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Abstract. We show how to build a binary heap in-place in linear time
by performing ∼1.625n element comparisons, at most ∼2.125n element
moves, and ∼n/B cache misses, where n is the size of the input array, B
the capacity of the cache line, and ∼f(n) approaches f(n) as n grows.
The same bound for element comparisons was derived and conjectured
to be optimal by Gonnet and Munro; however, their procedure requires
Θ(n) pointers and does not have optimal cache behaviour. Our main idea
is to mimic the Gonnet-Munro algorithm by converting a navigation pile
into a binary heap. To construct a binary heap in-place, we use this
algorithm to build bottom heaps of size Θ(lgn) and adjust the heap
order at the upper levels using Floyd’s sift-down procedure. On another
frontier, we compare different heap-construction alternatives in practice.

1 Introduction

The binary heap, introduced by Williams [16], is a binary tree in which each
node stores one element. This tree is almost complete in the sense that all the
levels are full, except perhaps the last level where elements are stored at the
leftmost nodes. A binary heap is said to be perfect if it stores 2k − 1 elements,
for a positive integer k. The elements are maintained in (min-)heap order, i.e. for
each node the element stored at that node is not larger than the elements stored
at its (at most) two children. A binary heap can be conveniently represented in
an array where the elements are stored left-to-right in the level order of the tree.

In this paper we consider the problem of constructing a binary heap of n
elements given in an array. Our objective is to do the construction in-place,
i.e. using O(1) words of additional memory. We assume that each word stores
O(lg n) bits. The original algorithm of Williams constructs a binary heap in-
place in Θ(n lg n) time. Soon after, Floyd [6] improved the construction time to
Θ(n) with at most 2n element comparisons. These classical results are covered
by most textbooks on algorithms and data structures (see, e.g. [4, Chapter 6]).
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Table 1. The number of element comparisons required by different heap-construction
algorithms. The input is of size n; the average-case results assume that the input is a
random permutation of n distinct elements.

Inventor Abbreviation Worst case Average case Extra space

Floyd [6] Alg. F 2n ∼1.88n Θ(1) words

Gonnet & Munro [8] Alg. GM 1.625n 1.625n Θ(n) words

McDiarmid & Reed [12] Alg. MR 2n ∼1.52n Θ(n) bits

Li & Reed [11] Lower bound ∼1.37n ∼1.37n Ω(1) words

In the literature, several performance indicators have been considered: the
number of element comparisons, the number of element moves, and the number of
cache misses. Even though Floyd’s heap-construction algorithm is asymptotically
optimal, for most performance indicators the exact optimal complexity bounds
are still unknown. In Table 1 we summarize the best known bounds on the
number of element comparisons when constructing a heap. By an element move
we mean any assignment of elements to variables and array locations. Hence,
a swap of two array elements is counted as three element moves and a cyclic
rotation of k array elements is counted as k + 1 element moves.

Without loss of generality, we assume that our heaps are perfect. As pointed
out for example in [3], the nodes that do not root a perfect heap are located on
the path from the last leaf to the root. This means that a heap of size n can be
partitioned into at most blg nc perfect subheaps. After building these subheaps,
combining them can be done bottom-up in O(lg2 n) time, and hence this does
not affect the constant of the leading term in the complexity expressions.

Our main contribution is a simple technique for making existing algorithms
for heap construction to run in-place. First, we reduce the amount of extra
space used by the algorithm to a linear number of bits. Second, we use such
an algorithm to build heaps of size Θ(lg n) at the bottom of the input tree; we
keep the needed bits in a constant number of words. Third, we combine these
bottom heaps by exploiting the sift-down procedure of Floyd’s algorithm at the
top nodes of the tree. The key observation is that the work done by all sift-down
calls is sublinear. We apply this approach for both the algorithm of Gonnet and
Munro [8] and that of McDiarmid and Reed [12]. The inventors believe that their
algorithms are optimal with respect to the number of element comparisons; the
first in the worst-case sense and the second in the average-case sense.

In our in-place variant of the GM algorithm, we also optimize the number
of element moves. For each bottom tree, we start by building a navigation pile
at the end of the element array [9]; this technique is used by Kronrod [10]. To
optimize the number of element moves when converting a navigation pile to a
binary heap, we employ the hole technique that is also used by Floyd [6].

Another consequence of our in-place construction is that both algorithms can
be modified—without affecting the number of element comparisons and element
moves—such that the cache behaviour of the algorithms is almost optimal under
reasonable assumptions. That is, without any knowledge about the size of cache
blocks (B) and the size of fast memory (M), the algorithms incur about n/B
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cache misses. Here we rely on an improvement proposed by Bojesen et al. [1]
showing how Floyd’s algorithm can be made cache oblivious. For the algorithms
involving linear extra space, this kind of optimality cannot be achieved due to
the cache misses incurred when accessing the additional memory.

2 Heap Construction with a Navigation Pile

The GM algorithm [8] builds a binary heap on 2k − 1 elements in two phases:
First a heap-ordered binomial tree [13] of size 2k is constructed, and then this
binomial tree is converted into a binary heap plus one excess element that is
discarded. Since a binomial tree is a pointer-based data structure, we considered
some related data structures that are more space-economical like a weak heap [5]
and a navigation pile [9]. We decided to use the latter as our basic building block
since it involves a fewer number of element moves for the overall construction.

2.1 Building a navigation pile

Consider an array of elements a0, . . . , an−1, where n = 2k for a positive integer
k. A navigation pile [9] is a compact representation of a tournament tree built
above this array. This tournament tree is a complete binary tree of size 2k − 1.
Extending this tree by the element array, we get a complete binary tree of size
2k+1 − 1. We say that the elements have height 0, all the bottommost nodes of
the tournament tree have height 1, and so on; the root has height k.

Let us number the nodes at each level starting from 0. For a node at height
h with index i at that level, its parent is at level h + 1 (if any) and has index
bi/2c, and its children are at level h− 1 (if any) and have indices 2i and 2i+ 1.
These definitions are illustrated in Fig. 1.

A node of the tournament tree is said to span the leaves of the subtree rooted
at that node. For each node we store a reference to the minimum element within
the range spanned. If a node has height h, it spans 2h elements. More precisely,
if the index of the node is i at its level, it spans the elements in the range
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Fig. 1. A navigation pile of size 8; navigation information is visualized with pointers.
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[i × 2h · · i × 2h + 2h − 1]. To address any of these elements, we need to know
the height of the node, its index, and an offset inside the range (these are h
bits called the navigation bits). The navigation information for the root uses k
bits, that for the children of the root k− 1 bits, and so on. The total number of
navigation bits for all the nodes in the tournament tree is then:

2k
k∑

h=1

h/2h < 2n .

Hence, these bits can be stored in a bit-array of size at most 2n bits.
We can traverse the navigation pile starting from the root or from a leaf.

During such a traversal we recall the height of the current node, its index at its
present level, and the start position of the navigation bits of the present level
in the bit array. When this information is available, we can access the parent
or the children of the current node such that the same information is available
for the accessed node. This can be accomplished by relying on simple arithmetic
operations. For more details of implementing navigation piles and the related
primitive operations, see [9].

To initialize a navigation pile, we traverse the tree bottom-up level by level
and update the navigation information at each node by comparing the elements
referred to by its children. Such a construction requires n−1 element comparisons
and no element moves. In addition, a navigation pile supports the priority-queue
operations insert and delete easily and efficiently [9].

2.2 Converting a navigation pile into a binary heap

Later we shall need a factory that can produce binary heaps of some particular
size 2k−1, where k is a positive integer. For the time being, let us assume that the
factory already has a navigation pile on 2k elements in its input area occupying
the last locations of the element array. The task is to move the elements one by
one from the input area to an output area that will, at the end, contain a binary
heap of size 2k−1. As another outcome of the procedure, we provide a reference
to the location of the excess element in the input area.

For a tournament-tree node in a navigation pile, the first bit of its navigation
information tells whether the minimum element among the elements it spans is
in the left or the right subtree of that node. We call the subtree in which the
minimum element is the winner subtree, and the other subtree the loser subtree.

As for the GM algorithm, our procedure is recursive. The nodes of the navi-
gation pile are visited starting from the root, which is initially the current input
node. Correspondingly, in the output area, the root of the binary heap to-be-built
is initially the current output node. If the current input node is visited for the
first time, we immediately proceed to its loser subtree and recursively convert
it into a binary heap. The right child of the current output node will root the
created binary heap. After processing the loser subtree, we move the minimum
element w among those spanned by the current input node to the current out-
put node, and then we move the excess element of the loser subtree to the old
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position of w. Hereafter, we have to update the navigation information on the
path from w’s old place to the root of the winner subtree. (It is not necessary
to update the navigation information at the current input node.) It takes one
element comparison per internal node to fix this navigation information. If the
current input node is at height k of the navigation pile, we perform k−1 element
comparisons. (This is similar to an insert operation in a navigation pile.) After
this fix, the winner subtree can be converted into a binary heap recursively. The
output is placed at the left subtree of the current output node.

As the base case, we use k = 3 (a navigation pile with 8 elements). The
minimum element w of the structure is referred to by the root of the navigation
pile and is readily known. Notice also that the loser subtree of the root forms
a heap of size 3 plus one excess element. In other words, the minimum element
among the elements of the loser subtree is readily known as well. We are only left
with determining the minimum element within the winner subtree. In addition
to w, there are three other elements in the winner subtree, and the smaller of
two of them is already known. It follows that we only need to compare the
third element with the smaller of these two elements. Hence, only one element
comparison is needed for the base case.

Let us now analyse the performance of this conversion procedure. To convert
a navigation pile of size 2k into a binary heap, we perform two recursive calls for
navigation piles of size 2k−1. In addition, we need to call insert once to refresh
the navigation information in the winner subtree. Let C(2k) be the number of
element comparisons needed to convert a navigation pile of size 2k into a binary
heap plus an excess element. The number of element comparisons performed by
insert is k − 1. The next recursive relation follows:{

C(8) = 1,
C(2k) = 2C(2k−1) + k − 1 .

For n = 2k ≥ 8, the solution of this relation is C(n) = 5/8 · n− lg n− 1. Adding
the n−1 element comparisons needed for the construction of the navigation pile,
the total number of element comparisons to build a binary heap on n elements
is bounded by 1.625n.

Let M(2k) be the number of element moves performed when converting a
navigation pile of size 2k into a binary heap. In the base case, every element
except the excess element is moved from the input area to the output area. In
the general case, after each recursive call, the minimum element is moved to the
output area and the excess element of the loser subtree is moved to the place of
the minimum element in the winner subtree. The next recursive relation follows:{

M(8) = 7,
M(2k) = 2M(2k−1) + 2 .

For n = 2k ≥ 8, the solution of this relation is M(n) = 9/8 · n − 2, i.e. the
number of element moves in this case is bounded by 1.125n.

Before proceeding, we have to consider one important detail. Since we aim
at using this conversion procedure as a subroutine in our in-place algorithm, we
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must ensure that the recursion is handled only using a constant amount of extra
storage. In an iterative implementation of the procedure, we keep track of the
current input node (plus all the normal information required when traversing a
navigation pile, including the present height), the current output node, and the
previous input node. When this information is available, we can deduce whether
the current input node is visited for the first, the second, or the third time; and
whether we are processing a loser subtree or a winner subtree. So, our iterative
implementation does not need any recursion stack.

3 Building a Binary Heap In-Place

Assume that the task is to build a binary heap on n elements; here we need not
make any assumptions about n. Let m = 2blg lgnc+1 − 1. We call all complete
binary trees of size m bottom trees. The basic idea is to use the algorithm de-
scribed in the previous section to convert all bottom trees to bottom heaps and
then ensure the heap order at the upper levels by using the sift-down procedure
of Floyd’s algorithm or any of its variants. The crucial observation is that, by
carefully choosing the sizes of the bottom trees, the work done by the sift-down
calls at the upper levels becomes sublinear. The details are explained next.

To be able to convert the bottom trees into binary heaps, we use the last
m + 1 locations of the element array as the input area for our factory. The
main distinction from our earlier construction is that we do not have an empty
output area, and hence we have to use the other bottom trees as the output area.
Observe that there is a constant number of (at most three) bottom trees that
overlap the input area. These special bottom trees will be handled differently.

In the first phase, we process all the bottom trees that are not special. Con-
sider one such bottom tree T . We construct a navigation pile in the input area of
our factory and convert it into a bottom heap as explained earlier. For that, the
bottom tree T is used as the output area. Each time before an element is moved
from the input area to T , the element at that particular location in T is moved
to the input area. After this process, the input area is again full of elements and
can be used for the construction of the next bottom heap.

In the second phase, we process the special bottom trees by using Floyd’s
heap-construction algorithm. Since the number of the special bottom trees is a
constant, this phase only requires O(lg n) work.

In the third phase, we ensure the heap order for the nodes at the upper levels
by using the sift-down procedure of Floyd’s algorithm; this is done level by level
starting at level blg lg nc+1 upwards. For each such node we compare the values
of its two children, then compare its value x with the smaller of its two children,
and move this child to the parent if the value at the child is smaller than x. If a
move took place, we start from the moved child and repeat until we either reach
a leaf or until x is not larger than both children. We finally move x to the vacant
node if any moves were performed. Other variants of the sift-down procedure
that require less element comparisons can be used, but this will not affect our
overall bounds as the work performed in the third phase is sublinear.
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Note that this construction is fully in-place. Since the size of the navigation
pile is only logarithmic, the bits needed can be kept in a constant number of
words. In addition to these bits, the first phase only requires a constant number
of other information. Since Floyd’s algorithm is in-place, the second and third
phases also require a constant number of words.

To optimize the number of element moves, we make two modifications to the
first phase. Let us call all complete binary trees of size 7 micro trees. In the base
case, we have to move the corresponding elements from the navigation pile to a
micro tree, and vice versa. An element swap would involve three element moves.
To reduce this to two element moves, we put the elements of the first micro
tree aside at the beginning of the procedure. Then we move the corresponding
elements from the input area to this empty space once those elements are pro-
cessed, and then fill these vacated positions of the input area with the elements
from the next micro tree. These actions are repeated whenever a base case is to
be processed. Higher up we can use the hole technique to reduce the number of
element moves by one per element. In a non-optimized form, for every step of the
algorithm, we should perform a cyclic rotation of three elements: the minimum
element w referred to by the current input node of the navigation pile, the excess
element of its loser subtree, and the element at the current output node; this
would mean four element moves. However, the pattern how elements are moved
to the output area is completely predictable. Therefore, we can move the parent
of the root of the first micro tree (the first output node) aside at the beginning
of the procedure. Thereafter, we can move the current minimum element w from
the navigation pile to this hole, move the excess element to the position of w,
and create a new hole by moving the element at the next output position to the
place of the excess element. Repeating these actions, a cyclic rotation of three
elements would involve three element moves. After processing all the bottom
trees (except the special ones), the elements that were put aside are taken back
to the current holes in the input area.

Let us now analyse the performance of this procedure. The number of elem-
ents involved in all the constructions of the bottom heaps is bounded by n. It
follows that, if we use our version of the GM algorithm in the first phase, the
number of element comparisons is bounded by 1.625n+ o(n). Compared to our
earlier construction, one more element move is needed for moving each element
to the input area. Including the cost of putting elements aside, the number of
element moves is bounded by 2.125n+ o(n). In the second phase the amount of
work done is O(lg n). In the third phase, the number of element comparisons and
moves performed by the sift-down routine starting from a node at height h is at
most 2h. Since there are at most n/2h+1 nodes at height h, and as we process
the nodes at height blg lg nc + 1 upwards, the total work (element comparisons
and moves) performed in the third phase is proportional to at most

blgnc∑
h=blg lgnc+1

2h · n/2h+1 = O

(
n · lg lg n

lg n

)
= o(n) .
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We note that in the base case the element moves are handled more efficiently
than at the upper levels of the tree. By making the base case larger one could
get the number of element moves even closer to 2n. With extra space for ∼lg n
elements, the bound ∼2n element moves could actually be reached.

4 Improving the Cache Behaviour

Consider the construction of a heap of size n on a computer that has a two-
level memory: a slow memory containing the elements of the input array and
a fast memory, call it a cache, where the data must be present before it can
be moved further to the register file of the computer. Assume that the size of
the cache is M and that the data is transferred in blocks of size B between
the two memory levels; both M and B are measured in elements. We assume
that the cache is ideal, so the optimal off-line algorithm is the underlying block-
replacement strategy when the cache is full. The ideal cache model is standard
in the analysis of cache-oblivious algorithms [7].

For our analysis, we assume that M � B lg(max{M,n}). Under this as-
sumption, several small heaps of size ∼lg n can simultaneously be inside the fast
memory. When a heap is inside the fast memory, among the blocks containing
the elements of the heap, there may be at most two blocks per heap level that
also contain elements from outside the heap. By the assumption, a heap of size
cM together with these 2dlg(cM)e blocks, constituting cM + 2Bdlg(cM)e elem-
ents, can simultaneously be inside the fast memory, provided that c < 1 is a
small enough positive constant.

Consider an algorithm A (either our version of the GM algorithm or the
MR algorithm) that is used to construct all bottom heaps of size ∼lg n. All the
remaining nodes are made part of the final heap by calling Floyd’s sift-down
routine. To improve the cache behaviour of the algorithm, the enhancement
proposed by Bojesen et al. [1] is to handle these nodes in reverse depth-first
order instead of reverse breadth-first order. This algorithm can be coded using
only a constant amount of extra memory by recalling the level where we are at,
the current node, and the node visited just before the current node. When n is a
power of two minus one, the procedure is pretty simple. In the iterative version
given in Fig. 2, the nodes at level blg lg nc are visited from right to left. After
constructing a binary heap below such a node using algorithm A, its ancestors
are visited one by one until an ancestor is met that is a right child (its index is
odd); for each of the visited ancestors the sift-down routine is called.

Here we ignored the detail that our version of algorithm A uses the last part
of the element array as its input area, but it is easy to sift down the elements of
the special bottom trees and their ancestors in a separate post-processing phase.
Namely, the nodes on the right spine going down from the root of the heap to
the rightmost leaf are easy to detect (their indices are powers of two minus one);
so, in the other phases, visiting these nodes can be avoided.

When processing a heap of size cM during the depth-first traversal, each
block is read into fast memory only once. When such a heap has been processed,
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in-place-A::make-heap(a: array of n elements, less: comparison function)

1: assert n = 2dlgne − 1
2: h← blg lgnc // height of the bottom trees

3: j ← n/2h // index of the root of the last bottom tree
4: i← j/2 // index of the parent of the node with index j
5: while j > i
6: A::make-heap(a, j, h, less)
7: z ← j
8: while (z bitand 1) = 0
9: F::sift-down(a, z/2, n, less)
10: z ← z/2
11: j ← j − 1

Fig. 2. In-place heap construction by traversing the nodes above the bottom trees in
depth-first order. The root has index 1, and the leaves have height 0.

the blocks of the fast memory can be replaced arbitrarily, except that the blocks
containing elements from outside this particular part are kept inside fast memory
until their elements are processed. For the topmost ∼n/(cM) elements, we can
assume that each sift-down call incurs at most ∼lg n cache misses. Thus, the
total number of cache misses incurred is at most n/B + O(n lg n/M). By our
assumption, the first term in this formula is dominating.

5 Heap Construction in Practice

The heap-construction algorithm of Gonnet and Munro [8] is considered by many
to be a theoretical achievement that has little practical significance. Out of
curiosity, we wanted to investigate whether this belief is true or not; in particular,
whether the improvements presented in this paper affect the state of affairs.
Therefore, we implemented relaxed variants (with respect to the memory usage
and the number of element moves performed) of the proposed algorithms and
compared their performance to several existing algorithms. In this section we
report the results of our experiments. All the implemented programs had the
same interface as the C++ standard-library function make_heap.

The tests were performed on a 32-bit computer (model Intel R© CoreTM2 CPU
T5600 @ 1.83GHz) running under Ubuntu 11.10 (Linux kernel 3.0.0-13-generic)
using g++ compiler (gcc version 4.6.1) with optimization level -O3. The size of
L2 cache of this computer was about 2 MB and that of the main memory 1 GB.4

4 We also ran our experiments on two other 64-bit computers, one having an Intel
i/7 CPU 2.67 GHz processor (Ubuntu 10.10 with Linux kernel 2.6.28-11-generic
installed) and another having an AMD Phenom II X4 925 processor (4096 MB
RAM and Linux Mint 11.0 installed).
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In an early stage of this study, we collected programs from public software
repositories and wrote a number of new competitors for heap construction. In
total, we looked at over 20 heap-construction methods including: Williams’ al-
gorithm of repeated insertions [16]; Floyd’s algorithm of repeated merging with
top-down [6], bottom-up [14] and binary-search [2] sift-down policies, as well as
depth-first and layered versions of it [1]; and McDiarmid and Reed’s variant [12]
that has the best known average-case performance.

We found that sifting down with binary search and explicitly maintaining
a search path were inferior, so we excluded them from later rounds. The lay-
ered construction [1] that iteratively finds medians to build a heap bottom-up
was fast on large inputs, but the number of element comparisons performed was
high (larger than 2n), so we also excluded it. Our implementation of Floyd’s
algorithm with the bottom-up sift-down policy had the same number of element
comparisons as the built-in function in the C++ standard library and its running
time was about the same, so we also excluded it. We looked at other engineered
variants that include many implementation refinements, e.g. the code-tuned re-
finements discussed in [1], but they were non-effective, so we relied on Floyd’s
original implementation. The GM versions using weak heaps instead of navi-
gation piles were consistently slower and performed more element moves, and
hence were also excluded from this report.

The preliminary study thus left us with the following noteworthy competitors:

std: The implementation of the make_heap function that came with our g++

compiler relying on the bottom-up sift-down policy [14]. Two of the un-
derlying subroutines passed elements by value. Although this may result in
unnecessary element moves, we assumed that these function calls will not
involve any element moves.

F: We converted Floyd’s original Algol program into C++. This program rotates
the elements on the sift-down path cyclically, so element swaps are not used.

BKS: This variant of Floyd’s heap-construction program traverses the nodes in
depth-first order as discussed in [1].

in-situ GM: We implemented the algorithm of Gonnet and Munro [8] using
a navigation pile as described in this paper, except that the subroutine for
converting a navigation pile into a binary heap was recursive. Instead of bit-
compaction techniques we used full indices at the nodes, and we did not use
the hole technique for optimizing the number of element moves. Also, we
had to make the height of the bottom trees 2blg lg nc (instead of blg lg nc)
before the performance characteristics of the GM algorithm became visible.

in-situ MR: As in the previous program, the nodes were visited in depth-first
order, but now the bottom trees were processed using the algorithm of Mc-
Diarmid and Reed [12]. All the elements on the sift-down path were moved
cyclically first after the final position of the new element was known as pro-
posed in [15]. Again, no bit-compaction was in use and full bytes were used
instead of bits. The height of the bottom trees was also set to 2blg lg nc.

We tested the programs for random permutations of n distinct integers for
different (small, medium, large, and very large) problem sizes n = 210−1, 215−1,
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Program
n std F BKS

in-situ
GM

in-situ
MR

210 − 1 22.3 14.6 17.1 21.3 26.2
215 − 1 22.2 14.6 17.4 23.0 24.4
220 − 1 29.3 21.9 17.8 22.9 23.6
225 − 1 29.8 21.7 17.5 22.9 23.6

Fig. 3. Execution time per element in nanoseconds.

Program
n std F BKS

in-situ
GM

in-situ
MR

210 − 1 1.64 1.86 1.86 1.74 1.52
215 − 1 1.64 1.88 1.88 1.65 1.54
220 − 1 1.64 1.88 1.88 1.63 1.53
225 − 1 1.65 1.88 1.88 1.63 1.53

Fig. 4. Number of element comparisons performed per element.

Program
n std F BKS

in-situ
GM

in-situ
MR

210 − 1 2.25 1.73 1.73 2.06 1.52
215 − 1 2.25 1.74 1.74 2.38 1.53
220 − 1 2.25 1.74 1.74 2.38 1.53
225 − 1 2.25 1.74 1.74 2.38 1.52

Fig. 5. Number of element moves performed per element.

220−1, and 225−1. The elements were of type int. All our programs were tuned
to construct binary heaps of size 2k− 1. The obtained results are given in Fig. 3
(execution time), Fig. 4 (element comparisons), and Fig. 5 (element moves).

In our opinion—while not being overly tuned—our in-situ treatment for the
GM algorithm showed acceptable practical performance. As expected, the num-
ber of element comparisons and element moves for the in-situ GM algorithm
were beaten by the in-situ MR algorithm. Concerning the running time, the
in-situ GM algorithm could beat the in-situ MR algorithm, but it was beaten
by Floyd’s algorithm F and the depth-first variant BKS.

6 Concluding Remarks

In practical terms, Floyd [6] solved the heap-construction problem in 1964. For
our experiments we took his Algol program and converted it into C++ with very
few modifications. For integer data, the cache-optimized version of Floyd’s pro-
gram described by Bojesen et al. [1] was the only program that could outperform
Floyd’s original program, and this happened only for large problem instances.
The algorithms discussed in this paper can only outperform Floyd’s program
when element comparisons are expensive. In the worst case, Floyd’s algorithm
performs at most 2n element comparisons and 2n element moves. Furthermore,
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as shown in [1], by a simple modification, Floyd’s algorithm can be made cache
oblivious so that its cache behaviour is almost optimal.

In theoretical terms, the heap-construction problem remains fascinating. We
showed how the two algorithms believed to be the best possible with respect
to the number of element comparisons can be optimized with respect to the
amount of space used and the number of cache misses incurred. In the worst
case, our in-place variant of Gonnet and Munro’s algorithm [8] requires ∼1.625n
element comparisons and ∼2.125n element moves. We also showed that the same
technique can be used to make McDiarmid and Reed’s algorithm [12] in-place.
Moreover, we proved that both of these in-place algorithms can be modified to
demonstrate almost optimal cache behaviour.

The main question that is still not answered is: Can the bounds for heap
construction be improved for any of the performance indicators considered?
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