The development of this timesharing system led to insights on
microprogrammable organization, instruction sets, reliability,
and software and firmware development tools.

The Maxc Systems

Edward R. Fiala
Xerox Palo Alto Research Center

The process of developing a computer system
is not only inherently interesting; it also leads to
significant organization concepts that the builders
are often impelled to share with others. So it was
in our development of the Maxcl and Maxc2 time-
sharing systems at the Xerox Palo Alto Research
Center between 1971 and 1977. From this develop-
ment came some ideas of system organization
that are now seen to have contributed to the
success of the effort:

The high availability achieved is attributable to
the simple microprogrammable organization of
the machines.

Microprogramming organization promotes sim-
plicity by placing much of the complexity in
firmware. .

This organization of a computer provides the
environment for multiple instruction sets.

Causes of failure in integrated circuitry were
evenly distributed, but memory error correction
was found to be important to overall reliability.

Tools for software and firmware development
and design automation are necessary for efficient
development.

The Maxc1 and Maxc2 systems

The Maxcl system was designed and completed
during the period from February 1971 to April
1973. Maxc2 was designed during 1973, shelved
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for two years, then finally built and debugged
between June 1975 and April 1977. Despite being
a one-of-a-kind system, Maxcl has been one of
the most consistently available systems on the
ARPA network since 1974. We attribute this high
availability to the system’s simple microprogram-
mable hardware organization and input/output
structure. :

Maxc is a medium-scale computer designed
to run the Tenex timesharing system' and Interlisp
language® developed by Bolt, Beranek, and New-
man for ARPA. Tenex was developed on a DEC
KA10 processor®* modified by a large paging box
designed by BBN. Our principal reasons for choos-
ing Tenex were to acquire Interlisp for artificial
intelligence research and to connect to the ARPA
network®¢ so that the PARC staff could be part
of the research community sponsored by ARPA.

The overall mainframe organization of Maxcl
is shown in Figure 1 and discussed in the related
box. High-speed operation was not a major design
objective for the Maxc systems. For significantly
higher performance, the slow access time of MOS
main storage would have to be bypassed by some
cache or instruction prefetching scheme. The
methods considered were sufficiently complicated
to discourage us from pursuing them.

For PDP-10 emulation Maxc2 achieves an overall
power (including- swapping delays and storage
access time) about 20 percent greater than a
KA10, 20 percent less than a KI10, or 40 percent
less than a KL10 with similar memory and I/O
gear. These comparisons ignore the special advan-
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tage of Maxc for running the Interlisp system
(discussed later) and are based upon the perform-
ance reported by Bell et al.* A comparison based
only upon CPU speed would show a factor of about
four difference between the KA10 and KL10.

A number of other computer systems’™'* are
based on microprogrammable processors similar
in various ways to Maxc. Peuto and Shustek,'®
Hollaar,'* and Smith!” discuss ideas that are also
of interest. The BCC-500 system, developed by
the Berkeley Computer Corporation and now at the
University of Hawaii (nothing published), is also
similar. Another system that emulates the PDP-10
instruction set is the Superfoonly system at the
Stanford Artificial Intelligence Laboratory (no
published references on Superfoonly architecture).

Microprogrammable processor
characteristics

The Maxc microprogrammable processor layout,
shown in Figure 2, is largely general purpose with
light specialization for the Tenex virtual memory
and PDP-10 instruction decoding. PDP-10 special-
ization consists of (1) a function for setting the
overflow, carry0, and carryl bits in the flag
register for arithmetic; (2) two special bus destina-
tions that route instructions and indirect words
into registers; and (3) a bus destination and bus
source to manipulate byte pointers. Tenex virtual
memory specialization consists of (1) the 1024 x
18 MAP memory, which contains execute, read,
and write permission bits and the absolute address

Hardware Parameters

Main storage 393,216-word x 48-bit, 800-

nsec access

Secondary storage Eight Century Data Systems
2314-equivalent disk drives
with 3M disk packs

Controlled by Data General
Nova 800 minicomputer

- The microprocessor is com-
posed of TTL IC’s with a
sprinkling of Schottky in time-
critical places. PC boards are
used for the instruction mem-
ory, main storage, and ALU
sections. Wirewrap is used
elsewhere.

200 nsec/microinstruction
36 bits (memory words also
have four tag bits)

2048 words x 72 bits RAM
9 to 10 cycles/simple PDP-10
instruction

Input/Output

Technology

Cycle time
Word size

Microstore
Instruction rate

Maxc2 is similar, but has a cycle time of 150
nsec, twice as much microstore, and one of our
Alto minicomputers to control peripherals. The
memory and disk control sections are identical.
The Maxc2 microprocessor, about 25-percent
different from Maxc1, uses denser storage IC’s to
provide twice as much microstore; the bus struc-
ture was significantly modified to increase speed.
Maxc2 is not connected to the ARPA network and
is accessed from Alto minicomputers within PARC.

MOS main-memory words contain 36 data bits
and 7 bits for error correction/detection (5 other
bits unused). The memory routes requests from
four independent ports into independent memory
quadrants. Both the microprocessor and control
computer treat memory as an input/output device.
The microprocessor uses one port exclusively for

of the Maxc Systems

disk traffic and another for interpreting instruc-
tions.

The control computer (Nova on Maxc1, Alto on
Maxc2) appears in two roles. It has complete
control over the processor and memory, including
powering up and down and changing memory
interleaving and error correction. It is used to load,
start, and debug microprograms and to trouble-
shoot hardware problems. Under Tenex, it runs
input/output drivers for all system peripherals
(except the disks) as a slave to Tenex; communi-
cation takes place through main memory using an
ancillary hardware signal in each direction to
initiate communication. When a fatal error occurs,
such as a double memory error or microprocessor
halt, it again becomes the master and takes appro-
priate action.

To give some idea of machine size, here is the
approximate IC count for various sections of the
main frame:

Section Maxc1 Maxc2
Microstore 832 480
Internal memories 312 224
ALU . 300 300
Disk control 260 + 60/unit 260 + 60/unit
Other micropro- 850 850
cessor
Memory port 720 720
393,216x48 storage 18,500 18,500
Control computer Nova Alto
110 - 191
processor - 274
memory - 1,408

It is clear that the major part of the system and
its construction costs was in the memory. How-
ever, an equivalent system designed today would
benefit from 16K x 1 MOS RAMs for main storage
and other new parts provided by the semiconduc-
tor manufacturers.
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for each 512-word page in the virtual memory;
(2) a collection of functions that read, write, or
read-modify-write the virtual memory, making
various access checks in the MAP.

Several aspects of the microprogrammable pro-
cessor design in Figure 2 may be of general
interest. First, the input multiplexing to the P-
register allows cycling the 72-bit value in P and Q
by any amount between —3 and +39. The 36-bit
cycler output can then be masked by a right-
justified mask before loading this result into the
P-register. The cycler/masker was not present in
early design iterations, and most tightly micro-
programmed loops disappeared when it was added.
The cycler/masker is used widely throughout sys-
tem microcode.

The second aspect of general interest is the way
instruction decoding is carried out. A PDP-10
instruction in the MDR (memory data register)
is first split so that the opcode, index field, AC
field, and indirect bit wind up in registers. Then
the D (dispatch) memory is addressed by the
opcode and three 12-bit microaddresses read from
D are pushed onto the stack (‘simulated calls’).
The main loop of the emulator then “returns’ to
each of the microaddresses on the stack to emulate
the instruction.

This three-microaddress technique is particularly.
appropriate for PDP-10 emulation, because the
PDP-10 instruction set is divided into families
whose members are typically characterized in
several different ways. These include ways of
obtaining arguments (from memory or immediate),
common actions performed by all members (e.g.,
move, compare, test, add, subtract, or multiply),
and several ways of disposing of the result (e.g., to
AC or memory, or both AC and memory). Thus,
the three microaddresses indicate one routine for
setting up arguments, one for doing the work,
and one for disposing of the result. Consequently,
families require very little microcode. For exam-
ple, the family of 64 test-and-set opcodes is imple-
mented by only 8 microinstructions.

Our Maxc machines use fairly wide microinstruc-
tions (72 bits), as shown in Figure 3, so that many
sections of the processor can be controlled in parallel
by microprograms. Several observations about
microinstruction decoding are worth making.

First, it is frequently worthwhile to encode
microinstructions tightly. On Maxcl about 27 per-
cent of the processor IC’s are in the microstore;
on Maxc2 about 18 percent. There is a tradeoff
between microinstruction bits and decoding logic,
and designers should make this tradeoff carefully.

Maxc microinstructions are not very tightly
coded—a paper study showed that all of the power
of the machine could have been obtained with
54-bit microinstructions and a little more decoding
logic. Frieder and Miller'® also discuss encoding in
the setting of two-level interpretation.

Another valuable technique is having several
ways to encode common actions. On Maxc there
are four microinstruction fields, bus source (BS),
bus destination (BD), function 1 (F1) and function
2 (F2), that can loosely be called ‘‘function” fields;
these control activities outside the ALU section
of the microprocessor. The most common bus
sources are encoded in BS, most common bus
destinations in BD, and practically everything
else in F1. F1 also duplicates common BD and
BS encodings to allow several sources to be OR’ed
on the (open-collector, low true) bus or several
desinations to be loaded; F2 duplicates common F1
codes and implements several other functions used
in conjunction with F1. In this way, if one wants
to do two things at once in an instruction, it is
nearly always possible to encode them.

A few opinions about machine features

Hardware capabilities can be divided into several
categories:

1. Input/output operations absolutely required
to carry out some task.

2. Functions generally useful in a wide variety
of ways, not aimed at any particular application.

3. Special-purpose capabilities provided to
shorten particular time-critical tasks for specific
applications.

4. Features of marginal usefulness that ‘‘fell
out’’ of the hardware design.

5. Facilities for hardware checkout or mainte-
nance.

Category 4 features should be avoided, since
they create compatibility problems on later ver-
sions of the same machine. For example, the
PDP-10 has over 50 absolutely redundant opcodes
and 50 more that are rarely used, probably fallout
from an early PDP-6 implementation. However,
every subsequent PDP-10 has had to stay com-
patible, and diagnostics have to check these op-
codes. IBM has also had trouble with not useful
features and strange, seemingly unimportant side
effects in its 1401 and 360 designs. As a result,

Branch | Branch | Branch |L R ALU
Address | Type Condition | Address | Address | Function
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Figure 3. The Maxc microinstruction is fairly wide (72 bits), permitting many sections of the processor to be controlled in
parallel. Different opcode fields are related to different processor functions.
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different machines in the same family and sub-
sequent machines that are compatible through
microprogramming are needlessly complicated and
slow.

The proper treatment of category 4 features'is
to purge them from software and documentation
as early as possible and from the hardware, if
it does not cost much.

There is a corollary to this argument.also. Oper-
ations useful and inexpensive in the current hard-
ware environment, but expensive in likely future
hardware environments should be avoided. De-
signers should weigh current utility against com-
patibility problems in future implementations.

Many areas with complicated logic inside the
Maxc processor have caused few difficulties in
either initial checkout or subsequent maintenance
because a few lines of diagnostic program realis-
tically check them out and pinpoint failures. How-
ever, two time-consuming checkout problems were
disk transfers (including interrupt system) and
multiport memory competition. The long logic
paths in these sections mean that diagnostics
cannot pinpoint failures. Hardware features to help
checkout these areas would have been useful.

With regard to properties of a microprogrammed
processor that make it perform quickly on some
range of tasks, the following generalizations are
offered: Most tasks have one or several ‘‘main
loops,” the speed of which largely dominates the
overall system speed. Special-purpose features
(category 3) are frequently required to make these
critical routines go quickly. My opinion is that a
general-purpose machine of the same complexity
cannot approach the efficiency of a machine with
a few such special features. On the other hand,
general-purpose features such as the cycler/masker
discussed above are also useful. Thus, it seems
that a practical machine should have both special
and general capabilities.

System availability

System availability is summarized in Table 1
for the period from April 3, 1977 (when Maxc2
was made available to users), to January 10, 1978.
Failures of noncritical input/output devices such
as tape drives and IMP were not logged—these
do not crash the timesharing system, and most
users are never aware of such failures. ’
We run each system until it crashes, then repair
or bypass whatever failed and carry out or
schedule preventive maintenance, if this seems
required.

Each system has one extra disk drive normally
used for file system backup. When a disk drive
fails, we switch it out of the file system and recon-
figure. In some cases this results only in a short
service interruption and the timesharing system
continues in the new configuration. Repairs to
disk drives switched out of the file system and

Table 1. Reasons for failure are widely distributed
(12 of the 13 port failures on Maxc2 were caused by a
single intermittent failure).

No. of occurrences
Maxc1 Maxc2

Reason for Downtime

Memory failures

Port/connector failures
Processor failures

Disk failures

Power supply failures

Power/air conditioning failures
170 and control computer failures
Software/firmware bugs
Operator errors

Undiagnosed failures
Preventive maintenance
Software/firmware development
System reconfiguration

—_
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Total 47 43 in 283 days

to other peripherals are normally carried out while
running the timesharing system.

The fact that all secondary-storage devices are
identical and interchangeable has undoubtedly
contributed to high system availability. It is ad-
visable that other sites seek a simple storage
arrangement also. Some sites use low access time
drum devices for swapping, but our experience
suggests that additional disk drives or main stor-
age modules provide a better enhancement of
system power because maintenance complications
that result from introducing an additional kind
of peripheral are avoided.

The most significant contributor to reliability
has been main-memory error correction. During
the first six months of operation, we replaced
about 12 failing 1Kx1 MOS RAMs per month;
this has gradually declined to about three failures a
month during the last three years. However,
because of error correction, a negligible number
of these failures has caused crashes. Even if the
failure rate had been lower, protection against
intermittent and pattern-sensitive failures would
fully justify error correction.

When Tenex restarts, it runs a short memory-
diagnostic program that records areas affected
by bad storage IC’s; Tenex does not use these
bad areas. Only when the amount of storage
affected becomes significant do we schedule down-
time and replace bad IC’s.

The majority of processor IC failures are solid.
This is fortunate since it means that a problem
can be fixed and will not result in more crashes
later. However, when an intermittent failure does
occur, it may cause reliability problems for a con-
siderable time. In Table 1, for example, 12 of the
13 port failures on Maxc2 were caused by a single
intermittent failure.

Our experience operating the Maxc systems
has not suggested any low-cost method for signifi-
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cantly improving availability or reducing operating
costs. The table shows that reasons for downtime
are distributed fairly evenly over many causes,
so no single improvement would be particularly
significant. Perhaps applying memory error cor-
rectior. end to end, so that port as well as storage
components were guarded, would be better. Be-
yond that, the operating system could be devel-
oped so that more disk and memory failures do
not cause system crashes.

Firmware characteristics

The original Maxc system emulated the PDP-10
user mode instruction set. For supervisor mode,
we implemented additional instructions to control
disks, priority interrupt system, and virtual
memory map, and to signal the control computer.
In 1976 we added an additional instruction set
specially designed to support Interlisp. Table 2
shows roughly how the microcode is divided
among different uses.

Table 2. Some 2000 microinstructions implement the
Maxc system, although 5000 more are used in the
diagnostics.

Use Instruction Count
PDP-10 instruction set 744
Interlisp instruction set 472
Tenex Map 157
Disk 228
170 instructions . 237
Priority interrupt system 107
Other 93
Total ) 2038
Diagnostics ~5000

The microprogrammed hardware organization
greatly simplified implementation of complicated
parts of the system. For example, the very com-
plicated Tenex virtual-memory scheme was imple-
mented efficiently with little special hardware—a
non-microprogrammable organization, such as the
BBN pager, would have required several hundred
more IC’s. Also, disk control hardware was sim-
plified because main memory transfers, header
checking, preambles, postambles, and checksums
are all handled by firmware rather than hardware.

For floating-point instructions, the main advan-
tage of microprogrammed organization is flexi-
bility. Correct implementation of floating point is
sufficiently obscure that it is hard to design a
hardware floating-point unit correctly, but in our
microprogrammed machine this complexity is con-
fined to the firmware, where it is much easier to
change.
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Diagnostic firmware on a microprogrammable
machine is simple and can generally pinpoint prob-
lems more precisely than on a non-microprogram-
mable machine. On Maxc a very small kernel of

working hardware must be debugged with test

sequences from the control computer. Thereafter,
firmware diagnostics are used for testing and
generally pinpoint failures to three or four IC’s.

The Maxc firmware contains redundant checks
that cause a halt when inconsistencies are detect-
ed. These checks are inserted in places where no
execution time or space penalty is incurred. Also,
a diagnostic instruction executed occasionally by
Tenex verifies by checksum that the microstore
and constants in other internal memories of the
processor are correct and does a few other simple
tests that checkout most of the processor hard-
ware.

Finally, microprogrammed organization has
made possible an additional instruction set called
Byte Lisp into which Interlisp programs are com-
piled. Concurrent use of multiple instruction sets
is a powerful concept elaborated more fully below.

Systems with multiple instruction sets

The PDP-10 instruction set is a well-developed
“classical” set with a huge repertoire of simple
instructions for doing logic and arithmetic and
moving data from place to place. In addition, it
has a few more complicated instructions for deal-
ing with special data types (floating-point numbers
and pushdown stacks). However, if one compiles
a high-level language program into the PDP-10
instruction set, the result falls far short of what
is possible.

Classical instruction sets result in compiled
programs that are slower and larger than is easily
achieved by a special-purpose instruction set. To
illustrate, in the course of enhancing the Maxc
Interlisp implementation, we identified five or six
key places where programs were spending con-
siderable time (function call and return, type test-
ing, garbage collection, etc.). We added special
PDP-10 instructions to reduce the time spent in
these places. This resulted in about a 25-percent
speed improvement over the unmodified instruc-
tion set. Special-purpose firmware of this sort has
frequently been used on microprogrammable
systems's%,

The Byte Lisp instruction set, based upon
Deutsch,?? uses the same virtual memory and
registers as the Tenex instruction set, but instruc-
tions are 9-bit bytes rather than 36-bit words, and
opcodes are specialized to operations statically
frequent in Interlisp programs.?? Byte Lisp com-
piled functions average 72 percent smaller and
15 percent faster (on top of the 25 percent men-
tioned above) than PDP-10 compiled functions.
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Code size is more significant in Interlisp than in
typical application programs. In a typical applica-
tion program, program storage, if significant, is
usually dominated by size of data objects being
manipulated. In this kind of application, a classical
instruction set works fine (perhaps modified by

special microcode in some time-critical places).-

However, Interlisp is a large system into which
features have been added continuously for about
ten years. The standard system has about 200,000
words of PDP-10 compiled code (some systems are
much larger), and the typical working set is about
one-half PDP-10 compiled code. When compiled
instead into Byte Lisp, program disk storage is
reduced by about 50 percent and working-set size
of programs being executed by about 30 percent.

Naturally, the performance comparison is differ-
ent on a machine like the PDP-10 with large 36-bit
words from what it would be on a machine that
used, say, 16-bit words. One would expect greater
speed improvement and less size improvement on
machines with smaller word size. Byte Lisp is not
an independent instruction set—Interlisp uses many
PDP-10-coded procedures, and some Byte Lisp
instructions trap to PDP-10 coded subroutines for
execution. Because the other instruction set remains
available, Byte Lisp can concentrate on representing
compiled programs compactly without also having
to provide infrequently-used opcodes for unusual
types of data manipulation.

In other words, Byte Lisp opcodes were chosen
for common operations in Interlisp compiled code—
the goal was to represent compiled programs com-
pactly. But the decision to execute an operation in
microcode was governed by how much this would
improve performance. Thus, the inner loops of the
garbage collector were microprogrammed, since
these consumed considerable CPU time, even though
they were statically infrequent in Interlisp. Con-
versely, CONS, one of the three most common
operations in Interlisp, was made an opcode because
it occurred frequently in Interlisp compiled code;
but CONS trapped to a PDP-10 procedure for exe-
cution since microprogramming would not have
improved performance much.

Extra instruction sets such as Byte Lisp do not
require much additional microstore because they
share support machinery with the classical instruc-
tion set (e.g., the divide and multiply microcode is
shared), and because the map, disk, priority inter-
rupt, and I/O microcode do not have to be replicated
for additional instruction sets. Because Byte Lisp
and PDP-10 instruction sets use a common virtual
memory and registers, the Tenex operating system
is almost unaffected by the existence of the extra
instruction set.

The use of microprogramming to implement alter-
native instruction sets has been used on a number
of systems (e.g., 1401 compatibility on IBM 360),
and the idea of instruction set specialization for a
high-level language is also popular (e.g., Algol
specialization on Burroughs machines). However,
the idea of cooperating, compatible instruction sets

is not generally appreciated, and this is the idea
that has been successful on Maxc.

As a result of these experiences, it appears that
on a microprogrammed machine, the desired archi-
tecture is a family of instruction sets sharing com-
mon word size, common registers, and a common
virtual-memory organization (which should be very
large—262,144 words on Tenex is much too small).
One of the instruction sets should incorporate
operations for input/output and other classical bit-
manipulation operations. Other instruction sets
should be provided for principal compilers. These
instruction sets need not be self-sufficient, but can
trap to the general instruction set in situations
where microprogramming does not offer much
advantage.

Software tools for system development

Overall time required to design and build the
Maxcl system and to get Tenex running on it
satisfactorily for users was about 26 months—12
months to design the system, 8 months to debug
the hardware, and 3 (non-overlapping) months each
for firmware and Tenex software; an additional 3
months of software debugging were required after
system release before it was reliable. The software
and firmware debugging actually took longer, but
most time overlapped hardware debugging. It
might be more accurate to say that most firmware
debugging time was spent debugging hardware
and most software debugging time was spent debug-
ging the firmware. During the course of the
Maxcl/2 development and other projects we have
gradually developed a number of software tools that
speed up the development cycle of systems such
as Maxc.

To speed up hardware design, we have developed
design automation software to mechanize aspects
of creating and revising logic drawings, wire lists,
etc. Our current software tools would substantially
reduce the 12 months required for Maxcl hardware
design, if that were to be repeated today. Two
other design automation systems, SUDS and the
S-1 design system, both at the Stanford Artificial
Intelligence Laboratory, are similar to the PARC
system. Unfortunately, there are no published
references on any of these systems.

In addition, we developed a machine-independent
microassembler called Micro and a hardware/firm-
ware debugging program called Midas. Other efforts
along this line are numerous.?* These software
tools run on the control computer (Nova on Maxcl,
Alto on Maxc2). The nature of the hardware inter-
face used by the control computer is discussed in
the hardware box. :

In bringing up a new hardware system quickly,
it is essential to have substantial diagnostic soft-
ware/firmware support as soon as possible. It is
impractical to launch into hardware debugging
without this support. There is a brief period between
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the point when hardware design is complete and the
time.when the first hardware assemblage is ready
for checkout. This period has been getting shorter
as design and construction automation has progres-
sed. Debugging delays are avoided by providing a
large\complement of debugging firmware/software
during this small time period.

Micro is a cross-assembler that runs on an Alto
minicomputer. It is possible to define a natural
microassembly language for a wide range of ma-
chines by means of memory, field, macro, and
neutral definitions in the Micro language. We have
successfully used Micro to define assembly lan-
guages for four different microprogrammable
machines.

Micro differs from conventional macroassemblers
in its unusual parsing algorithm and use of neutral
symbols and left-arrow clauses. Roughly speaking,
the definition file for a particular machine consists
of memory definitions for each of the target mem-
ories (S, D, R, L, and IM on Mazxc), definitions of
various fields within memory words, and macro and
neutral definitions that transform symbolic expres-
sions into field stores in memory words.

Neutral definitions are used to represent classes
of objects. For example, on Maxc the ALU opera-
tions (defined by the P+Q, P—Q, etc. macros) are in
the class defined by the neutral “ALU;” bus destina-
tions (X<, Y<, etc.) are defined by the neutral
“B+;” legal data paths are represented by macros
such as “B<ALU.”

The following example shows how macros and
neutrals are used to assemble data for an instruc-
tion memory word:

X<P+Q, P<777777R, GOTO[XAC,G=1]; *Typical
microinstruction

“X<P+Q” and “P<T77777TR" above are left-arrow
clauses and GOTO is a macro. In expanding the
“X<P+Q” clause, Micro first parses “P+Q;”
this is a single symbol because “+”’, “—7”, etc. are
ordinary symbol constituents without special mean-
ing in Micro. Evaluating the “P+Q” macro stores
the code for “add” into the ALUF field of the micro-
instruction and leaves behind the neutral “ALU.”
Then evaluating ‘X< stores the code for load-X
into the BD (bus destination) field of the microin-
struction and leaves the neutral “B<.” Finally,
evaluating the macro “B<ALU” stores the code for
bus<ALU into the BS (bus source) field of the
microinstruction.

Micro also contains an assortment of operations
for manipulating integers, controlling conditional
assembly, handling literals, and dealing with memory
addresses. These are similar to features in conven-
tional macroassemblers and are not discussed here.

Midas is a largely machine-independent cross-
debugger used for hardware and firmware checkout.
Because most of Midas is machine-independent, it
can be adapted to a new hardware system quickly.
On the Maxc systems, Midas runs on the control
computer; versions of it exist for other micropro-
grammable systems as well.
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The machine-independent part of Midas contains
software for displaying registers and memory words,
for loading microprograms assembled by Micro, and
for driving register and memory tests with various
data patterns. Most software for controlling stop,
go, breakpoints, etc. is also machine-independent.
An elaborate command file facility (really a program-
ming language) is used to run diagnostic micro-
programs and report failures. Most of the docu-
mentation for Midas is also machine-independent.

The machine-dependent part of Midas consists of
procedures to read-write registers and memories,
to start and stop the hardware, and to symbolically
print registers, memories, and other signals read
from the hardware.

Midas displays the names and values of registers
and memories on the large Alto display, and uses
the keyboard and a pointing device called the
“mouse’”’ to enter new commands. The displayed
values are automatically updated at breakpoints
and other times when the state of the microproces-
sor is modified. ’

During the earliest stage of hardware debugging,
registers and memories in the processor and mem-
ory system are read and written from Midas through
a hardware interface to the target machine. A basic
kernel of processor hardware is debugged by these
tests from the control computer. When registers
and memories can be read and written successfully,
subsequent debugging is carried out by diagnostic
microprograms that halt on detected errors. The
user interface to diagnostic microprograms is provid-
ed by Midas command files that control loading,
display of interesting memory words, execution, and
failure reporting of the diagnostics.

On Maxc a sequence of basic diagnostic micro-
programs tests registers, memories, and functions
with cycled ones and zeroes. These are supple-
mented by random-number reliability tests for
various sections of the microprogrammed processor.
PDP-10 programs are used to test disk and main
storage reliability. Main storage failures and about
90 percent of processor failures are fixed without
resorting to the use of a scope. Only disk control
and port failures are troublesome.

On another machine, to avoid checkout problems
with long logic paths, we have made about 2000
internal processor signals available through multi-
plexers. A simulator incorporated in Midas checks
consistency of these signals at each clock while
single-stepping through random microinstructions;
this has been a helpful checkout aid. The Stanford
AI S-1 project is also using multiplexers to help
with checkout.

The major problem in using these 2000 signals
is one of observation—a human cannot notice very
many of them at once, even if they appear on the
display. To alleviate this problem, the signals are
arranged in symbolically named 16-bit units, and
each of the 16-bit units can be exploded into a
complete symbolic printout when desired. Command
files display the collection of signals in any hardware
subsection.
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When running the simulator, current readout,
readout at the previous clock, and signals detected
as being wrong are stored in separate tables inside
Midas. The display can window any one of these
tables. The simulator reports inconsistent signal
names and the three tables can be looked at to
discover what isn’t working.

Conclusions

The most important conclusion I have drawn
from my experience with the Maxc projects is that
a hardware system should be simple. Diagnostic
firmware/software must be thorough, and a “firm-
ware/software overkill”’ position should be strived
for with respect to hardware debugging and main-
tenance. Hardware simplicity and diagnostic support
must not be considered too narrowly—system
peripherals must also be included.

Microprogrammable hardware organization con-
tributes to simplicity by moving complications out
of the hardware and into the firmware, where they
can be checked out easily and, once checked out,
will not be a source of future trouble.

The use of a control computer has also been of
great value in developing and maintaining the Maxc
systems. It is an invaluable aid in debugging or
troubleshooting the microprogrammed processor
kernel that must work before diagnostic firmware
can start pinpointing failures.

In addition, software tools should be developed
by design organizations. Design automation software
is probably most important. The Micro and Midas
programs for firmware development and hardware/
firmware checkout are two other valuable tools we
have developed.

Finally, microprogrammable hardware organiza-
tion allows additional instruction sets and other
special-purpose microcode to be added at little
extra cost. This potential should be exploited by
providing a family of instruction sets, each tailored
to the requirements of a commonly used high-level
language. The instruction sets should use common
word size, common virtual memory, and common
registers so that they can reside harmoniously in a
single operating system. H
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