
Does Selective Search Benefit
from WAND Optimization?

Yubin Kim1, Jamie Callan1, J. Shane Culpepper2, and Alistair Moffat3

1 Carnegie Mellon University, Pittsburgh, USA
2 RMIT University, Melbourne, Australia

3 The University of Melbourne, Melbourne, Australia

Abstract. Selective search is a distributed retrieval technique that reduces the
computational cost of large-scale information retrieval. By partitioning the col-
lection into topical shards, and using a resource selection algorithm to identify
a subset of shards to search, selective search allows retrieval effectiveness to
be maintained while evaluating fewer postings, often resulting in 90+% reduc-
tions in querying cost. However, there has been only limited attention given to
the interaction between dynamic pruning algorithms and topical index shards.
We demonstrate that the WAND dynamic pruning algorithm is more effective on
topical index shards than it is on randomly-organized index shards, and that the
savings generated by selective search and WAND are additive. We also compare
two methods for applying WAND to topical shards: searching each shard with a
separate top-k heap and threshold; and sequentially passing a shared top-k heap
and threshold from one shard to the next, in the order established by a resource
selection mechanism. Separate top-k heaps provide low query latency, whereas a
shared top-k heap provides higher throughput.

Keywords: Selective search, distributed search, dynamic pruning, efficiency

1 Introduction

Selective search is a technique for large-scale distributed search in which the document
corpus is partitioned into p topic-based shards during indexing. When a query is re-
ceived, a resource selection algorithm such as Taily [1] or Rank-S [13] selects the most
relevant k shards to search, where k � p. Results lists from those shards are merged
to form a final answer listing to be returned to the user. Selective search has substan-
tially lower computational costs than partitioning the corpus randomly and searching
all index shards, which is the most common approach to distributed search [11, 12].

Dynamic pruning algorithms such as Weighted AND (WAND) [3] and term-bounded
max score (TBMS) [22] improve the computational efficiency of retrieval systems by
eliminating or early-terminating score calculations for documents which cannot appear
in the top-k of the final ranked list. But topic-based partitioning and resource selection
change the environment in which dynamic pruning is performed, and query term post-
ing lists are likely to be longer in shards selected by the resource selection algorithm
than in shards that are not selected. As well, each topic-based shard should contain sim-
ilar documents, meaning that it might be difficult for dynamic pruning to distinguish

amongst them using only partial score calculations. Conversely, the documents in the
shards that were not selected for search might be the ones that a dynamic pruning algo-
rithm would have bypassed if it had encountered them. That is, while the behavior of
dynamic pruning algorithms on randomly-organized shards is well-understood, the in-
teraction between dynamic pruning and selective search is not. As an extreme position,
it might be argued that selective search is simply achieving the same computational
savings that dynamic pruning would have produced, but incurs the additional overhead
of clustering the collection and creating the shards. To address these concerns, we in-
vestigate the behavior of the well-known Weighted AND (WAND) dynamic pruning
algorithm in the context of selective search, considering two research questions:

RQ1: Does dynamic pruning improve selective search, and if so, why?
RQ2: Can the efficiency of selective search be improved further using a cascaded prun-

ing threshold during shard search?

2 Related Work

Selective search is a cluster-based retrieval technique [6, 19] that combines ideas from
conventional distributed search and federated search [12]. Modern cluster-based sys-
tems use inverted indexes to store clusters that were defined using criteria such as broad
topics [4] or geography [5]. The shards’ vocabularies are assumed to be random and
queries are sent to a single best shard, forwarding to additional shards as needed [5].

In selective search, the corpus is automatically clustered into query-independent
topic-based shards with skewed vocabularies and distributed across resources. When a
query arrives, a resource selection algorithm identifies a subset of shards that are likely
to contain the relevant documents. The selected shards are searched in parallel, and their
top-k lists merged to form a final answer. Because only a few shards are searched for
each query, total cost per query is reduced, leading to higher throughput.

Previous studies showed that selective search accuracy is comparable to a typical
distributed search architecture, but that efficiency is better [1, 12], where computational
cost is determined by counting the number of postings processed [1, 12], or by measur-
ing the execution time of a proof-of-concept implementation.

Resource Selection Choosing which index shards to search for a query is critical
to search accuracy. There are three broad categories of resource selection algorithm:
term-based, sample-based, and classification-based. Term-based algorithms model the
language distribution of a shard to estimate the relevance of the shard to a query, with
the vocabulary of each shard typically treated as a bag of words. The estimation of
relevance is accomplished by adapting an existing document scoring algorithm [8] or
by developing a new algorithm specifically for resource selection [1, 9, 15, 24]. Taily
[1] is one of the more successful approaches, and fits a Gamma distribution over the
relevance scores for each term. At query time, these distributions are used to estimate
the number of highly scoring documents in the shard.

Sample-based algorithms extract a small (of the order of 1%) sample of the entire
collection, and index it. When a query is received, the sample index is searched and each
top-ranked document acts as a (possibly weighted) vote for the corresponding index

shard [13, 16, 20, 21, 23]. One example is Rank-S [13], which uses an exponentially
decaying voting function derived from the document’s retrieval rank. The (usually small
number of) resources with scores greater than 0.0001 are selected.

Classification-based algorithms use training data to learn models for resources using
features such as text, the scores of term-based and sample-based algorithms, and query
similarity to historical query logs [2, 10]. While classification-based algorithms can be
more effective than unsupervised methods, they require access to training data. Their
main advantage lies in combining heterogeneous resources such as search verticals.

The Rank-S [13] and Taily [1] have both been used in prior work with similar effec-
tiveness. However Taily is more efficient, because lookups for Gamma parameters are
substantially faster than searching a sample index. We use both in our experiments.

Dynamic Pruning Weighted AND (WAND) is a dynamic pruning algorithm that only
scores documents that may become one of the current top k based on a preliminary
estimate [3]. Dimopoulos et al. [7] developed a Block-Max version of WAND in which
continuous segments of postings data are bypassed under some circumstances by us-
ing an index where each block of postings has a local maximum score. Petri et al. [17]
explored the relationship between WAND-style pruning and document similarity for-
mulations. They found that WAND is more sensitive than Block-Max WAND to the
document ranking algorithm. If the distribution of scores is skewed, as is common with
BM25, then WAND alone is sufficient. However, if the scoring regime is derived from
a language model, then the distribution of scores is top-heavy, and BlockMax WAND
should be used. Rojas et al. [18] presented a method to improve performance of systems
combining WAND and a distributed architecture with random shards.

Term-Bounded Max Score (TBMS) [22] is an alternative document-at-a-time dy-
namic pruning algorithm that is currently used in the Indri Search Engine. The key idea
of TBMS is to precompute a “topdoc” list for each term, ordered by the frequency of
the term in the document, and divided by the document length. The algorithm uses the
union of the topdoc lists for the terms to determine a candidate list of documents to be
scored. The number of documents in the topdoc list for each term is experimentally de-
termined, a choice that can have an impact on overall performance. Kulkarni and Callan
[12] explored the effects of TBMS on selective search and traditional distributed search
architectures. Based on a small set of queries they measured efficiency improvements
of 23-40% for a traditional distributed search architecture, and 19-32% for selective
search, indicating that pruning can improve the efficiency of both approaches.

3 Experiments

The observations of Kulkarni and Callan [12] provide evidence that dynamic pruning
and selective search can be complementary. Our work extends that exploration in sev-
eral important directions. First, we investigate whether there is a correlation between the
rank of a shard and dynamic pruning effectiveness for that shard. A correlation could
imply that dynamic pruning effectiveness depends on the number of shards searched.
We focus on the widely-used WAND pruning algorithm, chosen because it is both effi-
cient and versatile, particularly when combined with a scoring function such as BM25
that gives rise to skewed score distributions [7, 17].

0

5

10

15

20

25

30

35

40

Number of documents in shard

N
u

m
b

e
r

o
f s

h
a

rd
s

0 200k 400k 600k 800k 1000k >1000k

Fig. 1: Distribution of shard sizes, with a total of 100 shards.

Experiments were conducted using the ClueWeb09 Category B dataset, containing
50 million web documents. The dataset was partitioned into 100 topical shards using
k-means clustering and a KL-divergence similarity metric, as described by Kulkarni
and Callan [11], and stopped using the default Indri stoplist and stemmed using the
Krovetz stemmer. On average, the topical shards contain around 500k documents, with
considerable variation, see Figure 1. A second partition of 100 random shards was also
created, a system in which exhaustive “all shards” search is the only way of obtaining
effective retrieval. Each shard in the two systems was searched using BM25, with k1 =
0.9, b = 0.4, and global corpus statistics for idf and average document length.4

Each selected shard returned its top 1,000 documents, which were merged by score
to produce a final list of k = 1,000 documents. In selective search, deeper ranks are
necessary because most of the good documents may be in one or two shards due to
the term skew. Also, deeper k supports learning-to-rank algorithms. Postings lists were
compressed and stored in blocks of 128 entries using the FastPFOR library [14], sup-
porting fast block-based skipping during the WAND traversal.

Two resource selection algorithms were used: Taily [1] and Rank-S [13]. The Taily
parameters were taken from Aly et al. [1]: n = 400 and v = 50, where v is the cut-off
score and n represents the theoretical depth of the ranked list. The Rank-S parameters
used are consistent with the values reported by Kulkarni et al. [13]. A decay base of
B = 5 with a centralized sample index (CSI) containing 1% of the documents was used
– approximately the same size as the average shard. We were unable to find parameters
that consistently yielded better results than the original published values.

We conducted evaluations using the first 1,000 unique queries from each of the AOL
query log5 and the TREC 2009 Million Query Track. We removed single-term queries,
which do not benefit from WAND, and queries where the resource selection process
did not select any shards. Removing single-term queries is a common procedure for
research with WAND [3] and allows our results to be compared with prior work. That
left 713 queries from the AOL log, and 756 queries from MQT, a total of 1,469 queries.

4 The values for b and k1 are based on the parameter choices reported for Atire and Lucene in
the 2015 IR-Reproducibility Challenge, see github.com/lintool/IR-Reproducibility.

5 We recognize that the AOL log has been withdrawn, but also note that it continues to be widely
used for research purposes.

100 101 102 103 104 105 106 107
10−3

10−2

10−1

100

101

102

103

104

Number of Postings Evaluated

Q
ue

ry
 T

im
e

(m
s)

Fig. 2: Correlation between the number of postings processed for a query and the time
taken for query evaluation. Data points are generated from MQT queries using both
WAND and full evaluation, applied independently to all 100 topical shards and all 100
random shards. In total, 756× 200× 2 ≈ 300,000 points are plotted.

Our focus is on the efficiency of shard search, rather than resource selection. To
compare the efficiency of different shard search methods, we count the number of post-
ings scored, a metric that is strongly correlated with total processing time [3], and is less
sensitive to system-specific tuning and precise hardware configuration than is measured
execution time. As a verification of this relationship, Figure 2 shows the correlation be-
tween processing time per query, per shard, and the number of postings evaluated. There
is a strong linear relationship; note also that more than 99.9% of queries completed in
under 1 second with only a few extreme outliers requiring longer.

Pruning Effectiveness of WAND on Topical Shards The first experiment investi-
gated how WAND performs on the topical shards constructed by selective search. Each
shard was searched independently, as is typical in distributed settings – parallelism is
crucial to low response latency. w, the number of posting evaluations required in each
shard by WAND-based query evaluation was recorded. The total length of the postings
for the query terms in the selected shards was also recorded, and is denoted as b, repre-
senting the number of postings processed by an unpruned search in the same shard. The
ratio w/b then measures the fraction of the work WAND carried out compared to an
unpruned search. The lower the ratio, the greater the savings. Values of w/b can then be
combined across queries in two different ways: micro- and macro-averaging. In micro-
averaging, w and b are summed over the queries and a single value of w/b is calculated
from the two sums. In macro-averaging, w/b is calculated for each query, and averaged
across queries. The variance inherent in queries means that the two averaging methods
can produce different values, although broad trends are typically consistent.

Figure 3 and Table 1 provide insights into the behavior of macro- and micro-
averaging. Figure 3 uses the AOL queries and all 100 topical shards, plotting w/b values
on a per query per shard basis as a function of the total length of the postings lists for that
query in that shard. Queries involving only rare terms benefit much less from WAND
than queries with common terms. Thus, the macro-average of w/b is higher than the

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Total postings per query (in millions)

R
a

tio
 o

f p
o

st
in

g
s

e
va

lu
a

te
d

 b
y

W
A

N
D

Fig. 3: Ratio of savings achieved by WAND as a function of the total postings length of
each query in the AOL set, measured on a per shard basis. A total of 100×713 ≈ 71,000
points are plotted. Queries containing only rare terms derive little benefit from WAND.

WAND postings cost ratio WAND runtime cost ratio

Topical shards Random shards Topical shards Random shards

AOL micro-averaged 0.35 0.34 0.36 0.38
MQT micro-averaged 0.36 0.36 0.39 0.43

AOL macro-averaged 0.51 0.52 0.51 0.53
MQT macro-averaged 0.60 0.63 0.58 0.63

Table 1: Ratio of per shard per query postings evaluated and per shard per query execu-
tion time for WAND-based search, as ratios relative to unpruned search, averaged over
100 topical shards and over 100 randomized shards, and over two groups each of 700+
queries. The differences between the Topical and Random macro-averaged ratios are
significant for both query sets and both measures (paired two-tailed t-test, p < 0.01).

micro-average. Micro-averaging more accurately represents the total system savings,
whereas macro-averaging allows paired significance testing. We report both metrics in
Table 1. The second pair of columns gives millisecond equivalents of w/b, to further
validate the postings-cost metric. These values are micro- and macro-averaged wt/bt
ratios, where wt is the time in milliseconds taken to process one of the queries on one
of the 100 shards using WAND, and bt is the time taken to process the same query with
a full, unpruned search. A key result of Table 1 is that WAND is just as effective across
the full set of topical shards as it is on the full set of randomly formed shards. More-
over, the broad trend of the postings cost ratios – that WAND avoids nearly half of the
postings – is supported by the execution time measurements.

WAND and Resource Ranking Interactions The second experiment compares the
effectiveness of the WAND algorithm on the shards that the resource ranking algorithm
would, and would not, select in connection with each query. The Taily and Rank-S
resource selection algorithms were used to determine which shards to search. For each

Shards searched
WAND postings cost ratio WAND runtime cost ratio

Selected Non-selected Selected Non-selected

Taily AOL 3.1 0.32 0.35 0.36 0.36
Taily MQT 2.7 0.23 0.37 0.30 0.40

Rank-S AOL 3.8 0.27 0.36 0.30 0.37
Rank-S MQT 3.9 0.24 0.37 0.30 0.40

Table 2: Average number of shards searched, and micro-averaged postings ratios for
those selected shards and for the complement set of shards, together with the corre-
sponding query time cost ratios, in each case comparing WAND-based search to un-
pruned search. Smaller numbers indicate greater savings.

WAND postings cost ratio WAND runtime cost ratio

Selected Non-selected Selected Non-selected

Taily AOL 0.42 0.52 0.45 0.52
Taily MQT 0.52 0.61 0.53 0.59

Rank-S AOL 0.42 0.53 0.44 0.52
Rank-S MQT 0.52 0.61 0.53 0.60

Table 3: As for Table 2, but showing macro-averaged ratios. All differences between
selected and non-selected shards are significant (paired two-tailed t-test, p < 0.01).

query the WAND savings were calculated for the small set of selected shards, and the
much larger set of non-selected shards.

Table 2 lists micro-averaged w/b ratios, and Table 3 the corresponding macro-
averaged ratios. While all shards see improvements with WAND, the selected shards
see a greater efficiency gain than the non-selected shards, reinforcing our contention
that resource selection is an important component in search efficiency. When compared
to the ratios shown in Table 1, the selected shards see substantially higher benefit than
average shards; the two orthogonal optimizations generate better-than-additive savings.

Figure 4a shows the distribution of the individual per query per shard times for the
MQT query set, covering in the first four cases only the shards chosen by the two re-
source selection processes. The fifth exhaustive search configuration includes data for
all of the 100 randomly-generated shards making up the second system, and is provided
as a reference point. Figure 4b gives numeric values for the mean and median of each
of the five distributions. When WAND is combined with selective search, it both re-
duces the average time required to search a shard and also reduces the variance of the
query costs. Note the large differences between the mean and median query processing
times for the unpruned search and the reduction in that gap when WAND is used; this
gain arises because query and shard combinations that have high processing times due
to long postings lists are the ones that benefit most from WAND. Therefore, in typical
distributed environments where shards are evaulated in parallel, the slowest, bottleneck
shard will benefit the most from WAND and may result in additional gains in latency re-

0

500

1,000

1,500

Rank−S Full Rank−S WAND Taily Full Taily WAND Exhaustive WAND

Q
ue

ry
 T

im
e

(m
s)

(a)

Mean Median

Rank-S Full 85.0 13.0
Rank-S WAND 28.5 11.3

Taily Full 134.0 34.2
Taily WAND 42.7 23.6

Exhaustive WAND 26.6 21.8

(b)

Fig. 4: Distribution of query response times for MQT queries on shards: (a) as a box
plot distribution, with a data point plotted for each query-shard pair; (b) as a table
of corresponding means and medians. In (a), the center line of the box indicates the
median, the outer edges of the box the first and third quartiles, and the blue circle the
mean. The whiskers extend to include all points within 1.5 times the inter-quartile range
of the box. The graph was truncated to omit a small number of extreme points for both
Rank-S Full and Taily-Full. The maximum time for both these two runs was 6,611 ms.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

MQT
AOL

Shard rank

N
o

rm
a

liz
e

d
 th

re
sh

o
ld

Fig. 5: Normalized 1,000 th document scores from shards, averaged over queries and
then shard ranks, and expressed as a fraction of the collection-wide maximum document
score for each corresponding query. The score falls with rank, as fewer high-scoring
documents appear in lower-ranked shards.

duction. Furthermore, while Figure 4 shows similar per shard query costs for selective
and exhaustive search, the total work associated with selective search is substantially
less than exhaustive search because only 3–5 shards are searched per query, whereas
exhaustive search involves all 100 shards. Taken in conjunction with the previous ta-
bles, Figure 4 provides clear evidence that WAND amplifies the savings generated by
selective search, answering the first part of RQ1 with a “yes”. In addition, these exper-
iments have confirmed that execution time is closely correlated with measured posting
evaluations. The remaining experiments utilize postings counts as the cost metric.

We now consider the second part of RQ1 and seek to explain why dynamic prun-
ing improves selective search. Part of the reason is that the postings lists of the query

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

MQT Topic shards
AOL Topic shards
MQT Randomized shards
AOL Randomized shards

Shard rank

R
a

tio
 o

f p
o

st
in

g
s

e
va

lu
a

te
d

 b
y

W
A

N
D

Fig. 6: The micro-average w/b ratio for WAND postings evaluations, as a function of
the per query shard rankings assigned by Taily. Early shards generate greater savings.

terms associated with the highly ranked shards are longer than they are in a typical
randomized shard. With these long postings lists, there is more opportunity for WAND
to achieve early termination. Figure 5 shows normalized final heap-entry thresholds,
or equivalently, the similarity score of the 1,000 th ranked document in each shard. The
scores are expressed as a fraction of the maximum document score for that query across
all shards, then plotted as a function of the resource selector’s shard ranking using Taily,
averaged over queries. Shards that Taily did not score because they did not contain any
query terms were ordered randomly. For example, for the AOL log the 1,000 th doc-
ument in the shard ranked highest by Taily attains, on average across queries, a score
that is a little over 80% of the maximum score attained by any single document for that
same query. The downward trend in Figure 5 indicates that the resource ranking process
is effective, with the high heap-entry thresholds in the early shards suggesting – as we
would hope – that they contain more of the high-scoring documents.

To further illustrate the positive relationship between shard ranking and WAND,
w/b was calculated for each shard in the per query shard orderings, and then micro-
averaged at each shard rank. Figure 6 plots the average as a function of shard rank, and
confirms the bias towards greater savings on the early shards – exactly the ones selected
for evaluation. As a reference point, the same statistic was calculated for a random or-
dering of the randomized shards (random since no shard ranking is applied in traditional
distributed search), with the savings ratio being a near-horizontal line. If an unpruned
full search were to be plotted, it would be a horizontal line at 1.0. The importance of
resource selection to retrieval effectiveness has long been known; Figure 6 indicates
that effective resource selection can improve overall efficiency as well.

Improving Efficiency with Cascaded Pruning Thresholds In the experiments re-
ported so far, the rankings were computed on each shard independently, presuming
that they would be executing in parallel and employing private top-k heaps and private
heap-entry thresholds, with no ability to share information. This approach minimizes
search latency when multiple machines are available, and is the typical configuration
in a distributed search architecture. An alternative approach is suggested by our second
research question: what happens if the shards are instead searched sequentially, passing

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

MQT Taily order
AOL Taily order
MQT Random order
AOL Random order

Shard rank

N
o

rm
a

liz
e

d
 th

re
sh

o
ld

Fig. 7: Normalized 1,000 th document scores from shards relative to the highest score
attained by any document for the corresponding query, micro-averaged over queries,
assuming that shards are processed sequentially rather than in parallel, using the Taily-
based ordering of topical shards and a random ordering of the same shards.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Sequential

Independent

Shard rank

R
a

tio
 o

f p
o

st
in

g
s

e
va

lu
a

te
d

 b
y

W
A

N
D

Fig. 8: Ratio of postings evaluated by WAND for independent shard search versus se-
quential shard search, AOL queries with micro-averaging. Shard ranking was deter-
mined by Taily.

the score threshold and top-k heap from each shard to the next? The heap-entry score
threshold is then non-decreasing across the shards, and additional savings should result.
While this approach would be unlikely to be used in an on-line system, it provides an
upper bound on the efficiency gains that are possible if a single heap was shared by all
shards, and would increase throughput when limited resources are available and latency
is not a concern: for example, in off-line search and text analytics applications.

Figure 7 demonstrates the threshold in the sequential WAND configuration, with
shards ordered in two ways: by Taily score, and randomly. The normalized threshold
rises quickly towards the maximum document score through the first few shards in the
Taily ordering, which is where most of the documents related to the query are expected
to reside. Figure 8 similarly plots the w/b WAND savings ratio at each shard rank,
also micro-averaged over queries, and with shard ordering again determined by the
Taily score. The independent and sequential configurations diverge markedly in their

behavior, with a deep search in the latter processing far fewer postings than a deep
search in the former. The MQT query set displayed similar trends. Sharing the dynamic
pruning thresholds has a large effect on the efficiency of selective search.

Our measurements suggest that a hybrid approach between independent and sequen-
tial search could be beneficial. A resource-ranker might be configured to underestimate
the number of shards that are required, with the understanding that a second round of
shard ranking can be instigated in situations where deeper search is needed, identified
through examining the scores or the quantity of documents retrieved. When a second
wave of shards is activated, passing the maximum heap-entry threshold attained by the
first-wave process would reduce the computational cost. If the majority of queries are
handled within the first wave, a new combination of latency and workload will result.

4 Conclusion

Selective search reduces the computational costs of large-scale search by evaluating
fewer postings than the standard distributed architecture, resulting in computational
work savings of up to 90%. To date there has been only limited consideration of the
interaction between dynamic pruning and selective search [12], and it has been un-
clear whether dynamic pruning methods improve selective search, or whether selective
search is capturing some or all of the same underlying savings as pruning does, just
via a different approach. In this paper we have explored WAND dynamic pruning us-
ing a large dataset and two different query sets. In contrast to Kulkarni’s findings with
TBMS [12], we show that WAND-based evaluation and selective search generate what
are effectively independent savings, and that the combination is more potent than ei-
ther technique is alone – that is, that their interaction is a positive one. In particular,
when resource selection is used to choose query-appropriate shards, the improvements
from WAND on the selected shards is greater than the savings accruing on random
shards, confirming that dynamic pruning further improves selective search – a rare sit-
uation where orthogonal optimizations are better-than-additive. We also demonstrated
that there is a direct correlation between the efficiency gains generated by WAND and
the shard’s ranking. While it is well-known that resource selection improves effective-
ness, our results suggest that it can also improve overall efficiency too.

Finally, two different methods of applying WAND to selective search were com-
pared and we found that passing the top-k heap through a sequential shard evaluation
greatly reduced the volume of postings evaluated by WAND. The significant difference
in efficiency between this approach and the usual fully-parallel mechanism suggests
avenues for future development in which hybrid models are used to balance latency and
throughput in novel ways.

Acknowledgments This research was supported by National Science Foundation
(NSF) grant IIS-1302206; a Natural Sciences and Engineering Research Council of
Canada (NSERC) Postgraduate Scholarship-Doctoral award; and the Australian Re-
search Council (ARC) under the Discovery Projects scheme (DP140103256). Shane
Culpepper is the recipient of an Australian Research Council (ARC) DECRA Research
Fellowship (DE140100275).

References
[1] Aly, R., Hiemstra, D., Demeester, T.: Taily: Shard Selection Using the Tail of Score Distri-

butions. In: Proc. SIGIR. pp. 673–682 (2013)
[2] Arguello, J., Callan, J., Diaz, F.: Classification-based resource selection. In: Proc. CIKM.

pp. 1277–1286 (2009)
[3] Broder, A.Z., Carmel, D., Herscovici, M., Soffer, A., Zien, J.: Efficient query evaluation

using a two-level retrieval process. In: Proc. CIKM. pp. 426–434 (2003)
[4] Cacheda, F., Carneiro, V., Plachouras, V., Ounis, I.: Performance comparison of clustered

and replicated information retrieval systems. In: Proc. ECIR. pp. 124–135. Berlin, Heidel-
berg (2007)

[5] Cambazoglu, B.B., Varol, E., Kayaaslan, E., Aykanat, C., Baeza-Yates, R.: Query forward-
ing in geographically distributed search engines. In: Proc. SIGIR. pp. 90–97 (2010)

[6] Croft, W.B.: A model of cluster searching based on classification. In: Information Systems.
pp. 189–195 (1980)

[7] Dimopoulos, C., Nepomnyachiy, S., Suel, T.: Optimizing top-k document retrieval strate-
gies for block-max indexes. In: Proc. WSDM. pp. 113–122 (2013)

[8] Gravano, L., Garcı́a-Molina, H., Tomasic, A.: GlOSS: Text-source discovery over the inter-
net. ACM Trans. Database Systems 24, 229–264 (Jun 1999)

[9] Ipeirotis, P.G., Gravano, L.: Distributed search over the hidden Web: Hierarchical database
sampling and selection. In: Proc. VLDB. pp. 394–405 (2002)

[10] Kang, C., Wang, X., Chang, Y., Tseng, B.: Learning to rank with multi-aspect relevance for
vertical search. In: Proc. WSDM. pp. 453–462 (2012)

[11] Kulkarni, A., Callan, J.: Document allocation policies for selective searching of distributed
indexes. In: Proc. CIKM. pp. 449–458 (2010)

[12] Kulkarni, A., Callan, J.: Selective search: Efficient and effective search of large textual
collections. ACM Trans. Information Systems 33(4), 17:1–17:33 (2015)

[13] Kulkarni, A., Tigelaar, A., Hiemstra, D., Callan, J.: Shard ranking and cutoff estimation for
topically partitioned collections. In: Proc. CIKM. pp. 555–564 (2012)

[14] Lemire, D., Boytsov, L.: Decoding billions of integers per second through vectorization.
Soft. Prac. & Exp. 41(1), 1–29 (2015)

[15] Nottelmann, H., Fuhr, N.: Evaluating different methods of estimating retrieval quality for
resource selection. In: Proc. SIGIR. pp. 290–297 (2003)

[16] Paltoglou, G., Salampasis, M., Satratzemi, M.: Integral based source selection for uncoop-
erative distributed information retrieval environments. In: Proc. LSDIR. pp. 67–74 (2008)

[17] Petri, M., Culpepper, J.S., Moffat, A.: Exploring the magic of WAND. In: Proc. Aust. Doc.
Comp. Symp. pp. 58–65 (2013)

[18] Rojas, O., Gil-Costa, V., Marin, M.: Distributing efficiently the block-max wand algorithm.
In: Proc. ICCS. pp. 120–129 (2013)

[19] Salton, G.: Automatic Information Organization and Retrieval. McGraw-Hill (1968)
[20] Shokouhi, M.: Central-rank-based collection selection in uncooperative distributed infor-

mation retrieval. In: Proc. ECIR. pp. 160–172 (2007)
[21] Si, L., Callan, J.: Relevant document distribution estimation method for resource selection.

In: Proc. SIGIR. pp. 298–305 (2003)
[22] Strohman, T., Turtle, H., Croft, W.B.: Optimization strategies for complex queries. In: Proc.

SIGIR. pp. 219–225 (2005)
[23] Thomas, P., Shokouhi, M.: Sushi: Scoring scaled samples for server selection. In: Proc.

SIGIR. pp. 419–426 (2009)
[24] Yuwono, B., Lee, D.L.: Server ranking for distributed text retrieval systems on internet. In:

Proc. DASFAA. pp. 41–49 (1997)

