Lecture 10: Einstein Summation Convention

- "In any expression containing subscripted variables appearing twice (and only twice) in any term, the subscripted variables are assumed to be summed over."
- e.g. Scalar Product

$$
\vec{a} \cdot \vec{b}=\sum_{i=1}^{i=3} a_{i} b_{i}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

- will now be written

$$
a_{\theta} b_{\theta}
$$ Good practice to use Greek letters for these dummy indices

- In this lecture we will work in 3D so summation is assumed to be 1-3 but can be generalized to N dimensions
- Note dummy indices do not appear in the 'answer'. c.f.

$$
I=\int f(\theta) \mathrm{d} \theta=\int f(x) \mathrm{d} \mathrm{x} \text { where } \theta, x \text { are dummy variables }
$$

Examples

- Total Differential

$$
\mathrm{d} f=\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y+\frac{\partial f}{\partial z} \mathrm{~d} z \equiv \vec{\nabla} \cdot \overrightarrow{\mathrm{~d} r}
$$

becomes

$$
\mathrm{d} f=\frac{\partial f}{\partial x_{\theta}} \mathrm{d} x_{\theta}
$$

where $\quad x_{\alpha_{1}}=\left(x_{1}, x_{2}, x_{3}\right) \equiv(x, y, z)$
and 'free index' α runs from 1-3 here (or $1-N$ in and N-dimensional case)

- Matrix multiplication $\tilde{A}=\tilde{B} \cdot \tilde{C}$

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)
$$

$$
a_{i j}=\sum_{k}\left(b_{i k}\right)\left(c_{k j}\right) \equiv b_{i \theta} c_{\theta j}
$$

Note the same 2 free indices on each
side of the equation

- Trace of a matrix

$$
A_{11}+A_{22}+\ldots A_{n n} \equiv A_{\theta \theta}
$$

- Vector Product need to define "alternating tensor"

$$
\begin{gathered}
\epsilon_{i j k} \text { a set of } 27 \text { numbers } \epsilon_{111}, \epsilon_{112} \cdots \\
\epsilon_{i j k}=0 \text { if any } 2 \text { indices are same } 21 \text { cases of zero! } \\
\epsilon_{i j k}=+1 \text { if }(i, j, k) \text { are }(1,2,3) \text { in cyclic order } 3 \text { cases } \\
\epsilon_{i j k}=-1 \text { if }(i, j, k) \text { are }(2,1,3) \text { in cyclic order } 3 \text { cases }
\end{gathered}
$$

then (it's not that hard, honest!)

$$
[\vec{a} \times \vec{b}]_{i} \equiv \epsilon_{i \theta \phi} a_{\theta} b_{\phi}
$$

- There is a "simple" relation between the alternating tensor and the Kronecker delta

$$
\epsilon_{\theta j k} \epsilon_{\theta l m}=\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{l k}
$$

- The proof is simply the evaluation of all 81 cases! (although symmetry arguments can make this easier).
- If you can get the hang of this, this provides the fastest and most reliable method of proving vector identities
- Once written down in this form, the order of the terms only matters if they include differential operators (which only act on things to the right-hand-side of them).

Example (ABACAB)

$$
[\vec{a} \times(\vec{b} \times \vec{c})]_{m}=\epsilon_{m \alpha \beta} a_{\alpha} \underbrace{\epsilon_{\beta \gamma \delta} b_{\gamma} c_{\delta}}
$$

$$
\text { rotating indices cyclically doesn't change sign } \quad \beta \text {-th component of } \vec{b} \times \vec{c}
$$

$$
\begin{aligned}
& =\epsilon_{\beta m \alpha} \epsilon_{\beta \gamma \delta} a_{\alpha} b_{\gamma} c_{\delta}=\left(\delta_{m \gamma} \delta_{\alpha \delta}-\delta_{m \delta} \delta_{\alpha \gamma}\right) a_{\alpha} b_{\gamma} c_{\delta} \\
& =\left(a_{\alpha} c_{\alpha}\right) b_{m}-\left(a_{\alpha} b_{\alpha}\right) c_{m}=[(\vec{a} . \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}]_{m}
\end{aligned}
$$

- Which constitutes a compact proof of the (hopefully familiar) "ABACAB" formula
- Note we have made much use of the 'obvious' identity

$$
\delta_{i \theta} a_{\theta}=a_{i}
$$

Further Examples

- curl (grad) $\vec{\nabla} \times(\vec{\nabla} \phi)=0$

$$
\epsilon_{m \alpha \beta} \underbrace{\frac{\partial}{\partial x_{\alpha}} \frac{\partial \phi}{\partial x_{\beta}}}=0
$$

because this term is anti-symmetric (changes sign if α and β are swopped) but this term symmetric (stays same if α and β are swopped)
so terms 'cancel in pairs'

- div (curl) $\quad \vec{\nabla} \cdot(\vec{\nabla} \times \vec{A})=0$

$$
\frac{\partial}{\partial x_{\theta}} \epsilon_{\theta \alpha \beta} \frac{\partial}{\partial x_{\alpha}} A_{\beta}=\epsilon_{\theta \alpha \beta} \frac{\partial^{2} A_{\beta}}{\partial x_{\theta} \partial x_{\alpha}}=0 \quad \text { as above }
$$

- Trace of the unit matrix

$$
\delta_{\theta \theta}=\delta_{11}+\delta_{22}+\delta_{33}=3
$$

Final Example

$$
\begin{align*}
& \quad \vec{\nabla} \times(\vec{\nabla} \times \vec{A})=\vec{\nabla}(\vec{\nabla} \cdot \vec{A})-\overrightarrow{\nabla^{2}} \vec{A} \\
& \text { where } \overrightarrow{\nabla^{2}}\left(A_{x}, A_{y}, A_{z}\right) \equiv\left(\nabla^{2} A_{x}, \nabla^{2} A_{y}, \nabla^{2} A_{z}\right) \\
& \begin{array}{l}
\epsilon_{m \alpha \beta} \frac{\partial}{\partial x_{\alpha}} \epsilon_{\beta \theta \phi} \frac{\partial}{\partial x_{\theta}} A_{\phi}=\epsilon_{\beta m \alpha} \epsilon_{\beta \theta \phi} \frac{\partial}{\partial x_{\alpha}} \frac{\partial}{\partial x_{\theta}} A_{\phi} \\
=\left(\delta_{m \theta} \delta_{\alpha \phi}-\delta_{m \phi} \delta_{\alpha \theta}\right) \frac{\partial}{\partial x_{\alpha}} \frac{\partial}{\partial x_{\theta}} A_{\phi} \\
=\frac{\partial}{\partial x_{\alpha}} \frac{\partial}{\partial x_{m}} A_{\alpha}-\frac{\partial}{\partial x_{\alpha}} \frac{\partial}{\partial x_{\alpha}} A_{m} \\
\quad=\left[\vec{\nabla}(\vec{\nabla} \cdot \vec{A})-\overrightarrow{\nabla^{2}} \vec{A}\right]_{m} \quad \text { QED }
\end{array}
\end{align*}
$$

- It's not as hard as it first looks!

