Parachute Deployment

Dean F. Wolf

Parachute Seminar

3rd International Planetary Probe Workshop

- Methods of Deployment
- Deployment Bags
- Pilot parachutes

Importance

- "The best designed parachute will not operate reliably if it is not deployed properly"
- "Proper deployment of the parachute is at least half of the battle in parachute system design"
- "Deployment considerations dominate the design of any large parachute"

Parachute Deployment

- Denotes a sequence of events that begins with the opening of a compartment or pack attached to the body to be recovered
- Continues with the extraction of the parachute until the undamaged canopy and suspension lines are stretched behind the body and the parachute is ready to start the inflation process
 - Two types of deployment
 - Lines first deployment
 - Canopy first deployment
- Need for controlled deployment increases with the parachute size and deployment velocity

Uncontrolled Deployment

- Knacke NWC TP 6575
 Figure 6-1
- Usually a canopy first deployment
- Partial canopy inflation at line stretch
- Very large snatch load
- Except at very low speeds, a guaranteed disaster

Canopy First Deployment

- Knacke NWC TP 6575 Figure 6-5
- B-47 landing chute
- Undesirable method of deployment
 - Sometimes necessary
- Large snatch loads
 - Canopy acts as "lumped mass"
- Snatch load usually greater than inflation loads

Canopy First Deployment

- Knacke NWC TP
 6575 Figure 6-2
- Exposed canopy can also cause canopy sail
- Possible entanglement
- Possible friction
 burning

Skirt Hesitator

- Knacke NWC TP 6575
 Figure 6-39
- Canopy first deployment requires skirt hesitator or equivalent
- Skirt hesitator keeps canopy from inflating during deployment
 - Any inflation increases snatch load

Benefits of Lines First Deployment

- Minimizes the parachute snatch force by incrementally accelerating the suspension lines and canopy to vehicle speed
- Entanglements, line-overs, canopy inversions, and canopy damage are prevented by keeping tension on all parts of the deploying parachute
- Inflation time and force scatter are minimized
- Assists in uniform deployment (and inflation) of parachute clusters

Lines First Deployment Concept Incremental Acceleration of Parachute System Elements

Pilot Chute Deployment

- Small angle of attack at deployment
- Multiple pilot parachutes
- No line sail

Down-wind and Cross-wind Parachute Deployments

- Ideally, parachute deployment should be made down-wind
 - Payload at zero angle of attack

Cross-wind deployments

- Less reliable
- Complicates deployment bag ejection
- Causes line sail
- Causes skirt inversions
- In-folding at skirt can prevent inflation

Cross Wind Bag Ejection Methods

Knacke NWC TP 6575 Figure 6-10

Parachute Line Sail

- Line sail occurs when the aerodynamic force on the risers and suspension lines causes premature stripping of the suspension lines from the deployment bag
 - Cross-wind deployment
 - Inadequate drag from the pilot parachute
 - Inadequate line tie strength
 - Heavy metal fittings or load cells

Bomb Parachute Line Sail

- Inadequate pilot parachute drag
- Single pilot parachute did not inflate completely in transonic wake
- Fix was cluster of pilot parachutes

Parachute Static Line Deployment in Cross Flow

- Knacke NWC TP
 6575 Figure 6-3
- Airdrop side door exit
- Caused skirt inversions
 - "Mae West"

Parachute Static Line Deployment in Cross Flow

- Knacke NWC TP
 6575 Figure 6-33
- Design fix for skirt inversions

 Anti-inversion net added below skirt

F-111 Crew Escape Module Parachute Deployment

 Cross flow deployment required

F-111 Crew Escape Module Parachute Deployment

- Design for line sail
- Protect canopy from adverse deployment

Parachute Line Sail (Continued)

• During line sail ...

- Suspension lines and canopy can be damaged from the friction between components
- Deployment bag can rotate not be aligned with the airflow
- Unequal loading of suspension lines during the snatch force generated at line stretch

Results

- Vary between minor damage and catastrophic failure

Deployment Initiation

Pilot parachute

- Cover plate
 - Forced ejection
 - Aerodynamic forces
- Drogue gun
- Mortar
- Telescoping tubes
- Springs

Deployment of Main Parachute

- Initial velocity high, deployment bag coasts to canopy stretch
 - Mortar
 - Telescoping tubes
- Initial velocity low, deployment bag continues to accelerate to canopy stretch
 - Pilot parachute
 - Tractor (extractor) rocket

Apollo Mortar Deployed Drogue

Chutes

- Knacke NWC TP
 6575 Figure 6-7
- Mortars fired from tumbling command module
- Dual mortars used for reliability

Apollo Drogue Chute Mortar Assembly

- Knacke NWC TP
 6575 Figure 6-8
- Steel cable risers required because of possible contact with command module
- Manned vehicle

 Low reaction loads

Drogue Gun Pilot Deployment

- Knacke NWC TP
 6575 Figure 6-6
- Drogue gun fires metal slug
- Inertia of slug pulls pilot bag off of parachute

Tractor Rocket Deployment

Knacke NWC TP 6575 Figure 6-9

Tractor Rocket Deployment

- Tractor rocket has longer action distance than mortar
 - Smaller deployment bag acceleration
- Less deployment bag dynamics than mortar

Parachute Deployment

Components

- Parachute deployment sequence
 - Riser
 - Suspension lines
 - Canopy
- Deployment bags are the best methods of ensuring this sequence
- Other methods
 - Deployment sleeves
 - Skirt hesitator
 - Sacrificial panel
 - Quarter bag

Deployment Bag Design

- Flexible textile container
- Optimum shape
 - Cylinder with L/D of 2 to 4
 - Must fit vehicle
- Irregular shape
 - Difficult to pack with high density
 - Usually requires pressure packing
 - Sometimes requires autoclaving
- Separate compartments
 - Canopy
 - Suspension lines
 - Risers

Typical Deployment Bag

- Knacke NWC TP
 6575 Figure 6-34
- Separate compartments for canopy and lines
- Compartments
 open at correct
 time

Typical Bag Closures

- Knacke NWC TP
 6575 Figure 6-34
- Stow loops or cut loop closures
- Cut loop closures more common on high performance systems

Circular Cut Knife

- Knacke NWC TP
 6575 Figure 6-35
- Closure loop passes through cut knife
- Lanyard pulls knife at correct time during deployment

Retainer Loop and Cut Knives

- Redundant cut knives are often used for reliability
- Closure loop can be extracted with a separate lanyard after being cut

Banana Peel Bag

- Knacke NWC TP
 6575 Figure 6-36
- Large L/D pack shape deployed at high speed
- Multiple lacing cuts during deployment

Inside Banana Peel Bag

Parachute Deployment

Packing Banana Peel Bag

Before lacing shape is rough

Packing Banana Peel Bag

- Lacings are tightened using a pneumatic lacing machine
- Manual labor and skill are also required

Packing Banana Peel Bag

- Very precise final shapes are possible
- High densities of 50 lb/ft³ or more are achievable

Deployment Sleeve

- Knacke NWC TP
 6575 Figure 6-37
- "Poor mans" deployment bag
- Mostly used for low speed deployments of low density packs

Sacrifice Panel

- Knacke NWC TP
 6575 Figure 6-38
- Wraps around canopy and provides some protection during deployment
- Does not protect against internal friction

Pilot Parachutes

 Pilot parachutes are used to deploy larger parachutes from their storate containers into good airflow behind the payload

Requirements

- Inflate reliably and quickly
- Must be stable and develop the predicted drag
 - Influences repeatable trajectory

Other Requirements

- Main parachute pack acceleration considerations
 4 to 5 g's minimum
- Main parachute pack relative velocity considerations
 - High bag strip velocities cause friction burning and other causes of damage
- Cross-wind deployments
 - Increase minimum velocity accelerations
- Variable pilot parachute drag area

Box Type Pilot Chute

- Knacke NWC TP
 6575 Figure 6-32
- Simple construction
- Internal vanes make it very difficult to invert

Vane Type Pilot Chute

- Internal vanes make it very difficult to invert
- Used with or without internal spring

Mesh Type Pilot Chute

- Mesh suspension lines make it very difficult to invert
- Reinforced radials and suspension lines for heavy duty use

Mesh Type Pilot Chute

Pull down centerline for rapid inflation

Toy Mesh Type Chute

- Impossible to tangle up
- Works every time

Pilot and Main Chute Drag Area

Ratios

Knacke NWC TP 6575 Table 6-5

Deployment velocity, KEAS	Pilot-to-main-parachute drag-area ratio
< 150	0.03
150 to 250	0.02
> 250	0.005

Pilot Chute Drag Coefficients and Opening Shock Coefficients

Knacke NWC TP 6575 Table 6-6

Pilot chute type	Drag coefficient, C _{DO}	Opening-force coefficient, C_X
Circular vane spring	0.55	2.05
Square box	0.60	2.0
Ribbon, conical	0.52	1.3ª
Ringslot	0.60	1.4ª
Guide surface, ribless	0.42	2.0 ^{<i>a</i>}

^a For normal applications, use C_X coefficients in Tables 5-1 and 5-2.

