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1 What is a shell?

Structures can be classified in many ways according to their shape,

their function and the materials from which they are made [Adri-

aenssens et al., 2014].

The most obvious definition of a shell might be through its geometry.

A structure or structural element may be a fully three-dimensional

solid object, or it might have some dimensions notable smaller than

others. A beam is straight and it is relatively long in comparison to its

cross-section. Thus it is defined by a straight line. An arch is defined

by a curved line and a plate by a plane.

A shell is a structure defined by a curved surface. It is thin in the

direction perpendicular to the surface, but there is no absolute rule

as to how thin it has to be. It might be curved in two directions, like

Figure 1: Giant clam shell
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Figure 2: Chapel Lomas de Cuernavaca by Felix Candela
Figure 3: Palazzetto dello Sport by Pier Luigi Nervi
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a dome or a cooling tower, or it may be cylindrical and curve only in

one direction.

This definition would clearly include birds’ eggs, sea shells (figure

1) and concrete shells, such as Felix Candela’s Chapel Lomas de

Cuernavaca (figure 2) and Nervi’s Palazzetto dello Sport (figure 3).

It would also include ships, monocoque car bodies and aircraft fuse-

lages (coque is one of the French words for a shell), drinks cans,

glasses cases (figure 4), all sorts of objects.

But this definition would also include tension structures like sails, bal-

loons and car tyres. If one wanted to exclude tension structures, one

might stipulate that shells have to work in both tension and compres-

sion, but that would exclude masonry vaults that can only work in

compression [Block, 2009, Heyman, 1995]. Most people would de-

scribe masonry vaults such as the hôtel de ville in Arles (figure 6) or

the fan vaulting of Bath Abbey (figure 5) as shell structures.

However the word ‘shell’ has the implication of something relatively

rigid, and this article is about such structures. We therefore need to

have a separate category of tension structures to include sails and

balloons as well as piano strings and fishing nets. Then we have six

possible types of structure:

Figure 4: Glasses case
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Figure 5: Fan vaulting of Bath Abbey. Photo: Adrian Pingstone

Figure 6: L’hôtel de ville d’Arles. Photo: Jacqueline Poggi
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Figure 7: Colander Figure 8: sieve
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1. Tension structures: strings, nets and fabric structures

2. Straight line elements: beams, columns

3. Curved line elements: arches, rings

4. Plates: slabs, walls

5. Shells: timber, concrete, metal or masonry

6. Fully three dimensional lumps of material

A colander (figure 7) is a curved surface structure. It contains holes

for draining food, but these holes do not stop it being shell. It is

a continuous surface with a relatively small area removed. A sieve

(figure 8) is very similar, except that the surface is made from a large

number of initially straight wires which are woven into a flat sheet

and then bent into a hemisphere. It is a also a shell, a gridshell -

see section 5. This is very much like assembling lots of straight line

elements to form trussed arch such as that of the Viaduc de Garabit

(figure 9).

Clearly there is some similarity between a sieve and a spider web -

they are both lattice-like and are intended to catch things. The spider

web is essentially flat and made up of straight elements and when

the wind blows it bows outwards like a sail and becomes curved. It

Figure 9: Viaduc de Garabit, Gustave Eiffel, Maurice Koechlin, Léon

Boyer. Photo: J. Thurion (Belgavox)
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Figure 10: Spiderweb

therefore adjusts its shape to the loading, which is the characteristic

of tension structures. The sieve may be in tension, compression or a

mixture of the two. Where it is in compression deflections lead to the

structure becoming less able to carry the load, possibly leading to

buckling. Columns carry loads via axial forces, but bending stiffness

is required to stop buckling, and so it is with shells, although with

shells buckling is resisted by a combination of bending and in-plane

action.

2 How do shells work?

Shells use all the modes of structural action available to beams,

struts, arches, cables and plates, plus another mode that we might

call ‘shell action’, which we will now try and pin down.

Structural elements that approximate to lines (beams, arches and

cables) or to surfaces (plates and shells) all share the same prop-

erty: they are much easier to bend than to stretch. We use the word

‘stretch’ to mean change in length, possibly getting shorter, a ‘nega-

tive stretch’.

Clearly a cable will stretch when we apply a tension to it. A column

will undergo a negative stretch when we apply a compression to it.
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But if we apply more load it will buckle and it will get shorter through

bending, rather than axial strain.

A parabolic arch or cable can carry a uniform vertical load per unit

horizontal length using only axial compression or tension. The com-

ponent of load perpendicular to the cable is balanced by the axial

force multiplied by the curvature. Thus load in KN/m is balanced

by a force in KN multiplied by the curvature in 1/metres. Note that

curvature is defined as 1/(radius of curvature).

Other loads will cause bending moment in the arch or deflection of

the cable. The arch bending moment is the product of the thrust and

its eccentricity from the axis.

Flat plates and plane stress

In order to understand curved arches, we first learn about straight

beams. Similarly to understand shells we first need to think about

something simpler. We could start with arches and go from curved

lines to curved surfaces. Or we could start with plates and go from

flat surfaces to curved surfaces. Both approaches can be helpful, but

let us start with plates.

A flat plate can be loaded by forces in its own plane, figure 11, or out

of plane, figure 12, in which forces are shown in blue and bending

and twisting moments are shown in red. The term plane stress is

used for in plane loading and it appears in all sorts of situations,

for example the bending of an I-beam. Clearly the beam is loaded

perpendicular to its axis, but most of the stress in the web and flanges

are in the plane or the steel plates. Out of plane loading of a plate

or slab produces plate bending, and as we have already noted it is

much easier to bend a plate than to stretch it.

In figure 11 we have introduced the components of membrane stress,

σx, σy, τxy and τyx. Membrane stress is a central concept in shell

theory and corresponds to the axial stress in an arch - as opposed

to the bending stress. Membrane stress is usually quoted as a force

per unit length crossing an imaginary cut, rather than force per unit

area. Equilibrium of moments about the normal tells us that τxy = τyx

and this applies even if the plate is undergoing angular acceleration

(the moment of inertia of an element tends to zero faster than the

moment due to stress as the size of the element tends to zero).

τxy and τyx are shear stresses in the plane of the plate. We also get

shear stress perpendicular to the plate due to plate bending. These

are not labeled in figure 12 because the notation for plate bending is

rather confusing.
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Figure 11: Plane stress

Figure 12: Plate bending
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Thus for plane stress we have three unknown stresses, σx, σy and

τxy = τyx. We have two equations of equilibrium

∂σx
∂x

+
∂τyx
∂y

= qx

∂τxy
∂x

+
∂σy
∂y

= qy (1)

in the x and y directions respectively. qx and qy are the loads per

unit area applied to the plate, in its own plane, for example the own

weight of a wall. Thus we have three unknown stresses and only two

equations of equilibrium so that plane stress is statically indetermi-

nate.

If qx and qy are both zero, the stresses can be written in terms of the

Airy stress function φ,

σx =
∂2φ

∂y2

σy =
∂2φ

∂x2
(2)

τxy = τyx = − ∂2φ

∂x∂y

so that they automaticaly satisfy the equilibrium equations, 1. Note

that even though qx and qy are zero, the plate can still be loaded at

its edges.

If the plate is elastic we can solve for φ and hence the stresses by

using the stress - strain relationships,

εx =
1

E
(σx − υσy)

εy =
1

E
(σy − υσx) (3)

γxy =
2(1 + υ)τxy

E

(in which E is Young’s modulus and υ is Poisson’s ratio) together with

the compatibility equation,

∂2εx
∂y2
− ∂2γxy
∂x∂y

+
∂2εy
∂x2

= 0. (4)

The compatibility equation comes from the fact that our three strains

εx, εy and γxy are due to only two components of displacement, in

the x and y directions.

We finally end up with just one equation,

∇4φ =
∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+
∂4φ

∂y4
= 0 (5)
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which is known as the biharmonic equation. Even though it looks

complicated, it actually behaves very well and is not difficult to solve

[Timoshenko and Goodier, 1970].

The membrane theory of shells

In the membrane theory of shells we still have three components

of membrane stress, exactly as in plane stress. But we now have

three equations of equilibrium. Two of them are in the directions

tangent to the shell, again exactly as in the case of plane stress. The

third equation is perpendicular to the tangent to the shell surface.

The load is balanced by the membrane stresses multiplied by the

curvature. Here the load would be in kN/m2, the membrane stress in

kN/m and the curvature in 1/m.

Thus we have three unknown stresses and three equations of equi-

librium so that shells should be statically determinate. Unfortunately

we have three partial differential equations of equilibrium in

three unknown membrane stresses and whether or not these

equations have a solution depends upon the shape of the shell

and the boundary conditions. This is a very difficult area of math-

ematics and it is often impossible to say whether a solution exists or

not, let alone find one.

The simplest way to express this mathematically is using plane co-

ordinates. The horizontal equilibrium equations, 1, still apply if the

stress components are redefined as the horizontal component of

membrane stress per unit horizontal length. In particular if a shell is

only loaded in the vertical direction, the horizontal equilibrium equa-

tions are still satisfied by use of the Airy stress function, equations 3.

Then equilibrium in the vertical direction is simply

w =
∂2φ

∂x2
∂2z

∂y2
− 2

∂2φ

∂x∂y

∂2z

∂x∂y
+
∂2φ

∂y2
∂2z

∂x2
(6)

in which z is the height of the shell and w is the load per unit plan

area, both assumed to be known functions of x and y. This equation

may not look any more complicated than the biharmonic equation, 5,

but depending upon the shape of the shell and the boundary condi-

tions, it may be impossible to solve for φ. Equation 6 is ‘exact’ in that

it does not assume that the slope of the shell is small.

If the shell is the wrong shape or it doesn’t have enough boundary

support, it may be a mechanism as far as the membrane theory is

concerned and be able to undergo inextensional deformation, that

is deformation in which the shell is bent without stretching.

The dome and cooling tower in figures 13 and 15 are statically deter-

minate and cannot undergo inextensional deformation. The cooling
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Figure 13: Dome: positive Gaussian curvature, statically determi-

nate, inextensional deformation not possible
Figure 14: Dome with hole: positive Gaussian curvature, a mecha-

nism, inextensional deformation possible
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Figure 15: Cooling tower: negative Gaussian curvature, statically

determinate, inextensional deformation not possible

tower has a big hole at the top, but putting a bit hole in a dome pro-

duces a structure which is a mechanism, figure 14. The holes in the

colander do not effect things so much because they are small.

The difference between the dome and the cooling tower is that the

dome is synclastic and has positive Gaussian curvature whereas the

cooling tower is anticlastic and has negative Gaussian curvature.

‘We may divide curved surfaces into Anticlastic and Synclastic. A

saddle gives a good example of the former class; a ball of the latter.

The outer portion of an anchor-ring is synclastic, the inner anticlas-

tic.’ (William Thomson Kelvin and Peter Guthrie Tait Treatise on nat-

ural philosophy Vol. 1 1867 Oxford: Clarendon Press). Here saddle

refers to that on a horse and an anchor-ring is a torus.

The Gaussian curvature [Eisenhart, 1909, Struik, 1988] is the prod-

uct of the two principal curvatures on a surface and they are of op-

posite signs on a cooling tower. Mathematically surface curvature is

a second order symmetric tensor, as is membrane stress. Thus we

can draw Mohr’s circle for curvature in the same way that we do for

stress.

Gauss’s Theorem (Theorema Egregium) tells us that the Gaussian

curvature of a surface can be calculated by only measuring lengths

on a surface, and therefore inextensional deformation does not
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change the Gaussian curvature. A developable surface is a sur-

face with zero Gaussian curvature which can be laid out flat. Exam-

ples include cylinders and cones.

The Cohen-Vossen theorem from differential geometry tells us that

it is not possible to deform a closed convex surface such as an egg

without changing lengths on the surface, in other words inextensional

deformation is impossible. However part of an egg can be deformed

inextensionally, explaining why it is so much more flexible. The stiff-

ness of the part can be regained by glueing it to a support.

The bending theory of shells and buckling

If a shell can undergo inextensional deformation, then it will have to

rely on bending stiffness as well as membrane action in order to carry

loads. However, even if a shell has the correct shape and is properly

supported it must have bending stiffness to prevent buckling if there

are any compressive membrane stresses. Thus for efficiency we

want our shell to work primarily by membrane action, which is

what shell action means, but we know that we must also have

bending stiffness to resist buckling and inextensional deforma-

tion.

Shell buckling is particularly nasty because shell structures are so

efficient. Almost no deflection occurs and then suddenly there is to-

tal collapse. Paradoxically, the less efficient the shell, in terms of

shape, triangulation of the surface and boundary support, the bet-

ter it behaves in buckling. This is because bending action of shells

requires much more deflection than membrane action and therefore

small irregularities in shell geometry and other initial imperfections

have less effect.

Experiments show that a properly supported shell working primarily

by membrane action can never support anything like the theoretical

‘eigenvalue’ or ‘linear’ buckling load even when the utmost care is

taken to eliminate initial imperfections.

The analysis of shell buckling by hand calculations is effectively im-

possible, even eigenvalue analysis of a spherical shell is very difficult,

and as we have said gives wildly optimistic answers. This means that

there is no option but to use computer analysis, but this is quite an

esoteric area, and even though many programs offer shell buckling,

the results should be treated with a great deal of circumspection. The

imperfection sensitivity of shells means that non-linear buckling anal-

ysis has to be used. There is still a place for physical model tests for

shell buckling.
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3 How much do you need to know to de-

sign a shell?

In the previous section we tried to describe how shells work in a rela-

tively qualitative manner. It should by now be clear that it is difficult to

derive the equations (particularly for the bending theory) and usually

impossible to solve them, except for the membrane theory for very

simple shapes. The theory of shell structures is described in such

classic works as Novozhilov [1959], Flügge [1960], Green and Zerna

[1968], Calladine [1988] and is very mathematical. Green and Zerna

use the tensor notation, which is difficult to learn, but enables the

equations to be written far more elegantly. The tensor notation for

shells is essentially the same as that used in the general theory of

relativity [Dirac, 1975].

Thus in practice one has three possible approaches:

1. Simple hand calculations ‘informed’ by the classical theory of

shells

2. Numerical analysis using a computer

3. Physical testing

Numerical analysis almost invariably uses the finite element method

in the form of shell elements for continuous shells or beam elements

for grid shells. The derivation of the finite element equations does

not really depend very much on the theory of shells, except for being

able to work in a curvilinear coordinates.

The shape functions of the finite element method produce algebraic

equations. These equations may be linear or non-linear according to

the material behaviour and whether one is concerned with buckling.

The equations might be solved using an ‘implicit’ method involving

inversion of a stiffness matrix or an ‘explicit’ method like Dynamic

Relaxation or Verlet integration.

However, as we have already noted, the structural behaviour of shells

can be so complicated that numerical predictions may be inaccurate

and so there is still a place for physical testing. Physical testing of

‘sketch models’ can also give a qualitative insight that cannot be ob-

tained from a numerical analysis.

4 Funicular shells

The word ‘funicular’ comes from the Latin for a ‘slender rope’. Figure

16 shows funicular polygons, the rope automatically adjusts its shape
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to carry the loads without any bending moment. The rope is a

mechanism which moves to carry a particular load case.

We have seen that if we are lucky a shell can carry any load by

membrane action only. However, if our shell has the wrong shape or

is not properly supported, it will only be able to carry certain loads for

which it funicular. These are loads which do not excite an inexten-

sional mode of deformation. The concept of funicular loads applies

to all shells that are capable of inextensible deformation, but it is par-

ticularly relevant to masonry shells for which funicular loads produce

no bending moment or tensile stress [Block, 2009].

Tension structures, like the fabric in the Arnolfini Wedding (figure 17),

adjust their shape under load to become funicular. Compression

structures move in the opposite direction, and that is what causes

buckling.

Reversing the loads on a pure tension structure produces a pure

compression structure, a fact used by Gaudı́ for the crypt of the

Colònia Güell (figures 18 and 19) and Frei Otto for the Mannheim

Multihalle (figures 30 to 32).
Figure 16: Funicular polygons from Nouvelle mécanique, ou Sta-

tique, dont le projet fut donné en M. DC. LXXXVII. Tome 1, by Pierre

Varignon, Jombert (Paris)-1725
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Figure 17: Jan van Eyck, the Arnolfini Wedding
Figure 18: Cripta de la Colònia Güell by Antoni Gaudı́
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Figure 19: Frei Otto’s reconstruction of Gaudı́’s hanging model for

the cripta de la Colònia Güell

Funicular arches and cables

A rope or chain hanging under its own weight forms a catenary (from

the Latin for a chain). Thus the catenary is a particular case of a

funicular curve. The catenary is of some relevance to the design of

shells, so it is worth deriving the mathematical form here.

If a cable is only carrying vertical loads then the horizontal compo-

nent H of tension in the cable,

H = T cosλ = constant, (7)

where T is the tension in the cable and λ is the slope. The vertical

component V of tension

V = T sinλ = H tanλ = H
dy

dx
. (8)

If the loading, w, is constant per unit arc length, s, then
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w =
dV

ds
=
dx

ds

dV

dx
= cosλ

dV

dx

=
1√

1 + tan2λ

dV

dx
=

1√
1 +

(
dy

dx

)2
H
d2y

dx2
. (9)

This can be integrated to give

dy

dx
= sinh

(x
c

)
(10)

in which c =
w

H
and we have left out the constant of integration be-

cause it just moves the curve sideways. Integrating again,

y

c
= cosh

(x
c

)
− 1 (11)

in which the constant of integration is chosen so that the curve goes

through the origin. This is the catenary, the upper curve in figure 20,

while the lower curve is the parabola, the funicular curve for when

the load is constant per unit horizontal length, as is the case for a

suspension bridge.

It can be seen that the two curves are identical when their slope is

low and they only peel apart when the load per unit horizontal length

on the catenary increases with slope. The catenary is one of the few

curves where there is a simple relationship between x and y and the

arc length along the curve, s, starting from the bottom,

s =

x∫
0

√
1 +

(
dy

dx

)2

dx = c sinh
(x
c

)
. (12)

It is relatively easy to find the funicular load for a given shape of

cable or funicular shape for a given load, either by doing a simple

physical experiment, or mathematically. Having found the shape it

can be inverted, or turned upside down, to find the best shape for

the equivalent compression structure or arch.

If an arch is carrying a funicular load, there will be no bending mo-

ment in it, which is equivalent to saying that the line of thrust is along

the axis of the arch. If a non-funicular load is added, it will produce

bending moments and cause a deviation of the line of thrust.

The concept of funicular load applies particularly to structures that

have to carry one dominant load case, perhaps their self-weight or

some permanent load due to water or soil. Arch bridges such as

the Gaoliang Bridge (figure 21) have to carry the extra weight of the

masonry and fill over the support, together with the horizontal thrust

from the fill. This means that more curvature is required towards the

supports than would be the case for a catenary.
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Figure 20: Catenary (upper curve) and parabola Figure 21: Gaoliang Bridge of The Summer Palace. Photo: Hen-

nessy
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Now let us suppose that we want to make a circular arch of varying

thickness so its own weight is funicular. If t is the thickness of the

arch, R is its radius and ρg is its weight per unit volume,

ρgt = − 1

R

dV

dλ
= −H

R

d

dλ
(− tanλ)

=
H

R
sec2λ (13)

so that

t =
H

ρgRcos2λ
(14)

in which
H

ρgR
is a constant with the units of length. Note that H and

V are now forces per unit width and H is positive for a compression.

Figure 22 shows how the shell gets thicker as it approaches the ver-

tical. The stress in the arch

σ =
H

t cosλ
= ρgR cosλ, (15)

which reduces away from the top, the opposite of what happens with

a catenary.

Figure 22: Funicular circular arch
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Figure 23: Constant stress arch

Another possibility is to say that the compressive stress σ should be

constant. If that is the case,

ρgt =
dV

ds
= H

d

ds
(− tanλ)

= −Hsec2λ
dλ

ds
(16)

and

H = σt cosλ. (17)

Thus

ρg

σ

ds

dλ
= − 1

cosλ
=

cosλ

1− sinλ
− sinλ

cosλ
,

ρg

σ

dx

dλ
= −1,

ρg

σ

ds

dλ
= tanλ. (18)

These can be integrated to give
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ρg

σ
s = loge

(
cosλ

1− sinλ

)
,

ρg

σ
x = −λ,

ρg

σ
y = loge (cosλ) ,

t =
t0

cosλ
= t0e

(
−
ρgy

σ

)
, (19)

where t0 is the thickness at the top of the arch.

Figure 23 shows a constant stress arch and the Taq Kasra in figure

24 is of a similar shape. Let us now think about scale. If the arch is

made from a weak masonry we might have ρg = 25× 103 N/m2 and

σ = 0.5MPa = 0.5× 106 N/m2. Therefore
σ

ρg
= 20m which means

that if we decided to use the part of the arch in figure 23 between

−1.25 and 1.25 on the horizontal axis, the span would be 50m. If we

used concrete at a stress of 25MPa, the corresponding span will be

1250m, or 1.25 km.

Figure 25 shows a comparison of the catenary, circular and constant

stress arches. They all have the same thickness and curvature (and

therefore stress) at the top. However the catenary will have stress

increased by a factor of 2.5 at the supports. So the catenary is not a

particularly good shape for an arch or cylindrical shell, unless practi-

Figure 24: The Taq Kasra from the ancient city of Ctesiphon in Iraq
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Figure 25: Three arches, circular (top), constant stress (middle) and

catenary (bottom)

cal considerations mean that it has to have a constant thickness.

Uniform stress shell

The equivalent of the uniformly stressed arch is the uniformly

stressed shell of revolution. Let us imagine a shell of variable thick-

ness, t, which is only loaded by its own weight, ρg per unit volume,

and that there is a uniform compressive stress σ (force per unit area)

in the material.

The equilibrium equation in the radial direction tangent to the surface

is

ρgrt
dz

dr
= −σt+ d

dr
(rtσ) = −rσ dt

dr
(20)

and therefore

ρg

σ
= −1

t

dt

dz
(21)

which can be integrated to give

t = t0e
−
ρgz

σ . (22)
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This is exactly the same result that we obtained for the uniformly

stressed arch, which is a special case of the uniformly stressed shell.

In fact this result applies for any plan shape of vertically loaded uni-

formly stressed shell.

We can now use the equilibrium in the normal direction to find the

shape of the shell,

σ


d2z

dr2(
1 +

(
dz

dr

)2
) 3

2

+

dz

dr

r

√
1 +

(
dz

dr

)2


+

ρg√
1 +

(
dz

dr

)2
= 0

(23)

or

d2z

dr2

1 +

(
dz

dr

)2 +
1

r

dz

dr
+
ρg

σ
= 0. (24)

The quantity in the square brackets is the sum of the principal curva-

tures of the surface.

This equation probably cannot be solved analytically and figure 26

Figure 26: Constant stress shells – shell of revolution has larger span

than cylindrical shell

shows a numerical solution. The smaller scale shell in figure 26 is

the two dimensional cylindrical shell or arch from figures 23 and 25.

It can be seen that the shell of revolution will span roughly twice as

far for the same stress, 100m for the weak masonry and 2.5 km for

concrete – this is if the shell is only carrying its own weight. The

thickness doesn’t come into the expression for maximum span, but if

the shell is too thin other loads will dominate the stresses and also

the shell may buckle.
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5 Gridshells

We have already referred to gridshells, that is shells made from a

grid, such as the sieve in figure 8. Gridshells are sometimes known

as lattice shells, or more rarely as reticulated shells from the Latin,

reticulum, a small meshwork bag. They can be classified by material

- timber, steel etc. - and by the geometric pattern of the grid, often

triangles or quadrilaterals.

The difficulty of joining individual members (figure 27) means that

timber gridshells are often made by bending long straight finger or

scarf jointed timber members which cross at the nodes. The best

known example is Frei Otto’s Mannheim Multihalle (figures 30 to 32).

It has a sensible shape and it is well supported. However, the timber

laths only run in two directions, so that the surface is not properly

triangulated to take the three components of membrane stress [Hap-

pold and Liddell, 1975]. The shape was initially defined by Frei Otto’s

hanging model (figure 30), however it was actually built from the nu-

merical model by Büro Linkwitz. The hanging model ensures that

the shell is ‘funicular’ under own weight which is important for re-

sisting creep. However, recent research [Malek, 2012] suggests that

introducing corrugations into a gridshell (or indeed any shell) is more

important than a funicular shape when it comes to resisting buckling.

Figure 27: Portcullis House gridshell by Hopkins Architects

Corrugations occur in nature (figure 1) and were used by Nervi for

the Palazzetto dello Sport (figure 3).

The Mannheim shells are partly braced by diagonal cables and some

steel gridshells are braced in the same way, such as the Hippo House

at Berlin Zoo 1996 by Jörg Gribl and Schlaich Bergerman und Part-

ner (figure 33).

The steel gridshell for the British Museum Great by Foster + Part-

ners, Buro Happold and Waagner Biro (figure 34) is fully triangulated.
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Figure 28: Mannheim gridshell 1974 by Mutschler & Partners, Freo

Otto and Ove Arup & Partners - aerial view

Figure 29: Mannheim gridshell 1974 by Mutschler & Partners, Freo

Otto and Ove Arup & Partners - load test
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Figure 30: Mannheim gridshell 1974 by Mutschler & Partners, Freo

Otto and Ove Arup & Partners - form finding model

Figure 31: Mannheim gridshell 1974 by Mutschler & Partners, Freo

Otto and Ove Arup & Partners - erection
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Figure 32: Mannheim gridshell 1974 by Mutschler & Partners, Freo

Otto and Ove Arup & Partners - detail

Figure 33: Hippo House, Berlin Zoo 1996 by Jörg Gribl and Schlaich

Bergerman und Partner.
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Figure 34: British Museum Great Court 2000, by Foster + Partners,

Buro Happold and Waagner Biro

However it is not properly supported because the existing building

cannot take the horizontal thrusts from the roof and it is therefore on

sliding bearings. This means that it can only thrust into the corners

where the horizontal force is resisted by tension in the edge beams.

Thus the shell cannot work by membrane action alone.

6 Conclusion

The uniform stress shell described in the section 4 is some sort of

‘optimum’, at least for the case when the own weight of the structure

dominates.

However in practice there will be all sorts of functional and aesthetic

constraints which will mean that the shell will not be structurally opti-

mum. The Aichtal Outdoor Theatre by Michael Balz and Heinz Isler

(figure 35) is clearly not ‘properly’ supported all around its bound-

ary. If it were it would not fulfil the architectural and aesthetic con-

straints. However the negative Gaussian curvature ‘lip’ at the free

edges reduces the possibility of inextensional modes of deformation

and thereof is an optimal design.

Thus we can summarise our discussion as follows:
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Figure 35: Aichtal Outdoor Theatre by Michael Balz and Heinz Isler

• Shell structures can be represented geometrically by surfaces.

• Shells are relatively rigid and this separates them from tension

structures such as nets, balloons and sails.

• Shells work by a combination of membrane and bending action.

Membrane action is more efficient but bending action is required

to stop buckling and possible inextensible modes of deformation.

• The more efficient the shell, the more sudden the buckling col-

lapse.

• Hand calculations for shells are very difficult or impossible. How-

ever some understanding of shell theory will help with choice of

shell shape and interpreting computer and model test results.
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