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Plant endophytic fungi are an important and novel resource of natural bioactive compounds with their potential 
applications in agriculture, medicine and food industry. In the past two decades, many valuable bioactive compounds with 
antimicrobial, insecticidal, cytotoxic and anticancer activities have been successfully discovered from the endophytic 
fungi. During the long period of co-evolution, a friendly relationship was formed between each endophyte and its host 
plant. Some endophytes have the ability to produce the same or similar bioactive compounds as those originated from their 
host plants. This chapter mainly reviewed the research progress on the endophytic fungi for producing plant-derived 
bioactive compounds such as paclitaxel, podophyllotoxin, camptothecine, vinblastine, hypericin and diosgenin etc. The 
relations between the endophytic fungi and their host plants, some available strategies for efficiently promoting production 
of these bioactive compounds, as well as their potential applications in the future are also discussed. It is beneficial for us 
to better understand and take advantage of plant endophytic fungi. 

Keywords endophytic fungi; bioactive compounds; host plants; co-evolution relations 

1. Introduction 

Plant endophytic fungi are defined as the fungi which spend the whole or part of their lifecycle colonizing inter-and/or 
intra-cellularly inside the healthy tissues of the host plants, typically causing no apparent symptoms of disease. They are 
important components of plant micro-ecosystems [1-3]. Plant endophytic fungi have been found in each plant species 
examined, and it is estimated that there are over one million fungal endophytes existed in the nature [4]. Plant 
endophytic fungi have been recognized as an important and novel resource of natural bioactive products with potential 
application in agriculture, medicine and food industry [5-7]. Since the "gold" bioactive compound paclitaxel (taxol) 
discovered from the endophytic fungus Taxomyces andreanae in 1993 [8], many scientists have been increasing their 
interests in studying fungal endophytes as potential producers of novel and biologically active compounds. In the past 
two decades, many valuable bioactive compounds with antimicrobial, insecticidal, cytotoxic and anticancer activities 
have been successfully discovered from the endophytic fungi. These bioactive compounds could be classified as 
alkaloids, terpenoids, steroids, quinones, lignans, phenols and lactones [2, 9]. During the long period of co-evolution, a 
friendly relationship was gradually set up between each endophytic fungus and its host plant. The host plant can supply 
plenteous nutriment and easeful habitation for the survival of its endophytes. On the other hand, the endophytes would 
produce a number of bioactive compounds for helping the host plants to resist external biotic and abiotic stresses, and 
benefiting for the host growth in return [3, 10]. Some endophytic fungi have developed the ability to produce the same 
or similar bioactive substances as those originated from the host plants. This is beneficial for us to study the relations 
between the endophytes and their host plants, and to develop a substitutable approach for efficiently producing these 
scarce and valuable bioactive compounds [6, 11]. 
 This chapter mainly describes the research progress on the endophytic fungi for producing bioactive compounds such 
as paclitaxel, podophyllotoxin, camptothecine, vinblastine, hypericin and diosgenin (Fig. 1), which were also produced 
by their host plants. The potential relationships of the endophytes with their host plants, some available strategies for 
efficiently promoting production of these bioactive compounds, as well as their potential application in the future are 
also discussed. 
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Fig. 1 Structures of the bioactive compounds from the endophytic fungi and their host plants. 

2. Endophytic fungi for producing paclitaxel and its analogues 

Paclitaxel (taxol), as a well-known and highly functionalized tetracyclic diterpenoid bioactive compound found 
originally from the bark of Taxus brevifolia in 1971 [12], has been proved with an efficient action against prostate, 
ovarian, breast and lung cancers. Its primary mechanism of action is related to the ability to stabilize the microtubules 
and to disrupt their dynamic equilibrium [13]. Up to now, the major supply of paclitaxel has been from the wild Taxus 
plants. However, it is found in extremely low amounts in various parts such as the needles, barks and roots of Taxus 
species. In order to satisfy the growing demand of market and make it more widely available, the alternative resource 
and potential strategy should be developed. In the last 40 years, many efficient approaches such as field cultivation, 
plant cell and tissue culture, chemical synthesize for paclitaxel production have been developed, and much progress has 
been achieved [14]. However, it is not realistic for producing paclitaxel with these measures as the problems of time-
consuming, lower yield and non economic. Fortunately, a paclitaxel producing endophytic fungus Taxomyces 
andreanae was successfully discovered from the Pacific yew (Taxus brevifolia) in 1993 [8]. This tremendous finding 
firstly showed that the plant endophytic fungi also had the ability to produce paclitaxel, giving us a novel and promising 
approach to produce this valuable compound. Since then, many scientists have been increasing their interests in 
studying fungal endophytes as potential candidates for producing paclitaxel. Extensive research such as searching for 
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paclitaxel-producing endophytic fungi from Taxus species as well as from other related plant species, microbial 
fermentation processes and genetic engineering for improving paclitaxel production has been developed, and much 
progress has been achieved during the past two decades. By now, at least 19 genera of endophytic fungi (i.e. Alternaria, 
Aspergillus, Botryodiplodia, Botrytis, Cladosporium, Ectostroma, Fusarium, Metarhizium, Monochaetia, Mucor, 
Ozonium, Papulaspora, Periconia, Pestalotia, Pestalotiopsis, Phyllosticta, Pithomyces, Taxomyces, Tubercularia) were 
screened to have the ability to produce paclitaxel and its analogues (i.e. baccatin III, 10-deacetylbaccatin III) (Table 1). 
The hosts of paclitaxel-producing fungi mainly include Taxus (i.e. T. baccata, T. cuspidata, T. media, and T. 
yunnanensis) and non-Taxus species (i.e. Cardiospermum helicacabum, Citrus medica, Cupressus sp., Ginkgo biloba, 
Hibiscus rosa-sinensis, Podocarpus sp., Taxodium distichum, Terminalia arjuna, Torreya grandifolia, and Wollemia 
nobilis). Such a great number and wide range implies that both paclitaxel-producing fungi and their hosts have 
biological diversity. These results also showed us a promising way that the endophytic fungi would be an alternative 
paclitaxel-producing resource. 
 
Table 1 Paclitaxel-producing endophytic fungi and their host plants. 

Endophytic fungus Fungal strain Host plant Paclitaxel yield 
(µg/L) 

Reference 

Alternaria sp. Ja-69 Taxus cuspidata 0.16 [15] 

Alternaria sp. - Ginkgo biloba 0.12-0.26 [16] 

Alternaria alternata TPF6 Taxus chinensis var. mairei 84.5 [17] 

Aspergillus fumigatus EPTP-1 Podocarpus sp. 557.8 [18] 

Aspergillus niger var. taxi HD86-9 Taxus cuspidata 273.6 [19] 

Botryodiplodia theobromae BT115 Taxus baccata 280.5 [20] 

Botrytis sp. XT2 Taxus chinensis var. mairei 161.24 [21] 

Botrytis sp. HD181-23 Taxus cuspidata 206.34 [22] 

Cladosporium cladosporioides MD2 Taxus media 800 [23] 

Ectostroma sp. XT5 Taxus chinensis var. mairei 276.75 [21] 

Fusarium arthrosporioides F-40 Taxus cuspidata 131 [24] 

Fusarium lateritium Tbp-9 Taxus baccata 0.13 [15] 

Fusarium mairei Y1117 Taxus chinensis var. mairei 2.7 [25] 

Fusarium mairei UH23 Taxus chinensis var. mairei 286.4 [26] 

Fusarium solani - Taxus celebica 1.6 [27] 

Fusarium solani Tax-3 Taxus chinensis 163.35 [28] 

Metarhizium anisopliae H-27 Taxus chinensis 846.1 [29] 

Monochaetia sp. Tbp-2 Taxus baccata 0.10 [15] 

Mucor rouxianus DA10 Taxus chinensis - [30] 

Ozonium sp. BT2 Taxus chinensis var. mairei 4-18 [31] 

Papulaspora sp. XT17 Taxus chinensis var. mairei 10.25 [21] 

Periconia sp. No. 2026 Torreya grandifolia 0.03-0.83 [32] 

Pestalotia bicilia Tbx-2 Taxus baccata 1.08 [15] 

Pestalotiopsis guepinii W-1f-2 Wollemia nobilis 0.49 [33] 

Pestalotiopsis microspora Ja-73 Taxus cuspidata 0.27 [15] 

Pestalotiopsis microspora Ne-32 Taxus wallachiana 0.5 [15] 

Pestalotiopsis microspora No. 1040 Taxus wallachiana 0.06-0.07 [34] 

Pestalotiopsis microspora Cp-4 Taxodium distichum 0.05-1.49 [35] 

Pestalotiopsis microspora Ne 32 Taxus wallachiana 0.34-1.83 [36] 
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Table 1 Contd....  

Endophytic fungus Fungal strain Host plant Paclitaxel yield 
(µg/L) 

Reference 

Pestalotiopsis pauciseta CHP-11 Cardiospermum helicacabum 113.3 [37] 

Pestalotiopsis sp. W-x-3 Wollemia nobilis 0.13 [33] 

Pestalotiopsis sp. W-1f-1 Wollemia nobilis 0.17 [33] 

Pestalotiopsis terminaliae TAP-15 Terminalia arjuna 211.1 [38] 

Phyllosticta citricarpa No.598 Citrus medica 265 [39] 

Phyllosticta dioscoreae No.605 Hibiscus rosa-sinensis 298 [40] 

Phyllosticta spinarum No.625 Cupressus sp. 235 [41] 

Pithomyces sp. P-96 Taxus sumatrana 0.095 [15] 

Taxomyces andreanae - Taxus brevifolia 0.024-0.05 [8] 

Taxomyces sp. - Taxus yunnanensis 2.3 [42] 

Tubercularia sp. TF5 Taxus chinensis var. mairei 185.4 [43] 

Unidentified YF1 Taxus yunnanensis - [44] 

3. Endophytic fungi for producing podophyllotoxin 

Podophyllotoxin (PDT), a well-known aryltetralin lignan with potent anticancer, antiviral, antioxidant, antibacterial, 
immunostimulation and anti-rheumatic properties, mainly occurs in genera of Diphylleia, Dysosma, Sabina (also called 
Juniperus), and Sinopodophyllum (also called Podophyllum) [45-52]. PDT has been used as a precursor for chemical 
synthesis of the anticancer drugs like etoposide, teniposide and etopophose phosphate [48, 51]. At present, the major 
supply of podophyllotoxin is from the natural Sinopodophyllum plants. As the over-exploitation, the Sinopodophyllum 
plants have been declared to be endangered species. In order to satisfy the increasing demand and make it more 
available, the alternative resource and strategy for efficiently producing this valuable compound should be developed. 
 Yang et al. first reported about six endophytic fungi obtained from Sinopodophyllum hexandrum, Diphylleia sinensis 
and Dysosma veitchii that had the ability to produce podophyllotoxin [45]. Later, Lu et al. also declared that an 
endophytic Alternaria sp. obtained from Sabina vulgaris could produce PDT [46]. Eyberger et al. successfully obtained 
two endophytic Phialocephala fortinii strains PPE5 and PPE7 from the rhizomes of Sinopodophyllum peltatum that 
could produce PDT with the yield of 0.5-189 µg/L in liquid suspension culture [51]. Puri et al. reported an endophytic 
fungus Trametes hirsuta isolated from Sinopodophyllum hexandrum that could produce PDT and its glycoside in 
Sabouraud broth culture [52]. Cao et al. examined an endophytic fungus Alternaria sp. isolated from Sinopodophyllum 
hexandrum that could produce PDT [47]. Kour et al. also discovered a PDT-producing endophytic fungus Fusarium 
oxysporum obtained from Sabina recurva in 2008 [48]. These results give us a promising way of exploring the 
endophytic fungi as the alternative source to produce podophyllotoxin and its analogues. 
 
Table 2 Podophyllotoxin-producing endophytic fungi and their host plants. 

Endophytic fungus Fungal strain Host plant Podophyllotoxin 
content or yield 

Reference 

Alternaria sp. - Sinopodophyllum hexandrum 
(=Podophyllum hexandrum) 

- [45] 

Alternaria sp. SC13 Sabina vulgaris - [46] 
Alternaria neesex Ty Sinopodophyllum hexandrum 2.4 µg/L [47] 
Fusarium oxysporum JRE1 Sabina recurva 

(=Juniperus recurva) 
28 µg/g [48] 

Monilia sp. - Dysosma veitchii - [45] 
Penicillium sp. - Sinopodophyllum hexandrum - [45] 
Penicillium sp. - Diphylleia sinensis - [45] 
Penicillium sp. - Dysosma veitchii - [45] 
Penicillium implicatum SJ21 Diphylleia sinensis - [49] 
Penicillium implication 2BNO1 Dysosma veitchii - [50] 
Phialocephala fortinii PPE5, PPE7 Sinopodophyllum peltatum 0.5-189 µg/L [51] 
Trametes hirsuta - Sinopodophyllum hexandrum 30 µg/g [52] 
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4. Endophytic fungi for producing camptothecine and its analogues 

Camptothecin (CPT), a pentacyclic quinoline alkaloid, was firstly isolated from the wood of Camptotheca acuminata 
(Nyssaceae) by Wall et al. in 1966 [53]. CPT and its analogue10-hydroxycamptothecin have been regarded as two of 
the most effective antineoplastic agents. The primary action mechanism of CPT is by virtue of inhibiting the intra-
nuclear enzyme topoisomerase-1, which is required in DNA replication and transcription during molecular events [54]. 
Hycamtin (topotecan) and Camtostar (irinotecan), two of the famous CPT semi-synthetic drugs, have already been in 
clinical use against ovarian, small lung and refractory ovarian cancers popularly all over the world [55]. At present, the 
major supply of this bioactive compound CPT is still from the wild trees Camptotheca acuminata and Nothapodytes 
nimmoniana (Icacinaceae). As the growing demand of this compound, it has resulted in extensive cropping of the trees 
in China and India. It is necessary to further find high yielding candidates and alternative sources to produce this 
bioactive compound and its analogues [56, 57]. 
 Puri et al. first reported an endophytic fungus Entrophospora infrequens obtained from Nothapodytes foetida that had 
the ability to produce camptothecin in 2005 [58]. Later, Amna et al. performed the kinetic studies of the growth and 
CPT accumulation of the endophyte E. infrequens in suspension culture with the either shake flasks or bioreactor, and 
demonstrated that this endophyte would be a potential alternate microorganism source to produce CPT [56]. Rehman et 
al. successfully discovered a CPT-producing endophytic fungus Neurospora sp. from the seeds of Nothapodytes foetida 
in 2008 [59]. More recently, Kusari et al. reported an endophytic fungus Fusarium solani obtained from Camptotheca 
acuminata could produce CPT, 9-methoxycamptothecin and 10-hydroxycamptothecin in Sabouraud dextrose broth [60]. 
Min and Wang reported an unidentified endophytic fungal strain XK001 could produce 10-hydroxycamptothecin with 
the yield of 677 µg/L [61]. Shweta et al. successfully found two endophytic Fusarium solani strains MTCC9667 and 
MTCC9668 had the ability to produce CPT and 9-methoxycamptothecin (0.45 µg/g), and the endophyte MTCC9668 
could also produce 10-hydroxycamptothecin as much as 0.08 µg/g [57]. These findings showed that the endophytic 
fungi could be an alterative resource to produce CPT and its analogues. 
 
Table 3 Camptothecin-producing endophytic fungi and their host plants. 

5. Endophytic fungi for producing vinblastine and its analogues 

Vinblastine and vincristine, the terpenoid indole alkaloids derived from the coupling of vindoline and catharanthine 
monomers, are two of the well-known anticancer agents [62, 63]. The primary action mechanism of vincristine is via 
interference with microtubule formation and mitotic spindle dynamics, disruption of intracellular transport and 
decreased tumour blood flow, with the latter probably as a consequence of anti-angiogenesis [62, 64]. Guo et al. first 
reported an endophytic fungus Alternaria sp. isolated from the phloem of Catharanthus roseus that had the ability to 
produce vinblastine in 1998 [65]. Later, Zhang et al. successfully discovered an endophytic Fusarium oxysporum from 
the pholem of C. roseus that could produce vincristine [66]. Yang et al. also found an unidentified vincristine-producing 
endophytic fungus from the leaves of C. roseus in 2004 [67]. These results indicate that some endophytic fungi could be 
a potential source to produce either vinblastine or vincristine. 

6. Endophytic fungi for producing other bioactive compounds originally from their 

host plants 

Other pronounced bioactive compounds originated from the host plants could also be biosynthesized by their 
endophytic fungi mainly include huperzine A, α-irone, β-irone, diosgenin, hypericin and toosendanin (shown in Table 
4). Li et al first reported an endophytic fungus Acremonium (2F09P03B) obtained from Huperzia serrata that could 
produce huperzine A that was a lycopodium alkaloid. They further optimized its fermentation conditions [68]. Zhou et 
al. reported an endophytic fungus Penicillium chrysogenum obtained from Lycopodium serratum could also produce 
huperzine A as much as 4.761 mg/L in liquid culture [73]. Ju et al. successfully discovered two endophytic fungi 
Blastomyces sp. (HA15) and Botrytis sp. (HA23) from Phlegmariurus cryptomerianus that had the ability to produce 
huperzine A [69]. 

Endophytic fungus Fungal strain Host plant Camptothecin 
content or yield 

Reference 

Entrophospora infrequens RJMEF 001 Nothapodytes foetida - [58] 
Entrophospora infrequens 5124 Nothapodytes  foetida 49.6 µg/g [56] 
Fusarium solani INFU/Ca/KF/3 Camptotheca acuminata - [60] 
Fusarium solani MTCC 9667 Apodytes dimidiata 0.37 µg/g [57] 
Fusarium solani MTCC 9668 Apodytes dimidiata 0.53 µg/g [57] 
Neurospora sp. ZP5SE Nothapodytes  foetida - [59] 
Unidentified XK001 Camptotheca acuminata - [61] 
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 Zhou and his co-workers screened a few diosgenin-producing endophytic fungi from Paris polyphylla var. 
yunnanensis [70, 71]. Zhang et al. reported an endophytic fungus Rhizopus oryzae (94Y-01) from the rhizomes of Iris 
germanica that could produce α- and β-irones for which the culture conditions were then optimized [74]. Wang et al. 
discovered three endophytic fungal isolates from Melia azedarach that had the ability to produce toosendanin [75]. 
Kusari et al. reported an endophytic fungus isolated from the stems of Hypericum perforatum (St. John's Wort) had the 
ability to produce hapericin and emodin in rich mycological medium with shake flasks [72]. All the results mentioned 
above clearly showed that a promising way that the endophytic fungi would be an alternative resource for efficiently 
producing valuable bioactive compounds in the future. 
 
Table 4 Other bioactive compounds-producing endophytic fungi and their host plants. 

Endophytic fungus Fungal strain Host plant Bioactive 
compounds 

Reference 

Acremonium sp. 2F09P03B Huperzia serrata Huperzine A [68] 

Blastomyces sp. HA15 Phlegmariurus cryptomerianus Huperzine A [69] 

Botrytis sp. HA23 Phlegmariurus cryptomerianus Huperzine A [69] 

Cephalosporium sp. 84 Paris polyphylla var. 
yunnanensis 

Diosgenin [70, 71] 

Chaetomium globosum INFU/Hp/KF/34B Hypericum perforatum Hypericin, 
Emodin 

[72] 

Paecilomyces sp. 80 Paris polyphylla var. 
yunnanensis 

Diosgenin [70, 71] 

Penicillium chrysogenum SHB Lycopodium serratum Huperzine A [73] 

Rhizopus oryzae 94Y-01 Iris germanica α-Irone, β-Irone [74] 

Unidentified O-L-5, O-SC II-4, 
O-RC-3 

Melia azedarach Toosendanin [75] 

7. Conclusions and future perspectives 

Plant endophytic fungi, as a novel and abundant microorganism resource, owning the special ability to produce the 
same or similar compounds originated from their host plants, as well as other bioactive compounds, have increased 
many investigators׳ interesting in both basic research and applied fields. In the past two decades, scientists mainly 
focused on the investigation of endophytic fungal diversity, relationships between endophytic fungi and their host 
plants, seeking for natural bioactive compounds originated from the endophytic fungi, and improving the productivity 
of some potential candidates by taking advantage of genetic engineering, microbial fermentation projects and other 
measures [5]. Up to now, hundreds of plants have been investigated for their endophytic fungi, and most of them have 
been proved to be rich with endophytic fungi. Many novel and valuable bioactive compounds with antimicrobial, 
insecticidal, cytotoxic and anticancer activities have been successfully obtained from the endophytic fungi [76]. The 
evidence of plant-associated microbes discovered in the fossilized tissues of stems and leaves indicated that the 
endophytic associations may have evolved from the time that higher plants first appeared on the earth, hundreds of 
millions of years ago [77]. Carroll suggested that some phytopathogens in the environment were related to endophytes 
and had an endophytic origin [78]. A few microorganisms appear actively to penetrate plant tissues through invading 
openings or wounds, as well as proactively using hydrolytic enzymes such as cellulase and pectinase [2]. During the 
long period of co-evolution, the endophytic fungi have adapted themselves to their special microenvironments gradually 
by genetic variation, including uptake of some plant DNA segments into their own genomes, as well as insertion their 
own DNA segments into the host genomes. This could have led to certain endophytes own the ability to biosynthesize 
some ״phytochemicals״ originated from their host plants [2, 8]. One typical example was the production of gibberellins 
from both fungi and plants [79]. The outline of the bioactive compounds from both endophytic fungi and their host 
plants along with their potential applications is shown in Fig. 2. 
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Fig. 2 Outline of the bioactive compounds from both endophytic fungi and their host plants along with their potential applications. 
 

 It is believed that the plant endophytic fungi as a novel mine of natural bioactive compounds have their great 
potential applications in agriculture, medicine and food industry [5, 7, 80]. Taking advantage of modern biotechnology 
such as genetic engineering, metabolic technology and microbial fermentation process, we can better understand and 
manipulate this important microorganism resource, and make it more benefit for the mankind. First, the most important 
step is to search for potential endophytic fungi resources from the nature. And then, through mutations, protoplast 
fusion, gene manipulation and other DNA recombination techniques, the high productivity candidates suitable for 
industrial fermentation could be established. Furthermore, colonizing and expression of relevant functional genes in the 
biosynthetic pathways are also beneficial for improving the productivity of the candidates. It is well known that 
microorganism fermentation is a sophisticated project, and it has been widely used in many occasions for a long period 
of time. Penicillin, avermectin, validamycin and other well-known antibiotics have been successfully developed through 
fermentation process. Compared with plant cell culture, the culture medium for the fungal cells is simple, inexpensive 
with the abundant supply, and the production cost is relatively low. Moreover, the period of fermentation is short, and 
the microbial fermentation process can provide the best growth and breeding conditions, and the various culture 
parameters can be strictly controlled according to our requests. In addition, the microbial fermentation conditions can be 
easily optimized, and many feasible strategies could be adopted for efficiently enhancing the bioactive compound 
production during the fermentation process, such as feeding precursors, adding biotic and abiotic elicitors, appending 
inhibitors, using special enzymes and other substances through metabolic investigation. 
 In summary, plant endophytic fungi, as a novel and important microbial resource for producing bioactive compounds 
originally from their hosts, have attracted many researchers' attentions on their theoretical study as well as potential 
applications. After more than two decades of research, much progress has been achieved though there are still many 
issues (i.e. increasing compound yield in fermentation culture, elucidating biosynthetic pathway of the compounds in 
the endophytic fungi, etc.) needed to be further clarified and resolved. 
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