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ABSTRACT

Select coastal regions of the North Slope of Alaska are experiencing high erosion rates that
can be attributed in part to recent warming trends and associated increased storm intensity and
frequency. The upper sediment column of the coastal North Slope of Alaska can be described
as continuous permafrost underlying a thin (typically less than 1-2 m) active layer that
responds variably to seasonal thaw cycles. Assessing the temporal and spatial variability of the
active layer and underlying permafrost is essential to better constrain how heightened erosion
may impact material fluxes to the atmosphere and the coastal ocean, and how enhanced thaw
cycles may impact the stability of the coastal bluffs. In this study, multi-channel electrical
resistivity tomography (ERT) was used to image shallow subsurface features of a coastal bluff
west of Kaktovik, on Barter Island, northeast Alaska. A comparison of a suite of paired
resistivity surveys conducted in early and late summer 2014 provided detailed information on
how the active layer and permafrost are impacted during the short Arctic summer. Such results
are useful in the development of coastal resilience models that tie together fluvial, terrestrial,

climatic, geologic, and oceanographic forcings on shoreline stability.

Introduction

It is now well documented that some Arctic coast-
lines are highly susceptible to erosion, and rates of
coastal bluff retreat have increased at some sites during
recent decades (Hinzman et al., 2005; Osterkamp, 2005;
Jones et al., 2009; Wendler er al, 2010). Heightened
erosion may be attributed in part to increases in the dura-
tion of thaw cycles and the frequency/intensity of oceanic
storm events (Rachold et al, 2000; Jorgenson et al.,
2006). Impacts of such erosion are now affecting North
Slope infrastructure, including some Native villages and
petroleum exploration and production facilities (Gibbs
and Richmond, 2015). As part of a combined geochem-
ical and geophysical reconnaissance, multi-channel electri-
cal resistivity tomography (ERT) was used to image
shallow subsurface features such as permafrost, the active
layer, and a coastal bluff face on Barter Island, northeast
Alaska. This paper examines the utility of the ERT
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method to assess fine-scale nuances in active layer and
permafrost dynamics over one summer thaw cycle on
the North Slope of Alaska. Preliminary results suggest
that ERT is a useful technique to discern subtle change
in surface features, and can be used in models that
address shoreline retreat, erosion, and bluff stability.

Study Site

Barter Island is located along the Beaufort Sea
coast of northern Alaska in the Arctic National Wildlife
Refuge (ANWR) (Fig. 1). The island is bounded to the
east and west by the Jago and Hulahula Rivers, respec-
tively. The Native Village of Kaktovik (population in
2014 was <300, http://www.alaska-demographics.com/
kaktovik-demographics) is located on the northeastern
shore of Barter Island. Parts of Kaktovik’s infrastructure
are directly impacted by shifting and retreating shorelines
(Gibbs and Richmond, 2015). The coastal margin of the
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Figure 1. Barter Island, located off northeastern Alaska in the Beaufort Sea. Inset box defines the area of resistivity
surveys conducted on the coastal bluffs west of Kaktovik in June and September 2014.

Beaufort Sea at Barter Island is influenced by oceanic,
fluvial, and climatic processes that control sediment sup-
ply, deposition, accumulation, and erosion (Jorgenson
and Brown, 2005; Reimnitz and Bruder, 1972). The
source of sediment originates in upland watersheds of
the Brooks Range with lesser contributions from local
glacial outwash (Wiseman et al, 1973; Walker, 1974;
Walker and Hudson, 2003). The rivers that drain the
Brooks Range are confined to the zones of continuous
permafrost (Beltaos, 2000). This implies that the ground-
water contribution to discharge (baseflow) is limited to
short periods of summer thaw. As a consequence, geo-
morphic processes are essentially shut down during
non-summer periods when river ice dominates (Ritchie
and Walker, 1974), and many shorter Arctic rivers can
experience no-flow conditions during this time. Most flu-
vial sediment is transported to the Beaufort Sea within a
few weeks and maximum sediment values in a North
Slope river often occur a few days before peak water dis-
charge (positive hysteresis), indicating the complex role
of prolonged frozen conditions on river hydrology
(Reimnitz and Bruder, 1972; Kane and Carlson, 1973;
Reimnitz and Maurer, 1979; Ray and Aldrich, 1996).
ANWR coastal plain sediment consists of eolian,
alluvial, fluvial, and marine deposits that are complexly
reworked (Short et al., 1974; Rawlinson, 1993; Rachold
et al., 2000; Smith and Piearce, 2002). With the exception
of deep lakes and incised river channels, the entire coastal
plain is underlain by continuous permafrost (Jorgensen et
al., 1996; Jorgenson and Brown, 2005). Ice-wedge poly-
gons are prevalent along the coast (Kanevskiy et al.,
2013). Seasonal thaw impacts the soil column variably
to depths up to 30—40 cm in peats and to deeper depths
in sands. Sediment from a borehole on Barter Island

that was drilled near Kaktovik consisted primarily of
silt to a depth of 150 cm, ground ice to depths that
extended from 150 to 300 cm, sandy gravel from 300 to
760 cm, and very uniform clay (beyond 760 cm to 7,770
cm) (Osterkamp and Jorgenson, 2006). Barter Island
experiences a prolonged winter that lasts up to 9 mo,
and strong winds (mean wind speed ~5 m/s) are frequent.
The mean annual air temperature is —12.4°C, while a
mean precipitation rate is just under 20 cm/yr (Kanevskiy
et al., 2013). There is an abundance of evidence that docu-
ments recent climatic change on the Alaska North Slope
(cf. Hinzman et al., 2005; Osterkamp, 2005; Osterkamp and
Jorgenson, 2006). Figure 2 is an example of an actively
eroding coastal bluff (elevation ~8 m) on Barter Island.

s \ e X L*" ~ e {
Figure 2. An example of a rapidly retreating coastal
bluff just west of Kaktovik, Alaska. Photo location is
shown in Fig. 3. Photo credit: Tom Lorenson, USGS.
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Figure 3. Electrical resistivity survey lines collected perpendicular and parallel to the coastal bluffs west of Kaktovik,
Alaska in June and September 2014. Lines BI-1 and BI-4 are the thick gray lines.

Methods

Two identical sets of nine shore-parallel and shore-
perpendicular ERT surveys were conducted on a coastal
bluff west of Kaktovik on Barter Island in June and Sep-
tember 2014 (Fig. 3). The timing of these surveys was
intended to capture winter (June) and end-of-summer
(September) conditions so that the cumulative effects of
one summer thaw cycle could be examined in the paired
ERT data. The paired ERT surveys were conducted
using an AGI R8 multi-channel SuperSting receiver pow-
ered by two 12v DC marine batteries. Current was routed
by an external switch box to a land-based cable that con-
sists of 56 electrodes spaced 2 m apart. Electrical resistiv-
ity measurements were conducted by injecting current
into the ground through two electrodes and then measur-
ing the resulting potential field at various positions using
additional pairs of potential electrodes down cable. Up to
eight simultaneous pairs of electrodes can be measured
for each current injection point for the 56 electrodes
on the line. Contact resistance was lowered to increase
signal levels versus noise by driving in 50-cm stainless
steel electrode spikes into the ground. A contact resis-
tance test was preformed prior to each ERT survey.
A dipole-dipole array was used on all nine survey lines
during both June and September. Each ERT survey line
pair was processed identically using AGI EarthImager
software. Inversion model goodness of fit was determined
using the root mean square (RMS) error between the
measured apparent resistivity and the calculated appar-
ent resistivity. In general, iterations less than six are
desired, with lower iterations preferred. Inversion model
RMS of less than 10% is typically acceptable for noisy
environments. Inversions on this project typically
required less than 5 iterations to attain an RMS error

of less than 5%. The shallow subsurface (0.5-2 m) was
also manually ground-truthed along each survey line
using either electrode spikes (June 2014) or a probing
probe (September 2014).

Results and Discussion

Multi-channel electrical resistivity has proven to be
a useful geophysical technique to examine active layer/
permafrost dynamics as it is highly sensitive to a change
in the ionic strength of pore fluid, mineralogy, and the
phase change between liquid water and ice (Hauck,
2002; Overduin et al., 2012; Dafflon et al., 2013). Using
a land-based, multi-electrode resistivity cable, the under-
lying lithology, pore space, and hydrologic parameters
are all held constant, so a change in resistivity can be
attributed solely to a change in ice content, temperature,
or porosity (Kneisel er al, 2008; Lewkowicz
et al., 2011). Another attribute that makes ERT particu-
larly useful for permafrost studies is that the resistivity
of frozen sediment, ground ice, or permafrost can reach
values up to 1 x 10° ohm-m, yielding a strong resistivity
signal relative to other earthen materials (e.g., clay =
1-100 ohm-m, and organic matter = up to 300 ohm-m;
Duguay, 2013). In all ERT model outputs, the upper
range of modeled resistivity values extended to 10,000
ohm-m.

The processed ERT images show dramatic changes
in both the shallow and deeper features from June to Sep-
tember 2014. For example, a shore-perpendicular survey
line conducted in September on top of the bluff reveals a
thawed active layer that was still frozen in June (Figs. 4
and 5). During June, when the upper active layer was still
completely frozen, many ERT images show pronounced
vertical features that are either subdued or not present
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Figure 4. Paired multi-channel ERT for transect BI-4 that runs shore perpendicular and down the beach face. The
structure of the active layer and underlying permafrost has clearly changed from June to September 2014. Photo shows a
side view of the bluff face over which the end of the resistivity cable was draped. Photo credit: Tom Lorenson, USGS.
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Figure 5. Paired ERT for transect BI-1, which is also a shore-perpendicular line on top of the coastal bluff. Remnants of a
snow fence and the outskirts of Kaktovik are visible just east of BI-1. Photo credit: Tom Lorenson, USGS.
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at all during the September surveys. These features may
represent ubiquitous ice-wedge polygon boundaries that
are developed by unique freeze-thaw cycles. Some ERT
surveys were conducted directly across the bluff face
and onto the adjacent beach (Fig. 5). A June-September
comparison of such a survey line suggests that ERT effec-
tively captured the frozen structure of an exposed bluff
face and can yield information on how the bluff face
and adjacent bluff surface changed during one summer
thaw cycle. Shallow manual frost probe ground-truthing
of the resistivity survey lines showed that the upper sur-
face of the active layer is consistently frozen in June to
depths less than 10 cm and in September to depths
~20-90 cm. Future work is needed to more quantita-
tively validate these geophysical observations and
explore how this technique can provide new information
on water content and drainage effectiveness of North
Shore bluff landscapes. These electrical geophysical
methods provide new insights into how subsurface fea-
tures can change over one summer, with obvious implica-
tions to coastal bluff stability and material efflux to the
atmosphere and coastal ocean.

Concurrent with these findings our group is 1) using
advanced mapping techniques to measure coastal change
and bluff retreat, i) developing complex models that
merge oceanic and climatic datasets to better predict
sediment transport and erosion under changing regimes,
iil) quantifying associated material efflux (nutrients, car-
bon, sediment) to the coastal waters and atmosphere,
and iv) using genomic microbial techniques to evaluate
the role of freeze/thaw cycles on greenhouse gas produc-
tion and emissions. Together, such results will support
models that refine our understanding of how North Slope
ecosystems are adapting to a changing climate.
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