
- p. 1/39

Lecture 4: Polynomial Algorithms

Piotr Sankowski sankowski@dis.uniroma1.it
Stefano Leonardi leon@dis.uniroma1.it

Theoretical Computer Science 29.10.2009

- p. 2/39

Lecture Overview

� Introduction

� Point Polynomial Multiplication

� Fast Fourier Transform FFT

� Inverse Fourier Transform

� Polynomial Division

� Multipoint Polynomial Evaluation

� Polynomial Interpolation

- p. 3/39

Problems

The naive naive multiplication algorithm requires
Θ(n2) time.

We will show that using Fast Fourier Transform one can
obtain algorithm that for all basic operations on
polynommials working just slightly slower then Θ(n).

We will show how to :
� multiply polynomials in O(n log n) time,

� divide polynomials in O(n log n) time,

� compute interpolating polynomial in O(n log2 n) time,

� compute n-values of in O(n log3 n) time.

- p. 4/39

Point Multiplication

Let A(x) = ∑
n−1
i=0 aix

i and let B(x) = ∑
n−1
i=0 bix

i be
two polynomials of degree n over field F.

The polynomials can be uniquely defined by
their values in n different points.

Theorem 1 (Polynomial Interpolation) For any
set of n pairs
X = {(x0, y0), (x1, y1), . . . , (xn−1, yn−1)} such that
all values are xi are pairwise different, there exists
exactly one polynomial C(x) of degree at most n such
that C(xi) = yi for i = 0, 1, . . . , n − 1.

- p. 5/39

Point Multiplication

Let X be a fixed set of 2n points x0, . . . , x2n−1 ∈ F.

For this set we can define set of values for polynomials
A and B:

XA = {(x0, A(x0)), (x1, A(x1), . . . , (x2n−1, A(x2n−1))},

XB = {(x0, B(x0)), (x1, B(x1), . . . , (x2n−1, B(x2n−1))}.

Let C be the product of A and B, then we have:

C(xi) = A(xi) · B(xi).

- p. 6/39

Point Multiplication

Because the degree of C is not higher then 2n, so
by Polynomial Interpolation theorem the set of
values:

XA·B={(x0, A(x0)B(x0)), (x1, A(x1)B(x1), . . .

. . . , (x2n−1, A(x2n−1)B(x2n−1))},

uniquely defines the polynomial A · B.

Given the sets XA and XB we can determine XC

in O(n) time. Next using it we can find the
polynomial C.

- p. 7/39

Point Multiplication

The multiplication procedure is shown on the
animation ilustr_u.swf.

Nevertheless in order to obtain faster algorithm
than the naive one, we need to:

� compute n values of a polynomial faster then
in Θ(n2) operations,

� compute interpolating polynomial equally
fast.

- p. 8/39

Fast Fourier Transform

In order to solve these both problems we will
use Fast Furrier Transform (FFT).

In the above algorithm we did not assume
anything about the set X.

The main idea in the construction of FFT is the
choice of the right set X in order to guarentee
that the many computations are repeated.

- p. 9/39

Fast Fourier Transform

Let us assume that we want to compute the

value of the polynomial A(x) = ∑
n−1
k=0 akxk and

that n is even.

If n is odd we add to A(x) the monomial 0xn+1

what does not change the result.

We define the points Xn = {x0, x1, . . . , xn−1} in
the following way:

xk = e
2πki

n . (1)

- p. 10/39

Fast Fourier Transform

For the polynomial A(x) we define to new

polynomials A[0](x) and A[1](x) by choosing
into them from A(x) odd and even coefficients:

A[0](x) = a0 + a2x + a4x2 + . . . + an−2x
n
2−1,

A[1](x) = a1 + a3x + a5x2 + . . . + an−1x
n
2−1.

The polynomials A[0](x) and A[1](x) are of
degree at most n

2 .

Moreover we have:

A(x) = A[0](x2) + xA[1](x2). (2)

- p. 11/39

Fast Fourier Transform

The evaluation of A(x) in points x0, x1, . . . , xn−1

can be reduced to:

� evaluation of A[0](x) and A[1](x) for

X′ = {x2
0, x2

1, . . . , x2
n−1}.

� computation of the values of A(x) according
to (2).

By the definition of xi we have:

x2
k =

(

e
2πki

n

)2

= e
2πki
n/2 .

- p. 12/39

Fast Fourier Transform

Note that we have

x2
k = x2

k+ n
2
, so X′ = X n

2
.

Hence, we reduced the problem of size n – computation
of n values of degree n polynomial A

to two problems of size n
2 – computation of n

2 values of

degree n
2 polynomials A[0](x) and A[1](x).

Applying the recursion we get the FFT algorithm.

- p. 13/39

Fast Fourier Transform

� if n is odd then add an = 0 to A
� if n = 1 then return a0

� ωn = e
2πi
n and ω = 1

� a[0] = (a0, a2, . . . , an−2) and a[1] = (a1, a3, . . . , an−1)

� y[0] = FFT(a[0]) and y[1] = FFT(a[1])
� for k = 0 to n

2 − 1 do

� yk = y
[0]
k + ωy

[1]
k

� yk+ n
2

= y
[0]
k − ωy

[1]
k

� ω = ωωn

� return y

- p. 14/39

Fast Fourier Transform

The above algorithm starts by computing FFT of

A[0](x) and A[1](x).

Next it combines the results to compute FFT of
A(x).

Let us look on the run of the algorithm.

Note that in the k-th step of the loop we have:

ω = ω
k
n = e

2πik
n = xk.

- p. 15/39

Fast Fourier Transform

Therefore

yk=y
[0]
k + xky

[1]
k = A[0](e

2πik
n/2) + xk A[1](e

2πik
n/2) =

=A[0]

(

(

e
2πik

n

)2
)

+ xk A[1]

(

(

e
2πik

n

)2
)

=

=A[0](x2
k) + xk A[1](x2

k) = A(xk),

and

yk+ n
2
=y

[0]
k − xky

[1]
k = A[0](e

2πik
n/2) − e

2πik
n A[1](e

2πik
n/2) =

=A[0](e
2πi(k+n/2)

n/2) + e
2πik+n/2

n A[1](e
2πi(k+n/2)

n/2) =
=A[0](x2

k+n/2) + x2
k+n/2A[1](x2

k+n/2) = A(xk+ n
2
).

- p. 16/39

Fast Fourier Transform

In the last equality we have used (2).

This proves that the algorithm correctly
computes FFT for A(x).

The recursive equation for the running time of
FFT is:

T(n) = 2T(
n

2
) + Θ(n).

and implies T(n) = Θ(n log n).

- p. 17/39

Fast Fourier Transform

The animation ilustr_a.swf shows the run
of the FFT algorithm for polynomial
A(x) = x3 + 2x2 + 5x + 3.

The values of A(x) are computed out of the

values of A[0](x) and A[1](x), whereas the values
of these polynomials are computed out of

values of A[00](x), A[01](x), A[10](x) and A[11](x).

- p. 18/39

Inverse FFT

In order to finish the presentation of the fast
polynomial multiplication algorithm we need to
show how to compute the interpolating
polynomial for the set of points Xn.

We will show that the computation of FFT can
be understood as matrix-vector multiplication.

Next, we will show that FFT – its matrix, is
almost its own inverse.

- p. 19/39

Inverse FFT

The FFT is a matrix-vector multiplication

(A(x0), A(x1), . . . , A(xn−1))
T = Vn(a0, a1, . . . , an−1)

T,

where Vn = V(x0, . . . , xn−1) is a Vendermonde matrix:

A(x0)
A(x1)
A(x2)

...

A(xn−1)

=

x0
0 x1

0 x2
0 x3

0 · · · xn−1
0

x0
1 x1

1 x2
1 x3

1 · · · xn−1
1

x0
2 x1

2 x2
2 x3

2 · · · xn−1
2

...
...

...
...

x0
n−1 x1

n−1 x2
n−1 x3

n−1 · · · xn−1
n−1

a0

a1

a2
...

an−1

- p. 20/39

Inverse FFT

The elements of the matrix V(x0, . . . , xn−1) are
given as

(Vn)j,k = V(x0, . . . , xn−1)j,k = xk
j .

Using the definition of Xn we get:

V(x0, . . . , xn−1)j,k =
(

e
2πij

n

)k

= e
2πijk

n .

The inverse of FFT is represented as
matrix-vector multipication

V−1
n (A(x0), A(x1), . . . , A(xn−1))

T.

- p. 21/39

Inverse FFT

Lemma 1 The matrix Wn defined as:

(Wn)j,k =
1

n
e
−2πijk

n ,

is the inverse matrix for Vn.

We will show that

VnWn = I.

Let us consider an element (j, k) in the product
matrix VnWn:

- p. 22/39

Inverse FFT

(VnWn)j,k=∑
n−1
l=0 (Vn)j,l (Wn)l,k =

=∑
n−1
l=0 e

2πijl
n 1

n e
−2πilk

n =

=∑
n−1
l=0

1
n e

2πl(j−k)
n =

If j = k then e
2πk(j−k)

n = 1 and the sum equals 1.

Otherwise we get the sum of a geometric series:

=
1

n
·

1 − e
2πn(j−k)

n

1 − e
2π(j−k)

n

=
1

n
·

1 − 1(j−k)

1 − e
2π(j−k)

n

= 0.

Hence VnWn = I.

- p. 23/39

Inverse FFT

The matrix Vn is defined as:

(Vn)j,k = xk
j = e

2πijk
n ,

whereas the matrix Wn is defined as:

(Wn)j,k =
1

n
e
−2πijk

n .

Therefore in order to compute the inverse FFT

we neeed to change ωm = e
2πi
n to ωm = e−

2πi
n in

the algorithm and divide the result by n.

- p. 24/39

Polynomial Division

Let A(x) be a polynomial of degree m and let B(x) be
the polynomial of degree n.

Without loss of generality we assume that bn−1 6= 0.

In this problem we would like to compute two
polynomials D(x) and R(x) such that:

A(x) = D(x)B(x) + R(x), (3)

and degree of R(x) is smaller then n.

We say that D(x) is the result and R(x) is the remainder.

- p. 25/39

Polynomial Division

The first idea is to compute the inverse of B(x)
and then use FFT to multiply A(x) by it.

Unfortunately the polynomials have no inverses
that would be polynomials.

We can extend our domain to guarantee
existence of inverses.

- p. 26/39

Polynomial Division

We will make all computation in the set of
formal series F[[x]] over the field F.

Formal series are śimply"polynomials of infinite
degree.

For some elements of F[[x]] the inverses exist.

These elements have form a + xA(x), where
a 6= 0 and A(x) ∈ F[[x]].

- p. 27/39

Polynomial Division

Question 1
What is the inverse of the series 1 + x?

The inverse is equal to ∑
∞
i=0(−x)i.

Question 2
What is the inverse of the series ∑

∞
j=0(j + 1)xj?

The inverse is equal to (1 − x)2.

- p. 28/39

Polynomial Division

Let us plug in x = 1
z into (3) to get:

AR(z)=DR(z)BR(z) + zm−n−1RR(z) =
=BR(z)DR(z) mod zm−n−1,

where AR(z) = zmA(1
z), DR(z) = zm−nD(1

z),

BR(z) = znB(1
z) and RR(z) = zn−1R(1

z), are
polynomials with the reversed order of
coefficients.

From the assumption that bn−1 6= 0 we know
that BR is invertible.

- p. 29/39

Polynomial Division

Now we can write :

DR(z) = AR(x)
(

BR(z)
)−1

mod zm−n−1. (4)

Note that in order to compute DR(z) we need

only m − n − 1 terms from series
(

BR(z)
)−1

.

The higher degree terms will disappear after the
modulo operation by zm−n−1.

- p. 30/39

Polynomial Division

The first t terms of the inverse of
A(x) = ∑

n−1
i=0 aix

i, m) can be computed in the
following way:

INVERSE(A(x), t):
� if t = 1 then return 1/a0

� A[0](x) = INVERSE(A(x), ⌈ t
2⌉)

� return
(

A[0](x) −
[

A(x)A[0](x) − 1
]

A[0](x)
)

mod xt.

- p. 31/39

Polynomial Division

The computation is correct because:

1

A(x)
− A[0](x)

is a multiple of x⌈ t
2⌉, so

1
A(x)−(A[0](x) −

[

A(x)A[0](x) − 1
]

A[0](x)) =

=A(x)
(

1
A(x) − A[0](x)

)2

,

is a multiple of xt or xt+1.

- p. 32/39

Polynomial Division

It we use fast polynomial multiplication to

compute (A[0](x) − (A(x)A[0](x) − 1)A[0](x))
then the working time of the algorithm will be:

∑
log n
i=0 O(2i log 2i) = O(1) ∑

log n
i=0 i2i =

= O(1) · (2 + 2log n+1(log n − 2)) =
= O(n log n).

We are now ready to give an algorithm that
divides A(x) by B(x) in O(m log m) time, where
m is the degree of A(x).

- p. 33/39

Polynomial Division

The algorithm dividing A(x) by B(x).

� AR(z) = zmA(1
z)

� BR(z) = znB(1
z)

� (BR(z)−1)(z) =INVERSE(BR(z), m − n − 1)

� DR(z) = AR(x)
(

BR(z)
)−1

mod zm−n−1

� D(x) = zm−n−1DR(1
x)

� R(x) = A(x) − D(x)B(x)

� return (D(x), R(x))

- p. 34/39

Multi-point Evaluation

In this problem we are given a degree n
polynomial A(x) and a set of n points x1, . . . , xn

and need to compute n values A(x1), . . . , A(xn).

We will show how to reduce the problem to two
smaller problems.

In order to do this we will use polynomial
division.

- p. 35/39

Multi-point Evaluation

Let us define for A(x) two new polynomials:

A[0](x) = A(x) mod

n
2−1

∏
i=0

(x − xi),

A[1](x) = A(x) mod
n−1

∏
i= n

2

(x − xi).

from properties of division we have:

A(xi) = A[0](xi) for i = 0, . . . ,
n

2
− 1

A(xi) = A[1](xi) for i =
n

2
, . . . , n − 1

- p. 36/39

Multi-point Evaluation

Polynomials A[0](x) and A[0](x) are of degree n
2 .

Using polynomial division we can compute
them in O(n log n) time.

This recurrence gives working time

T(n) = 2T(
n

2
) + Θ(n log n).

and implies T(n) = Θ(n log2 n).

- p. 37/39

Interpolation

For the given set of pairs
X = {(x0, y0), (x1, y1), . . . , (xn−1, yn−1)} such that all xi

are pairwise different we would like to find
interpolating polynomial. wielomian interpolacyjny.

We will show how to reduce the problem to two smaller
problems.

In order to do this we will use multi-point polynomial
evaluation.

Let is define P(x) as: P(x) = ∏
n
2−1

i=0 (x − xi).

- p. 38/39

Interpolation

We start by recursively computing a polynomial A[0](x)
of degree n

2 interpolating the set

X[0] = {(x0, y0), (x1, y1), . . . , (x n
2−1, y n

2−1)}.

Now the polynomial A(x) can be written as:

A(x) = A[0](x) + P(x)A[1](x),

where A[1] is an unknown polynomial of degree n
2 .

By the construction A(x) is an interpolating polynomial

for X[0].

- p. 39/39

Interpolation

Note that we need to solve an interpolation problem to

find A[1], because:

A[1](xi) =
yi − A[0](xi)

P(xi)
for i =

n

2
, . . . , n − 1.

We only need to compute:
� the values of A[0](x) for the set of points{x n

2 ,...,xn−1
}.

� the values of P(x) for the set of points{x n
2 ,...,xn−1

}.

We have reduced the problem to two smaller ones. This

reduction give an algorithm working in O(n log3 n).

	Lecture Overview
	Problems
	Point Multiplication
	Point Multiplication
	Point Multiplication
	Point Multiplication
	Fast Fourier Transform
	Fast Fourier Transform
	Fast Fourier Transform
	Fast Fourier Transform
	Fast Fourier Transform
	Fast Fourier Transform
	Fast Fourier Transform
	Fast Fourier Transform
	Fast Fourier Transform
	Fast Fourier Transform
	Inverse FFT
	Inverse FFT
	Inverse FFT
	Inverse FFT
	Inverse FFT
	Inverse FFT
	Polynomial Division
	Polynomial Division
	Polynomial Division
	Polynomial Division
	Polynomial Division
	Polynomial Division
	Polynomial Division
	Polynomial Division
	Polynomial Division
	Polynomial Division
	Multi-point Evaluation
	Multi-point Evaluation
	Multi-point Evaluation
	Interpolation
	Interpolation
	Interpolation

