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The principle that every truth is possibly necessary can
now be shown to entail that every truth is necessary by
a chain of elementary inferences in a perspicuous
notation unavailable to Hegel. —Williamson [5, p. 4]

Here’s what Williamson means by “perspicuous notation”:

[�p\ for [It is necessarily the case that p\.

[♦p\ for [It is possibly the case that p\.

[p → q\ for [p implies q\.

[∼p\ for [It is not the case that p\.

. . . in the context of K, the adoption of [F] is equivalent
to the adoption of M�, the quasi-Megarian axiom. . . . Yet
just before . . . Aristotle had . . . argued against the
Megarian position. And so how can he now . . . be
propounding a principle that commits him to a position
that he had previously rejected? —Fine [2, p. 8]
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W&F are working with the classical 〈→, ∼〉-sentential modal
logics CK and CKT, which can be characterized Hilbert-Style [6]:

Modus Ponens Rule Schema (MP)

If ` p and ` p → q, then ` q [either ø p or ø p → q or ` q].

(Logical) (MP)–Axiom Schemata for 〈→, ∼〉-Classical Logic (C) [3]

(C1) ` (p → q) → ((q → r) → (p → r))
(C2) ` p → (∼p → q)
(C3) ` (∼p → p) → p

Necessitation Rule Schema (RN):

If ` p, then ` �p [either ø p or ` �p].

(Proper) Modal Axiom Schemata:

(K) ` �(p → q) → (�p → �q)
(T) ` �p → p
(Def.♦) ♦p Ö ∼�∼p [♦p and ∼�∼p are intersubstitutable]

OK. That’s the logical background. Now, we’re ready to go . . .
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Williamson’s [5] triviality result: If (W) p → ♦�p is added as
an axiom schema to CKT, then (M) p ↔ �p is a theorem
(both p → �p and �p → p are theorem schemata of CKTW).

Two of Fine’s [2] triviality results. Both involve the schema:

(F) �(♦p → ♦q) → �(p → q)

(M) p ↔ �p is a theorem schema of the system CKTF.
(M�) �(p ↔ ♦p) is a theorem schema of the system CKF.

Proving these triviality results is (increasingly) non-trivial!
In the remainder of this talk, I will do three things:

Explain how to get Otter to prove these triviality results.
Explain how to get Otter to prove more general t-results.
Explain how to get Paradox to prove non-triviality results.

The key step is representing enough of the metatheory of
〈→, ∼〉-sentential modal logics in simple, first-order terms.

The rest is just (only moderately skilled) application of the
first-order order AR programs Otter [4] and Paradox [1].
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Happily, we can simply express (enough of) the metatheory
of the salient 〈→, ∼〉-sentential modal logics in FOL:

Monadic predicate ‘P’: interpreted as ‘is a theorem’ (`).
Logical Operator ‘–’: metalanguage negation sign.
Logical Operator ‘|’: metalanguage disjunction sign.
Unary function ‘n’: object language negation operator (∼).
Unary function ‘l’: object language necessity operator (�).
Binary function ‘i’: object lang. implication operator (→).

Here are all of our rule and axiom schemata, expressed in
our FOL as clauses (i.e., in implicitly ∀–quantified CNF):

(MP): –P(x) | –P(i(x, y)) | P(y).
(C1): P(i(i(x, y), i(i(y, z), i(x, z)))).
(C2): P(i(x, i(n(x), y))).
(C3): P(i(i(n(x), x), x)).
(RN): –P(x) | P(l(x)).
(K): P(i(l(i(x, y)), i(l(x), l(y)))).
(T): P(i(l(x), x)).
(W): P(i(x, n(l(n(l(x)))))).
(F): P(i(l(i(n(l(n(x))), n(l(n(y))))), l(i(x, y)))).
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Now that we have everything we need expressed in clausal
form, we can simply feed in various problems to Otter [4]
and Paradox [1], and see what happens. Stuff happens . . .
Otter proves both Williamson’s and Fine’s triviality results
without too much difficulty (using sufficient knowledge
about solving these sorts of problems with Otter!).
But, that’s just the beginning! The real power of Otter is
in its ability to generalize these triviality results. Most
impressive are generalizations to non-classical logics.
I will focus on Fine’s second triviality result. Recall, this
result is that �(p ↔ ♦p) is a theorem schema of the system
CKF. Question: What happens when we weaken C here?
Fine’s proof of this result is strongly classical in nature. So,
one might suspect that the result does not generalize to
underlying logics weaker than C. This is far from the truth.
In fact, for a wide variety of logics X, the modal logic XKF
has �(p ↔ ♦p) as a theorem schema. More precisely . . .
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Using Otter, I found proofs of �(p ↔ ♦p) in intuitionistic,
three-valued (both Kleene and Łukasiewicz 3-valued), and
infinite-valued modal-logics. Then, I did something strange.
I took the intersection of all of these non-classical Otter
proofs, and I discovered that the following four underlying
〈→, ∼〉-schemata are sufficient to generate Fine’s triviality:

` (p → q) → ((r → p) → (r → q))
` (p → q) → (∼q → ∼p)
` (p → (q → r)) → (q → (p → r))
` ((p → q) → r) → (q → r)

Moreover, these four schema (plus MP) are independent. So,
this is a very weak logical basis for Fine’s triviality result.
The proofs of this generalization of Fine’s triviality result
are highly non-trivial! Note: there is no Kripke semantics for
this modal system, so one is forced to work axiomatically!
Q: if there are no Kripke semantics for these kinds of weak,
non-classical modal systems, then how could we ever prove
that a modal logic of this kind is non-trivial? A: Paradox!
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Paradox [1] is a recent program, which finds (relatively
small) models for (finitely satisfiable!) sets of FOL clauses.

Paradox is an order of magnitude more efficient than
previous FO model-finders, for problems of the kind we are
discussing. It can find logics with up to 16 values [� 5].

For instance, Williamson notes that his triviality disappears
if we replace our classical underlying 〈→, ∼〉-sentential logic
C with the intuitionistic underlying 〈→, ∼〉-sentential logic H.

Paradox easily finds a 4-valued logic in which (MP) and
(RN) preserve theoremhood; the axioms of (H) are all
theorems; (K), (T), and (W) are all theorems; but ø p → �p.

Paradox also allows us to show that various (even weaker)
non-classical logics are too weak to generate Fine’s triviality.

E.g., Paradox allows us to prove (via a 4-valued logic) that
the relevance logic E is too weak to generate Fine’s paradox
[EKW ø �(p ↔ ♦p)]. Open Question: RKW ` �(p ↔ ♦p)?
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I showed how we can express the metatheory of (almost all)
sentential modal logics in elementary, FOL terms.
This allows us to use first-order theorem-provers like
Otter to prove interesting and non-trivial theorems in just
about any sentential modal logic you can cook up.
And, we can use 1st-order model-finders like Paradox to
establish non-theoremhood in just about any sentential
modal logic you can cook up (no Kripke semantics needed!).
I used, as illustrations, both positive and negative results
concerning the triviality of some modal systems from recent
philosophical discussions of Fine [2] & Williamson [5].
I have many additional results (both positive and negative)
concerning various other non-classical underlying logics, as
well as combinations involving various other modal axioms.
The status of only a few of the plethora of resulting
“triviality questions” remains open. This is a testament to
the power of Otter & Paradox in solving such problems.
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