methods that improve
platform efficiency and lead to more ‘effective’ reconfigura-
tions, by choosing the ‘lowest cost’ allocation methods that
will also cause the ‘least amount of hurt’ to all applications.
This leads to improved management of server resources and
fairness in performance degradation across all applications,
particularly in oversubscribed systems.

Our future work continues to evaluate Merlin’s resource
allocation techniques to better understand the limits of re-
configuring a server’s resource shares to provide appropriate
allocations to all applications. Several topics of interest are:
(1) to add notification interfaces between Merlin and higher-
level cluster schedulers, e.g., to prompt application migra-
tion across servers, (ii) to gain additional insights on timing
issues, such as suitable epoch times, reaction vs. decision de-
lays, and stability guarantees (Merlin currently uses simple
epoch histories to integrate across actions taken in different
epochs).
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