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A Relational Wrapper for RDF Reification

Sunitha Ramanujam1, Anubha Gupta1, Latifur Khan1, Steven Seida2, Bhavani 
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{sxr063200, axg089100, lkhan, bxt043000}@utdallas.edu, steven_b_seida@raytheon.com

Abstract. The  importance  of  provenance  information  as  a  means  to  trust  and 
validate the authenticity of available data cannot be stressed enough in today’s web-
enabled world. The abundance of data now accessible due to the Internet explosion 
brings  with  it  the  related  issue  of  determining  how much  of  it  is  trustworthy. 
Provenance information, such as who is responsible for the data or how the data 
came to be, assists in the process of verifying the authenticity of the data. Semantic 
web  technologies  such  as  Resource  Description  Framework  (RDF)  include  the 
ability to record such provenance information  through the process of  reification. 
RDF’s popularity has resulted in a demand for modeling and visualization tools. The 
work  presented  in  this  paper,  called  R2D,  attempts  to  address  this  demand  by 
innovatively integrating existing, stable technologies such as relational systems with 
the newer web technologies such as RDF. The work in this paper extends our earlier 
work by adding support for the RDF concept of reification. Reification enables the 
association of a level of trust and confidence with RDF triples, thereby enabling the 
ranking/validation  of  the  authenticity  of  the  triples.  Details  of  the  algorithmic 
enhancements to the various components of R2D that were made to support RDF 
reification are presented along with performance graphs for queries executed on a 
database containing crime records data from a police department.. 

Keywords:  Resource Description Framework, Data Provenance, Reification, Data 
Interoperability.

1   Introduction

The  extensive  growth  of  the  Internet  and  associated  web  technologies  has  catalyzed 
research  into the  notion  of  a  “Semantic  Web”.  This  notion  is  envisioned to  augment 
human reasoning and data management abilities with automated access, extraction, and 
interpretation of web information. Amongst the many methodologies and standards that 
are being released periodically as part  of the Semantic Web initiative is  the Resource 
Description  Framework  (RDF)  [1],  a  domain-independent  data  model  that  enables 

A-PDF Merger DEMO : Purchase from www.A-PDF.com to remove the watermark

mailto:bxt043000%7D@utdallas.edu
http://www.a-pdf.com


interoperability between applications that exchange machine-comprehendible information 
on the Internet.  RDF records  information in  the form of  triples,  each  consisting of  a 
subject,  a  predicate,  and an  object.  The  predicate  is  typically  a  verb  and  denotes  the 
relationship  that  exists  between  the  subject  and  the  object.  RDF’s  rapidly  increasing 
popularity as a web content data storage paradigm has necessitated research in the field of 
visualization tools to inspect and manage data stored using this model. While efforts are 
ongoing to develop new tools for this purpose, alternate research efforts are underway that 
focus on integrating benefits and features available in existing methodologies with the 
advantages offered by the newer web technologies. 

R2D,  the  work  presented  in  this  paper,  is  one  such  alternative  research  effort  the 
objective  of  which  is  to  salvage  the  time,  effort,  and  resources  expended  in  the 
development  of  existing,  stable,  relational  tools  by  reusing  them  for  RDF  data 
visualization purposes. The advantages of relationalizing RDF stores using applications 
such as R2D are manifold and include continued leveraging of the knowledge gained by 
relational database domain experts, reduction of learning curves associated with mastery 
of  new  tools,  and  availability  of  new  technology  to  resource-constrained  small  and 
medium-sized  organizations  unwilling  to  invest  in  expensive  tools  for  fledgling 
technologies such as RDF [2].

R2D  enables  the  visualization,  inspection,  and  examination  of  RDF  stores  using 
traditional and mature relational tools. The gap between the two paradigms is bridged, 
through R2D, using a JDBC wrapper that presents, at run-time, a virtual relational version 
of the RDF store,  thereby eliminating the necessity to duplicate and synchronize data. 
This  paper  extends the work  in  [3]  by incorporating support  for  the concept  of  RDF 
reification at every stage of R2D’s deployment. 

Reification is an important RDF concept that provides the ability to make assertions 
about  statements  represented  by  RDF  triples.  With  the  increasing  number  of  online 
resources  and  sources  of  information  that  become  available  each  day,  the  need  to 
authenticate  the  available  sources  becomes  essential  in  order  to  be  able  to  judge  the 
validity,  reliability,  and  trustworthiness  of  the  information  [4].  This  authentication  is 
facilitated  by  augmenting  the  sources  with  provenance  information,  i.e.,  information 
describing the origin, derivation, history, custody, or context of a physical or electronic 
object [5]. RDF Reification, a means of validating a statement/triple based on the trust 
level of another statement [6], is the solution offered by the WWW consortium for users 
of  RDF  stores  to  record  provenance  information.   Thus,  RDF  reification  is  a  key 
component of any application requiring stringent records of the basis/foundation behind 
every piece of information in the data store. In particular, reification plays a critical role in 
security-intensive  applications  where  it  is  imperative  to  maintain  the  privacy  and 
ownership of sensitive data. The provenance information captured using reification can be 
used, in such applications, to monitor and control data access. The contributions of this 
paper are as follows.



• We propose  a  mapping  scheme for  relationalization of  RDF Stores.  The  mapping 
algorithm extends  the  algorithm in [3]  by including  new constructs  to  handle  and 
process reification information

• Based on the created map file, we propose a transformation process that generates a 
normalized, domain-specific virtual relational schema corresponding to the RDF store. 
The transformation algorithm in [3] is extended to include tables and relationships for 
reification data

• We extend the SQL-to-SPARQL translation algorithm in [3] by including the ability to 
optionally retrieve reification data, when present, through joins
The organization of the paper is as follows. A brief overview of related research efforts 

in the relational-to-rdf arena, in either direction, is provided in the following section. R2D 
mapping  preliminaries  in  terms  of  the  high-level  system  architecture  and  mapping 
constructs are given  in section 3 while  Section 4 presents detailed descriptions of  the 
various  algorithms  involved  in  the  mapping  process.  Section  5  highlights  the 
implementation specifics of the proposed system with sample visualization screenshots 
and performance  graphs  for  a  diverse range  of  queries  on databases  of  various  sizes. 
Lastly, Section 6 concludes the paper

2   Related Work

With  RDF being  the  current  buzzword  in  the  “Semantic  Web”  community,  research 
efforts are underway in various aspects of RDF such as RDF-ising relational and legacy 
database systems, transforming traditional SQL queries into RDF query languages such as 
RDQL and SPARQL, and optimizing performance of queries issued against  RDF data 
sources. However, the overall concept and objectives of R2D are unique since all research 
efforts attempt to integrate relational database concepts and Semantic Web concepts from 
a perspective  that  is  opposite  to  that  considered  in our  work.  The only research  with 
objectives very closely aligned with R2D that we have been able to identify till date is 
RDF2RDB [7] and differences between the two frameworks are tabulated in Table 1.

Table 1: Comparison between RDF2RDB and R2D

RDF2RDB R2D

Involves  data  replication  resulting  in  resource 
wastage and synchronization issues

No  data  replication/  synchronization  issues  since 
relational schema is virtual

Requires  presence  of  ontological  information 
(rdfs:class, rdf:property) for successful mapping

No  ontological  information  required.  Mapping 
discovered  through  extensive  examination  of  triple 
patterns

Schema may have unnecessary tables and may not 
be truly normalized

No  unnecessary  tables  created  for  to  1:N  or  N:1 
relationships

No  details  on  blank  nodes  or  reification  data 
handling

Meaningful transformations included for blank nodes 
and reification nodes

No SQL-to-SPARQL transformation Since relational schema is only virtual, comprehensive 



SQL-to-SPARQL  transformation  algorithm  is 
included

The  D2RQ  project  [8],  an  extensively  adopted  open  source  project  is  another 
significant player in the RDBMS-RDF mapping arena. The goals of D2RQ are the exact 
reverse of our goals. They attempt to create a mapping from relational databases to RDF 
Graphs,  and  transform RDF queries  into corresponding  SQL queries,  thereby  making 
relational data accessible through RDF applications. Our goal, on the other hand, is to 
enable RDF triples to be accessed through relational applications. RDF123 [9], an open 
source translation tool, also uses a mapping concept in the spreadsheet domain where the 
users  define  mappings  between  the  spreadsheet  semantics  and  RDF graphs  for  richer 
translation. 

Other  efforts  in  the  reverse  direction  include  [10]  where  Perez  and  Conrad  use 
relational.OWL  to  extract  the  semantics  of  a  relational  database  and  automatically 
transform them into a machine-readable and understandable RDF/OWL ontology. A few 
contributions that actually consider the mapping process from the same perspective as our 
research (i.e.,  from RDF to relational  model) are the ones listed in [11]. However,  all 
models  are  very  generic,  involving  non-application-specific  tables  such  as  resources, 
literals,  statements  etc.  that  would  make  the  determination  of  the  problem  domain 
addressed by the model difficult without examining the actual data. Further, none of the 
models discuss the concept of RDF reification and the relational transformation of the 
same. In contrast, R2D details a mapping scheme for representing provenance information 
in  a  relational  format  and  enables  the  users  to  actually  arrive  at  a  complete  Entity-
Relationship Diagram.

The  query  processing  component  of  R2D  which  comprises  the  SQL-to-SPARQL 
transformation process, once again, has no comparable counterpart  while many efforts, 
[12, 13, 14], are underway in the other direction, namely, SPARQL-to-SQL conversion. 
Chebotko, et. al. [12] propose an algorithm to translate SPARQL queries with arbitrary 
complex optional patterns to an equivalent SQL statement. Chen, et. al.  [13] discuss a 
methodology that  supports  integration  of  heterogeneous  relational  databases  using  the 
RDF model. An SQL-based RDF Querying Scheme is presented in [14] where the RDF 
querying capability is made a part  of the SQL. The current  research efforts  presented 
above  indicate  that  no  current  solutions  address  the  issue  of  enabling  relational 
applications  to  access  RDF  data  without  data  replication.  Hence,  to  the  best  of  our 
knowledge, R2D is unprecedented. 

3   R2D Architecture and Preliminaries

Figure 1 illustrates the architecture of the proposed system along with the specific R2D 
modules that are responsible for each function provided by R2D. R2D’s primary objective 
is to present, through a JDBC interface, a relational equivalent of RDF triples stores to 
visualization tools that are based on a relational model. It also provides an SQL Interface 



that generates SPARQL versions of SQL queries and passes the same to the SPARQL 
Query Engine layer for processing and RDF data retrieval.  

Figure 1: R2D System Architecture and Modules

At  the  heart  of  the  RDF-to-Relational  transformation  process  is  the  R2D mapping 
language – a declarative language that expresses the mappings between the RDF Graph 
constructs and relational database constructs. In order to better understand the constructs 
comprising the R2D mapping language, let us consider the sample scenario illustrated in 
Figure 2. 

Figure 2: Sample Scenario involving Crime Data



Every  solid  node  with  outgoing  edges,  such  as  OffenceURI,  represent  a 
subject/resource.  Edges,  such as  Address, Description,  and  Victim,  represent predicates 
and  the  solid  nodes  at  the  end  of  the  edges,  such  as  <Street>,  <Description>,  and 
<Victim>, represent objects. Empty solid nodes, such as the nodes at which the Address  
and  ReportingOfficer  predicates  terminate represent  blank nodes.  The nodes in dashed 
lines represent reified nodes with the “s”, “p”, “o”, and “t” representing the “rdf:subject”, 
rdf:predicate,  “rdf:object”,  and the “rdf:type”  predicates  of  the reification quad.  Other 
predicates of the reification nodes (other than “s”, “p”, “o”, and “t” predicates) represent 
non-quad predicates. The non-quad reification properties chosen in this example may not 
represent actual provenance information. They were primarily chosen to illustrate proof of 
concept.  Elements  of  Figure  2  are  used,  wherever  applicable,  to  facilitate  better 
comprehension of the mapping constructs which are discussed in the remainder of the 
section.

Some of the R2D mapping constructs pertaining to regular resources and blank nodes 
that are essential in order to effortlessly comprehend the work in this paper are briefly 
described below. A complete list of mapping constructs can be found in [3]. 

r2d:TableMap: The r2d:TableMap construct refers to a table in a relational database. In 
most cases, each rdfs:class object will map to a distinct r2d:TableMap, and, in the absence 
of rdfs:class objects, the r2d:TableMaps are inferred from the instance data in the RDF 
Store. Typically, every solid node with multiple predicates in an RDF graph maps into an 
r2d:TableMap if a similar TableMap does not already exist. 
Example: The  RDF  graph  in  Figure  2  results  in  the  creation  of  a  TableMap  called 
“Offence”.

r2d:ColumnBridge: r2d:ColumnBridges  relate  single-valued  RDF Graph predicates  to 
relational database columns. Each rdf:Property object maps to a distinct column attached 
to the table specified in the rdfs:domain predicate. In the absence of rdf:property/domain 
information, they are discovered by exploration of the RDF Store data. 
Example:  The  Description,  Victim,  and  Date predicates  in  Figure  2  become 
r2d:ColumnBridges belonging to the Offence r2d:TableMap.

r2d:SimpleLiteralBlankNode: r2d:SimpleLiteralBlankNodes  help  relate  RDF  Graph 
blank nodes that  consist purely of distinct  simple literal  objects to relational  database 
columns. Predicates off of an r2d:SimpleLiteralBlankNode become columns in the table 
corresponding to the subject of the blank node. 
Example: The object  of  the  Address predicate  in  Figure  2  is  an  example  of  an 
r2d:SimpleLiteralBlankNode which has  distinct  literal  predicates  of  Street,  Block,  and 
Apt,  which  are,  in  turn,  translated  into  columns  of  the  same  names  in  the  Offence 
r2d:TableMap.

r2d:ComplexLiteralBlankNode: This construct refers to blank nodes in an RDF Graph 
that have multiple object values for the same subject and predicate concept associated 
with  the blank node.  An r2d:ComplexLiteralBlankNode results  in  the generation of  a 



separate r2d:TableMap with a foreign key relationship to the table representing the subject 
resource of the blank node. 
Example:  The object of the ReportingOfficers predicate in Figure 2 is an example of an 
r2d:ComplexLiteralBlankNode that  has  multiple  object  (Badge)  values  for  the  subject 
(OffenceURI) and predicate (ReportingOfficers) concept associated with the blank node. 
The  relational  transformation  for  ReportingOfficers  involves  the  generation  of  an 
r2d:TableMap  of  the  same  name.  This  ReportingOfficers r2d:TableMap  includes  as 
columns the Badge r2d:ColumnBridge and the Offence_PK column which references the 
primary key of the Offence r2d:TableMap.

The  concept  of  reification  is  supported  using  many  of  these  previously  defined 
constructs along with a few new constructs and the details of the same listed in Table 3. 

r2d:ReificationNode: The  r2d:ReificationNode  construct  is  used  to  map  blank  nodes 
associated  with  “reification  quads”.  Under  certain  scenarios  an  r2d:ReificationNode 
results  in  the  generated  of  a  new  “reification”  r2d:TableMap.  These  scenarios  are 
discussed  in  detail  in  Section  4.2.   The  mapping  constructs  specific  to 
r2d:ReificationNodes are discussed next.
Example: The non-solid nodes corresponding to the Address-Street predicate, the Victim 
predicate,  and  the  ReportingOfficers-Badge  predicate  in  Figure  2  are  examples  of 
r2d:ReificationNodes  named  Address_Street_Reif,  Victim_Reif, and 
ReportingOfficers_Badge_Reif respectively. 

r2d:BelongsToTableMap: This  constructs  connects  an  r2d:ReificationNode  to  the 
r2d:TableMap  corresponding  to  the  resource  associated  with  “rdf:subject”  of  the 
r2d:ReificationNode.  This  information  is  recorded  in  the  R2D  Map  File  for  use 
during the SQL-to-SPARQL translation.
Example: OffenceURI  is  the value of  the  rdf:subject  predicate of  the  Victim_Reif  
r2d:ReificationNode.  The  r2d:TableMap  corresponding  to  OffenceURI  is  Offence. 
Hence, the r2d:BelongsToTableMap construct corresponding to Victim_Reif is set to 
a value of Offence, thereby connecting the reification node to a relational table. 

r2d:BelongsToBlankNode: This  construct  connects  an r2d:ReificationNode to  the 
r2d:[Simple/Complex][Literal/Resource]BlankNode corresponding to the blank node 
associated with the “rdf:subject” of the r2d:ReificationNode.
Example: The  rdf:subject  of the  Address_Street_Reif reification node in  Figure  2 
consists  of  a  blank  node  resource  called  Address,  which  is  an 
r2d:SimpleLiteralBlankNode.  Hence,  for  this  reification  node  the 
r2d:BelongsToBlankNode construct is used to associate  Address_Street_Reif to the 
Address blank node.

NOTE: Since the rdf:subject of a reification node can either refer to a proper resource 
or  a  blank  node,  the  r2d:BelongsToTableMap  and  r2d:BelongsToBlankNode 
constructs  are  mutually  exclusive.  These  are  primarily  required  to  enable  the 



generation  of  appropriate  SPARQL  WHERE  clauses  during  SQL-to-SPARQL 
translation.

r2d:ReifiedPredicate: This construct is used to record the predicate corresponding to 
the  “rdf:predicate” property  of  the  reification  quad  mapped  by  the 
r2d:ReificationNode construct.  This information is, again,  required for appropriate 
SPARQL query generation.
Example: The complete URI of the Victim predicate of OffenceURI  is recorded under 
the Victim_Reif reification node using the r2d:ReifiedPredicate construct. 

Predicates  of  r2d:ReificationNodes  are  mapped using  the  r2d:ColumnBridge  construct 
described earlier in this section. Some of the important mapping constructs specific to 
r2d:ColumnBridges include:

r2d:BelongsToReificationNode: This construct connects an r2d:ColumnBridge to an 
r2d:ReificationNode entity and is  a mandatory component of   r2d:ColumnBridges 
belonging to reification nodes.
Example: The  r2d:BelongsToReificationNode  associated  with  the  Victim_Gender 
r2d:ColumnBridge  is  assigned  a  value  of  Victim_Reif,  thereby  linking  the 
Victim_Gender column with its reification node. 

r2d:DataType: This  construct  specifies  the  datatype  of  the  r2d:ColumnBridge  to 
which it is associated and comes into play when the structure of the virtual relational 
database schema objects is examined.
Example: The  Address_Block column bridge may have an r2d:DataType of  Integer 
while the Victim_Gender column bridge has an r2d:DataType of String.

r2d:Predicate: This construct is used to store the fully qualified property name of the 
predicate  which  is  associated  with  the  reification  r2d:ColumnBridge.  This 
information is used during the SQL-to-SPARQL translation to generate the SPARQL 
WHERE clauses required to obtain the value of the r2d:ColumnBridge
Example: The  complete  URI  of  the  Victim_Gender predicate  of  the  Victim_Reif 
reification node is recorded using the r2d: Predicate construct. 

The following sections  describe  how each  of  the  above mentioned R2D constructs  is 
utilized  to  transform  provenance  information  available  in  RDF  stores  through  the 
reification concept into their relational equivalents. 

4   Reification within the R2D Framework

In  order  to  bring  to  fruition  R2D’s  vision  and  objectives,  various  algorithms  were 
designed and developed to implement each component, highlighted in Figure 1, within the 
R2D framework. The algorithmic details of each R2D module for translation of regular 
resources and blank nodes are described in depth in [3] and are omitted from this paper 



due  to  space  constraints.  The  following  sections  discuss  the  algorithmic  aspects 
specifically associated with the presentation of a relational view of RDF reification data.

4.1   Mapping Reification Nodes – RDFMapFileGenerator

The RDFMapFileGenerator is the first component in the R2D transformation framework. 
It is responsible for the generation of a map file containing the correlations between meta-
data gleaned from the input RDF store and their relational schema equivalent.  

The  reification  data  processing  component  of  the  RDFMapFileGenerator  is  quite 
straightforward. Every blank node corresponding to a “reification quad” is mapped using 
the r2d:ReificationNode construct. If the “rdf:subject” property of the “reification quad” 
mapped  by  the  r2d:Reification  construct  is  a  resource,  the  r2d:BelongsToTableMap 
construct is used to associate the “reification quad” with the r2d:TableMap corresponding 
to  the  resource.  If  the  “rdf:subject”  property  is  a  blank  node,  the 
r2d:BelongsToBlankNode construct is used to associate the “reification quad” to the r2d:
[Simple/Complex][Literal/Resource]BlankNode  associated  with  the  “rdf:subject”  blank 
node.  Further,  if  the  rdf:object  property  of  the  “reification  quad”  refers  to  another 
resource,  then r2d:RefersToTableMap construct  is  used to store this relationship.  This 
information is used in the case of 1:N relationships between two TableMap entities during 
the SQL-to-SPARQL transformation. Column 1 of Table 2 is the mapping file excerpt for 
the Victim_Reif and the Address_Street_Reif reification nodes from Figure 2.

Every  non-quad  predicate  of  the  reification  blank  node  is  mapped  using  the 
r2d:ColumnBridge  construct  and  is  associated  with  its  reification  node  using  the 
r2d:BelongsToReificationNode  construct.  Furthermore,  the  datatype  of  the  object 
corresponding to the non-quad predicate is mapped using the r2d:Datatype construct and 
the URI of the non-quad predicate itself is recorded using the r2d:Predicate construct, for 
use during the SQL-to-SPARQL transformation. An excerpt from the mapping file that 
includes information for the Victim_Gender  and the Address_Street_Direction properties 
of the corresponding reification nodes from Figure 2 is listed in Column 2 of Table 2.

Table 2: Mapping of Reification Nodes and their Predicates in the R2D Map File

Map File Excerpt for Reification Nodes Map File Excerpt for Predicates of Reification Nodes

map:Victim_Reif a r2d:ReificationNode;
r2d:belongsToTableMap map:Offence;
r2d:datatype xsd:String;
r2d:reifiedPredicate <http://Victim>;
. 
map: Address_Street_Reif a  

r2d:ReificationNode;
r2d:belongsToBlankNode map: Address;
r2d:datatype xsd:String;
r2d:reifiedPredicate <http://Address/Street>;
.

map: Victim_Gender a r2d:ColumnBridge;
r2d:belongsToReificationNode map: Victim_Reif;
r2d:datatype xsd:String;
r2d:predicate <http:// Reification/Gender>;
.
map: Address_Street_Direction a r2d:ColumnBridge;
r2d:belongsToReificationNode map:Address_Street_Reif;
r2d:datatype xsd:String;
r2d:predicate <http://Reification/StreetDirection>;
.



Complex reification nodes, such as ones that contain one or more blank node predicates, 
are processed using the Depth-First-Search tree algorithm (similar to mixed blank nodes 
processing  [3]).  Every  blank  node  encountered  during  DFS  is  mapped  using  the 
r2d:SimpleLiteralBlankNode  construct.  Every  predicate  of  the  blank  node  is  mapped 
using the r2d:ColumnBridge construct and is linked to it’s parent blank node using the 
r2d:BelongsToBlankNode construct. Every complex reification node is mapped using the 
r2d:ComplexReificationNode  construct.  Blank  node  objects  belonging  to  an 
r2d:ComplexReificationNode are connected to the r2d:ComplexReificationNode using the 
r2d:BelongsToReificationNode construct.

4.2   Relationalizing Reification Data – DBSchemaGenerator

The  second  stage  of  the  R2D  transformation  framework,  the  DBSchemaGenerator, 
involves the actual virtual, normalized, relational schema generation for the input RDF 
store based on information in the map file created in stage one. Details of the algorithm 
pertaining to the relational transformation of reification data are discussed below.
01 Algorithm DBSchemaGenerator (for Reification)
02 Input: RDF-to-Relational Schema Mapping File
03 Output: A Normalized Relational Schema
04 Begin
05  For every entry of type r2d:ReificationNode or r2d:ComplexReificationNode
06   ParentTable = ReificationNode.BelongsToTableMap OR ReificationNode.BelongsToBlankNode
07   If ParentTable.Type = "Table"  OR ParentTable.Type = "SimpleLiteralBlankNode" then
08     If ReificationNode.ReifiedPredicate refers to MultiValuedColumnBridge then
09       If MVCB represents N:M relationship then 
10         ReificationTable = Table corresponding to MVCB
11       Else /* Line 09 if */
12         ParentTable = Table on N-side of the relationship
13         ReificationTable = ParentTable_Reification
14       End if /* Line 09 if */
15     Else /* Line 08 if */
16       ReificationTable = ParentTable_Reification
17       If reification table for ParentTable does not exist then
18         Tables += ReificationTable
19       End if
20     End if /* Line 08 if */
21   Else /* Line 07 if */
22     ReificationTable = Table Corresponding to Blank Node
23   End if /* Line 07 if */
24   For every entry of type r2d:ColumnBridge with r2d:BelongsToReificationNode
25     If column does not exist in ReificationTable then
26       ReificationTable.columns += column
27     End if
28   End For /* Line 24 For  */
29   For every entry of type r2d:SimpleLiteralBlankNode(SLBN) with r2d:BelongsTo(Complex)ReificationNode
30     For every r2d:ColumnBridge with r2d:BelongsToBlankNode = above SLBN
31       Repeat Steps 24-28
32     End For /* Line 30 For */



33     For every entry of type r2d:SimpleLiteralBlankNode that belongs to Line 29’s SLBN
34       Repeat Steps 29-36
35     End For /* Line 33 For */
36   End For /* Line 29 For */ 
37  End For /* Line 05 For  */
38 End Algorithm  

Figure 3: DBSchemaGenerator Algorithm

Case (a) For every r2d:TableMap in the virtual relational schema corresponding to an 
RDF  store  an  additional  r2d:TableMap  (i.e.,  a  virtual  relational  table)  of  type 
“ReificationTable” is created in the schema if any of the following conditions hold:
a) An r2d:ColumnBridge corresponding to a predicate of a resource that maps to the 

r2d:TableMap is reified
b) A r2d:MultiValuedColumnBridge (MVCB) that results in the addition of a column to 

this r2d:TableMap is reified
c) A  predicate  corresponding  to  an  r2d:SimpleLiteralBlankNode  (SLBN)  associated 

with a resource that maps to the r2d:TableMap is reified
d) An r2d:ColumnBridge associated with a predicate of an r2d:SimpleLiteralBlankNode 

(SLBN) object is reified.
This  additional  reification table houses  the columns corresponding to  every single-

valued  property  (other  than  the  4  properties  comprising  the  quad)  of  the  “reification 
quads” arising from the 4 conditions described above. In order to better understand the 
intricacies of the algorithm let us consider the scenario depicted in Figure 2. 

The reification of the Victim predicate in Figure 2 is an example of condition (a) above 
while reification of the Street predicate of the Address SLBN is an example of condition 
(d). The relational transformation of these reification nodes results in the creation of a new 
virtual  relational  table  (called  Offence_Reification)  with  the  following  columns 
(corresponding  to  the  predicates  of  the  reification  quads):   Address_Street_Direction, 
Victim_Gender, Victim_Race, and Victim_Age.

Case (b) In  the case of reification of  MultiValuedColumnBridges  that  result  in the 
creation  of  a  new join table and  reification  of  other  kinds of  blank  nodes other  than 
SLBNs (more details on the various blank node types and their relational representations 
can  be  found  in  [3]),  no  new  reification  table  is  created.  Non-quad  properties 
corresponding to such reifications are added as columns to the existing r2d:TableMaps 
resulting from relationalization of the MVCBs and blank nodes. Reification of the Badge 
predicate of the ComplexLiteralBlankNode (CLBN) ReportingOfficers in Figure 2 is one 
such example where an OfficerName column (corresponding to the non-quad predicate of 
the reification node for Badge) is added to the Offence_ReportingOfficers TableMap that 
results from the relational transformation of the ReportingOfficers CLBN.

Complex reification nodes are nodes where the non-quad predicates  include one or 
more (nested) blank nodes. Due to the numerous types of such mixed combinations that 
are  possible,  it  would  be  nearly  impossible  to  arrive  at  an  accurate  normalized 
representation  of  the  same.  Hence,  r2d:ComplexReificationNodes  are  processed  by 
flattening  their  relational  equivalents.  Depending  on  whether  Case  (a)  or  Case  (b)  is 



applicable to the r2d:ComplexReificationNode, either a new or an existing table houses 
the reification columns. Predicates of literal and resource objects that are at the leaf nodes 
of the tree rooted at the r2d:ComplexReficationNode are translated into columns in that 
table.

4.3   Querying Reification Data – SQL-to-SPARQL Translation

The final  stage of the R2D transformation framework involves the translation of SQL 
statements  issued  against  the  virtual  relational  schema  generated  by  stage  2  into 
equivalent  SPARQL  queries  that  are  executed  against  the  actual  RDF store.  This  is 
achieved through the translation algorithm, which also ensures that triples retrieved from 
the RDF store are  returned  to the relational  visualization tool  in the expected tabular 
format.  The  translation  algorithm  presented  here  extends  the  earlier  version  [3]  by 
including the ability to translate queries issued against the virtual tables corresponding to 
reification data. 

The SQL-toSPARQL translation process transforms single or multiple table queries 
with or without multiple where clauses (connected by AND, OR, or NOT operators) and 
Group By clauses. Due to space constraints, only a high level description of the algorithm 
is discussed below along with examples to illustrate the translation process. 

In order to understand the intricacies of the translation algorithm, let us consider the 
following SQL query based on the scenario depicted in Figure 3.
SELECT  address_street,  address_street_direction,  address_block,  victim_gender,  
reportingOfficers_badge,  reportingOfficers_name  FROM  Offence,  Offence_Reification,  
Offence_ReportingOfficers  where  Offence.Offence_pk  =  Offence_Reification.Offence_pk  AND 
Offence.Offence_pk = Offence_ReportingOfficers.Offence_pk WHERE address_block = ‘1100’;

The  first  step  in  the  translation  process  involves  the  generation  of  the  SPARQL 
SELECT clause. For every field in the original SQL SELECT list, a variable is added to 
the SPARQL SELECT list. The SPARQL SELECT list after fields processing is:
SPARQLSelect  =  SELECT  ?address_street,  ?address_street_direction,  ?address_block,  ,  ?
victim_gender, ?reportingOfficers_badge, ?reportingOfficers_badge_name

The processing of regular columns for generation of SPARQL WHERE and FILTER 
clauses is described in [3].  The resulting SPARQL WHERE clause after processing of 
regular, non-reification columns as detailed in [3] is as follows:
SPARQLWhere =  WHERE {

?Offence <http://Offence/Address> ?Offence_Address .
?Offence_Address <http://Offence/Address/Street> ? address_street .
?Offence_Address <http://Offence/Address/Block> ? address_block .
?Offence <http://Offence/ReportingOfficers> ?Offence_ReportingOfficers .
?Offence_ReportingOfficers http://Offence/ReportingOfficers/Badge ?reportingOfficers_badge
FILTER (?address_block = ‘1100’ ) }

http://Offence/ReportingOfficers/Badge


(a) For fields belonging to tables of type “ReificationTable” corresponding to non-
complex  reification  nodes,  if  the  reification  quad to  which the field  belongs  reifies  a 
resource (and not a blank node), clauses of the form  [OPTIONAL] { ?reificationQuad 
<rdf:subject>  ?resourceTableMap  .  ?reificationQuad  <rdf:predicate>  ?
reificationQuad.r2d:ReifiedPredicate  .  ?reificationQuad  <non-quadPredicate>  ?
reificationColumn . ?reificationQuad <rdf:object> ?reifiedObjectField .} are added to the 
SPARQL  WHERE  clause.  The  reification  quad  corresponding  to  the  victim_gender  
column is one such reification. The OPTIONAL keyword is optional and is only required 
for  queries  involving outer  joins.  Also,  if  the field  corresponding  to  the  object  being 
reified is  not  part  of  the SPARQL WHERE clause,  an appropriate  selection clause  is 
added to the same. The SPARQL WHERE clauses resulting from the processing of the 
victim_gender column are: 

REIFClause1 = ?Offence <http://Offence/Victim> >offence_victim . 

?Victim_Reif  <rdf:subject>  ?Offence  .  ?Victim_Reif  <rdf:Predicate> 
<http://Offence/Victim>  .  ?Victim_Reif  <rdf:Object>  ?offence_victim  .  ?Victim_Reif  
<http://Offence/Victim/Gender> ?victim_gender. 

Processing  of  reification  columns  belonging  to 
{Literal/Resource}MultiValuedColumnBridge  ({L/R}MVCB)  tables  is  similar  to  the 
above  case  with  an  additional  step  to  identify  the  parent  table  from  which  the 
{L/R}MVCB table is derived through normalization. 

In the case of RMVCB tables where the rdf:object of the reification quad is a resource 
that  maps to  another  r2d:TableMap  (through the  r2d:refersToTableMap  construct),  an 
additional clause of the form 
?subjectResourceTableMap  <reificationQuad.r2d:ReifiedPredicate>  ?
objectResourceTableMap . is added to the SPARQL WHERE clause.

(b) For fields belonging to tables of type “ReificationTable”, if the reification quad 
to which the field belongs reifies a blank node, clauses of the form given below are added 
to the SPARQL WHERE clause.  Further,  if  the rdf:object  of the reification quad is  a 
resource mapping to another r2d:TableMap then the following additional clause of the 
form  ?BlankNode <reificationQuad.r2d:ReifiedPredicate> ?objectResourceTableMap .  
is appended to the SPARQL WHERE Clause.

?ParentTableofBlankNode  <BlankNodePredicate>  ?BlankNode  .  [OPTIONAL]  {?
reificationQuad  <rdf:subject>  ?BlankNode  .  ?reificationQuad  <rdf:predicate>  ?
reificationQuad.r2d:ReifiedPredicate  .  {?reificationQuad  <rdf:object>  ?reifiedObjectField  .?
reificationQuad <non-quadPredicate> ?reificationColumn}

The  address_street_direction reification column belonging to the  “Name” SLBN in 
Figure 3 is an example such a reification and the addition to the SPARQL WHERE clause 
after processing of the same is as given below.

REIFClause2 =  ?Address_Street_Reif <rdf:subject> ?Offence_Address  . ?Address_Street_Reif  
<rdf:Predicate>  <http://Offence/Address/Street>  .  ?Offence_Address  <rdf:Object>  ?

http://Offence/Victim/


address_street  .  ?Address_Street_Reif  <http://Offence/Address/Street/Direction>  ?
address_street_direction . 

Reification columns belonging to CLBNs are processed in a manner very similar to the 
previous scenario (Scenario (b)). The reification column ReportingOfficers_Badge_Name 
belonging to the  “ReportingOfficers” CLBN in Figure 3 falls in this category and the 
SPARQL WHERE clauses for this reification are as follows.

REIFClause3  =  ?ReportingOfficers_Reif  <rdf:subject>  ?Offence_ReportingOfficers   .  ?
ReportingOfficers_Reif  <rdf:Predicate>  <http://Offence/ReportingOfficers/Badge>  .  ?
ReportingOfficers_Reif <rdf:Object> ?reportingOfficers_badge . ?ReportingOfficers_Reif <http://
Offence/ReportingOfficers/Badge/Name> ?reportingOfficers_badge_name . 

Reification columns belonging to r2d:TableMaps corresponding to all other kinds of 
blank nodes are processed using either scenario (a) or (b) depending on the whether the 
“rdf:subject” of the reification node is a resource or a blank node. 

(c) For fields derived from complex reification nodes,  the sequence of predicates 
leading from the reification node to the (leaf) field are obtained by traversing the tree 
structure stored during the map file generation process. A WHERE clause is added to the 
SPARQL WHERE for each of the predicates in sequence. 

After the translation procedures described above are applied to the given example SQL 
statement, the final transformed SPARQL Query is:
SPARQL  Statement  =  SPARQLSelect+  SPARQLWhere+  REIFClause1+  REIFClause2+ 
REIFClause3

The  transformed  SPARQL  Query  is  executed  and  the  retrieved  data  is  returned  in 
relational format seamlessly.

5   Experimental Results

The hardware used for our simulation exercises was a Windows machine with 4GB RAM 
and 2 GHz Intel Dual Core processor. The software platforms and tools used include Jena 
2.5.6  to  manipulate  the  RDF triples  data,  MySQL  5.0  to  house  the  RDF  data  in  a 
persistent  manner,  and  DataVision  v1.2.0,  an  open  source  relational  tool, 
[http://datavision.sourceforge.net/], to visualize, query, and generate reports based on the 
RDF data. Lastly, BEA Workshop Studio 1.1 Development Environment along with Java 
1.5 was used for the development of the algorithms and procedures detailed in Section 4.

5.1   Experimental Datasets

The dataset used in the experiments below is a subset of crime data downloaded from a 
police department website. The data has triples pertaining to cities and zip codes where 
crimes were committed, and details of committed crimes as illustrated in Figure 3. While 



the DataVision screenshots include actual, valid crime data, the voluminous datasets used 
in the query performance evaluations was artificially generated through a data loading 
program. However, the structure of the simulated data was kept identical to that of the 
actual  crime dataset  and,  hence,  the results  obtained can be directly applied to  actual 
crime  data  of  those  volumes.  For  query  performance  experiments,  Jena’s  in-memory 
model was used to load and query the data.

5.2   Simulation Results

The  relational  equivalent  of  the  crime  data  was  generated  using  the 
RDFMapFileGenerator and DBSchemaGenerator Algorithms detailed in Section 4. The 
time taken by the map file generation process without any data sampling incorporated for 
RDF stores of various sizes, with and without reification information, was compared with 
time taken for the same process when two sampling methods were applied and the results 
are illustrated in Figure 4. Reified versions of the crime dataset were created by adding 
reification information to the  Address (Address_Type)  and  Victim (Gender,  Race, Age)  
objects in Figure 2. This reification information was created for 50% of the offence data 
in the data stores.
The process is especially time-intensive for large databases without structural information 
(which is the case with our experimental data set) but this is only to be expected since the 
RDFMapFileGenerator has to explore every resource to ensure that no property is left 
unprocessed. Furthermore, since even adding reification information for only 50% of the 
triples  in  the  RDF store  resulted in  a  25% increase  in  the size  of  the data  store,  the 
increase in map file generation time for  databases  with reification information is  also 
predictable. However, the sampling techniques applied improved the performance of the 
algorithm by a large factor.

Figure 4: Map File Generation Times with/without Sampling for reified/un-reified data

Figure 5 is a screenshot of DataVision’s Report Designer along with an inset of the 
database schema as seen by DataVision. The r2d:SimpleLiteralBlankNode associated with 
Offence-Address is  resolved  into  columns  belonging  to  the  Offence  table,  and  the 



r2d:ComplexLiteralBlankNode associated with Offence-ReportingOfficers is resolved into 
a 1:N table of the same name. Reification columns are segregated into corresponding 
reification tables. This schema is populated through the GetDatabaseMetaData Interface 
in  the  Connection  class  of  the  JDBC  API  within  which  the  two  algorithms, 
RDFMapFileGenerator  and  DBSchemaGenerator,  are  triggered.  At  this  juncture,  the 
Statement, the Prepared Statement, and the ResultSet JDBC Interfaces are invoked, which 
in turn trigger the SQL-to-SPARQL translation algorithm and return the obtained results 
to DataVision in the expected tabular format.

Figure 5: DataVision Report Designer, Relational Schema, and Query Processing



While  DataVision  has  options  to  specify  aggregation  and  grouping  functions, 
DataVision’s support group has, for reasons that are not applicable to our academic test 
environment, disabled the GROUP BY facility. For the purposes of our research, we have 
enabled the functionality.

An excerpt from the output returned to DataVision by the SQL-to-SPARQL translation 
algorithm for the SQL statement in Figure 5 is shown in Figure 6. Selected fields from 
this output were utilized by another independent application to plot the crime details on 
Google maps as also illustrated in Figure 6.

Figure 6: Excerpt from Datavision’s output in report form and Google Maps plot form



In  order to study the performance impact incurred by reification two versions of 4 
queries were executed on simulated crime datasets of various sizes. The second version 
was  created  by including one  or  more  reification  fields  to  the  first  version.  Figure  7 
displays the response times of each of the queries as the sizes of the databases vary. 

Figure 7: Response times for the chosen Queries

As was anticipated, reification adds overheads to query processing times as adding a 
reification quad for a triple results in the addition of a minimum of 4 to 5 extra triples to 
the data store. However, the time taken for SQL-to-SPARQL conversion is negligible and 
nearly constant. Thus, R2D does not add overheads to the SPARQL query performance.

SQL queries issued against relational databases created by physically duplicating RDF 
data may exhibit even better performance since refined performance optimization options 
have  been  at  the  disposal  of  relational  databases  for  many  decades.  However,  this 
improved performance comes at the expense of additional disk space due to duplication of 
data, and additional system resources and human effort required to synchronize the data. 
On the other hand, for possibly a small price in terms of response time, R2D offers an 
avenue for  users to continue to take advantage of readily available visualization tools 
without having to “reinvent the wheel”.



6   Conclusion

Provenance Information plays a pivotal role in evaluating quality of data and determining 
trust in the source of data. This paper extends the R2D framework in [3] by including the 
ability to represent provenance information available in RDF stores, through the process 
of  reification,  in  a  relational  format  accessible  through  traditional  relational  tools.  A 
JDBC  interface  aimed  at  accomplishing  this  goal  through  a  mapping  between  RDF 
reification  constructs  and  their  equivalent  relational  counterparts  was  presented.  The 
modus operandi of the proposed system was described along with in depth discussion on 
the algorithms comprising the R2D framework. Graphs highlighting response times for 
map file generation and query processing obtained using databases of various sizes, both 
with and without reification data, were also included. Future directions for R2D include 
providing support for the ability to relate an entity key field to multiple r2d:TableMaps 
corresponding  to  resources  belonging  to  different  classes,  and  improving  the 
normalization process for mixed blank nodes and complex reification nodes. 
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ABSTRACT 
The emergence of Semantic Web technologies and standards such 
as Resource Description Framework (RDF) has introduced novel 
data storage models such as the RDF Graph Model. In this paper, 
we present a research effort called R2D, which attempts to bridge 
the gap between RDF and RDBMS concepts by presenting a 
relational view of RDF data stores.  Thus, R2D is essentially a 
relational wrapper around RDF stores that aims to make the variety 
of stable relational tools that are currently in the market available to 
RDF stores without data duplication and synchronization issues. 

Categories and Subject Descriptors 
D.2.12 [Interoperability]: Data Mapping and Interoperability 
between applications 

General Terms 
Algorithms, Design, Management. 

1. INTRODUCTION 
Every new data storage paradigm comes with its own demands for 
data modeling and visualization tools to simplify data management. 
In order to salvage the time, effort, and resources exhausted in the 
development of such tools for existing, mature technologies such as 
relational database management systems, it would be prudent to 
focus on research efforts that attempt to recycle these tools for new 
data models such as the RDF Graph Model. R2D is one such effort 
that attempts to eliminate the learning curves associated with 
mastering new tools and to leverage the advantages offered by the 
relational tools while continuing to reap the benefits provided by the 
newer web technologies and standards such as RDF. 

R2D, which could be considered as the complement of D2RQ [1] 
since it works in the reverse direction, uses a declarative mapping 
scheme for the translation of RDF Graph structures to equivalent 
relational schema constructs. Functionalities provided by R2D are: 
• Ability to infer the entities comprising the RDF store, their 

attributes, and the relationships that exist between them. 
• Ability to generate a meaningful, normalized, domain-specific 

relational schema corresponding to the RDF store. 
• Ability to appropriately transform blank nodes, RDF containers, 

and RDF collections to relational entities/attributes. 
• Ability to access information in a non-RDBMS data store using 

relational data visualization tools 
• Ability to query a non-RDBMS data store using conventional 

SQL statements 
R2D is implemented as a JDBC wrapper around RDF stores and the  
system architecture is illustrated in Figure 1. 

 
Figure 1. R2D System Architecture 

At the heart of the transformation of RDF Graphs to virtual 
relational database schemas is the R2D mapping language and 
details of the same are presented below. 

2. R2D Mapping Constructs 
The chief construct of the R2D mapping language is the TableMap, 
which refers to a table in a relational database. Each rdfs:class 
object in the RDF store maps to a distinct r2d:TableMap, and, in the 
absence of rdfs:class objects, the r2d:TableMaps are inferred from 
the instance data in the RDF Store. Each TableMap entity has a set 
of columns which correspond to the predicates associated with the 
resource mapped by the TableMap. Simple predicates are mapped 
using the r2d:ColumnBridge construct while multi-valued predicates 
are mapped using the r2d:MultiValuedColumnBridge construct. 
Foreign key relationships are handled using the 
r2d:refersToTableMap construct. R2D also supports a variety of 
blank node scenarios such as single or multi-valued literal blank 
nodes, single or multi-valued resource blank nodes, and mixed 
(literal/resource) blank nodes using a variety of constructs that are 
described in [2].  RDF features such as RDF Containers and RDF 
Collections are also supported using the above-mentioned blank 
node mapping constructs. Lastly, R2D provides the 
r2d:MultiValuedPredicate construct to handle RDF triples that 
essentially map to multi-valued attributes in the relational domain. 
The “MultiValued” constructs are vital to ensure the generation of a 
normalized relational schema corresponding to the RDF store.  

3. RDF Modules 
There are three modules comprising the R2D framework. A) The 
first module is the RDFMapFileGenerator module which takes an 
RDF triples database as input and produces a mapping file as output. 
The map file generator includes detailed specifications to handle a 
variety of RDF blank nodes, containers, and collections. This 
module can be bypassed in the presence of a domain expert who can 
provide the mapping file manually. B) The second module is the 
DBSchemaGenerator, which parses the map file generated by the 
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first module and, for the RDF store, presents a list of relational 
tables, columns, and the relationships between them. C) The last 
R2D module is the SQL-to-SPARQL transformation process that 
transparently converts any SQL statement issued against the virtual 
relational schema generated by DBSchemaGenerator into its 
SPARQL equivalent, and transforms the results obtained from the 
SPARQL Query Engine into a relational/tabular format. This 
module includes the ability to translate SQL pattern matching and 
aggregation functionality into appropriate SPARQL clauses where 
applicable. 

4. SAMPLE SCENARIO 
The example RDF database stored using Jena 2.5.6 and considered 
for experimentation and elucidation purposes is one which has 
information pertaining to employees, departments, and projects. 
Employees have literal properties such as Name and Address. They 
also have blank nodes that contain phone numbers and projects 
information for the employee, and a resource predicate that 
associates a department with each employee. The map file excerpt 
corresponding to the Employee entity is listed in Figure 2 along 
with the relational schema corresponding to the RDF store, as seen 
through the relational visualization tool, DataVision [3]. A more 
detailed description of the various R2D Mapping constructs and 
schema generation processes can be found in [2]. 

 
Figure 2: Map File Excerpt for "Employee" and Relational 

Schema for RDF Store 
The mapping information from the map file is used by the SQL-to-
SPARQL translator to convert any SQL statements issued against 
the virtual relational schema into its SPARQL equivalent. One such 
query issued through DataVision and its converted SPARQL 
equivalent is illustrated in Figure 3. 

 
Figure 3: SQL-to-SPARQL Transformation 

5. PERFORMANCE RESULTS 
The performance of data retrieval using R2D was compared with 
that obtained using an RDF visualization tool called GRUFF [4] 
using a variety of queries of varying complexity. R2D queries were 
fired against Jena’s in-memory data store. Table 1 lists the results 
obtained for an RDF triples database size of 0.5M. 

Table 1: Query Performance Results 

QUERY GRUFF R2D 

3 Projections, 1 Where clause for LIKE, 2-table join 315secs 8secs 
4 Projections involving properties and 
SimpleLiteralBlankNodes, 3 Where clauses 
involving LIKE and equality operators connected 
using conjunction and disjunction, 2-table join 

315secs 6secs 

3 Projections involving properties and 
SimpleResourceBlankNodes, 3-table join 

600secs 6secs 

4 Projections from both types of blank nodes above, 
aggregation function using Group By, 3-table join 

550secs 8secs 

The performance results highlight the fact that R2D’s performance 
is far superior to that of the direct RDF visualization tool. Further, 
the time taken by the SQL-to-SPARQL translation process is 
negligible and, hence, R2D does not add any overheads to the 
SPARQL Query processing performance.  
 

6. CONCLUSION 
In today’s highly web-enabled world, R2D offers users the ability to 
reuse existing knowledge and resources by enabling the integration 
of traditional mature and stable relational tools with the newer 
semantic web technologies such as RDF stores. The competitive 
query performance results obtained through R2D make it a viable 
contender in the RDF data visualization and management arena. 
Future work includes support for reification. 
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ABSTRACT
The alignment of separate ontologies by matching related 
concepts continues to attract great attention within the database 
and artificial intelligence communities, especially since semantic 
heterogeneity across data sources remains a widespread and 
relevant problem. In particular, the Geographic Information 
System (GIS) domain presents unique forms of semantic 
heterogeneity that require a variety of matching approaches.

Our approach considers content-based techniques for aligning GIS 
ontologies. We examine the associated instance data of the 
compared concepts and apply a content-matching strategy to 
measure similarity based on value types based on N-grams present 
in the data. We focus special attention on a method applying the 
concepts of mutual information and N-grams by developing 2 
separate variations and testing them over GIS dataset including 
multi-jurisdictions.  In order to align concepts, first we find the 
appropriate columns. For this, we will exploit mutual information 
between two columns based on the type distribution of their 
content. Intuitively, if two columns are semantically same, type 
distribution should be very similar. We justify the conceptual 
validity of our ontology alignment technique with a series of 
experimental results that demonstrate the efficacy and utility of 
our algorithms on a wide-variety of authentic GIS data. 

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation 
Formalisms and Methods – semantic networks, representations 
(procedural and rule-based)

General Terms
Algorithms, Measurement, Design, Reliability, Experimentation, 
Human Factors

Keywords

Ontology, Ontology Alignment, Schema Matching, Geographic 
Information Systems, Dataset

1. INTRODUCTION
Ontology alignment is the most recent form of the information 
integration problem. The most popular definition of an ontology is 
that of a "formal, explicit specification of a shared 
conceptualization" proposed by Gruber[1]. In practice, ontologies
for a given domain consist of a series of classes (or concepts) 
along with their properties, restrictions and instances, many of 
which are related by various types of relationships. The alignment 
of ontologies, therefore, entails deriving correspondences between 
concepts and their associated properties and instances. 

Ontology matching continues to attract extensive interest, 
particularly with regards to the domain of GIS. Related work 
includes [2], which formally describes the various ways in which 
semantic heterogeneity may be encountered during the ontology 
alignment process in the GIS domain. Sunna and Cruz [3] 
describe matching ontologies using structural properties such as 
sibling similarity and descendant’s similarity. Using these ideas, 
they introduce an ontology alignment tool for use in the GIS 
domain called AgreementMaker [4].

In developing a strategy for aligning GIS ontologies, we consider 
a novel approach based on the information theoretic concept of 
mutual information that utilizes content-matching techniques 
Specifically, we identify type distributions over distinct N-grams 
among the columns within the instance data of compared concepts 
and use these to obtain a similarity value (from now on the words 
column and attribute are used interchangeably). An N-gram is 
simply a substring of length N consisting of contiguous 
characters. In particular, using distinct types we strive to capture 
patterns from both the  raw text of GIS datasets and encoded 
versions of this text which substitute the individual letters for their 
character types (i.e.,  letters are replaced by an ‘a’, numbers are 
replaced by a ‘n’, etc.)

A number of schema matching publications describing methods 
tailored more to the database community influenced our work. 
Dai, Koudas et al. [5] discussed content-based schema matching 
based on distributions of N-grams among compared columns. 
Despite the influence of this publication, some crucial differences 
exist between their approach and the methods explained here. 
First, their approach used data sources containing raw text from 
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any given domain, whereas our methods specifically targeted the 
GIS domain. Second, their approach is designed for the area of 
schema matching, while our methods are made for the area of 
ontology matching, which means that in our work, additional 
complexities needed to be considered, such as concept matching 
over names as well as content. Third, they defined statistical types 
only over distributions of N-grams and used these to determine 
column similarity. In addition to this idea, our approach considers 
a number of variations. One of these treats N-grams themselves as 
distinct types extracted from the tuple values of compared 
columns. Also, these two approaches are applied over regular text 
and over encoded text, which allowed us to observe our 
algorithm’s performance over vastly different kinds of data.

The rest of this paper is organized as follows. In section 2, we 
discuss the problem to be solved and our proposed solution for 
content similarity at both the conceptual and attribute levels. Next, 
in section 3, we present a series of experiments and their 
associated results. 

2. PROBLEM STATEMENT AND 
PROPOSAL

2.1 Problem Statement
Given 2 data sources, S1 and S2, each of which is represented by 
ontologies O1 and O2, the goal is to find similar concepts between 
O1 and O2 by examining their names and their respective 
instances. Let us assume that O1 and O2 are derived from the GIS 
domain. Figures 1 and 2 display O1 and O2, the ontologies to be
aligned. Also displayed for each ontology are their constituent 
concepts and two sample identifying attributes for each concept.
Both ontologies are derived from the Roads and Ferries package 
of the Geographic Data Files (GDF) data model and the Ontology 
for Traffic Networks.

         
Figure 1. Concepts and attributes of ontology O1

        

Figure 2. Concepts and attributes of ontology O2.

With this in mind, an effective ontology alignment procedure 
would be expected to match up concepts which are semantically 
equivalent. In this case, O1 and O2 both feature Road and Ferry 
concepts, so a strong similarity value between each one would be 
expected. Furthermore, a close semantic equivalence would also 
seem to exist between the Residential Area concept of O1 and the 
Address Area concept of O2, and Traffic Area of O1 and Enclosed 
Traffic Area of O2. There may also be a fairly strong semantic 
similarity between Junction of O1 and Intersection of O2. Our goal 
is to determine this semantic similarity given instances for 
concepts.

2.2 Content Similarity

In order to do ontology alignment, we need to determine the 
similarity between concepts C1 and C2, which come from two 
different ontologies O1 and O2, respectively. For this, first we 
need to find similarity between the attributes of C1 and C2. Recall 
that each concept may have a set of attributes. For attribute 
similarity, without loss of generality, first we focus on 1:1 
matching and later will apply our algorithm to 1:M matching. We 
will pick an attribute a from C1 and compare it with all attributes 
in C2 based on the EBD derived from attribute similarity.
Attribute a will be assigned with the attribute in concept C2 which 
gives the largest Entropy based distribution (EBD) (see Section 
2.2.2).

2.2.1 Measuring type similarity

Content matching between two concepts involves measuring the 
similarity between the instance values for a pair of attributes. This 
is accomplished by extracting instance values from the compared 
attributes, subsequently extracting a characteristic set of N-grams 
from these instances, and finally comparing the respective N-
grams for each attribute. During all of our experiments involving 
N-grams in this paper, the value of N was set equal to 2.

We experiment with a number of varying approaches using 2-
grams that ultimately determines the instance similarity between 
the compared attributes. In our first approach, called DNF 
(distinct N-gram features), we extract distinct N-gram features 
from the instances themselves and consider each unique 2-gram 



extracted as a value type. The similarity between the attributes is 
measured by determining the disparity between the 2-grams 
extracted and between the frequency of 2-grams they have in 
common. An alternative approach to the aforementioned method 
of content similarity via 2-gram feature extraction, called TPF 
(tuple features) is to collect all 2-grams and their corresponding 
frequencies for each tuple value within one of the compared 
attributes and use this information to construct a 2-gram set. In 
this case, the set of 2-grams itself would be considered a value 
type, rather than any of the individual 2-grams. 

2.2.2 Measuring type similarity

Although different versions of the attribute similarity algorithm 
involving N-grams have been discussed, we have yet to discuss 
the specific measure used to quantify similarity between 
compared attributes. This measure is known as Entropy Based 
Distribution (EBD), and it takes the following form:

EBD  = H(C | T) (1)
    H(C)

In this equation, C and T are random variables where C indicates 
the union of the column types C1 and C2 involved in the 
comparison and T indicates the value type. EBD is a normalized 
value with a range from 0 to 1, where 0 indicates the lowest EBD, 
or no similarity whatsoever between compared attributes, and 1 
indicates the highest EBD. Our experiments involve 1:1 
comparisons between attributes of compared concepts, so the 
value of C would simply be C1 U C2. H(C) represents the entropy 
of a set of  instance values for a particular attribute (or column) 
while H(C|T) indicates the conditional entropy of a set of instance 
values associated with a particular value type.

Intuitively, EBD is a comparison of the ratio of column types for 
each distinct value type (conditional entropy) with column types 
in C (entropy). A column C contains high entropy if it is impure; 
that is, the ratios of column types making up C are similar to one 
another. On the other hand, low entropy in C exists when one 
column type exists at a much higher ratio than any other type. 
Conditional entropy is similar to entropy in the sense that ratios of 
column types are being compared. However, the difference is that
we are finding a ratio of column types for each distinct value type. 
Figure 4 provides examples to help visualize the concept. 

Figure 4. Distribution of column types and value types. EBD is 
high on the left figure since H(C) is similar to H(C|T) and it is 
low on right because H(C) and H(C|T) have dissimilar values

Figure 4 provides examples to help visualize the concept. In both 
examples, crosses indicate column types originating from C1, 
while squares indicate column types originating from C2. The 
value types are represented as clusters (larger circles), each of 
which is associated with a number of tuple values from C1 and C2. 
In the left figure, the total number of crosses is 8 and the total 
number of squares is 9, which implies that entropy is very high. 
The conditional entropy is also quite high, since the ratios of 
crosses to squares within 2 of the clusters are equal and nearly 
equal within the other. Thus, the ratio of conditional entropy to 
entropy will be very close to 1, since the ratio of crosses to 
squares is nearly the same from an overall perspective and from 
an individual cluster perspective. The right figure portrays a 
different situation: while the entropy is 1.0 (since the number of 
crosses is equal to the number of squares overall), the ratio of 
crosses to squares within each individual cluster varies 
considerably. One cluster features all crosses and no squares, 
while another cluster features a 3:1 ratio of squares to crosses. 
When computing the EBD value for this example, we will derive 
a value that is lower than the EBD for the first example because 
H(C | T) will be a much lower value. Intuitively, this makes sense 
because the ratios of value types between the compared attributes 
are dissimilar. 

2.2.3. Algorithm for 1:M content matching

Algorithm 1 below describes our approach to 1:M matching. Let a
be a column from concept A in O1 that is compared with M 
columns b1...M (M <= N), where N is the total number of columns 
in C2) from concept B in O2. The algorithm for this matching is as 
follows:

Algorithm 1 Multiple Match
Input: Attribute a for concept A and Ontology O1 and a set
attributes b1, b2,…bN for concept B and Ontology O2

Output: Determining concatenation of M attributes b from O2

which are most similar to a from O1

1: for each attribute bi � B, (0 <= i <= N )

2:     EBD Find_ content_ sim (a, bi)
3:     add EBD to Similarity list SL
4: end for
5: Sort SL in descending order based on EBD
6: Pick Colk  of highest EBD from SL without replacement
7: EBD  Find_content_ sim (a, Colk)
8: Repeat
9:  If SL is not empty then
10:      Colhighest   Pick an attribute from SL with highest 
                            EBD without replacement
11:      Colk Concat (Colhighest , Colk)
12:      EBD’  Find_content_ sim (a, Colk)
13:  else
14:      break;
15:   end if
16:  Until (EBD’-EBD) > δ 
17: return ColK

The algorithm takes as input one attribute a from concept A є O1

and N attributes named b1, b2,…bN from B є O2. Lines 2 and 3 
compute the EBD and add them to a similarity list. Line 5 sorts 
the list based on EBD values in decreasing order. In line 6, the 
algorithm picks the attribute with the largest EBD. Line 7 finds
the new value of EBD for concatenated attributes of b and 
attribute a. In line 8, the algorithm use a loop and checks if SL is 



not empty so that we would be able to find another similar column 
with regard to EBD in greedy fashion (if exists). This loop will be 
finished when the difference between new EBD and previous 
EBD is less than a threshold or SL is empty. In other words, we 
could not find any new attributes that will help us to improve the 
EBD score.

3. EXPERIMENTS

We now present the experiments that we conducted regarding 
concept matching between 2 separate ontologies in the GIS 
domain. 

3.1 Dataset

Because data from several different areas of the United States 
were employed in our experiments, we effectively created a multi-
jurisdictional GIS environment. The number of instances is as low 
as 24 (Ferry) and as high as 91059 (Junction and Intersection). 
Meanwhile, the number of attributes is as low as 3 (Ferry) and as 
high as 26 (Enclosed Traffic Area) and the geographic scope 
ranges from a particular city (ie. Dallas) to an entire state 
(Virginia).

3.2  Results

The results of the alignment of O1 and O2 using content similarity 
of the compared concepts are shown in
Table 1. Each cell in the table represents a similarity
calculation between one concept in O1 and another
concept in O2, and is composed of four separate values. The first 
two values represent the content similarity over 
encoded text using TPF and DNF, respectively. The last
two values represent content similarity over regular text
using TPF and DNF, respectively. For example, between the 
concepts of Junction of O1 and Intersection of O2, the TPF was 
measured at .76, the DNF was measured at .97, the TPF was 
measured at .33, and the DNF was measured at .58. From the 
results, a number of conclusions can be drawn. First, for most of 
the concept comparisons, the calculated similarity values
generated by using DNF, independent of the text type, are 
significantly higher than the values generated by TPF. These 
results can be explained due to the more stringent matching 
requirements of a value type in TPF as opposed to DNF. Keep in 
mind that for 2 tuples to have a matching value type in TPF, the 
sets of 2-grams contained within each must match exactly. If there 
is even one 2-gram contained in one tuple that the other tuple 
lacks, then the tuples will represent different value types in TPF. 
The end result of this situation will be that the tuples will not have 
any value type information in common.  However, in DNF, these 
same tuples would be able to match on nearly all of their 2-grams, 
which in turn would raise the conditional entropy H(C|T) and 
result in a higher overall EBD value between the compared 
columns. 

Table 1. EBD values between concepts of O1 and O2

The second observation to be made from Table 1 is that the EBD 
values obtained over raw text were far lower than those obtained 
over encoded text. The reason for this is because for DNF in the
case of raw text, the large increase in the number of possible 2-
grams generated trivially leads to a larger number of value types 
between the compared columns. For TPF, all that is required to 
distinguish one 2-gram set from another is a single 2-gram. 
Consequently the number of unique sets of 2-grams generated via 
TPF will also rise sharply. Because of the expanded possibilities 
in 2-grams and 2-gram sets in raw text, there will also be far more 
value types present within the compared columns. This means that 
there is a greater possibility of unmatched types, and as a result, 
the conditional entropy values are more likely to be dissimilar. A 
final observation from Table 1 is that despite the discrepancies 
noted above, some sensible correlations emerge. For instance, the 
concepts Traffic Area and Enclosed Traffic Area share a high 
concept similarity based on TPF and DNF over both encoded and 
raw text. This is particularly evident when measuring the relative 
similarity values for either concept as compared to other matching 
concepts. The content similarity between Traffic Area and 
Enclosed Traffic Area using TPF over encoded text was .80, a 
minimum of .38 higher than other concepts for Traffic Area (with 
the second closest being .42 from Address Area) and .45 higher 
than other concepts for Enclosed Traffic Area (with the second 
closest being .35 from Residential Area). Notable correlations also 
existed between Residential Area-Address Area and Junction-
Intersection.
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ABSTRACT 
Ontology alignment involves determining the semantic 

heterogeneity between two or more domain specifications by 

considering their associated concepts. Our approach considers 

name, structural and content matching techniques for aligning  

ontologies. After comparing the ontologies using concept names, 

we examine the instance data of the compared concepts and 

perform content matching using value types based on N-grams 

and Entropy Based Distribution (EBD). Although these 

approaches are generally sufficient, additional methods may be 

required. Subsequently, we compare the structural characteristics 

between concepts using Expectation-Maximization (EM). To 

illustrate our approach, we conducted experiments using authentic 

geographic information systems (GIS) data and generate results 

which clearly demonstrate the utility of the algorithms while 

emphasizing the contribution of structural matching. 

Categories and Subject Descriptors 

I.2.4 [Artificial Intelligence]: Knowledge Representation 
Formalisms and Methods – semantic networks, representations 

(procedural and rule-based) 

General Terms 
Algorithms, Measurement, Design, Reliability, Experimentation, 

Human Factors 

Keywords 
Ontology, Ontology Alignment, Schema Matching, Geographic 

Information Systems, Dataset 

 

1. INTRODUCTION  

Ontology alignment is the most recent incarnation of the 

information integration problem. A popular definition of an 

ontology is that of a "formal, explicit specification of a shared 

conceptualization", proposed by Gruber. In practice, ontologies 

for a given domain consist of a series of classes (or concepts) 

along with their properties, restrictions and instances, many of 

which are related by various types of relationships. The alignment 

of ontologies, therefore, entails deriving correspondences between 

concepts and their associated properties and instances. 

 

2. PROBLEM STATEMENT AND  

PROPOSAL 

Given 2 data sources, S1 and S2, each of which is represented by 

ontologies O1 and O2, the goal is to find similar concepts between 

O1 and O2 by examining their names, respective instances and 

structural properties. Let us assume that O1 and O2 are derived 

from the GIS domain. 

The challenge involved in the alignment of these ontologies, 

assuming that they have already been constructed, is based on the 

derivation of procedures that will maximize the semantic 

similarity between any two concepts between the ontologies. 

 The ontology matching process consists of the matching of 

names, content and structure between compared concepts. The 

name match attempts to determine the degree of synonymy 

between the concept names. The content match determines 

similarity between the instances of each concept by measuring 

their mutual information, and it accomplishes this by the 

extraction of N-grams from the compared columns. The structural 

match determines similarity by leveraging the EM algorithm and 

the respective neighborhoods of all concepts to determine the 

most likely correspondences that occur between the ontologies. 

The overall similarity between two concepts is an equally 

weighted normalized sum of the name similarity, content 

similarity and structural similarity. 

 

3. ONTOLOGY MATCHING ALGORITHM 

3.1 Name Similarity 
The first part of our approach attempts match concepts between 

two ontologies by measuring similarities between their names. 

The process consists of three steps. First, we check to see if an 

exact match exists between the compared concepts. If so, then a 

value of 1.0 is assigned to the name matching component of the 

overall similarity. If not, then we proceed with verifying whether 

the compared concept names are synonyms. To do this, an 

external dictionary such as WordNet is used to compute a 

semantic similarity score of the names between 0 and 1. If the 

words have any relation whatsoever, the semantic score returned 

by WordNet will represent the name matching component of the 

overall similarity. If there is no relation at all between the words, 

then the name similarity between the concepts is determined via 

the Jaro-Winkler string similarity metric. 



3.2 Content Similarity 
Content matching is accomplished by extracting instance values 

from the compared attributes, subsequently extracting a 

characteristic set of N-grams from these instances, and finally 

comparing the respective N-grams for each attribute. An N-gram 

is simply a substring of length N consisting of contiguous 

characters. For our experiments, the value of N was set equal to 2. 

The measure that was used to quantify similarity between 

compared attributes is known as Entropy Based Distribution 

(EBD), and it takes the following form:  
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In this equation, C and T are random variables where C indicates 

the union of the column types C1 and C2 involved in the 

comparison and T indicates the value type (2-gram for an instance 

value). EBD is a normalized value from 0 to 1, where 0 indicates 

no similarity between compared attributes, and 1 indicates that the 

attributes are identical. In our experiments, C = C1 U C2. H(C) 

represents the entropy of a set of instance values for a particular 

attribute (or column) while H(C|T) indicates the conditional 

entropy of a set of instance values for a particular value type. 

 

3.3 Structural Similarity 

In many situations, name and content matching are insufficient for 

reducing semantic heterogeneity during ontology alignment. As a 

result, our approach also attempts to match concepts by 

considering their surrounding structural characteristics. 

Specifically, we leverage the Expectation-Maximization algorithm 

to generate a mathematical model which indicates the most likely 

set of correspondences between concepts of O1 and concepts of 

O2. We compare all neighbors of a concept C1 from O1 and 

compare against all neighbors of a concept C2 from O2 to yield the 

structural similarity between C1 and C2. 

In adopting this algorithm, we decided to treat the concepts of 

each ontology as observable values while designating the set of 

correspondences between concepts in O1 and O2 as hidden values. 

Next, we decided that our mathematical model should be a 

mixture model represented by a similarity matrix SM consisting 

of |O1| rows and |O2| columns, where each individual entry 

represents an individual component of the mixture. Each entry 

indicates with a particular confidence value between 0 and 1 (for 

practical purposes, a probability value) whether or not a 

correspondence exists between a concept from O1 and a concept 

from O2. If a correspondence is indicated, then the entry has a 

value of 1, otherwise, the value is 0. 

4. EXPERIMENTS 

4.1 Datasets 

Because data from several different areas of the United States 

were employed in our experiments, we effectively created a multi-

jurisdictional GIS environment. GIS data assigned to concepts for 

O1 is disjoint with the data assigned to the concepts for O2. The 

number of instances is as low as 24 (Ferry) and as high as 91059 

(Junction and Intersection). Meanwhile, the number of attributes 

is as low as 3 (Ferry) and as high as 26 (Enclosed Traffic Area), 

and the geographic scope ranges from a particular city (ie. Dallas) 

to an entire state (Virginia). 

4.2 Results 

Table 1 below shows the results of concept matching between O1 

and O2 using name similarity, content similarity, and structural 

similarity via EM. 

   Table 1. Name + Content + Structure Similarity between         

                               concepts of O1 and O2 

        
 

All of the correct correspondences between concepts of O1 and O2 

are identified by a wide margin. Name similarity makes its 

strongest contribution to the accuracy of the algorithm regarding 

obvious correspondences such as Road-Road and Ferry-Ferry 

while failing to match correspondences such as Residential Area-

Address Area and Junction-Intersection whose names are not 

similar. On the other hand, content similarity solves many of these 

problems by matching common N-grams existing among the 

instances of these concepts. While many of the correspondences 

are identified by name and content similarity, some, such as 

Traffic Circle-Intersection, remain unidentified, and others, such 

as Residential Area-Address Area are identified only weakly. To 

alleviate these problems, structure level matching via EM was 

applied. After doing this, correspondences that should be strong 

between concepts such as Residential Area-Address Area are 

associated with proportionally higher scores. Even in the situation 

where there does not exist a single correspondence that is 

significantly stronger than another, the composite algorithm 

captures the semantics appropriately. This occurs for the 

correspondences between Traffic Circle-Intersection and Traffic 

Circle-Road. Since a Traffic Circle is both a Road and an 

Intersection, the fact that the correspondence values are similar 

verifies the accuracy of our approach. 

5. CONCLUSION 

In this paper, we have outlined an algorithm that aligns two 

separate ontologies from the GIS domain using name similarity, 

content similarity and structural similarity. We focused on the 

structural similarity algorithm, which exploits EM to help 

determine the set of correspondences between concepts of two 

different ontologies. In regards to future efforts, we will expand 

our structure-level matching techniques to more accurately and 

thoroughly examine concept similarity. We will also analyze 

some of the more traditional techniques, such as sibling 

relationship similarity, and analyze its effects.  
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ABSTRACT 

Service discovery is the crucial phase in the emerging Geospatial 
Semantic Web to select functionally similar services for the user 
query. Quality of Service (QoS) based service discovery, 
popularly studied in traditional Web Services, applies also to 
Geospatial Web Services.  QoS allows service clients to fine-tune 
their search according to their specific needs and criteria. In high-
performance service-based geospatial applications, it becomes an 
interesting research challenge to identify geospatial parameters to 
further improve the search process. In this paper we have 
proposed a set of geospatial criteria that can be used alongside the 
regular QoS parameters in service discovery and invocation. We 
show that using this novel approach of incorporating domain-
specific drill-down information in addition to the commonly used 
QoS parameters yield more accurate and trustable Web services 
platform. We use the proposed geospatial parameters as 
performance metrics in the experimental evaluation of our 
application. The parameters reflect geospatial data quality 
attributes already standardized and well-studied in geospatial 
literature. 

Categories and Subject Descriptors 

D.2.8 [Software Engineering]: Metrics – complexity measures, 

performance measures, process metrics.  

General Terms 

Algorithms, Performance, Design, Reliability, Experimentation, 
Security. 

Keywords 

Geospatial Semantic Web, Semantic Web Services, Security, 
Trust, SOA, OWL-S, RDF 

1. INTRODUCTION 
Web services are increasingly seen as an invaluable part of any 
large-scale data query and dissemination strategy. The rise of 
Service Oriented Architecture (SOA) to provide intra- and inter-

domain business services has ensured the rapid growth of Web 
services as the primary delivery platform. Business can query, 
find, and invoke specific services to perform their tasks instead of 
relying on bulky applications with superfluous features.  Web 
services are a perfect suit for the geospatial domains since 
geospatial features are easy to modularize and serve to clients. As 
a result, clients can retrieve only the pertinent data according to 
their need.  

Geospatial web services have been an active area of research in 
the context of geospatial non-interoperability problems. The 
collaborative effort by the industry and federal geospatial 
clearinghouses has focused on the standardization process to 
mitigate the non-interoperability problems. Although the 
importance of geospatial web services is well established, their 
efficiency is often questionable. Geospatial data tends to be 
voluminous even for few features; consequently on-the-fly data 
fetching becomes infeasible. Moreover, the data comes in various 
modalities even though they represent the same base facts. For 
instance, aerial imagery can be viewed at different resolution and 
vector data can be represented in different granularities. Then 
there is the issue of data quality that further exacerbates the 
efficiency of geospatial web services. To eliminate the above 
impediments, web services are incorporated with the Quality of 
Service (QoS) parameters that provide a baseline contract of what 
a client wants and what to expect from a service provider.  

The issue of QoS has provided a major area of Web services 
research ([3],[4]). In [3][4] ,QoS based service selection is used to 
find trustworthiness of web services. The common theme in the 
geospatial QoS literature is to use the regular QoS parameters to 
efficiently exchange geospatial data [5]. The addition of domain 
information in the QoS values has been overlooked by researchers 
so far. Also there is not much work done on using geospatial 
specific QoS for estimating the trustworthiness of the geospatial 
web service 

Our experience in building end-to-end geospatial web services 
frameworks [1,2], we have found that the client requirements 
revolve around four major threshold types: completeness, 
resolution, accuracy, and data type [6]. While there are other 
requirements as well, these four appear on a consistent basis. The 
completeness, resolution, and accuracy criteria pertain to 
qualitative side of geospatial data, whereas data type refers to the 
format of the data. Our approach is to combine these four criteria 
alongside the generic QoS parameters to yield a more 
customizable and client-centric geospatial web services platform. 
We refer to these four criteria as GQoS- Geospatial Quality of 
Service metrics. 
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In this paper, we propose a framework which provides a 
mechanism to select trustworthy geospatial web services based on 
geospatial quality parameters. The application is based on our 
work on semantically annotated geospatial web services discovery 
We develop an application called DAGIS (Discovery of 
Annotated Geospatial Information Services)[2], which we 
augment with GQoS and perform experimental evaluations to 
show its usefulness in identifying trust measures dynamically and 
to eliminate untrustworthy services for the query. This DAGIS 
framework provides a methodology to realize the semantic 
interoperability both at the geospatial data encoding level and also 
for the service framework. DAGIS is an integrated platform that 
provides the mechanism and architecture for building geospatial 
data exchange interfaces using the OWL-S Service ontology. 
Coupled with the geospatial domain specific ontology for 
automatic discovery, dynamic composition and invocation of 
services, DAGIS is a one-stop platform to fetch and integrate 
geospatial data.  

The rest of the paper is organized as follows. Section 2 presents 
the DAGIS architecture. The proposed GQoS metrics are 
described in section 3. Section 4 describes service selection 
algorithm using GQoS parameters. The experiments are reported 
in section 5.  

2. DAGIS PLATFORM for GEOSPATIAL 

SERVICES  
In DAGIS ([1]), we focus on devising an improved query 
mechanism through semantic annotations. The application allows 
clients to query on a visual interface for geospatial data. The 
returned results can be intermingled with other types of data if 
requested. The results retrieved by a client can be displayed on the 
interface or stored on disk files. This section describes the DAGIS 
architecture.  

2.1 Motivating Scenario 
 “Find movie theaters within 30 miles of 75080” is a query posed 
by users on current geospatial information systems and search 
engines. This query is an example of the type of requests carried 
out by service providers on the web. Service providers would 
often embed or layer the geospatial data in other kinds of data 
(e.g., medical, temporal, transactions etc.). The following sections 
describe how DAGIS platform handles queries of this nature.  

2.2 Service Selection and Discovery 
First, a query profile is generated based on the client request. The 
profile contains the functional and QoS metrics of the specified 
parameters in the client request. These requirements are used by 
the Matchmaker agent for selecting the appropriate service 
providers.  In this phase, a DAGIS application module, henceforth 
referred to as DAGIS agent or simply agent, communicates with 
the Matchmaker agent for geospatial service selection (Figure 1).  
Prior to the service discovery, the agents of each service provider 
advertise the respective OWL-S service profiles to the 
Matchmaker. The Matchmaker in our framework does capability 
based reasoning using the Pellet OWL-DL reasoner. The 
implemented Matchmaker for this framework is based on the 
OWL-S MX Matchmaker, a hybrid Matchmaker that 
complements logic based reasoning with approximate matching 
based on syntactic IR based computations. 

 

 

                                                                                                          

2.3 Service Invocation 
In the this phase, the DAGIS agent has the selected Service 
Provider’s Uniform Resource Identifier (URI) from the discovery 
process and invokes the provider by calling one or more business 
methods on the URI. The service provider agent uses the same 
domain ontology as the DAGIS agent for semantic annotations of 
its services. The DAGIS agent does the invocation of the service 
through OWL-S grounding. The OWL-S grounding in turn uses 
WSDL grounding to invoke the Web Service using AXIS in our 
framework.  

3. GEOSPATIAL QUALITY of SERVICE 

(GQoS)  

We have proposed a set of four geospatial attributes, commonly 
used to specify data quality for various standards, to incorporate 
into our base framework (i.e., DAGIS). They augment the generic 
QoS parameters to allow geospatial users more precise control 
over their query. There are many advantages in using this 
approach. Traditional Web services provide the modularity but 
take away the ability to precisely control the use of the data. To 
get around this problem, one can retrieve a large amount of data 
from a service provider and perform offline filtering or various 
types of modifications themselves. However, this is a very 
inefficient and time-consuming procedure since a lot of 
processing is done post hoc. The GQoS parameters allow clients 
to restrict the types of service providers it is interested in before 
any processing on the data is done. If there is no provider 
available that matches the client criteria, then the client can alter 
the query and resubmit. These GQoS Parameters are added as 
OWL-DL classes to our QoS Ontology described in our previous 
paper [1]. 

In this section, we describe the following GQoS parameters: 
Accuracy, Resolution, Completeness, and Types.  

3.1 Accuracy 
Accuracy of geospatial data is defined in terms of (Attribute, 
Value) tuple, where attribute refers to a geographic concept/object 
and the Value is its measurement. We assume geospatial service 
providers provide data that conform to such tuples. We also 
assume that there is an objective assessment of all concept values. 
Governmental agencies, for example, would be assumed to have 
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 Service Enactment 
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Figure 1. DAGIS System Architecture 
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the most accurate object values in the event that there are multiple 
values for a geographic object. 

3.2 Resolution 
Resolution refers to the amount of detail that can be determined in 
space, time or theme. Both image and vector data have resolution 
properties. Image resolution generally refers to pixel details where 
more pixels per unit of an image mean better clarity. Vector data 
can be represented in either fine or coarse granularity. The coarser 
the data is, the less information is available about vector points of 
an object’s shape. Resolution is also related to accuracy because 
the level of resolution affects the database specification against 
which accuracy is assessed.  

3.3 Completeness  
Completeness refers to the absence of omissions in a provider 
database. Completeness is distinct from accuracy in that the errors 
that result in lack of completeness are not incorrect encoding of 
object values. Instead, when a service provider fails to keep its 
database updated with latest data is considered to have incomplete 
data. For instance, the road Atlas of 2006 contains data about 
roads and highways built since the previous Atlas editions were 
published. As a result, the 2006 version would contain more 
complete information than the one from year 2000. 

3.4 Data Types 
Data types refer to the format of desired data. Even though the 
area of geospatial data interoperability has made a lot of progress, 
various reasons still exist that lead clients to request specific type 
of data format. For instance, although Open Geospatial 
Consortium (OGC) has been pushing Geography Markup 
Language (GML) as a standardized data exchange platform, not 
all geospatial applications support it. As a result, it would be 
rather inconvenient for a user of such an application to request 
data from a provider only to end up with GML data. If the user 
could specify that along with other requirements in the query, he 
can avoid spending time on retrieving useless data. 

4. PROPOSED ALGORITHM to 

IMPLEMENT GQoS PARAMETERS  

During the Semantic Service Discovery Phase[2.2], the query 
profile of the user is submitted to the matchmaker for determining 
the functional matches from the set of published services. The 
Matchmaker returns a set of functionally similar services if the 
query to be solved involves single service provider; otherwise 
returns a dynamically composed service if the query requires 
service orchestration.   

4.1 New Service Discovery Algorithm 

To incorporate the GQoS values, we add a step to the DAGIS 
service discovery algorithm. The new algorithm operates as 
follows. 

1. Service providers publish profiles to Matchmaker  
2. Generate query profile 
3. Find semantically similar services for the query using 

the functional parameters :input and output parameters  
4. If there is no such service from step 3, dynamically 

compose complex service using the services registered 
using DAGIS Composer Algorithm [2] 

5. Sort the Functionally Similar Semantic Services using 
the GQoS Algorithm (see Figure 3) 

6. Return the URI of the best Service from step 5 to user 
 

We will describe the approach developed by us for performing the 
Step 5 of the service discovery algorithm. The QoS selection 
differs when we have a dynamic composition that involves 
computing the aggregate QoS values of the services dynamically, 
which is also one of our contribution in this paper. 

4.2 GQoS Algorithm 

Interaction Model: The Environment is comprised of registered 
service providers S1, S2 … Sj, , Users U1, U2 … Ui, matchmakers 
M1, M2 … Mk. In our interaction model we assume only one 
matchmaker. We employ special monitoring services which get 
the user reports on QoS relevance feedback which are called Trust 
Monitors TM1, TM2 ... TMl. Matchmaker can also additionally act 
as Trust Monitor, 

 

 

Service providers publish their QoS values (sq1,p1) , (sq2,p2) , … 
where (sqi, pi) are vector pairs of concepts and their values. Users 
provide the QoS requirements for every query as (uq1,r1), (uq2,r2) , 
… where (uqi ,ri ) are vector pairs of  concepts and user required 
values. GQoS vector values pis , ri are fuzzy values which are in 
the range [1,5] . 1 is the worst GQoS support available and 5 is 
the best support available for that GQoS parameter. 

S1 

S2 

Sj 

U2 

U1 

Ui 

M1 

TM1 

Figure 2.  Interaction Model 

User Query List UQ = {(uq1,r1), (uq2,r2) 
….(uqn,rn)} 

TargetMatch // Number of concept matches 
required  

Gval = 0 for all services 

1. ∀Sj in Functional Match Set F 

2. dist = 0.0  

3.   ∀qi:qi=quality concept in uq  

4.     If qi matches with a concept in sqj  

5.       conceptmatch = conceptmatch +1 

6.    dist += |ri - pi| 

7.     If concept match >= TargetMatch then 

8.       Gval =   diff/conceptmatch 

9. Return F sorted by ascending order of  

   Gval scores. 

  Figure 3: GQoS Similarity Match Algorithm 
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In the First Phase, for each registered Service Provider j in the 
functional match set F of the Query Q, a Gval is evaluated using 
the advertised QoS parameters. Gval is the Manhattan distance 
averaged over the number of quality concept matches between the 
user requirement and the service provider advertised GQoS 
values. 

Gval = ∑ (r – p) / conceptmatch 

The GQoS Similarity Match Algorithm is illustrated in figure 3 to 
select a set of services. All the Service providers are set with Gval 
= 0 and the target concept matches between query and service 
provider concept is set to a constant (is 3 in our experiments).  In 
Step 1 for every service Sj returned from Functional Set F 
returned from Matchmaker. The similarity between r and p vectors 
is meausred using Manhattan Distance. For every quality concept 
qi in Vector uq , if there is a ConceptMatch (exact, subsumes ) 
with a concept in sqj, conceptmatch is incremented. The diff is 
updated for this match, In step 7 we check if there are at least 
target number of matches for meeting the user requirement, we 
compute the Gval as average distance over the concept matches in 
step 8. Step 9 returns the F in ascending order of Gval. 

In the second phase of the GQoS measurements, we use the user 
feedback to update the advertised GQoS parameters of the 
selected service Si as follows. All the user reports pertaining to the 
similar query Q posed is aggregated here in this phase.  The user 
feedback list UF of every user is evaluated as shown in Figure 4. 

In our model, user reports are considered to be credible as only   
authenticated users of the system can log on to the system for 
service discovery. The evaluation of the credibility of user values 
reported is not in scope of  our work. We assume that the Service 
Providers who publish their service descriptions to the 

matchmaker do not cancel their registration during the interaction 
for at least a certain number of iterations (say 10) to facilitate the 
catching of untrusted providers. In future, we would maintain logs 
of the interactions to capture these cancellation scenarios also. 

5. EXPERIMENTAL EVALUATION 

The experiment and evaluation results are to be shown during the 
demo at the poster session. 

6. CONCLUSION 

In this paper, we have successfully proposed geospatial data 
parameters which are used in the automatic service discovery for 
emerging semantic enabled geospatial web. The framework 
proposed and implemented helps to distinguish the untrustworthy 
service providers by penalizing them using the performance 

metrics evaluated by keeping the user in the loop. We are working 
on further experiments which show the increase in the precision 
and relevance measures due to these proposed geospatial quality 
metrics. This work provides an intuitive way to select trustworthy 
semantic web services using the geospatial data quality parameters 
along with QoS measures which is novel step towards the 
building geospatial web of trust. 
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Aggregate Feedback Vector FV; 

For every Service Provider Sj    

1. Read every User Feedback List UiF received = 
{(uq1,f1), (uq2,f2) ….(uqn,fn)} where i=1:n 

2.  FV = FV + {(uq1,f1), (uq2,f2) ….(uqn,fn)} 
3. End For 

4. FVavg = FV / n  

5. Update each QoS parameter sqj  of Sj as    

        pj =  pj  (1 – Fv) + Pj 

Figure 4: GQoS Propagation Algorithm 
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Abstract. The traditional Web services architecture uses a keyword based 
search to match a query to one or more service providers. However, a world-to-
word matching to discover a service provider is too simplistic for geospatial 
data and fails to capture matches that advertise their functionality using domain-
dependent terminology. In this paper, we present DAGIS (Discovering 
Annotated Geospatial Information Services) – a semantic Web services based 
framework for geospatial domain that has graphical interface to query and 
discover services. It handles the semantic heterogeneities involved in the 
discovery phase and we propose algorithms for selecting the best service 
through QoS (Quality of Service) based semantic matching. The framework is 
capable of performing dynamic compositions on the fly through a back chaining 
algorithm. The framework is evaluated by solving queries posed by users in 
various geospatial decision making scenarios. 

1   Introduction 

Geospatial data plays a pivotal role in value-added content exchange between 
software agents or amongst people. The ability to provide additional dimensions to 
otherwise monotonic information has led to an enormous increase in the use of 
geospatial services. A rather underrated aspect behind such an escalation is the fact 
that spatially-aware data is more amenable to human cognition than strictly textual 
information. A far more appreciated aspect is that the integration of diverse data types 
with geospatial sources has yielded practical business and research benefits. Medical 
data overlapped with digital maps provides wealth of information in forecasting 
epidemics; population research centers can trace genealogical data over a region to 
discover social trends and so forth. This growing interest and activity level in the 
geospatial domain is further edified by more than 232 million hits on Google TM for 
the keyword ‘geospatial.’ Geospatial data is characterized by multitude data formats 
and data models and integration of this valuable data is crucial for the businesses and 
applications on the World Wide Web. But lack of a common unified framework for 
discovery, collection, and dissemination of geospatial data is characterized by the 
coherent heterogeneities present at both the syntactic and the semantic level. 

Web Services driven Service Oriented Architecture model provides a mechanism 
to handle the syntactic heterogeneities to an extent for geospatial data sources. The 
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current geospatial standards recommended by OGC- a flagship consortium that 
specifies standards for describing the geospatial data and services are founded on 
these principles of providing geospatial data interoperability. On the other side, 
emergence of semantic web and its associated technologies which aims to transform 
the web data sources into intelligent knowledge repositories that will use web agents 
to reason and infer information in more sophisticated manner. Semantic Web 
technologies provide strikingly similar standards for better interoperability of data and 
services with less human intervention for the World Wide Web. This prompted the 
researches from both the communities towards the vision of geospatial semantic web 
for realizing semantic interoperability of geospatial data. The recent OGC geospatial 
semantic web interoperability experiments are a major step towards this vision.  

It’s argued by researches Semantic interoperability is an important goal but hard to 
pin down due to lack of common accepted formal specifications. Kuhn [13] 
establishes that Service Signatures needs to be semantically annotated to achieve 
semantic interoperability but the challenge of annotating proper semantics for web 
services description and automatic discovery is imminent. 

In this paper, we propose DAGIS – Discovery of Annotated Geospatial 
Information Services framework for building geospatial semantic web services using 
the OWL-S Service ontology coupled with the geospatial domain specific ontology 
for automatic discovery, dynamic composition and invocation. The algorithms 
developed for this framework enables semantic matching of functional and non-
functional services during each phase of Service Orientation. In addition, our 
approach makes use of [2] since its hybrid mechanism seems to produce better results. 

There has been major work done on geospatial data interoperability. Vckovski et al. 
[7] and Goodchild et al. [8] address various interoperability issues related to spatial data 
processing of vectors and graphics, semantics, heterogeneous databases and 
representation. OGC identified that the key to solve interoperability issues are through 
the interface of software components where data and its operations are inseparable. This 
resulted in syntactic specification for geospatial data exchange through Geography 
Markup Language [9]. Operations on features in GML are implemented through web 
services [1]. Web Feature Service (WFS), Web Map Service (WMS), Web Coverage 
Service (WCS) are the core standards for Web services being developed by OGC to 
allow distributed geo-processing systems to provide complex services. 

The rest of the paper is organized as follows. Section 2 presents the DAGIS 
architecture, its automatic discovery mechanism, dynamic composition algorithms 
and the invocation mechanism. Section 3 presents QoS based service selection. 
Finally, section 4 presents complex queries.  

2    DAGIS Framework 

Integration of geospatial and non-geospatial information tasks involves separate data 
sources and service providers. Executing the tasks with minimal human intervention 
is the motivation behind our proposed architecture. The implementation of the 
architecture -- called DAGIS -- focuses on devising improved query mechanisms 
through automated reasoning using a domain specific ontology. We have built 
DAGIS as a prototype application that is useful for finding information for local 
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businesses over a geographical region. We have identified the major phases in 
developing this framework. These phases are discussed in the following sections. 

DAGIS provides an immediate advantage over other web 2.0 and GIS based map 
solutions. The latter products have limitations when the following types of queries are 
encountered: “Find Movie Theaters between Richardson, TX and Irving, TX”. This 
geospatial query is commonly posed by users looking for local information around the 
geographical regions of interest. Current solutions do not recognize the semantics of 
the geospatial operator “between” in this query. We posed this query on Google Maps 
and observed that it is oblivious to the presence of such operators. 

2.1   DAGIS System Architecture    

DAGIS system architecture is described in this section. Functionality of each of the 
components is addressed through a running example.  We distinguish the layers that 
constitute an end-to-end query execution and result display. The major layers are the 
presentation layer, semantic middleware layer and the ontology data layer. DAGIS 
Framework has major components at each of this layer. 

DAGIS Query Browser Portlet: In the presentation side, the DAGIS query browser 
portal gets the user query. We have developed a Java™ portlet that provides the 
required interface for the query. 

DAGIS Agent: DAGIS agent, placed at the semantic middleware layer, fetches the 
query parameters from the user. We can deploy multiple DAGIS agents in this layer. 
In our current application we describe the behavior of a single DAGIS agent. This 
agent communicates with the DAGIS Matchmaker using OWL-S (formerly known as 
DAML-S) [5] service ontology language. It automatically constructs an OWL-S query 
for the given user query. 

DAGIS Matchmaker: DAGIS Matchmaker is the component that performs semantic 
matching between the submitted queries and the semantic web service providers 
present in the registry. It performs both functional and non functional based selection 
and service discovery. 

DAGIS Composer: DAGIS Composer dynamically builds service chain to solve the 
user query when there is no single service provider available to match user query 
requirements. This dynamic composition is done automatically and the composed 
service URI is returned back to the Matchmaker.  

OWL-S Registry: The semantic web services are stored in this registry, which acts like 
a catalogue of useful services. 

WSDL Registry: The WSDL registry is any standard UDDI or public web services 
registry such as www.x-methods.net and www.salcentral.com.  

WSDL2OWLS Converter: This converter converts the WSDL service description file 
to OWL-S file. The XSLT conversions are currently done manually, but in the future 
there would be full fledged automatic conversion package. 

Figure 1 shows how the aforementioned components fit into the DAGIS 
framework. Initially a user requests for service through a query browser (i.e., portlet). 
DAGIS agent receives the query and forwards it to a matchmaker. The matchmaker 
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inquires the OWL-S registry to determine a match. The matchmaker is responsible for 
talking to the domain ontologies through a common OWL-S API and performing the 
semantic interpretation of the terms. Figure 1 also shows the separation of layers 
based on their functional requirements. The presentation layer allows the client to 
actually input the query. Then we have the middleware layer that allows 
interchangeable components to provide meta-service related functionality such as 
service search and reasoning. It is important that the middleware layer is not tied to a 
special platform or architecture. It should be abstracted in a way so that other layers 
do not have dependency on the underlying details of the middleware components. 
This abstract also encourages extensibility by swapping in and out modules to fit 
one’s needs. The third layer consists of the ontologies including the service and 
domain ontologies. We describe the workflow of the DAGIS architecture in more 
details in the following sections. 

 

Fig. 1. DAGIS system architecture 

2.2   Geospatial Ontology Development Phase 

In our work, we have developed geospatial service ontology to describe concepts used 
by geospatial web services. The concepts defined in our ontology were developed in 
accordance with OGC Web Services Specification Architecture. The QoS ontology 
developed is described along with QoS selection process. Figure 2 shows the snapshot 
of our geospatial ontology developed for DAGIS. The businesses are categorized 
under the geocoder results class. City, Latitude, Map, State, Zip code are also 
subclasses of this class. The different kinds of geospatial web services are categorized 
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under the main class OGCSemanticWebServices. These subclasses are Feature 
Handling Services and Mapping Services. Web Feature Service like Gazetteer Service 
is part of Feature Handling Service. Coverage Portrayal Service, Feature Portrayal 
Service, Web Map Services are subclasses of Mapping Services.  

2.3   Automatic Semantic Query Profile Generation 

After the user submits the query, it is disambiguated using our developed ontology; 
subsequently, an OWL-S service profile is automatically generated. In the next step 
the query profile is used by the DAGIS Agent for service discovery and selection of 
the service providers that will solve this query.  

The DAGIS Agent uses this semantic profile for selecting the appropriate service 
provider from the matchmaker agent. The following figure shows a snapshot of the 
profile for a simple query: ‘Find Movie Theaters within 30 miles of zip code 75080’.  
The profile of this OWL-S file has input ZipCode, distance 30 miles and output 
required is movie theaters. Figure 3 shows the query profile generated by DAGIS 
agent in response to the user query.  

 

Fig. 2. Snapshot of geospatial service ontology 

2.4   Geospatial Service Selection and Discovery 

The service selection based on the functional and non-functional requirements of the 
generated query profile is used by the DAGIS Matchmaker agent for selecting the 
appropriate service providers. The Matchmaker in our framework does capability 
based reasoning using the Pellet OWL-DL reasoner. Our implementation of the 
Matchmaker for this framework is developed by extending the OWL-S MX 
Matchmaker [2]. It is Java™-based and uses Pellet for logic based filtering. It also 
uses loss-of-information, extended Jacquard, and Jensen-Shannon information 
divergence based similarity metrics for complementary approximate matching. We 
extend this hybrid matchmaker to handle service selection based on QoS. There are 
different degrees of matches based on the similarity.  The similarity criteria form a  
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<profile:Profile rdf:about="#QueryProfile"> 
<profile:hasInput> 
<process:Input rdf:ID="ZipCode"> 
<process:parameterType 

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://127.
0.0.1/Ontology/OGCServiceontology.owl#ZipCode</process:parameterTyp
e>

</process:Input> 
</profile:hasInput> 
<profile:hasOutput> 
<process:Output rdf:ID="Movie Theaters"> 
<process:parameterType 

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI" 
>http://127.0.0.1/Ontology/OGCServiceontology.owl#MovieTheaters</

process:parameterType> 
</process:Output> 
</profile:hasOutput> 
</profile>  

Fig. 3. Generated query profile 

lattice based on how relaxed the similarity is. EXACT match is least relaxed and 
FAIL is most relaxed. 

3   QoS Based Service Selection 

The QoS based automatic service selection plays a crucial role in the matchmaking 
process when there is more than one registered service provider providing similar 
functionalities. In our proposed system, trust calculations are established through 
capability based matching of the QoS parameters. QoS parameters are the 
nonfunctional attributes that aid in the dynamic service discovery and selection. This 
facilitates the dynamic computation of the trust for the service provider and selection 
can be made for a suitably trusted service by the client. 

Our architecture is based on agent-based trust framework where the different QoS 
parameters characterized under various dimensions for describing the quality are 
captured in the client profile and the providers’ profiles. The proposed geospatial 
services ordering metric (GSOM) for QoS evaluation and for establishing trust is 
described in the following section. 

3.1   QoS Ontology 

Our QoS ontology is developed in line with the upper and middle ontologies as 
described in [11]. This facilitates modular development and can easily be extended for 
our geospatial domain concepts defined in the geospatial ontology. The main concepts 
in the QoS ontology are:  

• Quality: Representing the measurable nonfunctional concept of a service. 
• QAttribute: The value of a quality concept is determined by the type of QAttributes 

that constitute that concept. 
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• QMeasurement: This described the measurement of quality which can be 
subjective or objective 

• QRelationship: For describing relationship between two or more quality concepts. 

During the service discovery phase, the query profile of the user is submitted to the 
matchmaker for determining the functional matches from the set of published 
services. The Matchmaker returns a set of functionally similar services if the query to 
be solved involves single service provider; otherwise, it returns a dynamically 
composed service. To incorporate the QoS based selection, we add a step to this 
service discovery process. The new algorithm operates as follows. 

1. Service providers publish profiles to Matchmaker  
2. User submits query and corresponding semantic query profile is generated 
3. Find semantically similar services for the queBry using the functional 

parameters – that is, the input and output parameters  
4. If there is no such service from step 3, dynamically compose complex 

service using the services registered using DAGIS composer algorithm  
5. Sort the functionally similar semantic services using the GQoS Algorithm  
6. Return the URI of the best service from step 5 to user 

We will describe the approach developed by us for performing the step 5 of the 
above service discovery algorithm. The QoS selection differs when we have a 
dynamic composition. In that case, it involves computing the aggregate QoS values of 
the services dynamically, which is one of our contributions in this paper. 

3.2   QoS Selection Algorithm 

Interaction Model: The environment is comprised of registered service providers S1, 
S2 … Sj, users U1, U2 … Ui, matchmakers M1, M2 … Mk. In our interaction model  
we assume only one matchmaker. We employ special monitoring services that get  
user reports on QoS relevance feedback called trust monitors TM1, TM2 ... TMl. 

 

Fig. 4. Interaction model 

Service providers publish their QoS values (sq1, p1), (sq2, p2) …where (sqi, pi) are 
vector pairs of concepts and their values. Users provide QoS requirements for every 
query as (uq1,r1), (uq2,r2) , … where (uqi ,ri ) are vector pairs of  concepts and user 
required values (see Figure 4). During feedback loop, users submit their feedbacks as 
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U1j, U2j, U3j where j is index for the service provider j selected during each query 
iteration process.  

In the first phase, for each registered service provider j in the functional match set 
F of the query Q, a Gval is evaluated using the advertised QoS parameters. The QoS 
similarity matching algorithm is illustrated in Figure 5. All the service providers are 
initially set with Gval = 0 and the target concept matches between query and service 
provider concept are set to 3.  In step 1 for every service Sj a functional set F is 
returned from the Matchmaker. The aggregated difference in the user expected and 
provided values is stored in diff, which was initially set to 0. For every quality 
concept qi in Vector uq, if there is a concept match (exact, subsumes etc.) with a 
concept in sqj, ConceptMatch is incremented. The diff is updated for this match. In 
step 7 we check if there are at least target number of matches for meeting the user 
requirement; then we compute the Gval as average diff in step 8. Step 9 ensures that as 
Gval is updated through propagation algorithm (discussed next), when it goes above 
the threshold T, service sj is considered to be untrustworthy and removed from set F. 
Step 11 returns the F in ascending order of Gval. 

In the second phase we use the user feedback to update the advertised GQoS 
parameters of the selected service Si as follows. For every query Q posed by Ui , Cij is 
the conformance value vector submitted by Ui for Sj to TMl. The satisfaction of the 
user on each QoS parameter he had specified is measured qualitatively through Cij on 
a fuzzy scale. This is used to get the weighted expectation vector (Uij * Cij) of a user. 
The feedback vector is used to update the Pi of Service Si in step 4 in QoS 
propagation algorithm (Not reported here). In our model, user reports are considered 
to be credible only for authenticated users of the system, who log on to the system for 
service discovery. We assume that the service providers that publish their service 
descriptions to the matchmaker do not cancel their registration during the interaction 
for at least a certain number of iterations. The current model sets a hard number on 
the lower bound of the provider availability period to determine untrustworthy 
providers. The period is defined in terms of the number of iterations a provider was 
available for the Matchmaker. Right now this number is 10, but in the future we will 
maintain logs of the interactions to capture these cancellation scenarios also. 

4   Complex Queries Using DAGIS  

The scenario described in section 2.1 is a relatively simple one that involves selection 
of a single service provider. Real world scenarios often involve complex queries that 
necessitate dynamic composition of different service providers. To explain the 
complexities further, we restate the example from section 2.1. Consider the following 
query “Find movie theaters within 30 miles of Richardson?”. 

We use the DAGIS visual interface to drive the user query, thereby bypassing the 
need to parse natural language based queries. Based on the client query profile a 
search is performed in service registry to discover matching OWL-S profiles. Since 
there is no service that takes city as input and returns movie theaters within a certain 
radius, the matchmaker resorts to decomposing the query into multiple atomic 
processes using DAGIS decomposer algorithm. Decomposing the query into two 
atomic parts results in a successful Web service execution since there is a profile that  
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User Query List UQ = {(uq1, r1), (uq2, r2) …. (uqn, rn)} 
TargetMatch = 3 
Gval = 0 for all services 
findSimilarityMatch()
1. ∀Sj in Functional Match Set F 
2. diff = 0.0 
3. ∀qi:qi=quality concept in uq 
4. If qi matches with a concept in sqj
5.     conceptmatch = conceptmatch +1 
6. diff += |pj–ri|
7. If concept match >= TargetMatch 
8.     Gval = diff/conceptmatch 
9. If Gval > T 
10.    remove Sj from F. 
11. Return F sorted by ascending order   of Gval scores. 

 

Fig. 5. QoS similarity match algorithm 

outputs zip-codes given a city and there is a second profile that outputs movie theaters 
given a zip-code. The Compose Sequencer component constructs the composite 
service. 

4.1   DAGIS Composition and Sequencing Algorithm 

The composer and sequencer algorithms in this section are based on the Recursive 
Back Chaining algorithm proposed in [12]. To construct the service chain, our 
algorithm is recursively called for each likely service available in the service registry. 
A service is selected only if its output is equivalent to desired output of the requesting 
client. We also have a sequencer algorithm that provides composite process chaining 
for non-atomic processes. This algorithm uses a trivial bind function to create a 
mapping between input and output parameters of two processes (a hash map can be 
used to represent the mapping data structure in the actual implementation).   

4.2   Service Invocation 

In this phase, the DAGIS Agent has the selected service provider’s OWL-S URI from 
the discovery process and invokes the service provider. In this scenario, the selected 
service has an Atomic Process – GetTheaterProcess. As the service provider agent 
also uses the same domain ontology as the DAGIS Agent for semantic annotations of 
its services. This is the major benefit of sharing the semantic concepts using a unified 
ontology framework. The DAGIS agent does the invocation of the service through 
OWL-S grounding. The OWL-S grounding then uses WSDL grounding to invoke the 
Web Service using AXIS in our framework. The OWL-S API used in this system 
provides the execution engine and monitoring environment to monitor the process 
execution and for exception handling. 
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Abstract – The widespread deployment of Resource Description 
Framework  has  resulted  in  the  emergence  of  a  new  data 
storage  paradigm,  the  RDF  Graph  Model,  which,  in  turn, 
requires a rich suite of modeling and visualization tools to aid 
with  data  management.  This  paper  presents  R2D  (RDF-to-
Database),  an  effort  whose  goal  is  to  enable  reusability  of 
relational  tools  on  RDF  data.  R2D aims  to  transform RDF 
data,  at  run-time,  into  an  equivalent  normalized  relational 
schema, thereby bridging the gap between RDF and RDBMS 
concepts and making the abundance of existing relational tools 
available to RDF Stores. The work in this paper extends our 
earlier  work  by  including  the  ability  to  map  blank  nodes, 
which  are  used  to  represent  complex  relationships  between 
entities,  and  to  perform  pattern  matching  and  aggregation 
functions  on  data.  The  R2D  system  architecture,  mapping 
constructs, and algorithms, with particular emphasis on blank 
node  handling,  are  presented along with  descriptions  of  the 
algorithms comprising R2D. Performance graphs and screen-
shots of a relational visualization tool that uses R2D to access 
RDF data are presented as evidence of the feasibility of our 
research.

Keywords: Semantic Web, Resource Description Framework,  
Relational Databases, Data Interoperability

I. INTRODUCTION

In  today’s  increasingly  networked  world,  the  need  to 
augment human reasoning has kicked off the Semantic Web 
initiative, for which various standards are being developed. 
One  such  standard,  the  Resource  Description  Framework 
[1],  is  the  current  buzzword  in  the  Semantic  Web 
Community and the focus of the work in this paper.  RDF’s 
simplicity  and  suitability  to  unstructured  and  semi-
structured data that is typically available on the web have 
increased  the  demand  for  data  stores  that  use  the  RDF 
Graph data model and offer the ability to store and query 
RDF data [2]. 

The growing number of RDF stores have, as with any 
data store with massive amounts of information, spawned an 
associated  requirement  of  tools  for  the  management  and 
visualization of this data. However, most of the current data 
modeling, visualization,  and business intelligence tools that 
are widely available in the market today are still based on 
the more mature relational  models [3]. Further,  small and 
medium-sized  organizations  that  are  resource  constrained 
may  not  have  the  ability  or  inclination  to  take  risks 
associated with investing in fledgling technologies such as 

RDF and the tools for the same [4]. In order to avoid the 
learning curves associated with new tools and continue to 
leverage  the  advantages  offered  by  traditional/  relational 
tools without losing out on the benefits offered by the newer 
web technologies  and standards,  the gap between the two 
needs to be bridged. 

The  motivation  behind  our  research  is  to  arrive  at  a 
solution to the bridging problem without the need to create 
an  actual  physical  relational  schema  and 
duplicate/synchronize  data.  Our  approach,  called  R2D 
(RDF-to-Database),  provides  a  relational  interface  to  data 
stored in the form of RDF triples. R2D, which is a relational 
wrapper around RDF data stores, is a bridge that hopes to 
enable  existing  relational  tools  to  work  seamlessly  with 
RDF Stores without having to make extensive modifications 
or  waste  valuable  resources  by  replicating  data 
unnecessarily. This paper elaborates on [5] and extends the 
work in [6] by including the ability to handle blank nodes 
and RDF container objects. Blank nodes are nodes that are 
neither URI references nor literals and are typically used to 
associate  a resource  with a  set  of properties  that  together 
represent complex data. They are a vital component of RDF 
graphs and their relationalization is the primary focus of this 
paper. The paper also discusses enhancements to the SQL-
to-SPARQL  transformation  that  now  permit  pattern 
matching and aggregation on RDF data. Our contributions 
in this paper are: 
• We  propose  a  mapping  scheme  for  the  translation  of 
RDF Graph structures to an equivalent normalized relational 
schema that extends the work in [6] by including the ability 
to process blank nodes and RDF Container objects. 
• Based  on  the  mapping  file  created,  we  propose  a 
transformation  process  that  presents,  at  run-time,  a 
normalized, non-generic, domain-specific, virtual relational 
schema view of the given RDF store. The algorithm in [6] is 
extended  through  the  addition  of  normalization  rules  for 
different blank node scenarios.
•  We propose a mechanism, which now includes pattern 
matching  and  aggregation  facilities,  to  transform  any 
relational SQL queries issued against the virtual relational 
schema into the SPARQL equivalent, and return triples data 
to end-users in a tabular format. 
• The proposed framework imposes no restrictions on the 
nature of RDF triples or their storage mechanisms as it is a 
purely virtual layer that does not involve duplication of the 
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RDF  data.  Hence,  data  updates  are  immediately  visible 
through R2D without explicit synchronization activities.
• Lastly, we provide a JDBC interface that includes all of 
the above functionalities and that can be plugged seamlessly 
into existing visualization tools.

The organization of this paper is as follows. Section II 
presents  a  brief  overview  of  related  work.  Section  III 
discusses  R2D  mapping  preliminaries  and  relationships 
handled.  R2D’s  system  architecture  and  algorithms  are 
presented  in  Section  IV.  Section  V  highlights  the 
implementation  details  with  sample  visualization 
screenshots  and  performance  graphs  for  the  map  file 
generation process and for a diverse range of queries, and 
lastly, section VI concludes the paper.

II. RELATED WORK

The objective of R2D is unique and has no comparable 
counterparts.  However,  several  research  efforts  to  bring 
relational  database  concepts  and  semantic  web  concepts 
together exist, albeit from a perspective that is opposite to 
that considered in our work. These include D2RQ [7] and 
Virtuoso  RDF  Views[8],  which  are  essentially  mapping 
efforts that take a relational schema as input and present an 
RDF interface of the same as output. RDF123 [9], an open 
source  translation  tool,  also  uses  a  mapping  concept, 
however  its  domain  is  spreadsheet  data.  Triplify  [10]  is 
another  effort  at  publishing  linked  data  from  relational 
databases and it achieves this by extending SQL and using 
the extended version as a mapping language.

One research whose objectives are very closely aligned 
with ours is the RDF2RDB project  [3]. Like in R2D, the 
authors  in  [3]  attempt  to  arrive  at  a  domain-specific, 
meaningful relational schema equivalent for an RDF store, 
however,  RDF2RDB  involves  data  replication  with  the 
triples  data  being  dumped  into  a  relational  schema,  and 
therefore is subject to the synchronization and space issues 
discussed  previously.  Moreover,  for  successful  mapping, 
RDF2RDB requires the presence of ontological information 
in  the  form of  schema  definitions  such  as  rdfs:class  and 
rdf:property. R2D, on the other hand, can arrive at mapping 
details with or without explicit ontology information. 

Furthermore, the relational mapping in [3] involves the 
creation  of  a  table  for  each  property  in  the  RDF  graph 
regardless of the cardinality of the relationship represented 
by the property. As a result, the resulting schema may not 
be  truly  normalized  and  may  contain  more  tables  than 
necessary due to the presence of properties representing 1:N 
or N:1 types of relationships. R2D avoids these unnecessary 
tables  by  taking  such  conditions  into  consideration.  The 
authors in [3] also do not discuss the details of how blank 
nodes are handled by their research, if at all. Lastly,  since 
RDF2RDB involves creation of an actual physical relational 
schema with the RDF data duplicated into the same, there is 
no  SQL-to-SPARQL  conversion  component.  Since  R2D 
performs  a  virtual  conversion  at  run-time  the  SQL-to-
SPARQL transformation process is an integral  component 
of the same and is, to the best of our knowledge, the first of 
its  kind.   The  Hybrid  model  presented  in  [11]  is  another 

mapping  methodology  that  is  similar  to  [3]  in  terms  of 
relational  schema  generation  and,  hence,  has  the  same 
drawbacks as [3]. 

The  query  processing  component  of  R2D  which 
comprises  the  SQL-to-SPARQL  transformation  process, 
once  again,  has  no  comparable  counterpart  while  many 
efforts,  [12, 13, 14],  are  underway in the other  direction, 
namely,  SPARQL-to-SQL conversion. The authors in [12] 
discuss a translation methodology that supports integration 
of heterogeneous relational databases using the RDF model. 
An SQL-based RDF Querying Scheme is presented in [13] 
where  the RDF querying capability is  made a part  of the 
SQL; however, the RDF data is stored in a single database 
table. In [14], the authors partition the RDF graph data to 
store sub-graph information with the objective of reducing 
join costs and improving query performance.

From the above discussions, it is apparent that none of 
the research efforts address the issue of enabling relational 
applications  to  access  RDF data  without  data  replication. 
Therefore, we believe R2D makes a vital contribution to the 
data interoperability arena.

III. R2D PRELIMINARIES

R2D’s system architecture is illustrated in Figure 1. The 
work  presented  in  this  research  focuses  on  presenting, 
through a JDBC Interface, a tabular equivalent of the RDF 
triples database to the visualization tools, and on an SQL 
Interface that generates SPARQL versions of SQL queries 
and  passes  the  same  to  the  Query  Engine  layer  for 
processing and RDF data retrieval.

Figure 1. R2D System Architecture

The RDF Store at the bottom of Figure 1 is examined by 
the RDFMapFileGenerator Algorithm (Item A in Figure 1) 
and an RDF-to-RelationalSchema mapping file is generated 
by the same using the constructs  discussed in Section III 
(A). The DBSchemaGenerator Algorithm (Item B in Figure 
1)  takes  this  mapping  file  as  input  and  presents  to  the 
relational  visualization  tool  a  domain-specific,  virtual 
relational  schema  corresponding  to  the  RDF  store. 
Alternatively,  users of the visualization tool can choose to 
issue SQL queries against  the virtual relational  schema to 
access the RDF data. At this point R2D’s SQL-to-SPARQL 
Translation  Algorithm (Item C in  Figure  1)  performs  the 



necessary  query  translations,  invokes  the  SPARQL query 
engine, and returns the results to the visualization tool in a 
tabular format. 

At the heart  of the RDF-to-Database transformation is 
the R2D mapping language  – a  declarative  language  that 
expresses the mappings between RDF Graph constructs and 
relational database schema constructs. Figure 2 illustrates a 
sample scenario from which examples are used, wherever 
applicable, to augment the subsequent discussions on R2D 
constructs.

Figure 2. Sample Scenario

A. R2D Mapping Constructs

This section discusses R2D constructs specific to blank 
nodes  and  their  handling.  Details  on  non-blank-node-
specific constructs such as r2d:TableMap, r2d:keyField, and 
r2d:[MultiValued]ColumnBridge can be found in [5, 6].

r2d:SimpleLiteralBlankNode  (SLBN): SLBNs  help 
relate RDF Graph blank nodes that consist purely of distinct 
simple  literal  objects  to  relational  database  columns. 
Example: The object of the “Name” predicate in Figure 2  
is  an  example  of  an  SLBN  which  has  distinct  literal  
predicates of “First”, “Middle”, and “Last”, which are, in  
turn,  translated  into  columns  of  the  same  names  in  the  
“Employee” r2d:TableMap.

r2d:MultiValuedSimpleLiteralBlankNode  (MVSLBN): 
This  construct  maps  duplicate  SLBNs  and,  while  the 
processing  of  the  predicates  is  identical  to  the 
(SingleValued)  SLBN,  this  construct  results  in  the 
generation of a separate r2d:TableMap with a foreign key 
relationships to the table representing the subject resource of 
the blank node. In  the event the predicates  leading to the 
blank  nodes  are  distinct,  an  r2d:MultiValuedPredicate 
(MVP) is created and a “TYPE” column corresponding to 
the MVP is included in the r2d:TableMap.  Example: The 
objects  of  the  “HomeAddress”  and  the  “WorkAddress”  
predicates in Figure 2 together form a MVSLBN.

r2d:ComplexLiteralBlankNode (CLBN): This construct 
refers to blank nodes in the RDF Graph that have multiple 
literal object values for the same subject and the predicate 
concept  associated  with  the  blank  node.  An 
r2d:ComplexLiteralBlankNode  typically  results  in  the 
generation of a separate r2d:TableMap with a foreign key 
relationship to the table representing the subject resource of 

the  blank  node.  Example: The  object  of  the  “Phone” 
predicate in Figure 2 is an example of  a CLBN that has  
multiple object (<Cell>) values for the subject (URI/EmpA) 
and a predicate  (Cell)  concept  associated with the  blank 
node.

r2d:MultiValuedComplexLiteralBlankNode 
(MVCLBN):  This construct maps duplicate complex literal 
blank nodes and the processing of the predicates is identical 
to the (SingleValued) CLBN case except in the event the 
predicates leading to the blank nodes are distinct, in which 
case an r2d:MultiValuedPredicate (MVP) is created and a 
“TYPE” column corresponding to the MVP is included in 
the  r2d:TableMap.  Example: Consider  a  scenario  where  
the  “Phone” predicate  in  Figure  2  is  replaced  with  two  
similar predicates, “PastPhNums” and “CurrentPhNums”,  
each  of  which  are  CLBNs.  The  objects  of  these  two 
predicates together form an MVCLBN.

r2d:SimpleResourceBlankNode  (SRBN): This 
construct  helps  map  blank  nodes  that  have  multiple 
predicates leading to resource objects belonging to the same 
object  class.  SRBNs  typically  identify  N:1  or  N:M 
relationships  between  the  subject  resource  and  the  object 
resource classes. RDF containers that represent collections 
of similar resource objects are represented using the SRBN 
construct. Example: The object of the “Projects” predicate  
in  Figure  2  is  an  example  of  a  SRBN that  has  multiple  
resource  objects  that  are  instances  of  the  “Project” 
class/r2d:TableMap.

r2d:ComplexResourceBlankNode  (CRBN): CRBNs 
represent  blank  nodes  that  have  distinct  or  non-distinct 
predicates  leading to objects belonging to different  object 
classes.  This  construct  also  identifies  N:1  or  N:M 
relationships between the subject resource class and each of 
the object classes and typically result in the creation of as 
many join tables  as  the number of  distinct  object  classes 
leading  off  of  the  CRBN.  RDF containers  that  represent 
collections  of  different  types  of  object  resources  are 
represented  using  CRBNs.  Example: The  object  of  the  
“OtherActivities” predicate is an example of a CRBN that  
has multiple resource objects each of which is an instance 
of a different (one “Course” and one “Training”) class.

r2d:MultiValued{Simple/Complex}ResourceBlankNod
e  (MVSRBN  and  MVCRBN): Duplicate  simple/complex 
resource blank nodes are represented using the MVSRBN 
and  MVCRBN  constructs  respectively.  Like  other 
MultiValued  constructs,  the  processing  for  these  is  also 
identical  to  their  SingleValued  counterparts  except  in  the 
event the predicates leading to the blank nodes are distinct, 
in  which  case  an  r2d:MultiValuedPredicate  (MVP)  is 
created and a “TYPE” column corresponding to the MVP is 
included  in  the  r2d:TableMap.  Example: Consider  a 
scenario  where  the  “Projects”  predicate  in  Figure  2  is  
replaced with two similar predicates,  “PastProjects” and  
“CurrentProjects”, each of which are SRBNs. The objects  
of these two predicates together form an MVSRBN. 

r2d:MixedBlankNode: Blank  Nodes  consisting  of  a 
mixture of literal, resource, and other blank node objects are 
mapped  using  the  r2d:MixedBlankNode  construct.  This 



construct  results  in  the  creation  of  a  r2d:TableMap  as 
described in Table 1.

The  mapping  constructs  specific  to  single-valued  and 
multi-valued column bridges are applicable to blank nodes 

as  well  and  are  discussed  in  [6].  The  virtual  relational 
schema generated by R2D for the sample scenario in Figure 
2 is illustrated in Figure 3 and the schema generation details 
are discussed in Section IV (B).

Figure 3: Equivalent Relational Schema for the Sample Scenario in Figure 2

B. Types of Blank Nodes and Relationships 

Table 1 summarizes the blank node constructs that are 
provided  by  R2D  and  the  RDBMS  relationships 
corresponding to them in the virtual relational schemata. It 
also provides appropriate examples from Figure 2 wherever 
applicable.  RDBMS  relationships  corresponding  to  non-
blank-node entities in the RDF graph can be found in our 
earlier work in [6].

TABLE 1. MAPPING BETWEEN R2D AND RDBMS TERMS

R2D CONSTRUCTS RDBMS RELATIONSHIP
r2d:ColumnBridge Column (Example: <Nickname>)
r2d:SimpleLiteral 
BlankNode 
(Ex: <Name>)

Column 
(Ex: <First>, <Middle>, <Last>)

r2d:Complex 
LiteralBlankNode 
(Ex: <Phone>)

Multi Valued Attribute (resulting in a 
new table (that includes a TYPE 
column) for the 1:N relationship) 

r2d:[Simple/ 
Complex] 
ResourceBlank Node
(Ex:<Projects>,  
<OtherActivities>)

Primary-Key/Foreign-Key 
relationship. Either a Column in 
parent table (1:N relationship) or a 
Column in a new join table (N:M 
relationship) 

r2d:MultiValued 
{Simple/Complex} 
(Literal/ Resource) 
BlankNode  (Ex: 
Home/WorkAddress)

If no references to other table – Multi-
valued Attribute (resulting in new 
table for 1:N relationship); Else 
Column in a new join table (N:M 
relationship) 

r2d:MixedBlank Node Multi-valued Attribute (results in the 
creation of a r2d:TableMap which 
contains as fields every literal or 
resource leaf node object that is an 
element of the tree rooted at the 
r2d:MixedBlankNode) 

r2d:refersToTableMap Foreign Key (Ex: <DeptID>)
r2d:MultiValued 
Predicate

“Type” column in parent table
(Ex: Phone_Type for  <Phone>)

IV. R2D: A PROTOTYPE DESIGN

In keeping with the objectives of this research, several 
RDF-to-RDBMS  bridging  algorithms  were  designed  and 

developed  in  addition  to  the  design  of  the  RDF-to-
Relational mapping language discussed in Section III.  The 
following subsections discuss these algorithms.

A. RDFMapFileGenerator

The  first  step  in  the  R2D  Framework  is  map  file 
generation  realized  through  the  RDFMapFileGenerator 
algorithm that automatically generates an RDF-to-Relational 
mapping file through extensive examination of RDF data.

Table  2  lists  the  relationship  between  some  key 
OWL/RDFS Ontology terminologies and R2D constructs to 
relational concepts.

TABLE 2.RDFS/OWL V/S R2D: NOTIONAL MAPPING

OWL/RDFS 
CONSTRUCTS

RELATIONAL CONCEPT

rdfs:class Table
rdf:property Column
rdf:domain Table that the rdf:property is a column of
rdf:range Datatype of the column 
rdf:type predicate Values of Primary Key column of the table

However,  the  transformation  process  is  not  always  as 
straightforward or well-defined as Table 2 suggests. There 
are currently many RDF Graphs in existence that either do 
not  have  any,  or  have  incomplete  structural  information 
included along with the data. RDFMapFileGenerator works 
on RDF Stores with or without such structural information. 
A high-level discussion of the algorithm is provided below. 

The data structure discovery process is as follows. When 
structural information about the RDF database is available, 
the  algorithm  discovers  schema  definitions  and  creates 
appropriate  Table  and  Column  structures  as  per  the 
mappings in Table 2. Next, instance data is processed, using 
three  procedures,  to  identify  and  account  for  those 
predicates that may not have been defined through explicit 
rdf:property definitions. 

The first procedure,  ProcessLiteralPredicate,  is used to 
process predicates that have literal objects. For every literal 
predicate  that  does  not  have  a  column  corresponding  to 
itself,  a  new  column  is  added  to  the  TableMap 
corresponding  to  the  resource  to  which  the  predicate 



belongs.  If  the  resource  contains  more  than  one  such 
predicate  (i.e.  the resource contains  multiple  literal  object 
values for the same predicate), then the column type of the 
corresponding  column  is  set  to 
r2d:MultiValuedColumnBridge,  otherwise  it  is  a  simple 
r2d:ColumnBridge. 

The  second  procedure,  ProcessResourcePredicate, 
handles  predicates  that  have  resource  objects.  A  new 
potential column is added for every resource predicate that 
belongs to the subject resource. After all resource predicates 
are processed duplicate predicates (i.e., predicates that have 
objects  belonging to  the same object  class)  are examined 
and  eliminated.  During  this  consolidation  process,  any 
potential  columns  that  refer  to  the  same  object  resource 
class  are  combined  and  set  to 
r2d:MultiValuedColumnBridges while columns referring to 
distinct object resource classes are set to r2d:ColumnBridge. 
This  consolidation  is  mandatory  in  order  to  arrive  at  a 
normalized and logically sound relational schema. In cases 
where the objects belong to the same object class but the 
predicates  have  distinct  predicate  names,  a 
MultiValuedPredicate  object  is  created  which reflects  this 
fact.  These  MultiValuedPredicates  typically  become 
“TYPE” fields in the corresponding r2d:TableMaps in the 
relational schema.

Blank  node  predicates,  handled  through  the  third 
procedure, ProcessBlankNode, are processed and classified 
into the categories described in Section III (A) depending on 
whether the blank node objects are literals, resources, blank 
nodes, or a combination of the same. If every predicate off 
of the blank node contains a literal object (such as the Name 
and Phone blank nodes) then, for each predicate off of the 
blank Node, the ProcessLiteralPredicate procedure is called 
which works as described above. If every column generated 
through the ProcessLiteralPredicate  procedure  is  a  simple 
r2d: ColumnBridge (such as the Name blank node) then the 
BlankNode is set to r2d:SimpleLiteralBlankNode. If any of 
the  columns  are  r2d:MultiValuedColumnBridges  (such  as 
the  Phone  blank  node)  then  the  BlankNode  is  set  to 
r2d:ComplexLiteralBlankNode.  If  no such blank node has 
been previously encountered, this blank node is added to the 
set  of  blank nodes.  If  a  similar  blank node is  already an 
element of the set of blank nodes, the blank node type is set 
to  r2d:MultiValuedSimpleLiteralBlankNode  (such  as  the 
blank  nodes  corresponding  to  the  HomeAddress  and 
WorkAddress  predicates)  or 
r2d:MultiValuedComplexLiteralBlankNode respectively.

In  case  of  blank  nodes  that  contain  only  resource 
objects, every predicate off of such blank nodes is processed 
using  the  ProcessResourcePredicate  procedure,  also 
discussed  above.  As  before,  the  consolidation  process  is 
carried  out  after  all  predicates  off of the blank nodes are 
processed. If the number of consolidated columns is equal to 
1 (such as in the case of the Projects blank node), the blank 
node  type  is  set  to  r2d:SimpleResourceBlankNode, 
otherwise (as in the case of the OtherActivities blank node) 
it  is  set  to  r2d:ComplexResourceBlankNode.  As  in  the 
previous case, if a similar blank node exists, the blank node 
type is set to r2d:MultiValuedSimpleResourceBlankNode or 

r2d:MultiValuedComplexResourceBlankNode  respectively; 
otherwise, the blank node is added to the set.

Blank  nodes  that  contain  a  mixture  of  literal  objects, 
resource objects, and other blank nodes, are considered to 
be  of  type  r2d:MixedBlankNodes  and  they  are  processed 
using the Depth-First-Search graph algorithm. The topmost 
blank  node  is  considered  the  root  of  the  tree  and  the 
procedure  is  as  follows.  For  every  literal  or  resource 
predicate off of a blank node, a column is created and added 
to the blank node entity. Additionally, for every blank node 
predicate off of a blank node,  a new Blank Node entity is 
created and added to an array of blank nodes and is  also 
added as a column to the original blank node. This way, the 
hierarchy  of  the tree rooted at  the topmost blank node is 
maintained. This hierarchy is required during the SQL-to-
SPARQL conversion to retrieve data associated with blank 
nodes appropriately.

Every unique processed blank node is added to the set of 
blank  nodes  for  further  processing  by  the 
DBSchemaGenerator algorithm described next. 

B. DBSchemaGenerator

The  map  file  generation  process  is  followed  by  the 
actual  relational  schema  generation  process  which  is  the 
next  stage  in  the R2D process  and is  achieved  using the 
DBSchemaGenerator  algorithm.  This  algorithm  takes  the 
RDF-to-Relational  Schema  mapping  file  generated  in 
Section  IV  (A)  and  returns  a  virtual,  appropriately 
normalized relational database schema consisting of entities/
tables and the relationships between them. A description of 
the algorithm follows.

[6]  describes  how  entries  of  type  r2d:TableMap, 
r2d:ColumnBridge,  r2d:MultiValuedColumnBridge,  and 
r2d:MultiValuedPredicate are handled.

The  processing  of  non-nested  blank  nodes  of  various 
kinds is  as  follows.  For  SLBNs  (such  as  the  blank  node 
object  of  the  Name predicate)  every  r2d:ColumnBridge 
entry that belongs to the blank node is simply added as a 
column  to  the  table  to  which  the  SLBN  belongs  (as 
indicated by the r2d:belongsToTableMap construct for the 
blank node). Blank nodes of type CLBN (such as the object 
of the Phone predicate) result in the creation of a new table 
that represents a 1:N relationship between the subject and 
the  objects  of  the  blank  node.  In  addition,  CLBN  tables 
invariably  include  a  “Type”  column  associated  with  the 
r2d:MultiValuedPredicate  that  is  typically  a  part  of  the 
blank node. Entries of type  SRBNs and CRBNs (such as 
objects  of  the  Projects  and  OtherActivities  predicates 
respectively) typically result in creation of join tables with 
the  primary  keys  of  tables  corresponding  to  the  subject 
resource and the object  resource  included as  fields in the 
join table.  Further,  if  the  predicates  corresponding  to  the 
column  bridges  belonging  to  these  blank  nodes  are 
MultiValued, an additional “TYPE” column is created and 
added to the join table.

The processing of MVSLBN results in the creation of a 
new table, contrary to the SLBN scenario. This table has as 
columns the primary key of the table corresponding to the 
blank  node’s  r2d:belongsToTableMap  value,  and  all  the 



r2d:ColumnBridges  that  belong  to  the  MVSLBN.  The 
processing  of  MVCLBN  and  r2d:MultiValued 
{Simple/Complex}ResourceBlankNode  is  very  similar  to 
their  SingleValued  counterparts  with  the  only  difference 
being the inclusion of an additional field in the event the 
predicate corresponding to the blank node is an “MVP”. 

Blank  nodes  of  type  r2d:MixedBlankNode  result  in 
tables which have as columns the primary key column of the 
table  corresponding  to  the  r2d:belongsToTableMap 
construct  of  the  topmost  blank  node,  and  the  literal  and 
resource objects that are at the leaf nodes of the tree rooted 
at the topmost mixed/nested blank node.  These leaf nodes 
are discovered using a recursive procedure which explores 
the predicates in a depth-first manner. 

C. SQL-to-SPARQL Translation

This algorithm corresponds to the final phase of the R2D 
transformation  process  where  the  SQL-to-SPARQL 
translation  is  performed.  The  algorithm,  which  takes  an 
SQL  Statement  as  input  and  returns  an  appropriate 
SPARQL equivalent as output, is an enhancement over the 
work  in  [6]  with functionalities  added  to  process  queries 
involving underlying  blank  nodes,  and  to  provide  pattern 
matching  and  data  aggregation  abilities.  The  algorithmic 
details follow. 

First,  the  input  query  is  parsed  to  identify  the  tables, 
fields,  and Where  and Group By clauses,  if  present.  The 
parsed query is then transformed into its SPARQL form and 
executed. Any data aggregation is achieved by appending an 
ORDER BY clause to the transformed SPARQL query. The 
actual  group functions are calculated on the data obtained 
through the execution of the appended SPARQL query and 
the aggregated results are returned to the relational tool in a 
tabular  format.  In  order  to  better  understand  the 
transformation  procedure  let  us  consider  the  following 
query based on the sample scenario illustrated in Figure 2 in 
Section III.
SELECT Name_First, Name_last, Phone_Value, department_name FROM 
employee, employee_Phone, department WHERE employee.employee_PK 
= employee_Phone.employee_PK and employee_Phone.Phone_Type = 
<http://Phone/Cell> and employee.department_id = 
department.department_id AND (name_First LIKE ‘ABC%’ OR 
employee_pk = <http://empl/123>);

The  SPARQL  SELECT  is  generated  by  adding  a 
variable  for  every  field  (including  aggregated  fields,  and 
fields in the SQL WHERE clauses)  in the SQL SELECT 
list.  After  this  step  the  SPARQL  SELECT  list  for  our 
example is as follows:
SparqlSELECT = SELECT ?name_First ?name_Last, ?Phone_Value ?

department_name 

The  SQL  WHERE  clauses  are  added,  with  minor 
modifications,  to  the  FILTER  clause  of  the  SPARQL 
statement.  If  the  field  in  the  SQL  WHERE  clause  is  a 
primary  key,  the  field  name  is  replaced  with  the  “?
subject<Index>”  variable  where  Index  corresponds  to  the 
table,  or  the  parent  table  in  the  case  of  derived  tables 
(corresponding to blank nodes) to which the field belongs. 
WHERE  clauses  involving  non-primary  key  fields  are 
added directly to the SPARQL FILTER clause. In the case 

of  the LIKE operator,  the value  on the right-hand-side is 
converted to an equivalent regular expression construct (by 
appropriately  using  the  “^’,  “$”,  “.”,  and  “.*”  special 
characters in place of the “%” and “?” characters used in the 
LIKE expression) and the “regex” function is used on this 
converted expression in the FILTER clause. 

Upon  completion  of  the  SQL  WHERE  clause 
processing, the FILTER clause for our example is:
SparqlFILTER = FILTER ( ?Phone_Type = <http://Phone/Cell> && 
employee_department_id = subject1 && (regex(?name_First,  “^ABC”) 
|| ?subject0 = http://empl/123) }

The  WHERE  clause  corresponding  to 
employee.employee_PK  =  employee_Phone.employee_PK is 
eliminated  in  the  SPARQL  equivalent  since 
employee_Phone is  a  derived  table  corresponding  to  the 
employee resource  itself.  Further,  since  the  primary  key 
field refers to the subject resource,  the primary key fields 
associated  with  the  employee  and  department  tables  are 
replaced with the corresponding ?subjecti variables where i 
is the unique tableIndex associated with the tables to which 
the primary keys belong.

The SPARQL WHERE clause is generated as follows. 
For non-derived tables and derived tables corresponding to 
multi-valued  attributes  clauses  of  the  form  ?
subject<tableIndex> <Field.Predicate> ?<Field.Name> are added for 
every field in the table. For derived tables corresponding to 
blank  nodes  and  for  fields  belonging  indirectly  to  non-
derived tables (i.e. SimpleLiteralBlankNode fields), clauses 
of  the  form  ?subject<tableIndex>  <BlankNode.Predicate>  ?
<BlankNode.Name> 
and ?<BlankNode.Name> Field.Predicate <Field.Name> 
are added to the SPARQL WHERE clause. The SPARQL 
WHERE clause after the processing of predicates associated 
with the non-derived table, Department, and the processing 
of  fields  belonging  indirectly  to  the  non-derived  table, 
Employee  (caused  by  the  SimpleLiteralBlankNode 
corresponding  to  the  multi-valued  attribute,  Name),  is  as 
follows:
SparqlWHERE =  WHERE {
?subject0 <http://empl/Name> ?employee_name . 
?employee_Name <http://Name/First> ?name_First . 
?employee_Name <http://Name/Last> ? name_Last .
?subject0 <http://empl/deptId> ?employee_department_id . 
?subject1 <http://dept/dept_name> ?department_name .

Since a field cannot be specified in the FILTER clause 
without being a part of the SPARQL WHERE clause,  the 
field  employee_department_id is  added  to  the  SPARQL 
WHERE  clause  above  despite  not  being  a  part  of  the 
SPARQL or SQL SELECT list.

For  derived  tables  corresponding  to  multi-valued 
attributes  or  non-mixed  blank  nodes  that  contain  multi-
valued predicates, such as EmployeePhone, SPARQL where 
clauses of the form 
?subject<tableIndex> ?<MVPColumn.Name> ?

<NonMVPColumn.Name>   and
 ?<BlankNode.Name> ?<MVPColumn.Name> ?
<NonMVPColumn.Name>
are  added,  respectively.  Further,  for  every  predicate 
belonging to the multi-valued predicate field, a clause of the 
form ?MVPColumn.Name = <PredicateName> is added to the 

http://dept/dept_name
http://empl/deptId
http://empl/123
http://Phone/Cell


SPARQL  FILTER  clause.  The  processing  of  predicates 
associated  with  the  derived  table,  Employee_Phone, 
containing  a  multi-valued  predicate  column  called 
Phone_Type  results  in  the  following  additions  to  the 
SPARQL WHERE clause:
SparqlWHERE = SparqlWHERE + 
?subject0 http://empl/Phone ?employee_Phone . 
?employee_Phone ?Phone_Type ?Phone_Value .

 Lastly, in the case of mixed blank nodes, for each field 
belonging to the mixed blank node table, the sequence of 
predicates leading from the topmost subject (of the mixed 
blank node) to the field are obtained by traversing the tree 
structure stored during the MapFileGeneration process and a 
Where clause is added to the SPARQL WHERE for each of 
the predicates in the sequence. 

The SPARQL WHERE and FILTER clauses are added 
to the SPARQL Query and the final query is:
SparqlQUERY = SparqlSELECT + SparqlWHERE + SparqlFILTER

This  transformed  query  is  executed  by  the  SQL-to-
SPARQL-Translation Algorithm using the SPARQL Query 
Engine and the retrieved data is returned in relational format 
seamlessly. 

V. IMPLEMENTATION SPECIFICS

The hardware used in the implementation of R2D was a 
computer running Windows Vista with 2 GB RAM and 2.00 
GHz  Intel  Core2  Duo  Processor.  The  software  platforms 
and tools used include MySQL 5.0 to house the relational 
equivalent  of  the  given  RDF  store,  Jena  2.5.6 
[http://jena.sourceforge.net/index.html] to  manipulate  the 
RDF triples,  Java  1.5  for  development  of  the  algorithms 
detailed  in  Section  IV,  and  DataVision  v1.2.0 
[http://datavision.sourceforge.net/] to  visualize/generate 
reports based on RDF data. 

A. Experimental Dataset

Two datasets were used in the experimentation process. 
The optimized version of the map file generation process 
was executed against the first dataset which is based on the 
publications domain described in [6] in order to enable an 
apples-to-apples performance comparison against the earlier 
work.  The  second  dataset  is  a  subset  of  the  scenario  in 
Figure 2 and includes the “Employee”,  “Department”, and 
“Project” resources along with the blank nodes for “Name”, 

“Phone”  and  “Projects”.  The  query  performance 
experiments and reporting tool  outputs presented here are 
based on this second dataset.

B. Experimental Results

The  relational  equivalent  of  the  second  dataset  was 
generated using the algorithms detailed in Section IV. The 
open source visualization tool DataVision, which expects a 
relational  schema  as  input,  was  used  to  view  the  virtual 
relational  schema  generated,  query  the  data  using  SQL 
statements, and generate reports off of the data. The times 
taken by the map file generation process, with and without 
data sampling, for RDF stores with and without ontological 
information  are  illustrated  in  Figure  4.  The  process  is 
especially  time-intensive  for  large  databases  without 
structural  information  (which  is  the  case  with  our 
experimental data set) but this is only to be expected since 
RDFMapFileGenerator  has  to  explore  every  resource  to 
ensure that  no property is left  unprocessed.  The sampling 
techniques  applied  improved  the  performance  of  the 
algorithm by a large factor. 

Although applying sampling techniques typically result 
in  a  reduction  in  accuracy,  we  did  not  encounter  this 
problem in our experiments. The reason is that the RDF data 
sets  we  used  in  our  experiments  (including  the  synthetic 
data  set  used  in  this  paper,  and  the  LUBM 
[http://swat.cse.lehigh.edu/projects/lubm/]  dataset)  did  not 
have too much variance in the predicates of each resource 
class.  For  example,  the  Lecturer  resource  in  the  LUBM 
dataset  had the  same set  of  predicates  irrespective  of  the 
number  of  such  resources  that  existed  in  the  RDF store. 
Thus, sampling of one Lecture resource resulted in the same 
relational entity (and attributes) as the entity generated after 
the processing of multiple  Lecturer resources. Most of the 
other  resources  in  our  datasets  also  exhibited  similar 
structural  properties  and  hence  accuracy  continued  to 
remained intact and independent of the sampling techniques 
as well as the sample sizes used in our experiments. 

The rest of the experiments and results presented in this 
section  use  the  second  dataset  described  earlier.  The 
“Fields”  Window  in  Figure  5  is  a  screenshot  of  the 
relational  database  schema  as  seen  by  DataVision, 
populated  through  the  JDBC  GetDatabaseMetaData 
Interface  which  executes  the  DBSchemaGenerator 
Algorithm. 

Figure 4. Map File Generation Times 

http://datavision.sourceforge.net/
http://jena.sourceforge.net/index.html
http://empl/Phone


Figure 5. Equivalent Relational Schema as seen by DataVision and DataVision’s Report Designer 

As shown, the r2d:SimpleLiteralBlankNode,  Employee-
Name, is resolved into columns belonging to the Employee 
table,  the  r2d:ComplexLiteralBlankNode  associated  with 
Employee-Phone is resolved into a 1:N table called Phone, 
and  the  r2d:SimpleResourceBlankNode  associated  with 
Employee-Projects is  resolved  into  a  N:M  table  called 
Projects. As stated before, this schema is populated through 
the GetDatabaseMetaData Interface in the Connection class 
of  the  JDBC  API  within  which  the  two  algorithms, 
RDFMapFileGenerator  and  DBSchemaGenerator,  are 
triggered.

The “DataVision Report Designer” Window in Figure 5 
shows  DataVision’s  query  building  process  for  a  sample 
query involving a GROUP BY clause. At this juncture, the 
Statement,  Prepared  Statement,  and  ResultSet  JDBC 
Interfaces are invoked, which trigger the SQL-to-SPARQL 
Translation  algorithm  and  return  the  obtained  results  to 
DataVision in the expected tabular format. DataVision, like 
any other relational reporting/visualization tool, has options 
to  specify  aggregation  and  grouping  conditions  and 
functions,  the  DataVision  support  group  has,  for  various 
reasons  that  are  not  applicable  to  our  academic  test 
environment,  disabled  the  GROUP  BY  facility.  For  the 
purposes of our research, we have enabled the functionality 
and  the  results,  appropriately  grouped  per  the  desired 
aggregate function, are as displayed in Figure 5.

In order to compare the performance of queries executed 
using the virtual relational schema offered by R2D against 
the  query  performance  achieved  through  existing  RDF 
visualization  tools,  a  selection  of  four  queries  were  run 
against  databases  of  various  sizes  using  R2D  and 

Allegrograph’s  Gruff  [http://agraph.franz.com/gruff/],  a 
grapher-based   triple-store  browser,  and  the  results  are 
displayed in Figure 6. 

As can be seen, R2D’s performance was far superior to 
that of Gruff’s. This could be because Gruff persists data on 
the hard disk in a proprietary manner, requiring additional 
time/resources  for  disk I/O,  while R2D utilizes Jena’s  in-
memory store to house the RDF data. The time taken for 
SQL-to-SPARQL  conversion  is  negligible  and  nearly 
constant.  Thus,  R2D  does  not  add  any  overheads  to  the 
SPARQL query performance and offers an avenue for users 
to  continue  to  take  advantage  of  readily  available 
visualization  tools  without  data  replication  or 
synchronization issues.

VI. CONCLUSION

The stimulus behind the research in this paper is a dearth 
in  the  number  and  variety  of  data  modeling  and 
visualization tools for RDF graph data. The types of RDF 
Graphs  and SQL queries  handled and transformed by the 
current  implementation  of  R2D  were  expanded  from  the 
previous  version  [6]  by  including  the  ability  to  handle 
different  kinds of blank nodes.  Pattern matching and data 
aggregation functionalities were also added to R2D. With 
skilled  database  administrators  becoming  rarer  and  more 
expensive,  the  importance  of  applications  such  as  R2D 
becomes more pronounced as they offer a means to bypass 
the requirement of databases and their management. Future 
directions for R2D include support for reification concepts, 
improving the normalization process for mixed blank nodes, 
and translation rules for nested/correlated SQL sub-queries.



Figure 6. Response Times for Chosen Queries
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ABSTRACT
RDFKB (Resource Description Framework Knowledge Base) is a 
relational  database  system  for  RDF  datasets  which  supports 
inference and knowledge management.  Significant research has 
addressed  improving  the  performance  of  queries  against  RDF 
datasets.   Generally,  this  research  has  not  addressed  queries 
against inferred knowledge.  Solutions which do support inference 
queries  have  done  so  as  part  of  query processing.   Ontologies 
define the rules that govern inference for RDF datasets.  These 
inference rules can be applied to RDF datasets to derive additional 
facts  through  methods  such  as  subsumption,  symmetry  and 
transitive  closure.   We  propose  a  framework  that  supports 
inference  at  data  storage  time  rather  than  as  part  of  query 
processing.   The  dataset  is  increased  to  include  all  knowledge 
whether explicitly specified or derived through inference with a 
negligible overhead.  Queries against inferred data are simplified, 
and performance is increased.

Categories and Subject Descriptors
H.2.1[Database  Management]:  Logical  Design-  data  models,  
schema and subschema.

General Terms.
Design, Performance.

Keywords
Semantic Web, Resource Description Framework,  Data Models, 
Information  Integration  and  Retrieval,  Logic  and  Databases, 
Knowledge Base Management Systems, Ontology.

1. INTRODUCTION
A knowledge base can be defined as “a special kind of database 
for  knowledge  management,  providing  the  means  for  the 
computerized  collection,  organization  and  retrieval  of 
knowledge.” [9]  The goal of RDFKB is to provide solutions to 
convert  RDF  datasets  into  knowledge  bases,  while  preserving 
efficient  performance.   In  order  to  support  the  retrieval  of 

knowledge, and not simply the recording of facts, the knowledge 
base  must  enable  answering  queries  that  require  inference  and 
deductive reasoning.

A  simple  example  of  inference  is  the  well-known  logical 
syllogism from the ancients Greeks:

All men are mortal. 
Socrates is a man.
Therefore, Socrates is mortal.

The core strategy of RDFKB is to apply all known inference rules 
to the dataset to determine all possible knowledge, and then store 
all this knowledge.  Inference is performed at the time the data is 
stored rather than at query time.  When new data is added to the 
database,  we  execute  the  inference  engine  and  attempt  to 
determine and store all additional facts that can be inferred.  In the 
syllogism  example  above,  we  would  actually  add  “Socrates  is 
mortal”  to  the  database.   Thus,  the  dataset  contains  all  known 
knowledge,  and it  can be directly queried;  there is no need for 
further inference at query execution time.     

The  World  Wide  Web  Consortium  [1]  defines  the  RDF  data 
format as the standard mechanism for describing and sharing data 
across the web.   All RDF datasets can be viewed as a collection 
of triples, where each triple consists of a subject, a property and 
an object.  OWL (The Web Ontology Language)[10] defines rules 
for  inference.   In  OWL,  the  following  constructs  are  some 
examples of ontology rules that will allow the inference of new 
RDF  triples  from  existing  knowledge:  rdfs:subClassOf, 
owl:equivalentClass,  owl:equivalentProperty,  owl:sameAs, 
owl:inverseOf,  owl:TransitiveProperty,  owl:SymmetricProperty, 
rdfs:subPropertyOf, and owl:intersectionOf.  RDF and OWL have 
“provable  inference”  and  “rigorously  defined  notions  of 
entailment”[11].  Therefore, the semantics of the RDF documents 
and ontology concretely define what information can be known.

The key elements of RDFKB's solution are 
a) Inference  is  performed  at  storage  time  and  inferred 

triples are persisted
b) Data  is  stored  in  relational  databases  using  efficient 

schema
Performing  inference  at  storage  time  simplifies  queries  and 
improves query performance[15].  Using relational databases for 
storage  provides  efficiency  and  robustness[3][7][15].  The 
simplest  way to  store data in  a relational  database is to  simply 
create a three column table of RDF triples.   However,  research 
shows  that  this  is  not  the  most  efficient  solution[4][5].   Many 
alternative  solutions  have  been  proposed  including  vertical 
partitioning[4],  sextuple  indexing[6],  RDF-3X[15],  and 
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RDFJoin[8].   None  of  these  solutions  store  inferred  data  or 
address  the  task  of  querying  inferred  knowledge.   Inference 
queries  against  these  databases  require  detailed  knowledge  and 
encoding of the ontology logic, and require unions and joins to 
consolidate the inferred triples.  There are existing solutions that 
perform  inference  in  memory[14],  providing  simpler  queries. 
There are even solutions which support  inference and relational 
database storage[14][15], but they have fixed schema and do not 
support  customized tables for efficiency.   Such solutions pay a 
large query performance penalty due to  increasing the dataset to 
include the inferred triples.  RDFKB supports inference at storage 
time combined with efficient database schema in a manner that 
not only simplifies queries but also improves performance.  

Traditionally,  databases have sought  to avoid storing redundant 
information.  Instead, we propose to increase redundancy.  There 
are two reasons why traditional databases and knowledge bases 
have not attempted to store such inferred knowledge, and have, 
instead, supported inference as part of query processing.  The first 
is that transactional databases seek to reduce redundancy in order 
to preserve and enforce referential integrity.  However, semantic 
web databases should not  be viewed as traditional transactional 
databases.   RDFKB  supports  adding  new  knowledge  to  the 
database, but we are not concerned with supporting transactions 
that delete or change triples in the dataset.  Such updates can  still 
be performed, but in these instances the inference is recalculated. 
The second reason is that  it has been considered too expensive 
and broad a search to attempt to infer all possible knowledge.  At 
the  time  of  query execution,  there  is  information  about  which 
knowledge relates to the query, and this can be used to limit the 
scope of the inference search.  However, we are concerned with 
query  performance  rather  than  the  performance  of  adding 
knowledge  to  the  database.   With  our  solution,  all  inferred 
knowledge can be stored without a query performance penalty.

The remainder of this paper is organized as follows:  In Section 2, 
we provide background information on technology used by our 
project.  In Section 3, we specify our architecture. In Section 4, 
we present implementation solutions for several types of inference 
that  are  defined  in  OWL.   In  Section  5,  we  evaluate  queries 
defined  by  the  Lehigh  University  Benchmark  (LUBM)[2]  that 
involve inference, and we specify implementation solutions and 
performance results for these queries.  In Section 6, we examine 
related research.  In Section 7, we  present areas for future work, 
and we make some conclusions.

2. BACKGROUND
RDFKB relies on adding inferred RDF triples to the dataset.  This 
would not be a viable solution unless these triples can be added 
and  stored  without  increasing the  performance  cost  of  queries. 
The database schema documented in  RDFJoin: A Scalable Data  
Model for Persistence and Efficient Querying of RDF Datasets  
[8] allows us to add new inferred triples to the dataset without a 
performance penalty.   Therefore,  while  RDFKB's  design  is not 
contingent upon using this particular database storage scheme, our 
solution is implemented and tested using the RDFJoin technology. 

RDFJoin  stores  the  RDF  triples  in  five  base  tables:  the 
SOIDTable, the PropertyIDTable, the POTable, the SOTable and 
the PSTable.   The SOIDTable and the PropertyIDTable simply 
map each  unique  property,  subject  or  object  to  a sequential  id 
number.   Each  URI  or  literal  appears  in  the  table  only  once 

regardless  of  how many times  it  appears  in  the  dataset.   The 
PSTable includes three columns:  the PropertyID,  the SubjectID 
and the ObjectBitVector.  The POTable contains three columns: 
the  PropertyID,  the  ObjectID  and  the  SubjectBitVector.   The 
SOTable contains three columns: the SubjectID, the ObjectID and 
the PropertyBitVector.  

The bit  vectors  are  the  key to  the  RDFJoin  approach,  and  the 
reason why RDFJoin is able to store inferred triples at little or no 
cost.  The length of the ObjectBitVector in the PSTable and the 
SubjectBitVector in the POTable is equal to the max(SOID) in the 
SOIDTable.   Each  and  every unique  subject  or  object  URI  or 
literal in the dataset has a corresponding bit in these bit vectors. 
In the PSTable, there is a bit in the bit vectors for each unique 
URI, indicating whether that URI appears as an object in a triple 
with  the  corresponding property and  subject.   Similarly,  in  the 
POTable,  there  is  a bit  in  each SubjectBitVector  to  indicate  if 
each subject URI appears with that property and object in a triple 
in the dataset. 

Figure 1 shows an example dataset and some of the corresponding 
RDFJoin  tables.  The subject  of the  first  triple  in  the  dataset  is 
“UTD”.  According to the SOIDTable, the SubjectID for UTD=1. 
The  property  of  the  first  triple  is  “fullName”,  which  has 
PropertyID=1  according  to  the  PropertyIDTable.   The  object, 
“The  University  of  Texas  at  Dallas”,  has  SOID=2  from  the 
SOIDTable.   Therefore,  the  PSTable  has  a  tuple  with 
PropertyID=1, SubjectID=1 and the 2nd bit in the ObjectBitVector 
set on.   SOID=3 would indicate “Richardson”.  There is no triple 
<UTD fullName Richardson> therefore the 3rd bit in the bit vector 
is  0.   However,  if  we were to  add  such  a  triple,  it  would  not 
increase the number of bits stored, it would only change this third 
bit to 1. 

Our inference solution relies upon adding additional triples for all 
inferred knowledge.  Typical RDF databases incur a performance 
penalty  for  increasing  the   number  of  triples  in  the  data  set. 
However,  except  for  a  potential  reduction  in  the  achievable 
compression rate, RDFJoin does not incur this penalty.   Instead, 
RDFJoin  incurs  a  performance penalty only when  the  dataset's 
vocabulary  is  increased.   RDFJoin  queries  experience  a 
performance reduction  in a linear fashion corresponding to the 
number of unique URIs and literals in the dataset.  This is because 
there  is  already a  bit  in  the  tables  for  each and every possible 
combination of the known subjects, properties and objects.   Many 
times, inferred triples will not introduce unique URIs at all, and if 
unique  URIs  are  introduced,  they  are  only  unique  for  that 
ontology rule.   While an RDF dataset  may include  millions  of 
triples, the number of unique terms in the ontology is generally 
not  large.    For  our  experiments,  in  Section  5,  we  utilize  the 
LUBM (Lehigh University Benchmark)[2] dataset with more than 
44 million RDF triples.  For this dataset,  20,407,385 additional 
triples are inferred, yet  only 22 unique URIs are added by this 
inference.  Thus, there is no performance penalty for the addition 
of the millions of inferred triples, only for the addition of 22 new 
URI terms.  For these reasons, the RDFJoin solution provides a 
database scheme that  allows inferred triples  to  be added to  the 
dataset at almost no performance cost.



EXAMPLE DATASET:

<UTD, fullName, The University of Texas at Dallas>
<UTD, locationCity, Richardson>
<UTD, locationState, TX>
<ComputerScience, subOrganizationOf, UTD>
<James McGlothlin, worksFor, ComputerScience>
<James McGlothlin, position, GraduateStudent>
<Latifur Khan, worksFor, ComputerScience>
<Latifur Khan, position, Professor>
<James McGlothlin, position, ResearchAssistant>
<James McGlothlin, advisedBy, Latifur Khan>
<James McGlothlin, takesCourse, CS7301>
<Latifur Khan, teacherOf, CSC7301>
<CSC7301, fullName,  Data Mining>
<James McGlothlin, authorOf, RDFJoin>
<Latifur Khan, authorOf, RDFJoin>  

PropertyIDTable
fullName 1

locationCity 2

locationState 3

subOrganizationOf 4

worksFor 5

position 6

advisedBy 7

takesCourse 8

teacherOf 9

authorOf 10

SOIDTable
UTD 1

University of Texas At Dallas 2

Richardson 3

TX 4

ComputerScience 5

James McGlothlin 6

Graduate Student 7

Latifur Khan 8

Professor 9

Research Assistant 10

CSC7301 11

Data Mining 12

RDFJoin 13

PSTable
PropertyID SubjectID Objects (bit vector)

1 1 0100000000000

1 11 0000000000010

2 1 0010000000000

3 1 0001000000000

4 5 1000000000000

5 6 0000100000000

5 8 0000100000000

6 6 0000001001000

6 8 0000000010000

7 6 0000000100000

8 6 0000000000100

9 8 0000000000100

10 6 0000000000001

10 8 0000000000000

POTable
PropertyID ObjectID Subjects (bit vector)

1 2 1000000000000

1 12 0000000000010

2 3 1000000000000

3 4 1000000000000

4 1 0000100000000

5 5 0000010100000

6 7 0000010000000

6 9 0000000100000

6 10 0000010000000

7 8 0000010000000

8 11 0000010000000

9 11 0000000100000

10 13 0000010100000

Figure 1: RDFJoin Tables and Example Dataset
3. ARCHITECTURE
The core of the RDFKB design is that for each RDF triple, we 
infer all possible additional RDF triples, store this data, and make 
it  accessible  to  queries.It  is  not  the  intention  of this  project  to 
attempt to identify and implement each and every possible rule of 
inference.   There  are  many  such  rules  defined  by  the  RDF 
ontologies,  and   these  can change  and  be added  to  over  time. 
Moreover, there may be inference rules that are not specified in 
the ontology at all.  Specific domains may have business logic that 
includes domain-specific inference.  For these reasons, we allow 
each inference rule to execute independently and to store its own 
inference data.

RDFKB defines a global function  add(subject, property, object).  
This  function  encapsulates  the  details  of  our  schema from the 
user.   The  user  does  not  have  to  have  any  knowledge  of  the 
database  tables  and  schema  to  add  triples  to  the  dataset. 
Furthermore,  the  database  user  does  not  have  to  have  any 
knowledge concerning inference.  The simple act of adding triples 
to  the  dataset  invokes  the  inference  process  without  any 
intervention by the user. 

RDFKB's  architecture  is  that  each  inference  rule  registers  a 
function  add(subject, property, object).  When a triple is added, 
these functions are each executed, and every inference rule has the 
opportunity  to  derive and  add  more triples. The order  that  the 
inference rules are executed is not relevant.  The only change the 
inference rule is allowed to make to the database is to add more 
triples by calling the global add function.

This is a recursive solution that only requires a one level inference 
search.   As  an  example,  assume  there  is  an  inference  rule  to 
support subClassOf.  Assume an ontology that defines Steak as a 
class  that  is  a  subClassOf Meat,  and  Meat  as a  class  that  is  a 
subClassOf Food.   Now, if we add a triple  <FiletMignon type 
Steak>, the  inference rule will  add another  triple  <FiletMignon 
type Meat>.  Then, the same inference rule will be executed on 
this new triple, and add another triple <FiletMignon type Food>.

One  issue  that  should  be  addressed  is  whether  there  are  any 
unwanted effects of adding extra triples to the dataset.  Usually, 
enforcing  distinction  in  the  dataset  will  negate  the  effect  of 
additional triples;  RDF triples only appear once in the dataset. 
While it is possible that two different inference rules will add the 
same  RDF  triple  (for  example  if  James  is  a  student  and  an 



employee,  both  of  these  facts  can be  used  to  infer  James  is  a 
person), this duplication has no effect.  The query does not have 
to address this issue, because it is handled when the inference is 
executed, at addition time.  There are also times when a query will 
not  want  to  perform any inference or query inferred data.   For 
example, a cardinality query such as “How many jobs does John 
have?” should not take in to account the fact that his employer is 
part of a transitive suborganization hierarchy.   Also, sometimes 
we  may  simply  want  to  know  the  exact  type  an  instance  is 
declared as, and not include all the further information that can be 
inferred.  Generally, the responsibility to know that inference is 
not  sought  rests  with  the  query.   Therefore,  our  architecture 
creates a second copy of all tables, including all triples from the 
dataset but ignoring all triples added by the inference rules.  These 
tables are simply labeled with the extension _Without_Inference. 
A query can retrieve information from these tables when inference 
should be specifically avoided.

4. ONTOLOGY
This  section  presents  details  and  examples  for  OWL ontology 
inference rules..   Many of the OWL examples contained in this 
section are taken directly from the OWL Web Ontology Language  
Reference[10]  and from the OWL ontology file  for  the  Lehigh 
University Benchmark (LUBM)[2].   For each of these rules, we 
have implemented and registered an inference rule with RDFKB. 
The inference rule simply checks if the condition of the rule is 
met, and if so determines and adds the triple on the right side of 
the equation.   For  example,  with subClassOf (Section 4.1),  the 
condition  is  that  property='type'  and  object=ClassA,  and  the 
action is  add(subject,  type,  ClassB)  where ClassA is a subclass 
and ClassB is its superclass in the ontology.

4.1 subClassOf
Rule:  if ClassA subClassOf ClassB then

<Subject type ClassA> → <Subject type Class B> 

Ontology:
<owl:Class rdf:ID="Corvette"

  <rdfs:subClassOf rdf:resource="SportsCar" />
</owl:Class>

Base triple:
<Vehicle1 type Corvette>

Inferred triple:
<Vehicle1 type SportCar>

4.2 equivalentClass
Rule: if ClassA equivalentClass ClassB then
<Subject type ClassA> → <Subject type ClassB> &&
<Subject type ClassB> → <Subject type ClassA>

Ontology:
<owl:Class rdf:about="US_President">
<equivalentClass rdf:resource="Commander_in_Chief"/>
</owl:Class>

Base triple:
<BarackObama type US_President>

Inferred triple:
<BarackObama type Commander_in_Chief>

4.3 subPropertyOf
Rule: if property1 subPropertyOf property2 then

<Subject property1 Object> → <Subject property2 Object> 

Ontology:
<owl:ObjectProperty rdf:ID="hasMother">
  <rdfs:subPropertyOf rdf:resource="#hasParent"/>
</owl:ObjectProperty>

Base triple:
<GeorgeWBush hasMother BarbaraBush>

Inferred triple:
<GeorgeWBush hasParent BarbaraBush>

4.4 TransitiveProperty
Rule: if property1 is TransitiveProperty  then
<Subject property2 Object1> && 
<Subject property1 Object2> 

→ <Subject property2 Object2> 

Ontology:
<owl:TransitiveProperty rdf:ID="subRegionOf">

<rdfs:domain rdf:resource="#Region"/>
<rdfs:range  rdf:resource="#Region"/>

</owl:TransitiveProperty>

Base triples:
<Texas subRegionOf UnitedStates>
<Austin locatedIn Texas>
<UnitedStated subRegionOf NorthAmerica>

Inferred triples:
<Austin locatedIn UnitedStates>
<Texas subRegionof NorthAmerica>
<Austin locatedIn NorthAmerica>

4.5 SymmetricProperty
Rule: if property1 is SymmetricProperty  then
<Subject property1 Object> → <Object property1 Subject> 

Ontology:
<owl:SymmetricProperty rdf:ID="friendOf">

<rdfs:domain rdf:resource="#Human"/>
<rdfs:range  rdf:resource="#Human"/>

</owl:SymmetricProperty>

Base triple:
<Jane friendOf John>

Inferred triple:
<John friendOf Jane>

4.6 inverseOf
Rule: if property1 is inverseOf property2  then
<Subject property1 Object> → <Object property2 Subject> 

Ontology:
<owl:ObjectProperty rdf:ID="hasChild">

<owl:inverseOf rdf:resource="#hasParent"/>
</owl:ObjectProperty>

Base triple:
<GeorgeWBush hasParent BarbaraBush>

Inferred triple:
<BarbaraBush hasChild GeorgeWBush>

4.7 intersectionOf
Rule:  determine the subsumption resulting from intersection, 



and  add  this  subsumption  as  though an actual  subclass  was 
specified. 

Ontology:
<owl:Class rdf:ID="Employee">
  <rdfs:label>Employee</rdfs:label>
  <owl:intersectionOf rdf:parseType="Collection">
  <owl:Class rdf:about="#Person" /> 
  <owl:Restriction>
  <owl:onProperty rdf:resource="#worksFor" /> 
  <owl:someValuesFrom>

  <owl:Class rdf:about="#Organization" />
  </owl:someValuesFrom>
  </owl:Restriction>
  </owl:intersectionOf>
</owl:Class>

Base triple:
<James type Employee>

Inferred triple:
<James type Person>

5. QUERY IMPLEMENTATION AND 
EXPERIMENTAL RESULTS 

Lehigh University Benchmark (LUBM) [2] dataset has been used 
to evaluate the performance of many RDF data storage solutions 
including Hexastore[6] and RDFJoin[8].  LUBM defines queries 
that require inference.  In prior research, the approach has been to 
either avoid the queries that include inference or to support these 
queries  by  translating  them into  unions  of  subqueries  without 
inference.   RDFKB supports  these  queries  as  defined,  without 
requiring the query to have any knowledge of the inference.  This 
section includes performance results and analysis for each of these 
queries.  The LUBM queries that require inference are queries 3, 
5, 6, 11, and 13; therefore, these are the queries implemented and 
tested here.

All of our experiments here were performed on a system with an 
Intel Core 2 Duo CPU @ 2.80 GHz, with 8GB RAM, running 64 
bit Windows.  Our code was developed in Java, C++, and SQL, 
and  we  tested  with  the  MonetDB column store  database.   We 
created a database using the LUBM dataset with 400 universities 
and 44,172,502 tuples.  After all inference rules are applied, this 
dataset grows to 64,579,887 triples.  In our graphs, we show the 
number of original triples in the dataset; inferred triples are not 
included.  This makes the comparison to other technologies more 
accurate, as they do not store inferred triples. 

There is no  high-performance solution  with  inference that  uses 
relational databases for RDF datasets.  It seems uninformative to 
compare  our  results  with  solutions  that  access  and  parse  RDF 
documents directly, and the performance of such tools is slower 
by many orders of magnitude.  Therefore we chose two relational 
database RDF solutions to compare with: vertical partitioning[4] 
and RDFJoin[8].   Neither of these solutions provides automated 
support for inference.  Instead, the query implementation requires 
specific knowledge and encoding of the ontology logic.   These 
queries require a minimum of 4 subqueries and 3 unions, and a 
maximum of 29 subqueries.    

We  additionally  tested  with  a  single  triples  table  sorted  by 
property, subject, object and subject, property, object.  The triple 
store implementation consistently performed slower than vertical 

partitioning or RDFJoin.   Therefore, we chose not to document 
these results in order to avoid saturating the graphs.

5.1 LUBM Query 3
(type Publication ?X)
(publicationAuthor ?X http://www.Department0.University0.edu/
AssistantProfessor0)  
Publication  has  a  wide  hierarchy  in  the  LUBM  ontology. 
Therefore, to perform this query would normally involve querying 
many different subclasses of Publication and unioning the results 
together. Without RDFKB, this query in SQL requires 10 unions 
to  support  all  the different classes in  the Publication hierarchy. 
With  our  inference  solution,  this  query involves  selecting  two 
subject bit vectors and executing a single or operation.

In  the  actual  dataset,  LUBM  defines  all  publications  as  type 
Publication, and does not in fact ever define an instance of any of 
its subclasses.   If we were to assume this knowledge, RDFJoin 
would actually be as fast or faster than RDFKB.   Since we cannot 
assume this  knowledge,  RDFJoin  is  slightly  slower  due  to  the 
time needed to attempt to query these subclasses.  This query is a 
subject-subject join.  In the vertical partitioning solution, subject-
subject  are  linear  merge  joins,  so  vertical  partitioning  is  fairly 
efficient.   Figure  2 shows the performance results for  RDFKB, 
RDFJoin and VP (Vertical Partitioning) for Query 3.

5.2 LUBM Query 5
(type Person ?X)
(memberOf ?X http://www.Department0.University0.edu) 
This  query  invokes  five  kinds  of  inference  rules:  subClassOf, 
subPropertyof,  inverseOf, TransitiveProperty and intersectionOf. 
Person  is  the  superclass  of  a  wide  variety  of  subclass  types. 
memberOf has many subproperties, and has an inverse: member.  

There  are  21  classes  in  the  Person  hierarchy  in  the  LUBM 
ontology.  In the LUBM dataset, there are instantiations for 8 of 
these classes.  Therefore, to query ?x type Person using vertical 
partitioning or RDFJoin requires 21 subqueries; 8 of which will 
return  results  that  must  be  unioned  together.   There  are  three 
different  ways  to  express  memberOf in  the  dataset.   It  can  be 
expressed directly with  the  memberOf property,  or  through the 
subProperty worksFor,  or through the inverse property member. 
To  perform  this  query  with  vertical  partitioning  or  RDFJoin 
requires that triples with all three properties be queried.  To make 
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matters more difficult, the range of the memberOf property is type 
Organization. Organization is affected by the transitive property 
subOrganizationOf.  So it is necessary to query if the subject is a 
memberOf  or  worksFor  any  entity  that  in  turn  is  a 
subOrganizationOf    http://www.Department0.University0.edu. 
Transitive closure is not limited to a single level, therefore it is 
necessary  to  repeat  this  loop  until  the  organization  does  not 
appear  as  a  suborganization.   In  point  of  fact,  there  is  no 
subOrganizationOf department, so this transitive closure will not 
introduce any new results, but it still must be attempted.   

5.3 LUBM Query 6
(type Student ?X)
This query requires the subClassOf inference rule as well as the 
intersectionOf rule.  There are 4 different classes that should be 
included in this query.  So, without inference, 4 subqueries and 
three unions are required.  While this is the simplest query 
evaluated here, it requires a selection based on object and  has low 
selectivity.  Vertical partitioning is sorted on subject rather than 
object, and therefore pays a performance penalty.  Figure 4 shows 
the performance results for Query 6.

5.4 LUBM Query 11
(type ResearchGroup ?x)
(subOrganizationOf ?x http://www.University0.edu) 
This  query  requires  the  TransitiveProperty  infeorence  rule. 
Research  groups  are  not  defined  as  a  subOrganizationOf 
universities in the dataset; this requires transitive closure.   This 
query is highly selective, and does not involve a class hierarchy, 
which  improves  the  efficiency  of  the  non-inference  solutions. 
However, unlike in Query 5, the transitive closure does add data 

to  the  result  set  as  the  research  groups  are  defined  as 
subOrganizations  of  departments,  rather  than  the  university. 
Transitive  closure  requires  a  subject-object  join,  which  in  the 
vertical  partitioning  solution  requires  a  nested  loop.   Figure  5 
shows the performance results for Query 11.

5.5 LUBM Query 13
(type Person ?X)
(hasAlumnus http://www.University0.edu ?X) 

This  query  requires  four  types  of  inference:  subClassOf, 
intersectionOf, inverseOf and subPropertyOf.  hasAlumnus is not 
defined in the dataset, but the ontology defines it as the inverseOf 
degreeFrom. Even  degreeFrom is not defined in the dataset, but 
the  ontology  defines  subproperties  of  degreeFrom  that  are 
defined in the dataset.     As already stated, Person includes 21 
different class specifications.  To query the  property hasAlumnus 
requires querying 5 separate properties.  All of these subqueries 
then have to be unioned together to recreate this inference during 
query processing. Only hasAlumnus, which actually never appears 
in  the dataset,  involves  a subject-object  join,  and this  join will 
never actually be executed as hasAlumnus returns no results.  So 
this  is  a subject-subject join,  and all of the unions are subject-
subject merge joins.  Figure 6 shows the performance results for 
Query 13.

5.6 TradeOffs
RDFKB stores all inferred data rather than performing inference 
at query time.  Thus, inference is calculated at storage time, more 
triples  are  persisted,  and  more triples  are  loaded  into  memory. 
The trade-offs of this approach are added storage time, increased 
storage space requirements, and increased memory consumption. 
The number of stored triples is increased by 46.2% for our LUBM 
dataset.   We  have  asserted  that  the  architecture  of  RDFJoin 
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minimizes  the  costs  of  this  trade-off.   To  validate  this,  we 
designed and executed tests to quantify the costs.

To  perform all  of  the  queries  and  tests  outlined  in  Section  5, 
involving  44  million  triples,  our  maximum memory usage  was 
3.713 GB.  This memory consumption is only 3.7% higher than 
RDFJoin without inference.  

Obviously, the size of the database is increased 100% by storing a 
second copy of the tables without the inferred triples.  There is no 
other significant increase in the database size (<0.2%) resulting 
from adding  the  inferred  triples.   There  is  a  reduction  in  the 
achievable compression ratio.  In our experiments with the LUBM 
dataset, this reduction varied from 6.3% to 9.8%.

RDFKB does support adding triples to the dataset, and inference 
is calculated at the time the triples are added.  This increases the 
amount of time required to add and store triples.  Figure 7 shows 
the  time  to  add  triples  for  RDFJoin,  for  RDFKB and  for  just 
inference.  Adding a triple to RDFKB includes adding it to the 
RDFJoin tables.  Therefore, the time added as a result of inference 
is the time difference between between RDFJoin  and RDFKB. 
This is plotted on the graph and labeled “Inference Only”, i.e. the 
actual cost of inferring the triples and storing them.  This cost is 
12% of the overall time cost of the additions for 10 million triples. 
We assert  that  a 12% increase in the time to add triples to the 
dataset  is  well  worth  it  to  achieve  the  added  functionality  of 
inference and a significant improvement in query performance.

5.7 Performance Summary
Table 1 provides a summary performance comparison of RDFKB, 
RDFJoin  and  vertical  partitioning.   In  every  query,  RDFKB 
consistently achieves the best performance, and the performance 
gain increases as the dataset grows, demonstrating scalability.

Furthermore, RDFKB requires no special coding or understanding 
of the ontology to develop these queries.  No unions are required 
to implement any of the queries within the RDFKB system..  Even 
if the inference logic for the other solutions is discovered from the 
ontology and performed automatically, the subqueries and unions 
would still be required as the inferred knowledge is not part of the 
dataset.  Thus, hard-coding the query specifics yields the fastest 
solution vertical partitioning or RDFJoin can provide.   

RDFKB consistently outperforms  both  vertical  partitioning and 
RDFJoin  and  eliminates  the  need  for  complex  queries  or 
understanding of the ontology by the developer.  

Table 1: Performance Improvements
Query
#

% query time reduction
 vs vertical partitioning

% query time reduction
 vs RDFJoin

3 92.9% 67.4%
5 99.6% 92.0%
6 99.6% 60.0%
11 98.4% 84.7%
13 99.3% 91.2%

6. RELATED WORK
Jena  [14],  a  semantic  web  framework  for  Java,  supports  a 
framework  for  registering  and  executing  inference rules  that  is 
similar to RDFKB.  Jena and RDFKB both define a Java abstract 
class (Jena calls this Reasoner) that specifies the interface to the 
inference  rule  implementation,  factory  methods  to  instantiate 
instances  of  this  class,  and  a  registration  system.   Jena's 
getRawModel()  API  provides  similar  support  to  the 
_Without_Inference  tables  in  RDFKB,  and   Jena  allows 
Reasoners to add additional “virtual” triples to the dataset.  Jena 
even provides an OWL reasoner that implements most of the same 
inference rules implemented in our experiments.  However, there 
are several important differences between Jena's inference support 
and  that  of  RDFKB.   Inferred  data  is  not  persisted  with  Jena; 
inference is performed at query time, or precomputed using the 
prepare()  method.   Furthermore,  while  Jena  does  support 
persistence of triples to relational databases, it does so only as an 
alternative storage method and requires  a fixed schema.  Thus, 
adding  millions  of  inferred  triples  will  incur  a  performance 
penalty because a schema such as RDFJoin can not  be used to 
store the data.  Finally, RDFKB supports growing the dataset.  If 
triples are added in Jena, this will cause all the deduced triples to 
be discarded, and inference will be reprocessed across the entire 
dataset.

In  An Approach to RDF(S) Query, Manipulation and Inference 
on Databases[15], Lu et al. propose a solution to RDF inference 
that is based on top of relational databases.  In this research, they 
propose to infer knowledge at storage time and store all inferred 
triples.  In this way, the strategy is very similar to RDFKB.  They 
also reach similar conclusions concerning the superiority of this 
approach  to  inference  during  query processing.   However,  this 
database's schema incurs a performance penalty for the storage of 
inferred  triples.   Because  RDFKB  utilizes  column  stores  and 
RDFJoin,  it  is  able  to  achieve  greater  performance.   Our 
experiments  show  that  our  solution  is  highly  scalable,  and 
performs efficiently with very large datasets.  In [15],  the query 
time  steadily  increases  as  the  dataset  grows.   The  reported 
experiments involve much smaller datasets than our testcases, and 
the  reported  query performance  is  several  orders  of  magnitude 
slower the RDFKB's performance results.       

There is significant research involving efficient database schemata 
for  RDF  datasets.   In  Column  Stores  for  Wide  and  Sparse  
Data[3],  Abadi  proposes using column store databases, and, in 
Scalable  Semantic  Web  Data  Management  Using  Vertical  
Partitioning[4], Abadi et al. propose partitioning the dataset into 
two  column  tables  for  each  predicate.   In  Hexastore:  Sextuple  
Indexing  for  Semantic  Web Data  Management[6],  Weiss  et  al. 
propose  a  main  memory  schema  using  sextuple  indexing.   In 
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RDF-3X:  a  RISC-style  engine  for  RDF[17],  Neumann  et  al. 
propose a RDF indexing system with an efficient query processor. 
In  all  of  these solutions,  specialized  schemata  and  indexes  are 
used  to  improve  query performance.   However,  none  of  these 
solutions provide a solution for inference queries.  RDFJoin and 
RDFKB leverage concepts from these designs, including subject-
subject merge joins and sextuple indexing.  However, unlike these 
solutions, RDFJoin can add triples without a performance penalty 
except  when the vocabulary is increased.   RDFKB utilizes this 
technology to provide a high performance inference solution.

7. FUTURE WORK AND CONCLUSIONS
One area for  future work is to develop inference rules based on 
logic  outside  of  OWL  ontology  files.  There  are  specialized 
ontology tools  and description  logic  systems that  provide rules 
and axioms.  There are also tools such as WordNet[12] which can 
be used for textual inference.  The total of all unique noun, verb, 
adjective and adverb strings in WordNet 3.0 is 147,278[12].  This 
is much smaller than the number of unique URIs in our LUBM 
test dataset, less than 0.3% of the size actually.  Therefore, even 
taking  into  account  that  many  of  these  strings  have  multiple 
meanings that  must  be accounted  for,   it  is  very reasonable  to 
claim that we can store every combination of triples of words in 
RDFKB and execute and store textual inference using WordNet.   

Inference involving probabilities is also left as future work.  OWL 
defines  inference  rules  that  are  absolute,  so  reasoning  with 
uncertainty  has  not  been  addressed.   Ontology  mapping  and 
handling  multiple  RDF  schemata  is  also  a  problem for  future 
work.   Generally,  ontology  mapping  involves  probabilistic 
reasoning as well since there is uncertainty involved in mapping 
automation[18][19][20].   One potential  solution  is  to  store  the 
probability of the triple being in the dataset, rather than simply a 1 
or 0 in the bit vector.  In this case, the bit vectors would become 
vectors of fractions, where each fraction represents a probability. 
The future work would be to utilize RDFKB to store, retrieve and 
manage this information in conjunction with the RDF dataset.

We have proposed a solution for adding inference to RDF datasets 
stored  in  relational  databases.   This  solution  is  efficient  and 
scalable.   RDFKB  outperforms  existing  solutions,  and  the 
performance  improvement  increases  as  the  dataset  increases, 
which  demonstrates  scalability.   Query  processing  does  not 
require any knowledge of inference rules to access inferred data. 
Queries become simpler and more efficient.

The definition of knowledge base requires a knowledge base to 
provide for “computerized collection,  organization and retrieval 
of knowledge.”[9] Our solution, RDFKB, uses inference rules to 
acquire  and  complete  knowledge  in  the  database.   RDFKB 
organizes  and  persistently  stores  the  inferred  data,  allowing 
simple and efficient query retrieval of the knowledge.  Therefore, 
we  assert  that  RDFKB  is  a  highly  functional  and  efficient 
knowledge base for managing RDF information.  
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Abstract – The enthusiastic acceptance of Resource Description 
Framework (RDF) as a data model has given birth to a new 
data storage paradigm, namely, the RDF Graph model.  The 
pool  of  modeling  and  visualization  tools  available  for  RDF 
stores  is  limited  due to  the technology  being in  its  fledgling 
stage. The work presented in this paper, called R2D (RDF-to-
Database) is an effort to make available, to RDF data stores, 
the  abundance  of  relational  tools  that  are  currently  in  the 
market. This is done in the form of a JDBC wrapper around 
RDF Stores that presents a relational view of the stores and 
their data to the modeling and visualization tools. This paper 
presents  key  R2D  functionalities  and  mapping  constructs, 
procedures  for  every  stage  of  R2D deployment,  and sample 
results in the form of screenshots and performance graphs.

Keywords:  Semantic  Web,  Resource  Description 
Framework, Relational Databases, Data Interoperability

I. INTRODUCTION

In recent years, the explosion of the Internet has resulted 
in  the  emergence  of  an  evolutionary  stage  of  the  World 
Wide  Web,  namely,  the  Semantic  Web.  To  realize  the 
Semantic Web vision various standards,  such as Resource 
Description Framework [1], are being developed to enable 
users to access information more efficiently and accurately. 
The simplicity and flexibility offered by RDF data models 
have resulted in an increase in the number of data stores that 
use the RDF Graph model.  

Such  a  plethora  of  RDF  information  stores  have, 
consequently, given rise to the need for tools to manage and 
visualize this data, However, most of the currently available 
data modeling, visualization, and management tools are still 
based  on the  more  mature  models  such  as  relational  and 
tabular  models  [2].  In  order  to  continue  to  leverage  the 
advantages offered by relational tools without losing out on 
the  benefits  offered  by  newer  web  technologies,  the  gap 
between the two needs to be bridged. 

One method to bridge this gap is to create an equivalent 
relational  schema  in  an  existing  Relational  Database 
Management System and copy the RDF triples data into the 
corresponding tables in the relational schema. This approach 
leads to space wastage due to duplication of the data in the 
RDF store. Further, synchronization of the data in the two 

stores is another issue to be considered,  and some sort of 
resource and time intensive mechanism would have to be in 
place to ensure that the relational store is a true and current 
version of the RDF store.

We propose a solution to the bridging problem without 
the need to create an actual physical relational schema and 
duplicate data. The work presented in this paper, called R2D 
(RDF-to-Database), is a bridge that hopes to enable existing 
relational tools to work seamlessly with RDF Stores without 
having to make extensive modifications or waste valuable 
resources  by  replicating  data  unnecessarily.  Our  research 
provides a relational interface to data stored in the form of 
RDF  triples  and,  to  the  best  of  our  knowledge,  has  no 
comparable counterparts. Our contributions are:
• We propose a mapping scheme for the translation of RDF 

Graph structures to an equivalent relational schema
• The  proposed  mapping  process  includes  the  ability  to 

map,  through  extensive  examination  of  instance  data, 
even “sloppy” RDF Graphs that either do not have any, or 
have  incomplete  structural/schema  information  included 
along with the data.

• Based  on  the  RDF-to-RDBMS  map  file  created,  we 
propose  a  transformation  process  that  presents  a 
normalized,  non-generic,  domain-specific,  virtual 
relational schema view of the given RDF store

• We propose a mechanism to transform any relational SQL 
queries issued against the virtual relational schema into its 
SPARQL equivalent,  and  return  the  triples  data  to  the 
end-user in a relational/tabular format

• We  provide  all  of  the  above  in  the  form  of  a  JDBC 
interface that  can be plugged into existing visualization 
tools seamlessly. 

Section II provides an overview of current research in the 
relational-to-rdf arena.  Section III  discusses R2D’s modus 
operandi and mapping constructs. The algorithms involved 
in the mapping process are described in Section IV followed 
by experimental results in Section V. The paper concludes 
with  a  discussion  on  the  advantages  of  this  research  in 
Section VI.  

II. RELATED WORK

While the overall concept of R2D is unique and has no 
comparable counterparts, several research efforts exist that 
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attempt to bring relational database concepts and semantic 
web  concepts  together,  albeit  from  a  perspective  that  is 
opposite  to  that  considered  in  our  work.  Some  of  these 
efforts  include  D2RQ  [3]  and  Virtuoso  RDF  Views  [4] 
which  are  essentially  mapping  efforts  between  relational 
schema  and  OWL/RDFS  concepts  where  a  relational 
database schema is taken as input and an RDF interface of 
the same is presented as output. Triplify [5] is another effort 
at  publishing linked  data  from relational  databases  and it 
achieves  this  by  extending  SQL and  using  the  extended 
version as a mapping language. RDF123 [6], an open source 
translation tool, also uses a mapping concept, however its 
domain  is  spreadsheet  data  and  it  attempts  to  achieve 
spreadsheet-to-RDF translation by allowing users to define 
mappings between spreadsheet semantics and RDF graphs. 

The Hybrid model [7] is the nearest match to the mapping 
methodology  in  our  work,  however,  since  the  model 
generates  a  table  for  every  property  in  the  ontology,  it 
results in unnecessary tables in the case of 1:N relationships 
between subject and object resources.  R2D avoids this by 
adding a foreign key column to the appropriate table when 
processing 1:N relationships. The hybrid model also fails on 
RDF graphs which do not include schema information while 
R2D  is  able  to  glean  structural  information  even  in  the 
absence of ontological constructs. 

As can be seen from the above discussions, none of the 
existing  research  efforts  address  the  issue  of  enabling 
relational  applications  to  access  RDF  data  without  data 
replication. Thus, to the best of our knowledge, R2D is the 
first endeavor to address this issue.

III. R2D PRELIMINARIES

The architecture of the proposed system and the deployment 
sequence of the algorithms comprising R2D are illustrated 
in  Figure  1.  R2D’s  functionality  is  made  available  as  a 
JDBC Interface that can be plugged into any visualization 
tool that is based on a relational data model.

Figure 1. R2D Architecture & Deployment Sequence

Table  1  tabulates  the  notional  mapping  between 
OWL/RDFS  Ontology  terminologies  and  relational 
concepts that is adopted by R2D.

Table 1: Notional Mapping between RDFS/OWL and R2D

OWL/RDFS RELATIONAL CONCEPT

TERMS
rdfs:class Table
rdf:property Column
rdfs:domain Table that the rdf:property is a column of
rdfs:range Datatype of the column 
rdf:type Values of the Primary Key column of the table

At the heart of the relational transformation of RDF Graphs 
is the R2D mapping language –a declarative language that 
expresses the mappings between RDF Graph constructs and 
relational  database  schema  constructs.  In  order  to  better 
explain  the  R2D  mapping  language  constructs,  examples 
from the sample scenario  in  Figure  2 are  included where 
applicable.

Figure 2. Sample Scenario

The  constructs  of  the  current  version  of  the  mapping 
language are presented below.

r2d:TableMap: The r2d:TableMap construct  refers  to a 
table in a relational database. In most cases, each rdfs:class 
object  will  map  to  a  distinct  r2d:TableMap,  and,  in  the 
absence  of  rdfs:class  objects,  the  r2d:TableMaps  are 
inferred from the instance data in the RDF Store. Example: 
The RDF Graph in Figure 2 results  in  the creation of  a  
TableMap called “Student”.

The mapping constructs specific to an r2d:TableMap are 
as follows.

r2d:keyField: The  r2d:keyField  construct  specifies  the 
primary key attribute for the r2d:TableMap to which the 
field is attached. The data value associated with the field 
specified by r2d:keyField is the object of the “rdf:type” 
predicate  belonging  to  the  rdfs:class  subject 
corresponding  to  its  r2d:TableMap.  Example: An 
r2d:keyField (primary key) called “Student_PK” field is  
attached  to  the  “Student”  TableMap  and  one  of  its  
values, corresponding to the sample scenario in Figure 2,  
is “URI/StudentA”. 

r2d:ColumnBridge: r2d:ColumnBridges  relate  single-
valued  RDF  Graph  predicates/properties  to  relational 
database  columns.  Each  rdf:Property  object  maps  to  a 
distinct  column  attached  to  the  table  specified  in  the 
rdfs:domain  predicate.  In  the  absence  of 



rdf:property/domain  information,  they  are  discovered  by 
exploration of the RDF Store data. 
Example: The  “Name” and “Member  Of”  predicates  in  
Figure  2  become  r2d:ColumnBridges  belonging  to  the 
“Student” r2d:TableMap
r2d:MultiValuedColumnBridge(MVCB): Those  RDF 

Graph predicates  that  have  multiple  object  values  for  the 
same  subject  are  mapped  using  the  MVCB  construct. 
MVCBs  typically  correspond  to  RDF  constructs  such  as 
RDF containers and collections and are used to indicate N:1 
and N:M relationships between the virtual relational schema 
tables.
Example: The  “Works  On” predicate  in  Figure  2  is  an 
example of an MVCB mapping.
r2d:SingleValuedBlankNode  (SVBN):  This  construct 

helps relate blank nodes with distinct predicates to relational 
database columns. In the virtual relational schema, the blank 
node is ignored and the predicates of blank nodes are treated 
as having simple 1:1 relationships to the subject of the blank 
node. 
Example: The object of the “Address” predicate in Figure  
2 is an example of an SVBN that has the distinct predicates  
of “Street”, “City”, and “State”. 
r2d:MultiValuedBlankNode  (MVBN): This  construct 

refers  to  blank  nodes  in  the  RDF  Graph  that  contain 
repeating  predicates.  These  blank  nodes  have  multiple 
object  values  for  the  same  subject  and  predicate  concept 
associated with the blank node. An MVBN typically results 
in the generation of a separate r2d:TableMap with a foreign 
key relationship.
Example: The object of the “Phone” predicate in Figure 2  
is an example of an MVBN that has multiple object (Cell)  
values for the subject (URI/StudentA) and predicate (Cell)  
concept associated with the MVBN. 
The  mapping  constructs  specific  to  column  bridges  and 
blank nodes are described below.

r2d:belongsToTableMap(BTTM): This  construct 
connects  a  r2d:ColumnBridge  or  MVCB  to  an 
r2d:TableMap.  Every  r2d:ColumnBridge  must  specify  a 
value  for  either  this  construct  or  the 
r2d:belongsToBlankNode  construct.  Example: The 
“Name”  predicate  in  Figure  2  is  associated  with  the  
resource  “URI/StudentA”,  an  instance  of  the  “Student”  
r2d:TableMap. Hence, the BTTM construct corresponding  
to  “Name”  r2d:ColumnBridge  is  set  to  a  value  of  
“Student”,  thereby  connecting  the  ColumnBridge  to  a  
table. 

r2d:belongsToBlankNode (BTBN): This construct ties a 
r2d:ColumnBridge or MVCB to an SVBN or an MVBN. 
Example: The “Street” r2d:ColumnBridge corresponding  
to the “Street” predicate in Figure 2 is associated with the  
“Address”  SVBN.  Hence,  for  the  “Street” 
r2d:ColumnBridge the BTBN construct is used to associate 
it to the “Address” blank node.

r2d:refersToTableMap  (RTTM):  This  construct  is 
optional  for  column bridges  and  is  only  used  for  those 

triples that contain a resource object for a predicate. This 
construct  is  used  to  generate  primary  key-foreign  key 
relationships within the virtual relational schema.
Example: The  object  of  the  “Member  Of”  predicate  in  
Figure  2  is  a  resource  that  translates  to  another 
r2d:TableMap  called  “Department”.  Hence  the  
“MemberOf”  r2d:ColumnBridge  includes  the  RTTM 
construct with a value of “Department”.
r2d:predicate: The r2d:predicate construct is used to store 
the fully qualified property name of the predicate  which 
corresponds to the column bridge. This information is used 
during  the  SQL-to-SPARQL  translation  to  generate  the 
SPARQL WHERE clauses required to obtain the value of 
the r2d:ColumnBridge

r2d:MultiValuedPredicate (MVP): This construct is used 
when there are multiple predicate names that refer to the 
same  overall  object  type  despite  each  individual  object 
having  a  different  value.  r2d:MultiValuedPredicates  are 
also used to keep track of the predicates  associated with 
RDF containers and RDF collections. 

r2d:datatype: This construct specifies the datatype of its 
column bridge and is derived from the rdfs:range predicate 
or, in its absence, by examination of the object values of 
the predicate.

The virtual relational schema generated by R2D for the 
scenario in Figure 2 is as illustrated in Figure 3. Section IV 
(B) explains how this schema is arrived at.

Figure 3. Equivalent Relational Schema for Scenario in Figure 2 

IV. R2D: A PROTOTYPE DESIGN

In addition to the design of the RDF-to-Relational mapping 
language discussed in the previous section, the objectives of 
this  research  are  to  develop  algorithms  that  enable  the 
relationalization of RDF stores. These algorithms comprise 
the  R2D  framework  and  are  discussed  in  the  following 
subsections. 

A. RDFMapFileGenerator

The  RDFMapFileGenerator  algorithm  automatically 
generates  an  RDF-to-Relational  mapping  file.  It  takes  as 
input the RDF Store that is to be transformed and produces 
the  transformation  mapping  file  as  output.  The 
RDFMapFileGenerator  algorithm  works  on  RDF  Stores 
with or without structural/schema information. 

When structural information about the triples database is 
present the RDFMapFileGenerator algorithm discovers the 



schema  definitions  and  creates  appropriate  Table  and 
Column  mappings  based  on  the  schema  information. 
Predicates  belonging  to  instances  with  structural 
information are  processed  and  added  to  the r2d:tableMap 
corresponding to the “rdfs:class” of the instance using the 
constructs defined in Section III. 

Instances  without structural  information are handled by 
creating a potential  TableMap for each such instance.  For 
every simple predicate of such resources, a new column is 
added  to  the  resource’s  TableMap  if  a  column 
corresponding to a predicate  does not already exist in the 
TableMap. Additionally, the nature of the relationship that 
exists  between  all  predicates  (both  pre-defined  and 
undefined) and the subject is also determined. If the subject 
contains multiple object values for the same predicate then 
column type of the corresponding column is set to MVCB. 
Otherwise,  the  column  type  is  set  to  r2d:ColumnBridge. 
This  determination  is  mandatory  in  order  to  arrive  at  a 
normalized and logically sound relational schema. 

Furthermore,  cardinality estimation is  performed during 
the processing of  predicates  for  those predicates  that  link 
subjects  to  objects  that  are  resources  and  not  literals. 
Whenever  1:N  or  N:M  relationships  are  identified  the 
corresponding  predicate  is  mapped  using  the  MVCB  or 
MVBN  construct,  whichever  is  applicable. Once  all 
predicates  are  processed,  the  potential  TableMap  is 
compared  with  other  existing  TableMaps;  if  an  identical 
TableMap  exists,  the  potential  TableMap  is  discarded, 
otherwise it is added to the list of TableMaps. 

B. DBSchemaGenerator

The DBSchemaGenerator module is the next stage in the 
R2D process.  This  algorithm takes  the RDF-to-Relational 
Schema  mapping  file  generated  in  Section  III  (A)  and 
returns  a  virtual,  appropriately  normalized  relational 
database  schema  consisting  of  entities/tables  and  the 
relationships between them. A high-level description of the 
algorithmic details follows. 

For every entry of type r2d:TableMap in the map file one 
relational table is added to the virtual relational schema. For 
the  sample  scenario  in  Figure  2,  a  virtual  table  called 
Student  is  created  corresponding  to  the  Student 
r2d:TableMap.  The  more  complex  structures  such  as 
r2d:SingleValuedBlankNodes  (SVBNs), 
r2d:MultiValuedBlankNodes  (MVBNs),  and 
r2d:MultiValuedColumnBridges  (MVCBs)  are  handled  as 
follows. For SVBNs, the predicates belonging to the blank 
node  are  associated  with  the  table  corresponding  to  the 
subject of the blank node object. Thus, the Street, City, and 
State predicates of the Address SVBN in Figure 2 are added 
as columns to the Student table.

When  an  MVBN  or  MVCB  with  literal  objects  is 
encountered (this is equivalent to a multi-valued attribute in 
relational database terminology) a new table is added to the 
virtual relational schema and the primary key fields of the 
table associated with the r2d:belongsToTableMap construct 

specified for the MVBN or MVCB are added as fields to 
this new table. 

The  object  of  the  “Phone”  predicate  in  Figure  2 is  an 
example  of  an  MVBN.  The  relational  transformation  for 
Phone involves the generation of an r2d:TableMap of the 
same name. This Phone r2d:TableMap includes as columns 
a  Type field  that  holds  the  values  of  the  multi-valued 
predicates  off  of  the MVBN (in our sample scenario,  the 
Type field will hold the values “Cell” and “Work”), and a 
Value field that holds the object values of the predicates off 
of  the  MVBN.  Additionally,  the  r2d:TableMap  also 
includes,  as  foreign  key,  the  Student_PK column  which 
references the primary key of the Student r2d:TableMap. 

In RDF graphs where the MVBN or MVCB has objects 
that  are  resources  themselves  (as  indicated  by  the 
r2d:refersToTableMap construct specified for the MVBN or 
MVCB),  the  type  of  relationship  that  exists  between  the 
subject and the object of the MVBN/MVCB is assessed. If 
an  N:M relationship  exists  between  the  {subject,  object} 
pair, a join table is added to the virtual relational table list 
and the primary key fields of both the tables (corresponding 
to the subject and the object) are added to this join table. 
The  Works On predicate in Figure 2 is an example of one 
such MVCB whose relational transformation results in the 
generation of a new r2d:TableMap of the same name. This 
new  TableMap  represents  the  N:M  relationship  between 
Student and Research and has the primary keys of both the 
tables included as fields. If the {subject, object} pair shares 
a 1:N or N:1 relationship, the primary key of the referred 
table is added to the attribute list of the referring table.

Finally, entries of type r2d:ColumnBridge in the map file 
are processed by adding the column bridge as an attribute to 
the  table  or  blank  node  referred  to  in  the 
r2d:belongsToTableMap  or  r2d:belongsToBlankNode 
construct specified for the column bridge.

C. ProcessSQLStatement

The final stage in the R2D process is the SQL-to-SPARQL 
translation where SQL statements issued against the virtual 
relational  schema  are  parsed,  translated  into  equivalent 
SPARQL queries that are executed against the RDF Store, 
and  the  results  are  returned  in  relational  format.  The 
algorithm for this stage is called ProcessSQLStatement. Due 
to  space  constraints  only  a  brief  description  of  this 
algorithm is provided here. Very broadly, for every field in 
the  original  SQL  select  list,  a  variable  is  added  to  the 
SPARQL SELECT list. Next, the predicates of every non-
primary-key field in the SPARQL SELECT list are retrieved 
and  added  to  the  SPARQL  WHERE  clause  to  bind  the 
SELECT list variables. SQL WHERE clauses of the types 
(field <operator> <value/field2>) are typically included in 
the  FILTER clause  which  is  then  added  to  the  SPARQL 
Query.  The transformed SPARQL Query is executed, and 
the  retrieved  data  is  returned  to  the  visualization  tool  in 
relational format seamlessly. Figure 4 shows a sample SQL 



query  and  its  SPARQL equivalent  and  tabular  results  as 
generated by ProcessSQLStatement.

Figure 4: SQL-to-SPARQL Transformation

V. IMPLEMENTATION SPECIFICS

The hardware used in the implementation of R2D was a 
computer running Windows Vista with 2 GB RAM and 2.00 
GHz Intel  Core2 Duo Processor.  The software tools used 
include Jena 2.5.61 to manipulate the RDF triples, MySQL 
5.0  to  house  the  relational  equivalent  of  the  given  RDF 
store, Java 1.5 for development of the algorithms detailed in 
Section  IV,  and  DataVision  1.2.02 to  visualize/generate 
reports based on RDF data.  The performance experiments 
conducted  and the reporting tool  outputs  presented  below 
are based on the IngentaConnect’s publication domain3 that 
includes  information  about  journals,  issues,  and  articles. 
Synthetic  RDF  triples  data  stores  of  various  sizes  were 
created  based  on  IngentaConnect’s  schema  in  Jena  for 
performance evaluation exercises.

The  relational  equivalent  of  the  RDF  data  set  was 
generated  using  the  RDFMapFileGenerator  and 
DBSchemaGenerator Algorithms detailed in Section IV. An 
open source visualization tool, DataVision, which expects a 
relational  schema  as  input,  was  used  to  view  the  virtual 
relational  schema  generated,  query  the  data  using  SQL 
statements,  and generate  reports  off  of  the data.  Figure  5 
displays the time taken by the map file generation process 
for RDF stores of various sizes and the database schema as 
seen by DataVision. 

1 http://jena.sourceforge.net/index.html
2 http://datavision.sourceforge.net
3 www.ingentaconnect.com

The  map  file  generation  process  is  especially  time-
intensive for large databases without structural information 
(which  is  the  case  with  our  experimental  data  set)  since 
RDFMapFileGenerator  has  to  explore  every  resource  to 
ensure  that  no  property  is  left  unprocessed.  Sampling 
methods can be used to improve performance, but at the risk 
of  reduction  in  accuracy.  Also,  if  a  domain  expert  is 
available, this step can be bypassed completely by providing 
a map file manually. 

Figure 5: Response Time for RDFMapFileGenerator

Figure 6 illustrates DataVision’s query building process. 
Based  on  the  fields  chosen  (in  the  “Report  Designer” 
window),  the  table  linkages  (i.e.,  joins,  illustrated  in  the 
“Table  Linker”  inset)  specified,  and  additional  record 
selection  criteria  specified  (illustrated  in  the  “Record 
Selection  Criteria”  inset),  DataVision  generates  an 
appropriate SQL query, as shown in the “SQL Query” inset, 
to extract the required data. At this juncture, the Statement, 
PreparedStatement,  and  ResultSet  JDBC  Interfaces  are 
invoked which trigger ProcessSQLStatement and return the 
results to DataVision in the expected tabular format.

Figure 6. DataVision Query Processing



To compare the performance of queries executed through 
the  virtual  relational  schema  offered  by  R2D against  the 
query performance from an equivalent RDBMS, a physical 
relational  schema  corresponding  to  the  publications  data 
was created in MySQL and populated with data similar to 
the triples data in the Journal-Issue-Article RDF data store 
in Jena. Four queries were run against Jena RDF stores and 
MySQL  relational  databases  of  various  sizes  and  the 
response times are displayed in Figure 7. 

Figure 7. Response times for Queries

The  time  taken  for  the  SQL-to-SPARQL  conversion 
(ProcessSQLStatement Algorithm) is negligible and nearly 
constant.  Hence,  R2D does not  add any overheads  to  the 
SPARQL query  performance.  The  fact  that  the  relational 
(SQL)  queries  exhibit  superior  performance  than  their 
SPARQL  equivalents  is  not  surprising  since  refined 
performance optimization options have been at the disposal 
of relational databases for many decades now. Further, for 
each  row of the RDBMS with ‘n’  columns, there are  ‘n’ 
triple tuples in the corresponding RDF Store. Thus, for the 
datasets  considered,  the  RDBMS  equivalent  of  the  RDF 
Stores had approximately two-thirds less data than the RDF 
Stores  which  was  another  contributor  to  better  RDBMS 
response times than the RDF data store. 

However,  this  improved  performance  comes  at  the 
expense of additional disk space due to duplication of data 
into the RDBMS,  and  additional  system resources/human 
effort  required  to  ensure  that  the  duplicated  data  is  kept 
synchronized  with  the  original  RDF  store.  On  the  other 
hand,  for  a  small  price  in  terms  of  response  time,  R2D 
offers an avenue for users to continue to take advantage of 
the  vast  assortment  of  visualization  tools  that  are  readily 
available  without  having  to  duplicate/synchronize  RDF 
data.

VI. DISCUSSION

The  R2D  framework  in  this  paper  is  an  attempt  at 
integrating relational concepts with semantic web concepts 
with the objective of permitting reusability of tools that are 
based on a relational model. Since current storage methods 
for  RDF stores  involve housing the triples  in  a  relational 

database, some factions may consider R2D to be a "double-
wrapping"  application  that  provides  a  relational  wrapper 
around RDF stores that are,  in turn,  stored in a relational 
database.  However,  almost  every  storage  mechanism 
involves the creation of a generic, non-application-specific 
<s,p,o>  table  that  would  make  the  determination  of  the 
problem domain addressed  by the model difficult  without 
examining  the  actual  data.  Further,  querying  data,  using 
SQL,  from  such  a  generic  table,  to  arrive  at  meaningful 
information is not a trivial task. It would involve umpteen 
self-joins on the same table and would require the presence 
of  a  domain expert  with detailed  knowledge  of  the  data. 
This is because, using these models, it would be impossible 
for a user to infer the schema and the entities, the attributes, 
and relationships comprising the same. R2D offers the users 
the ability to do just this and enables them to actually arrive 
at a complete domain-specific Entity-Relationship Diagram 
using the RDF-to-Relational Schema transformation process 
and fire SQL queries against the same. 

Further, R2D, unlike other mapping efforts, can generate 
an equivalent relational schema even for "sloppy" data (in 
which ontological constructs/schema definitions are absent) 
through extensive examination of the data to identify groups 
of instances that have mostly the same properties associated 
with them. The degree of accuracy of the generated schema 
in the absence of structural information may not be as high 
as when such information is available due to uncertainties 
regarding similarity of the tables generated in the relational 
schema. Decisions such as "how similar should two tables 
be  before  they  are  considered  to  be  the  same  and 
consolidated"  depends,  in  the  absence  of  structural 
information,  on  similarity  thresholds  set  within  the 
algorithm and accuracy varies depending on the thresholds. 
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                            Abstract      

 
       Semantic heterogeneity across data sources 
remains a widespread and relevant problem requiring 
innovative solutions. Our approach towards resolving 
semantic disparities among distinct data sources 
aligns their constituent tables by first choosing 
attributes for comparison. We then examine their 
instances and calculate a similarity value between 
them known as entropy-based distribution (EBD). One 
method of calculating EBD applies a state-of-the-art 
instance matching strategy based on N-grams in the 
data. However, this method often fails because it relies 
on shared instance data to determine similarity. This 
results in an overestimation of semantic similarity 
between unrelated attributes and an underestimation 
of semantic similarity between related attributes. Our 
method resolves this using clustering and a measure 
known as Normalized Google Distance. The EBD is 
then calculated among all clusters by treating each as 
a type. We show the effectiveness of our approach over 
the traditional N-gram approach across multi-
jurisdictional datasets by generating impressive 
results.  
 
 
1. Introduction 
 
     The problem of information integration has 
experienced a number of manifestations since its 
inception, which resulted from the meteoric popularity 
of relational databases after the 1960's. However, the 
core of this problem has always been the need to 
consolidate heterogeneous data sources under a single, 
unified schema. Over the last few decades, a 
tremendous amount of effort has been expanded to 
discover novel information integration strategies. 

     In this paper we attempt to compare two pairs of 
data sources by examining the instances of compared 
tables; the first pair of data sources contains tables 
describing similar models of transportation network 
over multiple jurisdictions, while the other pair 
contains tables detailing varying geographic features. 
The data sources contain large variations in the 
geographic areas covered, the number of attributes, 
and the number of instances. 
     To measure instance similarity between compared 
attributes we will attempt to match the respective 
distributions of their representative types. A type will 
be defined as a common representation of a group of 
related pieces of data. Once all types for the compared 
attributes have been accounted for, the semantic 
similarity between the attributes is calculated using a 
measure known as entropy-based distribution (EBD). 
EBD is based on the ratio of the conditional entropy 
within the types extracted for a pair of compared 
attributes with the entropy over all types.  
     We examine two different instance similarity 
algorithms. The first examines keywords in the 
compared attributes and extracts subsequences of their 
characters known as N-grams. The idea behind this 
method is that keywords that share more N-grams are 
more semantically similar to one another. However, 
this idea often proves to be incorrect in situations 
where few shared instances exist over multiple 
jurisdictions. The second approach, which we will dub 
as the TSim algorithm, executes instance matching by 
applying a similarity metric known as the Normalized 
Google Distance (NGD). The end result is a group of 
distinct clusters (hence types), each of which contains 
a unique set of keywords related to each other through 
common semantic features. The similarity between the 
attributes is then computed by calculating the EBD. 
Because we do not have to depend on shared N-grams 
for semantic similarity, our instance matching 



 

 

algorithm can derive a more realistic measure of the 
implicit semantics existing between any given pair of 
attributes from distinct data sources. 
     Our main contributions are as follows. First, we 
display the inadequacies of the N-gram approach by 
testing it on multiple datasets and highlighting its 
inability to identify correct semantic correspondences 
between attributes due to its reliance on shared 
instances. Second, we propose a new algorithm, called 
TSim, that derives semantic similarity between 
attributes of compared tables without the need for 
shared instances. This is accomplished through K-
medoid clustering of the instance data associated with 
the attributes into distinct semantic types, with the 
help of NGD. Finally, we show the effectiveness of 
our approach relative to the traditional N-gram method 
through lucid results on two separate datasets. 
     The rest of this paper is organized as follows. In 
section 2, we discuss an overview of related work. 
Section 3 states the problem to be solved and our 
proposed solution. Section 4 presents in detail the 
TSim algorithm alongside the current, state-of-the-art 
approach that depends on shared N-grams. In Section 
5 we present results. Finally, in section 6, we outline 
our future work. 

2. Related work 

      A number of schema matching publications 
[1,2,3,4,5] tailored to the database community and 
instance-based ontology matching [9,10] from the 
ontology matching community, influenced our work. 
The survey of approaches to automated schema 
matching by Rahm and Bernstein[1] includes a 
taxonomy which uses several criteria to categorize the 
matching approaches such as schema and instance 
based methods, element-level and structure-level 
methods, and linguistic and constraint-based methods. 
Dai, Koudas et al. [2] discuss instance-based schema 
matching using distributions of N-grams among 
compared attributes. Bohannon et. al[3] investigate 
contextual schema matching, in which selection 
conditions and a framework of matching techniques 
are used to create higher quality mapping between 
attributes of compared schemas. Warren and Tompa 
[4] propose an iterative algorithm that deduces the 
correct sequence of concatenations of column 
substrings in order to translate from one database to 
another without the use of a set of training instances.                                
     Our paper presents an innovative instance matching 
algorithm that possesses a number of advantages over 
the N-gram approach proposed by Dai, Koudas et al. 
First, our new instance matching approach leverages 
clustering of types for use on distinct keywords found 
between compared attributes. This approach is better 
able to capture the semantics of comparisons between 
attributes because words contain more implicit 

semantic information than N-grams. Using words, we 
can reference external data sources that allow for 
distance metrics to determine word relatedness. In 
general, this cannot be done with N-grams because 
they are usually just parts of words. Second, our new 
instance matching algorithm is flexible enough to 
allow for different types of semantic distance measures 
to be used. Treating the semantic distance measure as 
a pluggable component allows for a wider variety of 
experiments to be performed on a given instance set, 
which in turn leads to a better understanding of the 
kinds of semantic distance measures that best suits a 
particular type of data. Finally, the use of N-grams for 
instance similarity between data sources sometimes 
generates misleading results, especially in cases where 
data of different languages but similar semantics is 
being compared.  
      Since we use Google distance to calculate 
similarity there is some relevant work. Gligorov et al. 
[7] apply Google distance [6] to clearly distinguish 
between pairs of words which are not semantically 
related and pairs of words that possess a close 
semantic relation. However, our approach differs from 
their approach in the following ways. First, Gligorov 
et al. use Google distance to automatically assign 
appropriate weights (or importance) to the similarity 
between concepts associated with a concept hierarchy 
for the purposes of ontology matching. On the other 
hand, we use Google distance as a measure to aid in 
the construction of cohesive clusters containing 
similar-themed keywords which are then used to 
perform automated schema matching between 
individual concepts. Next, Gligorov et al. do not 
consider instance-based matching; they purely exploits 
concept labels while our idea of matching is based on 
the instances associated with the compared concepts. 

3. Problem statement and proposal  

3.1   Definitions 
First, we will provide definitions that will assist in 
defining the problem and describing TSim. 

Definition 1 (attribute) An attribute of a table T, 
denoted as att(T), is defined as a property of T that 
further describes it. 
 
Definition 2 (instance) An instance x of an attribute 
att(T) is defined as a data value associated with att(T). 
 
Definition 3 (type) A type t associated with attribute 
att(T) is defined as a class of related entities grouped 
together. 



 

 

In figure 1 below, the two attributes for the given table 
are roadName and City, and two instances from the 
roadName attribute are “Johnson Rd.” and “School 
Dr.”. 

                                
        Figure 1. Sample table containing two  
                   attributes and six instances 

3.2.  Problem statement 
 
     Given two data sources, S1 and S2, each of which is 
composed of a set of tables/relations where {T11, T12, 
T13… T1M}  S1 and { T21, T22, T23… T2N}  S2, the goal is 
to determine the semantic similarity between S1 and S2. 
This is done by comparing the respective attribute 
names and attribute values, or instances, between the 
tables from S1 and those from S2. S1 and S2 may be 
derived from any domain. Additionally, S1 and S2 may 
vary in regards to the number of constituent tables, the 
number of attributes and instances within a given 
table.  

3.3. Proposed solution 

      We present two separate instance matching 
algorithms that generate semantic similarity values 
between compared attributes in different tables. The 
first, based on the ideas of mutual information and 
entropy, extracts features consisting of sequences of 
characters with length N known as N-grams from the 
values of the compared attributes [2]. Each N-gram 
extracted is considered a distinct value type, and the 
ratios of value types originating from each attribute is 
determined to be their overall semantic 
correspondence. While this method can be successful 
for certain datasets, it can produce incorrect results for 
others, such as a multi-jurisdiction dataset, where 
no/few shared instances exist. Section 4 outlines in 
detail one such situation. The second instance 
matching algorithm, based on the extraction and 
clustering of semantically relevant keywords as types, 
treats distinct keywords extracted from compared 
attributes, rather than N-grams, as features. Further 
details describing the algorithm are described in 
Section 4.3. However, it is our intention to clearly 
show that the use of TSim on distinct keywords is 
better able to capture the true semantics that exist 
between compared attributes contained within tables.. 
     It is assumed that we perform 1:1 comparisons 
between attributes from distinct tables and data 

sources. After calculating a semantic similarity value 
between compared attributes, we will repeat the 
process for all compared attributes between the tables. 
Next, a final similarity value between the tables is 
calculated.  

4. Matching algorithm: semantic similarity 
between two tables 
 

4.1. Instance similarity using N-grams 

 
     Instance matching between two concepts involves 
measuring the similarity between the instance values 
across all pairs of compared attributes. This is 
accomplished by extracting instance values from the 
compared attributes, subsequently extracting a 
characteristic set of N-grams from these instances, and 
finally comparing the respective N-grams for each 
attribute. N may be any number, so during all of our 
experiments involving N-grams in this paper, the value 
of N was set equal to 2.  
 
4.1.1. Feature Extraction of N-grams 
       
     We extract distinct N-grams from the instances and 
consider each unique N-gram extracted as a type. A 
type in this context is defined as 2-gram represented 
by an identifying string of length 2. As an example, for 
the string "Locust Grove Dr." that might appear under 
an attribute named Street for a given concept, some 2-
grams that would be extracted are 'Lo', 'oc', 'cu', 'st', 't ', 
'ov', 'Dr' and so on. Since each of these 2-grams are 
different, each one would represent a distinct type. 

4.1.2. Measuring attribute similarity 

 
     N-gram similarity is based on a comparison 
between the concepts of entropy and conditional 
entropy known as Entropy Based Distribution (EBD):  

EBD =  H(C | T)  
  H(C)  

     In this equation, C and T are random variables 
where C indicates the union of the attribute types C1 

and C2 involved in the comparison (C indicates 
"column", which we will use synonymously with the 
term “attribute”) and T indicates the type, which in 
this case is a distinct N-gram. EBD is a normalized 
value with a range from 0 to 1. 
     Entropy is defined as the measure of the 
uncertainty associated with a random variable, 
whereas conditional entropy is defined as the 
uncertainty associated with one random variable given 
the value of a second random variable. Conditional 
entropy is defined as follows: 

(1) 



 

 

                                   
     Our experiments involve 1:1 comparisons between 
attributes of compared tables, so the value of C would 
simply be C1 U C2. H(C) represents the entropy of a 
group of types for a particular column (or attribute) 
while H(C | T) indicates the conditional entropy of a 
group of types. For more details regarding the usage of 
EBD and its mathematical derivation, please see our 
previous work[8]. 

   
4.2. Motivation For TSim 

4.2.1. Problems With N-grams as a Measure For 
Semantic Similarity 
 
     N-grams are susceptible to generating misleading 
results.  For example, if an attribute named 'City' 
associated with a table from S1 is compared against an 
attribute named 'ctyName' associated with a table from 
S2, the attribute values for both concepts might consist 
of city names from different parts of the world. 'City' 
might contain the names of North American cities, all 
of which use English and other Western languages as 
their basis language, while 'ctyName', might describe 
East Asian cities, all of which use languages that are 
fundamentally different from English or any Western 
language. Using human intuition, it is obvious that the 
comparison occurs between two semantically similar 
attributes. However, because of the tendency for 
languages to emphasize certain sounds and letters over 
others, the extracted sets of 2-grams from each 
attribute would very likely be quite different from one 
another. For example, some values of 'City' might be 
"Dallas", "Houston" and "Halifax", while values of 
'ctyName' might be "Shanghai", "Beijing" and 
"Tokyo". Based on these values alone, there is 
virtually no overlap of N-grams. Because most of the 
2-grams belong specifically to one attribute or the 
other, the calculated EBD value would be low. This 
would most likely be a problem every time global data 
needed to be compared for similarity.  
 
4.2.2. Overview of the TSim Algorithm 
 

     To overcome the problems of the N-gram 
approach, we need a method that is free from the 
syntactic requirements of N-grams and uses the 
keywords in the data in order to extract relevant 
semantic differences between compared attributes. 
This method, known as TSim, extracts distinct 
keywords from the compared attributes and 
determines their types by leveraging K-medoid 
clustering to group together keywords of the same 

type based on a semantic distance metric known as the 
Normalized Google Distance (NGD). The EBD is then 
calculated by comparing all instances of keywords 
representing each type, where a cluster is considered a 
distinct type. 
  
 

4.3. The TSim algorithm 

     We determine semantic similarity between two 
separate data sources through K-medoid clustering of 
the keywords extracted from the compared attributes. 
The distance metric used in assigning keywords to 
clusters is known as Normalized Google Distance.          
 

4.3.1. Normalized Google Distance 

     Before describing the process in detail, NGD must 
first be formally defined: 

 

In this formula, f(x) is the number of Google hits for 
search term x, f(y) is the number of Google hits for 
search term y, f(x,y) is the number of Google hits for 
the tuple of search terms xy, and M is the number of 
web pages indexed by Google. For more information 
about NGD, consult the work by Gligorov et al[7]. 

4.3.2. Clustering the Keywords 

     Once the keyword list for a given attribute 
comparison has been created, all related keywords are 
grouped into distinct clusters. From here, we calculate 
the conditional entropy of each cluster by using the 
number of occurrences of each keyword in the cluster, 
which is subsequently used in the final EBD 
calculation between the two attributes. The clustering 
algorithm used is the K-Medoid algorithm, which is 
described in the next section.  

4.3.3. The K-Medoid Algorithm 

The K-medoid algorithm begins by first determining 
the number of clusters, dubbed K. This is based on the 
size of Lkeywords for each attribute comparison. Second, 
exactly one keyword from the list is assigned to each 
of the K clusters in a process called initial seeding. 
The keywords assigned to the clusters in this step are 
known as medoids. Third, we assign each keyword in 
Lkeywords that is not a medoid to the cluster to which it is 
most semantically related, while subsequently 
determining if any cluster medoids need to be 
recomputed. To do this, we need to use the pairwise 
NGD values list between the keyword to be assigned 
to a cluster and all keywords already assigned to that 

(3) 



 

 

same cluster. Finally, after all keywords have been 
assigned to clusters, we determine if the medoid for 
any cluster needs to be recomputed. This is 
accomplished by examining each of the keywords in a 
particular cluster and computing an NGD summation 
between a single keyword in that cluster and all other 
words in that cluster. The keyword in that cluster that 
produces the lowest NGD summation will be assigned 
as the new medoid for that cluster. If no medoids have 
changed in any cluster, then the K-medoid algorithm is 
finished, and control proceeds to the calculation of the 
EBD between the compared attributes. However, if at 
least one medoid has changed in a particular cluster, 
then we begin a new clustering iteration. 

5. Experiments 

     We now present the experiment that we conducted 
regarding matching between distinct data sources in 
the GIS domain.  

5.1.  Experimental Setup 

     Two separate datasets from the GIS domain were 
used to evaluate the performance of TSim. The first 
dataset was created from instance data of the Road and 
Ferries package of a GIS data model known as GDF 
(Geographic Data Files). The second dataset details a 
wider assortment of GIS location features across the 
United States and their associated data beyond merely 
transportation networks.  Some of the location features 
in this dataset include flight schools, piers, navigable 
waterways and Indian lands.  For both sets of data, the 
number of attributes and instances vary widely; for 
example, in the GIS location dataset, the Flight 
Schools table has the fewest number of attributes (27) 
and the Piers table has the most (76). Because data 
from several different areas of the United States were 
employed in our experiments, we effectively created a 
disjoint, multi-jurisdictional environment. Table 1 
below displays a summary of the relevant information 
regarding the data involved in our experiments with 
both datasets. 

   Table 1. Description of (a) transportation     
         dataset & (b) GIS Location Dataset 
 

 

 
 
    Table 2a and 2b. Comparison of EBD values         
     generated by the N-gram method and TSim  
        for correct attribute correspondences. In  
            table 2a (left), the N-gram method   
underestimates the similarity, and in table 2b   
(right), N-grams overestimate the similarity                       

 
 

5.2.  Results 
        An illustration of the tendency of the N-gram 
method to underestimate the value of correct attribute 
correspondences relative to TSim and overestimate the 
value of incorrect correspondences is displayed in 
table 2a(left)  above for the GIS location dataset and in 
table 2b(right) for transportation dataset. For table 2a, 
in all five comparisons, the attributes are clearly 
related (ie: Ports.COUNTY and Piers.COUNTY). 
However, the N-gram method generates low EBD 
values for these comparisons (right column of table), 
while TSim generates high EBD values (left column 
of table). The reason for this is the inability of the N-
gram method to relate two attributes together without 
the use of shared instances. As long as the compared 
attribute values are made of widely varying N-gram 
types, this method will always produce a low EBD 
value. On the other hand, because TSim does not rely 
on shared instances to determine semantic similarity, it 
is able to correctly assign a high EBD score between 
the attributes. On average, for the five comparisons 
above, the N-gram method underestimates the EBD 
score by 77%. Table 3b illustrates that the use of 
shared instances by the N-gram method can also lead 
to the exaggeration of similarity scores between 
unrelated attributes. For example, Traffic Area.County 
and Ferry.DSP both contain county data including the 
word “county”, but DSP (which stands for 
‘Destination Port’) also contains the names of towns 
and other geographic features. The N-gram method 
will match any instances containing the word “county” 
as well as other instances sharing common words, thus 
incorrectly raising its EBD computation. On average, 



 

 

for the five comparisons in table 3b, the N-gram 
method overestimates the EBD score by 266 %. 
      The results of the alignment of S1 and S2 of the 
compared tables for both the transportation dataset and 
the GIS location dataset using TSim are shown in 
tables 3a and 3b, respectively. Each cell contains the 
EBD value produced using TSim between a table from 
S1 (names listed along the vertical axis of the table) 
and a table from S2 (names listed along the horizontal 
axis of the table). 
 
Table 3a and 3b. EBD values generated 
between tables of S1 and S2 of (a: 
transportation dataset (left table) (b: GIS    
             location dataset (right table) 

 
     In table 3a, the EBD values obtained using TSim 
for the comparisons between Road-Road, Residential 
Area-Address Area, Traffic Area-Enclosed Traffic 
Area, and Ferry-Ferry are 0.553, 0.552, 0.958, and 
0.564 respectively. Each of these represented the 
correct correspondences, and TSim identified them as 
those with the highest semantic similarity. In addition, 
tables that are semantically dissimilar, such as Ferry-
Road and Traffic Area-Address Area were correctly 
recognized as such by TSim, as scores of .127 and 
.219 were generated. Similar results are also obtained 
in table 3b. Both of these datasets illustrate the 
tendency for the N-gram approach to overestimate 
incorrect correspondences and underestimate correct 
correspondences. For example, in table 3a, some of the 
EBD values produced via TSim for Road-Address 
Area, Road-Enclosed Traffic Area, and Road-Ferry 
are 0.22, 0.27 and 0.28 respectively. On the other 
hand, using the N-gram method, the scores generated 
for these comparisons were 0.44, 0.43 and 0.48 
respectively.  The scores were overestimated by 100%, 
59% and 71% respectively. In table 3b, using TSim, 
the EBD values produced for Flight Schools(S1)-
Schools(S2), Piers-Ports and Piers-NavWaterways are 
.615, .633 and .616. Using the N-gram approach, the 
scores generated are .182, .388 and .137. In this case, 
the N-gram method  underestimated the scores by 
70.5%, 38.8% and 77.8%, respectively. 
 
6. Conclusion & Future Work 

      We outlined two algorithms that align distinct data 
sources using instance similarity. The first algorithm 
aligns instances between compared attributes by 

extracting distinct N-grams from them and measuring 
their semantic similarity by calculating an EBD value. 
The second algorithm, TSim, determines the semantic 
types of keywords in compared attributes using 
clustering and an external data source which leverages 
the Normalized Google Distance. Future efforts will 
focus on exploring the possibility of a hybrid instance 
matching technique that combines selected elements 
of the N-gram approach and TSim. 
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The astronomical growth the World Wide Web resulted in data explosion that has, in turn, has given 

rise to a need for data representation methodologies and standards to present required information in 

a rapid and automated manner. The Resource Description Framework is one such standard proposed 

by W3C to address the above need. The ubiquitous acceptance of RDF on the Internet has resulted in 

the emergence of a new data storage paradigm, the RDF Graph Model, which, as with any data 

storage methodology, requires data modeling and visualization tools to aid with data management. 

This paper presents R2D (RDF-to-Relational), a relational wrapper for RDF Data Stores, which aims 

to transform, at run-time, semi-structured RDF data into an equivalent normalized relational schema, 

thereby bridging the gap between RDF and RDBMS concepts and making the abundance of 

relational tools currently in the market available to the RDF Stores. The primary R2D functionalities 

and mapping constructs, the high-level system architecture, and deployment sequence diagrams are 

presented along with algorithms and performance graphs for every stage of the transformation 

process and screen-shots of a relational visualization tool using R2D as evidence of the feasibility of 

the proposed work. 

Keywords: Semantic Web, Resource Description Framework, Relational Databases, Data 

Interoperability  

1.   INTRODUCTION 

The unleashing of the Internet has resulted in a plethora of information sources becoming 

available, making today’s world increasingly networked and progressively more reliant 

on electronic sources of data. The need to augment human reasoning and decision making 

abilities has resulted in the emergence of an evolutionary stage of the World Wide Web, 

namely, the Semantic Web. The Semantic Web is envisioned to facilitate the automated 

storage, exchange, and usage of machine-readable information interspersed throughout 

the web [1]. To this end various standards are being developed to enable users to access 

information more efficiently and realize the Semantic Web vision. One standard, which is 

the current buzzword in the Semantic Web Community, is the Resource Description 

Framework [2], which is the foundation for the Semantic Web and the focus of the 

research presented in this paper.  The RDF standard is proposed by the World Wide Web 

consortium for encoding knowledge with the express purpose of changing the web from 

being a platform for distributed presentations to one for distributed knowledge [3]. RDF’s 

suitability to unstructured and semi-structured data that is typically available on the web, 

and the simplicity and flexibility offered by RDF data models have resulted in increasing 



demand for data stores that use the RDF Graph model and offer the ability to store and 

query RDF data [4].  

The growing number of RDF stores have, as with any data store with massive 

amounts of information, spawned an associated requirement for tools and technologies 

for the management and visualization of this data. However, most of the current data 

modeling, data visualization,  data management, and business intelligence tools that 

widely are available in the market today are still based on the more mature models such 

as relational and tabular models [5]. The tools available for RDF data are fewer and less 

mature than the selection for RDBMSs.  Further, small and medium-sized organizations 

that are typically resource constrained may not have the ability or inclination to take risks 

associated with investing in fledgling technologies such as RDF and the tools for the 

same [6]. Relational databases have been around for several decades more than semantic 

web technologies, giving them the advantage of time to refine their tools and 

methodologies. For the same reasons, skilled personnel experienced in relational 

methodologies are available in greater numbers than RDF experts. In order to avoid the 

learning curves associated with new tools and continue to leverage the advantages offered 

by the traditionally-oriented tools without losing out on the benefits offered by the newer 

web technologies and standards, the gap between the two needs to be bridged.  

The motivation behind our research is to arrive at a solution to the bridging problem 

without the need to create an actual physical relational schema and duplicate data and we 

propose one such solution. Our approach, called R2D (RDF-to-Database), is a bridge that 

hopes to enable existing traditional tools to work seamlessly with RDF Stores without 

having to make extensive modifications or waste valuable resources by replicating data 

unnecessarily. This paper expands on the work in [7, 8] and provides a relational 

interface to data stored in the form of RDF triples. It includes the ability to handle blank 

nodes and RDF container objects along with enhancements to the SQL-to-SPARQL 

transformation that now permit aggregation on RDF data. As before, the RDF Store is 

explored and mapped to a relational schema at run-time and end-users of visualization 

tools are presented with the normalized relational version of the store on which they can 

perform operations as they would on an actual physical relational database schema. The 

contributions of this paper are as follows. 

• We propose a mapping scheme for the translation of RDF Graph structures to an 

equivalent normalized relational schema. The proposed mapping schema builds on 

the schema presented in [7] and includes several constructs and rules to handle a 

variety of blank nodes and RDF Container objects such as Bags and Sequences. 

• Based on the RDF-to-RDBMS map file created, we propose a transformation process 

that presents a normalized, non-generic, domain-specific, virtual relational schema 

view of the given RDF store.  

• We propose a mechanism to transform any relational SQL queries issued against the 

virtual relational schema into the SPARQL equivalent, and return the triples data to 

the end-user in a relational format. The proposed mechanism includes string 

matching procedures and aggregation facilities. 

• We provide all of the above in the form of a JDBC interface that can be plugged into 

existing visualization tools and we present the feasibility of our algorithms and 



processes through experiments conducted using the LUBM Benchmark data set, and 

an open source visualization tool, RDF store, and relational database. 

The organization of the paper is as follows. Section 2 presents a brief overview of 

related research efforts in the relational-to-rdf arena. Section 3 describes R2D’s system 

architecture and modus operandi, mapping constructs and types of relationships handled. 

Section 4 presents detailed descriptions of the various algorithms involved in the 

mapping process. Section 5 highlights the implementation specifics of the proposed 

system with sample visualization screenshots and performance graphs for the map file 

generation process with and without various sampling methods and for a diverse range of 

queries on databases of various sizes and, lastly, Section 6 concludes the paper. 

2.   RELATED WORK 

Several research efforts exist that attempt to bring relational database and semantic web 

concepts together, albeit from a perspective that is opposite to that considered in our 

work. The most notable amongst these in terms of the objectives being very closely 

aligned with ours is the RDF2RDB project [5]. Like in R2D, the authors in [5] attempt to 

arrive at a domain-specific, meaningful relational schema equivalent for an RDF store but 

the similarity ends there. RDF2RDB, like most of the other transformation efforts 

described below, involves data replication with the triples data being dumped into a 

relational schema, and therefore is subject to synchronization and space issues. Moreover, 

in order to successfully map the RDF data into an equivalent relational schema, 

RDF2RDB requires the presence of ontological information in the form of schema 

definitions such as rdfs:class and rdf:property. R2D, on the other hand, can arrive at 

mapping information with or without explicit ontology information. In the absence of 

RDF Schema definitions, R2D discovers the mapping through extensive examination of 

the triple patterns and the relationships between resources.  

Furthermore, the relational mapping in [5] involves the creation of a table for each 

property in the RDF graph regardless of the cardinality of the relationship represented by 

the property. As a result, the resulting schema may not be truly normalized and may 

contain more tables than necessary due to the presence of properties representing 1:N or 

N:1 types of relationships. R2D avoids these unnecessary tables by taking such 

conditions into consideration. The authors in [5] also do not discuss the details of how 

blank nodes are handled by their research, if at all, while R2D is capable of wading 

through a variety of blank nodes and arriving at meaningful transformations of the same. 

The Hybrid model presented in [9] is another mapping methodology that is similar to [5] 

in terms of relational schema generation and, hence, has the same drawbacks as [5].  

The D2RQ project [10], an extensively adopted open source project, and one that our 

work is very closely modeled on in terms of the components/modules of the system, is 

another significant player in the RDBMS-RDF mapping arena.. The goals of D2RQ are 

the exact reverse of the goals of our research. While they attempt to create a mapping 

from a relational database to an RDF Graph, and transform RDF queries into 

corresponding SQL queries, thereby making relational data accessible through RDF 

applications, our goal is to enable RDF triples to be accessed through relational 

applications. Hence, despite the concept of mapping files and query conversions being 



common between D2RQ and R2D, each of the two researches address very different 

needs. The work in [11] is yet another effort that, like D2RQ, also uses a declarative meta 

schema consisting of quad map patterns that define the mapping of SQL data to RDF 

ontologies. RDF123 [12], an open source translation tool, also uses a mapping concept, 

however its domain is spreadsheet data and it attempts to achieve richer spreadsheet-to-

RDF translation by allowing the users to define mappings between the spreadsheet 

semantics and RDF graphs. Triplify [13] is another effort at publishing linked data from 

relational databases and it achieves this by extending SQL and using the extended version 

as a mapping language. 

Other mapping efforts in the reverse direction include the work presented in [14, 15, 

16]. In [14] the authors use relational.OWL to extract the semantics of a relational 

database and automatically transform them into a machine-readable and understandable 

RDF/OWL ontology. The authors in [15, 16] also essentially perform a relational-to-

ontology mapping but here, they expect to be given some target ontology and some 

simple correspondences between the atomic relational schema elements and the concepts 

in the ontology to begin the mapping process with. 3Store [17] is an implementation 

where the model includes non-application-specific tables such as triples, symbols, 

datatypes, etc. Using this model, it would be impossible for the user to determine the 

problem domain addressed by the model or to infer the schema by identifying the entities, 

the attributes, and any relationships that exists between any of them. R2D offers the users 

the ability to do just this and enables them to actually arrive at a complete Entity-

Relationship Diagram using the RDF-to-Relational Schema transformation process. 

The query processing component of R2D which comprises the SQL-to-SPARQL 

transformation process, once again, has no comparable counterpart while many efforts 

are underway in the other direction. In [18], the authors propose an algorithm to translate 

SPARQL queries with arbitrary complex optional patterns to an equivalent SQL 

statement to be fired against a single relational table called Triples(subject, predicate, 

object) that stores the RDF triples. The authors in [19] discuss a methodology that 

supports integration of heterogeneous relational databases using the RDF model. Given a 

set of semantic mappings between relational schemas and RDF ontology, the goal in [19] 

is to effectively answer RDF queries by rewriting them into a set of equivalent source 

SQL queries.  An SQL-based RDF Querying Scheme is presented in [20] where the RDF 

querying capability is made a part of the SQL, however, the RDF data is, once again, 

stored as a collection of triples in a single database table. In [21], the authors partition the 

RDF graph data by adding an extra column to the triples table to store sub-graph 

information with the objective of reducing join costs and improving query performance.  

As can be seen from the discussions above, none of the research efforts address the 

issue of enabling relational applications to access RDF data without data replication and, 

hence, to the best of our knowledge, R2D is the first endeavor to address this issue. 

3.   R2D Preliminaries 

As stated earlier, the principal goal of this research is to ensure seamless availability of 

RDF data to existing tools, in particular, data visualization tools, that are equipped to 



work with relational or tabular data. The architecture of the proposed system and the 

deployment sequence are illustrated in Figure 1.  

 

Figure 1. (a) R2D System Architecture; and (b) Deployment Sequence 

The RDF Store at the bottom of Figure 1 (a) is examined by the 

RDFMapFileGenerator Algorithm (Item A in Figure 1(a)) and an RDF-to-

RelationalSchema mapping file is generated, if it does not already exist, by the algorithm 

using the constructs discussed in Section 3.1. The DBSchemaGenerator Algorithm (Item 

B in Figure 1(a)) takes this mapping file as input and presents to the relational 

visualization tool a domain-specific, virtual relational schema corresponding to the RDF 

store. Alternatively, users of the visualization tool can choose to issue SQL queries 

against the virtual relational schema to access the RDF data. At this point R2D’s SQL-to-

SPARQL Translation Algorithm (Item C in Figure 1(a)) performs the necessary query 

translations, invokes the SPARQL query engine, and returns the results to the 

visualization tool in a tabular format.  

At the heart of the transformation of RDF Graphs to virtual relational database 

schemas is the R2D mapping language which is a declarative language that expresses the 

mappings between RDF constructs and relational database schema constructs. In order to 

better explain the constructs comprising the R2D mapping language, examples from the 

sample scenario in Figure 2, based on the LUBM dataset, are included where applicable.  

The constructs of the current version of the mapping language are presented below. 

3.1.   R2D Mapping Constructs 

r2d:TableMap: The r2d:TableMap construct refers to a table in a relational database. In 

most cases, each rdfs:class object will map to a distinct r2d:TableMap, and, in the 

absence of rdfs:class objects, the r2d:TableMaps are inferred from the instance data in the 

RDF Store. Example: The RDF Graph in Figure 2 results in the creation of a TableMap 

called “Student”. 

The mapping constructs specific to an r2d:TableMap are as follows. 

r2d:keyField: The r2d:keyField construct specifies the primary key attribute for the 

r2d:TableMap to which the field is attached. The data value associated with the field 



specified by r2d:keyField is the object of the “rdf:type” predicate belonging to the 

rdfs:class subject corresponding to its r2d:TableMap. Example: An r2d:keyField 

(primary key) called “Student_PK” field is attached to the “Student” TableMap and 

one of its values, corresponding to the sample scenario in Figure 2, is 

“URI/StudentA”. 

 

Figure 2: Sample Scenario based on LUBM Schema 

r2d:ColumnBridge: r2d:ColumnBridges relate single-valued RDF Graph 

predicates/properties to relational database columns. Each rdf:Property object maps to a 

distinct column attached to the table specified in the rdfs:domain predicate. In the 

absence of rdf:property/domain information, they are discovered by exploration of the 

RDF Store data. Example: The “Nickname” and “Member Of” predicates in Figure 2 

become r2d:ColumnBridges belonging to the “Student” r2d:TableMap 

r2d:MultiValuedColumnBridge(MVCB): Those RDF Graph predicates that have 

multiple object values for the same subject are mapped using the MVCB construct. 

MVCBs typically correspond to RDF constructs such as RDF containers (rdf:Bag, 

rdf:Alt, rdf:Seq) and RDF collections and are used to indicate N:1 and N:M relationships 

between the virtual relational schema tables. Example: The “Works On” predicate in 

Figure 2 is an example of an MVCB mapping. 

r2d:SimpleLiteralBlankNode (SLBN): SLBNs help relate RDF Graph blank nodes 

that consist purely of distinct simple literal objects to relational database columns. 

Example: The object of the “Name” predicate in Figure 2 is an example of an SLBN 

which has distinct literal predicates of “First”, “Middle”, and “Last”, which are, in 

turn, translated into columns of the same names in the “Student” r2d:TableMap. 

r2d:MultiValuedSimpleLiteralBlankNode (MVSLBN): This construct maps 

duplicate SLBNs and, while the processing of the predicates is identical to the 

(SingleValued) SLBN, this construct results in the generation of a separate r2d:TableMap 



with a foreign key relationships to the table representing the subject resource of the blank 

node. In the event the predicates leading to the blank nodes are distinct, an 

r2d:MultiValuedPredicate (MVP) is created and a “TYPE” column corresponding to the 

MVP is included in the r2d:TableMap. Example: The objects of the “HomeAddress” and 

the “WorkAddress” predicates in Figure 2 together form a MVSLBN. 

r2d:ComplexLiteralBlankNode (CLBN): This construct refers to blank nodes in the 

RDF Graph that have multiple literal object values for the same subject and the predicate 

concept associated with the blank node. An r2d:ComplexLiteralBlankNode typically 

results in the generation of a separate r2d:TableMap with a foreign key relationship to the 

table representing the subject resource of the blank node. Example: The object of the 

“Phone” predicate in Figure 2 is an example of a CLBN that has multiple object 

(<Cell>) values for the subject (URI/StudentA) and a predicate (Cell) concept associated 

with the blank node. The relational transformation for “Phone” involves the generation 

of an r2d:TableMap of the same name. This “Phone” r2d:TableMap includes as columns 

a “Type” field that holds the values of the predicates off of the MVBN (in our sample 

scenario, the “Type” field will hold a value of “Cell” and “Work”), and a “Value” field 

that holds the object values of the predicates off of the MVBN. Additionally, the 

r2d:TableMap also includes, as foreign key, the “Student_PK” column which references 

the primary key of the “Student” r2d:TableMap. 

r2d:MultiValuedComplexLiteralBlankNode (MVCLBN): This construct maps 

duplicate complex literal blank nodes and the processing of the predicates is identical to 

the (SingleValued) CLBN case except in the event the predicates leading to the blank 

nodes are distinct, in which case an r2d:MultiValuedPredicate (MVP) is created and a 

“TYPE” column corresponding to the MVP is included in the r2d:TableMap. Example: 

Consider a scenario where the “Phone” predicate in Figure 2 is replaced with two 

similar predicates, “PastPhNums” and “CurrentPhNums”, each of which are CLBNs. 

The objects of these two predicates together form an MVCLBN. 

r2d:SimpleResourceBlankNode (SRBN): This construct helps map blank nodes that 

have multiple predicates leading to resource objects belonging to the same object class. 

SRBNs typically identify N:1 or N:M relationships between the subject resource and the 

object resource classes. RDF containers that represent collections of similar resource 

objects are represented using the SRBN construct. Example: The object of the “Courses” 

predicate in Figure 2 is an example of a SRBN that has multiple resource objects that are 

instances of the “Course” class/r2d:TableMap. 

r2d:ComplexResourceBlankNode (CRBN): CRBNs represent blank nodes that have 

distinct or non-distinct predicates leading to objects belonging to different object classes. 

This construct also identifies N:1 or N:M relationships between the subject resource class 

and each of the object classes and typically result in the creation of as many join tables as 

the number of distinct object classes leading off of the CRBN. RDF containers that 

represent collections of different types of object resources are represented using CRBNs. 

Example: The object of the “OtherActivities” predicate is an example of a CRBN that 

has multiple resource objects each of which is an instance of a different (one “Sports” 

and one “Training”) class. 



r2d:MultiValued{Simple/Complex}ResourceBlankNode (MVSRBN and 

MVCRBN): Duplicate simple/complex resource blank nodes are represented using the 

MVSRBN and MVCRBN constructs respectively. Like other MultiValued constructs, the 

processing for these is also identical to their SingleValued counterparts except in the 

event the predicates leading to the blank nodes are distinct, in which case an 

r2d:MultiValuedPredicate (MVP) is created and a “TYPE” column corresponding to the 

MVP is included in the r2d:TableMap. Example: Consider a scenario where the 

“Courses” predicate in Figure 2 is replaced with multiple predicates each representing 

the courses taken in a particular year, such as “2007Courses, “2008Courses”, and 

“2009Courses”, each of which are SRBNs. The objects of these predicates together form 

an MVSRBN.  

r2d:MixedBlankNode: Blank Nodes consisting of a mixture of literal, resource, and 

other blank node objects are mapped using the r2d:MixedBlankNode construct. This 

construct results in the creation of a r2d:TableMap which contains as fields every literal 

or resource leaf node object that is an element of the tree rooted at the 

r2d:MixedBlankNode. 

The mapping constructs specific to single-valued and multi-valued column bridges 

and blank nodes are described below. 

r2d:belongsToTableMap(BTTM): This construct connects a r2d:ColumnBridge or 

MVCB to an r2d:TableMap. Every r2d:ColumnBridge must specify a value for 

either this construct or the r2d:belongsToBlankNode construct. Example: The 

“Nickname” predicate in Figure 2 is associated with the resource “URI/StudentA”, 

an instance of the “Student” r2d:TableMap. Hence, the BTTM construct 

corresponding to “Nickname” r2d:ColumnBridge is set to a value of “Student”, 

thereby connecting the ColumnBridge to a table.  

r2d:belongsToBlankNode (BTBN): This construct ties a r2d:ColumnBridge or 

MVCB to an SVBN or an MVBN. Example: The “FirstName” r2d:ColumnBridge 

corresponding to the “First” predicate in Figure 2 is associated with the “Name” 

SVBN. Hence, for the “FirstName” r2d:ColumnBridge the BTBN construct is used 

to associate it to the “Name” blank node. 

r2d:refersToTableMap (RTTM): This construct is optional for column bridges and 

is only used for those triples that contain a resource object for a predicate. This 

construct is used to generate primary key-foreign key relationships within the virtual 

relational schema. Example: The object of the “Member Of” predicate in Figure 2 is 

a resource that translates to another r2d:TableMap called “Department”. Hence the 

“MemberOf” r2d:ColumnBridge includes the RTTM construct with a value of 

“Department”. 

r2d:predicate: The r2d:predicate construct is used to store the fully qualified 

property name of the predicate which corresponds to the column bridge. This 

information is used during the SQL-to-SPARQL translation to generate the SPARQL 

WHERE clauses required to obtain the value of the r2d:ColumnBridge 

r2d:MultiValuedPredicate (MVP): The MVP construct is used in scenarios where 

there are multiple predicate names that refer to the same overall object type despite 

each individual object having a different value. r2d:MultiValuedPredicates are also 



used to keep track of the predicates associated with RDF containers and RDF 

collections. MVPs typically result in the creation of a “TYPE” column in the 

r2d:TableMap corresponding to the resource associated with the MVP. Example: 

The predicates off of the “Phone” CLBN in Figure 2 are examples of a MVP called 

“Phone_Type” that represents the fact that multiple predicates (<Cell>, <Work>) 

refer to the same overall object type (i.e., a string representing phone number). 

r2d:datatype: This construct specifies the datatype of its column bridge and is 

derived from the rdfs:range predicate or, in its absence, by examination of the object 

values of the predicate. 

The virtual relational schema generated by R2D for the sample scenario in Figure 2 is 

illustrated in Figure 3 and the schema generation details are elaborated on in Section 4.  

 

Figure 3: Equivalent Virtual Relational Schema generated by R2D for Figure 2 

3.2.   Types of Relationships Addressed 

The predicates and various types of blank nodes in Figure 2 and the relationships they 

represent in the corresponding virtual relational schemata are discussed below. The 

simple predicates typically map to a column in a relational schema. Blank nodes with 

multiple distinct or non-distinct predicates such as “Courses”, “Phone”, and “Other 

Activities” typically highlight 1:N or N:M relationships, while blank nodes such as 

“Name”, with literal predicates, are typically equivalent to columns.  

(a) r2d:ColumnBridge Relationships (1:1 Relationships without Blank Nodes) 

In this kind of a relationship, most often one side of the relationship translates into a 

column/attribute in the table represented by the other side of the relationship. An 

example of a 1:1 relationship without blank nodes in Figure 2 is the triple 

(<URI/StudentA> <Nickname> <Nickname>) referring to the relationship between 

an instance (<URI/StudentA>) of the Student class and his/her Nickname.  

(b) r2d:SimpleLiteralBlankNode Relationships (1:1 Relationships with Blank Nodes) 

These kinds of relationships are processed, for the purposes of transformation into a 

relational schema equivalent, by ignoring the blank node and treating the predicates 

of the blank nodes as multiple 1:1 relationships-without-blank-nodes to the subject of 



the blank node. Each predicate of the blank node essentially becomes an attribute of 

the table representing the subject instance. An example of a 1:1 relationship with 

blank nodes in Figure 2 is the triple (<URI/StudentA> <Name> <blankNode>).  

(c) r2d:ColumnBridge Relationships with r2d:refersToTableMap construct (N:1 

Relationships without Blank Nodes) 

In N:1 relationships without Blank Nodes, the primary key of the table representing 

the instance on the “1” side of the relationship is included as a foreign key in the 

table representing the instance on the “N” side of the relationship. An example of a 

N:1 relationship without blank nodes in Figure 2 is the triple (<URI/StudentA> 

<MemberOf> <Link to DepartmentID>) referring to the relationship between an 

instance (<URI/StudentA>) of the Student class and an instance of the Department 

class.  

(d) r2d:MultiValuedColumnBridge (MVCB) Relationships with/without 

r2d:refersToTableMap construct (N:1 or N:M Relationships without Blank Nodes) 

r2d:MultiValuedColumnBridges with literal objects (i.e., without 

r2d:refersToTableMap construct) are equivalent to multi-valued attributes in 

relational terminology and, hence, result are considered to represent 1:N relationship 

between the subject and the object of the predicate corresponding to the MVCB. 

Thus, for MVCBs, a new table is generated with a foreign key that references the 

table corresponding to the class to which the subject belongs. MVCBs with resource 

objects (i.e. with r2d:referstoTableMap construct) typically represent N:M 

relationships and hence, the processing of such MVCBs is similar to the processing 

discussed in category (f) below. An example of an MVCB with resource objects in 

Figure 2 is the triple (<URI/StudentA> <WorksOn> <Link to Research>) referring to 

the relationship between an instance (<URI/StudentA>) of the Student class and 

instances of the Research class. 

(e) r2d:ComplexLiteralBlankNodes and r2d:MultiValuedSimpleLiteralBlankNodes (N:1 

Relationships with Blank Nodes) 

These relationships typically result in the generation of a separate table with a 

foreign key that references the table corresponding to the class to which the subject 

of this blank node object belongs. An example of a r2d:ComplexLiteralBlankNode in 

Figure 2 is (<URI/StudentA <Phone> <blankNode>) and an example of an 

r2d:MultiValuedSimpleLiteralBlankNode is (<URI/StudentA> <Home/Work 

Address> <blankNode>). Both these examples result in the generation of 

r2d:MultiValuedPredicates due to the presence of distinct predicates for the phone 

number and address nodes.  

(f) r2d:SimpleResourceBlankNodes and r2d:ComplexResourceBlankNodes (N:M 

Relationships with Blank Nodes) 

N:M relationships with or without blank nodes result in the generation of a new join 

table that has, as foreign keys, the primary keys of the tables corresponding to the 

classes to which the subject and the resource object belong. An example of an N:M 

relationship with a blank node leading to similar object resources (i.e., a blank node 

of type r2d:SimpleResourceBlankNode) in the scenario in Figure 2 is the triple 

(<URI/StudentA> <Projects> <blankNode>) and an example of one with different 

object resources (r2d:ComplexResourceBlankNode) is the triple (<URI/StudentA> 

<OtherActivities> <blankNode>).  



This background on R2D fundamentals provides the foundation behind R2D 

functionalities, the details of which, along with the details of the algorithms that comprise 

the R2D framework, are presented in a comprehensive manner in the next section. 

4.   R2D: A PROTOTYPE DESIGN 

In keeping with the objectives of this research, several RDF-to-RDBMS bridging 

algorithms were designed and developed in addition to the design of the RDF-to-

Relational mapping language discussed in the previous section. These include A) an 

algorithm that would, given an RDF Data Store, derive the mapping file automatically, B) 

an algorithm to parse the generated mapping file and generate, for the RDF Store, a list of 

relational tables, columns, and the relationships between them, and C) an algorithm to 

transparently transform any SQL statements issued against the virtual relational schema 

into its SPARQL equivalent, and return the results from the RDF Store in a 

relational/tabular format. The various modules highlighted in Figure 1 and the 

corresponding algorithms are described at length in the following subsections. 

4.1.   RDFMapFileGenerator 

The first step in the R2D Framework is the map file generator process accomplished 

using the RDFMapFileGenerator algorithm that takes an RDF store as input and 

automatically generates an RDF-to-Relational mapping file as output. Notional mappings 

between some key OWL/RDFS Ontology terminologies and R2D constructs to relational 

concepts can be found in [8].  

However, the transformation process is not always as straightforward and as well-

defined as the notional mappings suggest. As mentioned earlier, there are currently many 

RDF Graphs in existence that either do not have any, or have incomplete structural 

information included along with the data. RDFMapFileGenerator works on RDF Stores 

with or without such structural information and the details are listed below. 

Algorithm 1 RDFMapFileGenerator (RDF) 

Input:     RDF: The RDF Store of Interest 

Output:  RDF-to-Relational Schema Mapping File 

1:  Get sampling type, get/calculate sample size, calculate sample period (if systematic sampling) 

2:  If exists(RDFSchema Information) then 

3:      For  every resource that is an instance of rdfs:class  

4:          TableMaps ← resource_name     //add 

5:      End For  

6:      For every resource that is an instance of rdf:property  

7:          Get/Create TableMap, tblMap, corresponding to rdf:domain value of resource 

8:          tblMap.ColumnBridges  ← PropertyResource_name      //add 

9:          tblMap.ColumnBridges.datatype ←  PropertyResource’s rdf:range value 

10:     End For 

11: End if 

12: For every unprocessed (data) resource in the RDF store  



13:     Create a TableMap, tblMap, for this resource 

14:     For every predicate of the resource 

15:         If object of predicate is literal then 

16:             literalColumns += ProcessLiteralPredicate(resource, tblMap, predicate) 

17:         If Object of predicate is a blank node then 

18:             Call ProcessBlankNodePredicate(resource, tblMap, predicate) 

19:         If Object of predicate is a resource then 

20:             resourceColumns += ProcessResourcePredicate(resource, tblMap, predicate)  

21:             ConsolidateResourcePredicates(resourceColumns) 

22:             tblMap.setColumns(literalColumns); tblMap.setColumns(resourceColumns) 

23:         End if 

24:     End For 

25:     If NOT(similarTableExists(tblMap)) then  

26:         TableMaps += tblMap; otherwise discard tblMap 

27:     End if 

28:     If sampleSize reached 

29:         Exit 

30:     End if 

31: End For 

The RDFMapFileGenerator algorithm generates mappings for RDF Stores with and 

without ontological information in the form of RDF Schema definitions such as 

rdfs:class, rdf:property, etc. This algorithm arrives at an RDF-to-Relational mapping file 

through extensive exploration of the triples data in the RDF Store and, consequently, is a 

bottleneck in the transformation process in terms of the response times. As a result, a 

number of sampling methods have been incorporated in the algorithm as can be seen in 

line 1 of the RDFMapFileGenerator Algorithm.  

For RDF Stores without ontological information, two types of data sampling have 

been implemented, namely, Convenience/Haphazard Sampling, and Systematic sampling. 

In the case of stores containing ontological information, two variations of Stratified 

Sampling have been implemented; one where the sample size for each class is 

proportional to the class size, and the other where the sample size is independent of the 

class size, i.e., the sample size is the same for each class. These sampling methods have 

resulted in large reductions in response times as can be seen in Section 5.  

The data structure discovery process as illustrated in Figure 1 is as follows. When 

structural information about the triples database is present, lines 2-11 of 

RDFMapFileGenerator discover the schema definitions and create appropriate Table and 

Column mappings based on the schema information. 

Lines 12-31 process instance data to identify and account for those predicates that 

may not have been defined through explicit rdf:property definitions. This is done using 

three procedures, ProcessLiteralPredicate (Line 16), ProcessResourcePredicate (Line 20), 

and ProcessBlankNodePredicate (Line 18).  The ProcessLiteralPredicate procedure, as 

the name suggests, is used to process predicates that have literal objects (such as 

Nickname predicate). For every literal predicate that does not have a column 

corresponding to itself, a new column is added to the TableMap corresponding to the 



resource to which the predicate belongs. If the resource contains more than one such 

predicate (i.e. the resource contains multiple literal object values for the same predicate), 

then the column type of the corresponding column is set to 

r2d:MultiValuedColumnBridge, otherwise it is a simple r2d:ColumnBridge.  

The ProcessResourcePredicate procedure handles predicates that have resource 

objects. A new potential column is added for every resource predicate that belongs to the 

subject resource. After all resource predicates are processed the duplicate predicates (i.e., 

predicates that have objects belonging to the same object class) are examined and 

eliminated and this is done through the ConsolidateResourcePredicates procedure (Line 

21). During the consolidation process, any (duplicate) potential columns that refer to the 

same object resource class (such as the WorksOn predicate) are combined and set to 

r2d:MultiValuedColumnBridges while columns referring to distinct object resource 

classes are set to r2d:ColumnBridge. This consolidation is mandatory in order to arrive at 

a normalized and logically sound relational schema. In cases where the objects belong to 

the same object class but the predicates have distinct values (such as the predicates off 

the Phone blank node), a MultiValuedPredicate object is created which reflects this fact. 

These MultiValuedPredicates typically become “TYPE” fields in the corresponding 

relational schema. 

Predicates leading to blank nodes are handled through the ProcessBlankNode 

procedure. In this procedure, for every blank node encountered an object of type 

BlankNode is created. If every predicate off of the blank node contains a literal object 

(such as the Name and Phone blank nodes) then, for each predicate off of the blank Node, 

the ProcessLiteralPredicate procedure is called which works as described above. If every 

column generated through the ProcessLiteralPredicate procedure is a simple r2d: 

ColumnBridge (such as the Name blank node) then the BlankNode is set to 

r2d:SimpleLiteralBlankNode. If any of the columns are r2d:MultiValuedColumnBridges 

(such as the Phone blank node) then the BlankNode is set to 

r2d:ComplexLiteralBlankNode. If no such blank node has been previously encountered, 

this blank node is added to the set of blank nodes. If a similar blank node is already an 

element of the set of blank nodes, the blank node type is set to 

r2d:MultiValuedSimpleLiteralBlankNode (such as the blank nodes corresponding to the 

HomeAddress and WorkAddress predicates) or 

r2d:MultiValuedComplexLiteralBlankNode respectively. 

In case of blank nodes that contain only resource objects, every predicate off of such 

blank nodes is processed using the ProcessResourcePredicate procedure, also discussed 

above. As before, the consolidation process is carried out after all predicates off of the 

blank nodes are processed. If the number of consolidated columns is equal to 1 (such as 

in the case of the Courses blank node), the blank node type is set to 

r2d:SimpleResourceBlankNode, otherwise (as in the case of the OtherActivities blank 

node) it is set to r2d:ComplexResourceBlankNode. As in the previous case, if a similar 

blank node exists, the node type is set to r2d:MultiValuedSimpleResourceBlanknode or 

r2d:MultiValuedComplexResourceBlankNode respectively; otherwise, the blank node is 

added to the set. 



Blank nodes that contain a mixture of literal objects, resource objects, and other blank 

nodes, are considered to be of type r2d:MixedBlankNodes and they are processed using 

the Depth-First-Search tree algorithm. The topmost blank node is considered the root of 

the tree and the procedure is as follows. For every literal or resource predicate off of a 

blank node, a column is created and added to the blank node entity. Additionally, for 

every blank node predicate off of a blank node,  a new Blank Node entity is created and 

added to the set of blank nodes and is also added as a column to the original blank node. 

This way, the hierarchy of the tree rooted at the topmost blank node is maintained. This 

hierarchy is required during the SQL-to-SPARQL conversion to retrieve data associated 

with blank nodes appropriately. 

Further, every resource object encountered and processed is stored in memory in 

order to avoid duplicate processing of the same in the event of multiple triples containing 

the same resource object. This information serves to improve the performance of the 

algorithm. When these “similar” resources are encountered during instance data 

processing, the algorithm skips the potential TableMap creation process and the time-

consuming duplicate-TableMap detection process, thereby resulting in better efficiency. 

Handling of Predicates with Object Resources belonging to multiple 

r2d:TableMaps  (i.e., a Foreign Key that has multiple tables that it needs to reference): 

RDF Graphs consists of many examples where the relational transformation creates a 

situation where an attribute AFK in Entity EFK could hold values corresponding to 

multiple entities, say E1 to EN (Let the set of attributes of each of these Eis be A1, A2, … 

AN). This situation is handled as follows. 

The attribute list of EFK, AEFK is modified to include fields that reference the key field 

attributes of each of the entities, E1 to EN, which AFK references. Thus,  

AEFK = AEFK U AReferencingE1PK U AReferencingE2PK ……. U AReferencingENPK – AFK  

Lastly, each attribute AReferencingEiPK in Entity EFK is set to reference the key attribute of Ei 

(EiPK). For every row in EFK, one or more of the attributes {AReferencingE1PK, AReferencingE2PK, 

……. , AReferencingENPK} will have a value while the others will be null. Since the relational 

schema corresponding to the given RDF graph generated by R2D is virtual involving no 

physical space/resource utilization, having multiple columns, many of which could be 

null, to represent the above scenario (foreign key referencing multiple tables) does not 

result in any resource wastage and is a simple solution to this requirement. An example of 

such a scenario would be the triple 

<StudentURI (Subject), Advisor(Predicate), AdvisorURI (Object)>. 

The Advisor object of a student resource could contain an instance from any one of the 

classes in the set {Full Professor, Associate Professor, Assistant Professor}. Again, the 

relational transformation of the above scenario would consist of four tables, namely, 

Student, FullProfessor (FP), AssistantProfessor (ASP), and AssociateProfessor (ACP). 

The Student table contains an Advisor column which is a foreign key. This foreign key 

needs to reference all three professor tables. As described above, this situation is handled 

by adding three separate columns to the Student table, Advisor1 referencing the primary 

key of FP, namely FP_PK, Advisor2 referencing ASP, and Advisor3 referencing ACP. 

Further, for every row in the Student table only one of the three Advisor columns contains 

a value while the other two are null.  

As another example, let us consider the following triple  

<PublicationURI (Subject) Author (Predicate) AuthorURI(Object)>, 



The Author object of a publication resource could contain instances from any of the 

classes in the set {Full Professor (FP), Associate Professor (ACP), Assistant Professor 

(ASP), Graduate Student (GS), Undergraduate Student (UGS)}. Applying the consolidate 

method described above (in the Advisor example) results in the addition of five separate 

columns to the Publication table, Author1 through Author5, referencing the primary keys 

of FP, ACP, ASP, GS, and UGS tables respectively. In this example, the 5 fields are not 

mutually exclusive, unlike in the Student-Advisor scenario, and, thus, any or all of the 5 

Author fields could contain values for each publication record. 

4.2.   DBSchemaGenerator 

The map file generation process is followed by the actual relational schema generation 

process which is the next stage in the R2D process and is achieved using the 

DBSchemaGenerator algorithm. This algorithm takes the RDF-to-Relational Schema 

mapping file generated by the RDFMapFileGenerator algorithm in Section 4.1 and 

returns a virtual, appropriately normalized relational database schema consisting of 

entities/tables and the relationships between them.  

The DBSchemaGenerator Algorithm is an enhanced version of the algorithm in [7] in 

terms of its ability to handle a variety of blank nodes including nested blank nodes. For 

each entry of type r2d:TableMap in the map file, a relational table, RelTable,  is created 

in the virtual relational database schema. Entries of type r2d:ColumnBridge and 

r2d:MultiValuedColumnBridge whose r2d:belongsToTableMap value corresponds to the 

TableMap, RelTable, are processed as follows. Every entry of r2d:ColumnBridge simply 

becomes a column in RelTable. If the r2d:ColumnBridge refers to another resource (as 

indicated by the r2d:refersToTableMap construct), a foreign key relationship is 

established between RelTable and the referred-to table. For every entry of type 

r2d:MultiValuedColumnBridge, which is comparable to multi-valued attributes in 

relational database terminology, a new table, NormTable, is created and the 

r2d:MultiValuedColumnBridge as well as the primary key of RelTable are added as 

columns to NormTable. Further, if the predicate corresponding to the 

r2d:MultiValuedColumnBridge is a r2d:MultiValuedPredicate, an additional “TYPE” 

column is created and added to NormTable.  If the r2d:MultiValuedColumnBridge is a 

literal the NormTable type is set to “LiteralMVCBTable”; otherwise it is set to 

“ResourceMVCBTable”. 

Non-nested blank nodes of various kinds are handled as follows. For 

r2d:SimpleLiteralBlankNodes ( such as the blank node object of the Name predicate) of 

the kind illustrated in Section 3, Figure 2 every r2d:ColumnBridge entry that belongs to 

the blank node (as indicated by the r2d:belongsToBlankNode construct) is simply added 

as a column to the Table to which the r2d:SimpleLiteralBlankNode belongs (as indicated 

by the r2d:belongsToTableMap construct for the blank node). The processing of 

r2d:ComplexLiteralBlankNodes (such as the object of the Phone predicate) is very 

similar to the processing of r2d:MultiValuedColumnBridges described above with the 

difference being the table type of the created table, which is set to “CLBNTable”. Entries 

of type r2d:SimpleResourceBlankNode (object of the Courses predicate) and 

r2d:ComplexResourceBlankNodes (object of the OtherActivities predicate) result in 



creation of join tables, with the primary keys of tables corresponding to the subject 

resource and the object resource included as fields in the join table. Further, if the 

predicates corresponding to the column bridges belonging to these blank nodes are 

MultiValued, an additional “TYPE” column is created and added to the join table. 

The processing of r2d:MultiValuedSimpleLiteralBlankNode, results in the creation of 

a new table, contrary to the r2d:SimpleResourceBlankNode scenario. This table has as 

columns the primary key of the table corresponding to the blank node’s 

r2d:belongsToTableMap value, and all the r2d:ColumnBridges that belong to the 

r2d:MultiValuedSimpleLiteralBlanknode. The processing of 

r2d:MultiValuedComplexLiteralBlanknode, r2d:MultiValuedSimpleResourceBlanknode, 

and r2d:MultiValuedComplexResourceBlankNode is very similar to their SingleValued 

counterparts with the only difference being the inclusion of an additional field in the 

event the predicate corresponding to the blank node is an “MVP”. The table type values 

are set according to the type of blank nodes encountered. The reason for having table 

types and blank nodes is to maintain knowledge of the RDF graph structure in order to 

accurately translate SQL Statements issued against the relational schema into its 

appropriate SPARQL equivalent for precise data retrieval. 

The final type of blank nodes processed by DBSchemaGenerator is mixed/nested 

blank nodes where the predicates off of the blank nodes are any combination of literals, 

resources, and other blank nodes. Due to the limitless kinds of such structured 

combinations that are possible, it would be impossible to even attempt to arrive at a 

corresponding normalized representation of the same. Hence, mixed/nested blank nodes 

of type r2d:MixedBlankNode are handled by creating a table, NormTable, which has as 

columns the primary key column of the table corresponding to the blank node’s 

r2d:belongsToTableMap construct, and the literal and resource objects that are at the leaf 

nodes of the tree rooted at the topmost mixed/nested blank node.  This is achieved 

through a recursive procedure that explores the predicates in a depth-first manner. 

4.3.   SQL-to-SPARQL Translation 

The SQL-to-SPARQL Translation procedure, the last procedure in the deployment 

sequence illustrated in Figure 1 (b), corresponds to the final phase of the R2D 

transformation process where SQL statements issued against the virtual relational schema 

are parsed, translated into equivalent SPARQL queries that are executed against the RDF 

Store, and the results are returned in relational format. The SQL-to-SPARQL Translation 

algorithm, which takes an SQL Statement as input and returns an appropriate SPARQL 

equivalent as output, is an enhancement over the work in [7] with functionalities added to 

process queries involving underlying blank nodes, and to provide pattern matching and 

data aggregation abilities. The details of the algorithm are listed below. 

 

Algorithm 2 SQL-to-SPARQL Translation (SQL) 

Input:     SQL: SQL Query 

Output:  Tabular results from execution of equivalent SPARQL Query 

1:   Parse the input SQL query 



2:   listOfFields ← Array containing fields in the SELECT clause 

3:   listOfTables ← Array containing tables in the FROM clause 

4:   whereClause ← portion of the SQL Query after the WHERE keyword 

5:   If exists(GROUP BY clause) then 

6:       groupByField ← Array containing aggregated fields in SELECT clause  

7:       groupByFunction ← Array containing aggregation functions on fields in SELECT clause 

8:   End if 

9:   SPARQLQuery ← ProcessQuery 

10: Execute SPARQLQuery 

11: For every row in the result set 

12:     For every field in the SPARQL SELECT list 

13:         If isFieldPK(field) then 

14:             Replace field with the field’s table’s ?subject variable  

15:         End if 

16:         ResultRow  ← ResultRow U fieldValue of field from line 19’s result set 

17:     End For 

18:     If GROUP BY Fields present then 

19:         For every groupByField and groupByFunction in list 

20:             Get the groupByField Value from line 19’s result set 

21:             If (current ResultRow == previous ResultRow) then 

22:                  Perform aggregation per groupByFunction for the groupByField 

23:             Else 

24:                 ResultRow ← ResultRow U groupByField value 

25:             End if 

26:         End For 

27:     End if 

28:     QueryResults ← QueryResults U ResultRow 

29: End For 

Table 1: SQL-to-SPARQL Translation Algorithm - Supporting Procedures 

SQL2SPARQL TRANSLATION ALGORITHM – SUPPORTING PROCEDURES 

Procedure, its Input, and its Output Short Description 

  

ProcessQuery 

Input: List of Fields, Tables, and 

Where Clause 

Output: Equivalent SPARQL Query. 

This procedure takes the list of fields and tables, and the where 

clause in the original SQL query as input and generates a SPARQL 

equivalent of the same as output.  The SPARQL SELECT list is 

generated within this procedure and the SPARQL WHERE and 

FILTER clauses are generated using the ProcessWhereClause and 

ProcessPredicatesForTables procedures called within this procedure. 

ProcessWhereClause 

Input: SQL WHERE clause 

Output: SPARQL FILTER clause 

This procedure examines the SQL WHERE clause to identify those 

fields that have been used in the WHERE clause but are not a part of 

the SELECT list. Resolution/conversion of the LIKE SQL construct 



constructs into an equivalent REGEX construct in SPARQL is also performed 

here. 

ProcessPredicatesForTables 

Input: List of Tables and Fields in the 

SQL statement 

Output: SPARQL WHERE and 

FILTER clause constructs 

Generation of the SPARQL WHERE clause and additions to the 

SPARQL FILTER clause are performed by this procedure. This is 

where most of the complexity of the SQL2SPARQL Translation 

algorithm lies as predicates corresponding to every 

table/column/blank node type are processed and transformed here.  

The SQL-to-SPARQL Translation algorithm transforms single or multiple table 

queries with or without multiple where clauses (connected by AND, OR, or NOT 

operators) and Group By clauses. Within each individual where clause, the algorithm 

handles operators in the following set – {>, <, =, <=, >=, !=, LIKE}.  

Lines 1-14 of the algorithm essentially perform parsing of the input query to identify 

the tables, fields, and the where clause and Group By clause, if present. The 

ProcessQuery procedure, called in line 15, transforms the SQL Query into its SPARQL 

form while lines 16-29 execute the generated SPARQL query, process the results, and 

present the same in a tabular format. Lines 18-27 perform data aggregation as per the 

Group By functions specified in the SQL Statement. Aggregation is achieved by 

appending an ORDER BY clause to the transformed SPARQL query and the actual group 

functions are calculated on the data obtained through the execution of the appended 

SPARQL query. Due to space constraints, a detailed description of this algorithm is 

omitted from this paper and can instead be found in [8]. 

5.   IMPLEMENTATION SPECIFICS 

The hardware used for the Map File creation process and the LUBM queries were 

executed was a personal computer running the Windows Vista operating system with 

4GB RAM and 2 GHz Intel Dual Core processor. The software platforms and tools used 

include Jena 2.5.6 [22] to store the RDF triples data, MySQL 5.0 to house the RDF triples 

data persistently, Java 1.5 for development of the algorithms and procedures detailed in 

Section 4, DataVision v1.2.0 [23] to visualize and generate reports based on the RDF 

data, and GRUFF v1.0.19 [24] to compare the performance of R2D queries against. 

5.1.    Experimental Dataset 

The LUBM dataset [25], which consists of a university domain ontology comprising 

resources such as Universities, Departments, Professors, Students, Courses, etc., was 

used in the experimentation process. In order to illustrate relationalization of blank nodes, 

we made certain modifications that involve additions of blank nodes to the LUBM 

Schema. These modifications include the addition of an EmailAddress 

r2d:SimpleLiteralBlankNode that involved altering the original simple literal 

EmailAddress property of resources into an SLBN consisting of two simple literal 

predicates, PrimaryEmail and SecondaryEmail. The second type of blank node added 

was an r2d:ComplexLiteralBlankNode called ContactNo which was created by 

modifying the original simple literal Phone property belonging to all Professor (and its 

subclasses) resources into a blank node with multiple simple literal CellPhone predicates 



and one simple literal HomePhone predicate. Query numbers 1, 4, and 8 in the LUBM 

test queries include selection of fields corresponding predicates belonging to the SLBN 

and CLBN and query performance of the same is illustrated in Figure 9.  

5.2.   Experimental Results 

The relational equivalent of the RDF Graph in Figure 2 was generated using the 

RDFMapFileGenerator and DBSchemaGenerator Algorithms detailed in Section 4 and 

the open source visualization tool DataVision, which expects a relational schema as 

input, was used to view the virtual relational schema generated, query the data using SQL 

statements, and generate reports off of the data.  

The time taken by the map file generation process without any data sampling 

incorporated for RDF stores of various sizes, with and without ontological information, 

was compared with time taken for the same process when several sampling methods are 

applied and the results are illustrated in Figure 4. The process is especially time-intensive 

for large databases without structural information but this is only to be expected since the 

RDFMapFileGenerator has to explore every resource to ensure that no property is left 

unprocessed.  

 

Figure 4: Map File Generation Times with and without Sampling 

The sampling techniques applied improved the performance of the algorithm by a 

large factor, as can be seen in Figure 4. The processing times resulting from Convenience 

Sampling with sample sizes consisting of a fixed number of records are independent of 

the size of the data store and are almost constant since this technique only processes the 



first “n” rows regardless of the size of the database. Systematic sampling, on the other 

hand, does not yield as flat a line as Convenience sampling in the graphs above as it 

involves selecting samples periodically from the entire data store and, hence, is not as 

independent of the size of the data store as the former. For a similar reason, the Stratified 

Sampling scenario where the sample size is equally divided between the number of 

classes (Type B), regardless of the number of resources in each class, yields an almost 

constant response time contrary to its counterpart where the sample size for each class is 

proportional to the number of resources in each class (Type A). 

Sampling techniques are especially useful in scenarios where the structure of similar 

resources are quite well defined with only minor variations as, in such situations, the 

sampling methods do not run the risk of overlooking structural information that is not 

evident in the chosen sample data subset. Further, if a domain expert with knowledge of 

the structural information of the RDF store is available, the automatic map file generation 

process becomes optional. This step can be bypassed, and the time saved, by providing 

the map file manually. 

Figure 5 includes an excerpt from the map file generated by the 

RDFMapFileGenerator algorithm along with an inset of a part of the database schema as 

seen by DataVision.  

 

Figure 5: Map File Excerpt and a portion of the Equivalent Relational Schema as seen by DataVision 



This schema is populated through the GetDatabaseMetaData Interface in the 

Connection class of the JDBC API within which the two algorithms, 

RDFMapFileGenerator and DBSchemaGenerator, are triggered. As can be seen, the 

various blank nodes that are part of the dataset are appropriately resolved and normalized 

into 1:N or N:M tables, or columns in existing tables using the algorithm described in 

Section 4.2. The r2d:SimpleLiteralBlankNode associated with Professor/Student-

EmailAddress is resolved into columns belonging to the Professor/Student tables and the 

r2d:ComplexLiteralBlankNode associated with GraduateStudent-ContactNo is resolved 

into a 1:N table of the same name.  

Note that there are several tables in the virtual relational schema that seem like 

duplicates (such as AssistantProfessor_TeacherOf and AssistantProfessor_TeacherOf_9, 

FullProfessor_TeacherOf and FullProfessor_TeacherOf_2). These tables are not actually 

duplicates. The first table in the pair is a join table for the N:M relationship that exists 

between <Assistant/Full>Professor and Course classes while the second table in the pair 

is the join table for the N:M relationship that exists between the 

<Assistant/Full>Professor and GraduateCourse classes. The join table names in R2D’s 

virtual relational schema are derived from the relevant predicate names. Since the 

predicate names of the Professor-Course triples and the Professor-GraduateCourse 

triples are identical in the LUBM dataset, the RDFMapFileGenerator algorithm appended 

a unique identifier (the numbers at the end of the table names) to the second join table in 

order to avoid duplicate table names in the virtual relational schema. 

Figure 6 is a screenshot of DataVision’s Report Designer which illustrates 

DataVision’s query building process for a sample query involving the SQL LIKE 

operator and a GROUP BY clause. Based on the fields chosen (in the “Report Designer” 

window), the table linkages (i.e., joins, illustrated in the “Table Linker” inset) specified, 

and additional record selection and grouping criteria specified (illustrated in the “Record 

Selection Criteria” and “Groups” insets respectively), DataVision generates an 

appropriate SQL query, as shown in the “SQL Query” inset in Figure 7, to extract the 

required data. At this juncture, the Statement Interface, the Prepared Statement Interface, 

and the ResultSet Interface that are part of the JDBC interface are invoked. These 

interfaces trigger the SQL-to-SPARQL Translation algorithm, which generates a 

SPARQL equivalent of the given SQL statement as illustrated in Figure 7, and return the 

obtained results to DataVision in the expected tabular format, as illustrated in Figure 8. 

While DataVision, like any other relational reporting/visualization tool, has options to 

specify aggregation and grouping conditions and functions, the DataVision support group 

has, for various reasons that are not applicable to our academic test environment, disabled 

the GROUP BY facility. For the purposes of our research, we have enabled the 

functionality and the results are as displayed in Figure 8 below. 



 

Figure 6: DataVision Query Processing 

 

 

Figure 7: SQL-to-SPARQL Conversion  



 

Figure 8: Tabular Results as seen through DataVision 

In order to compare the performance of queries executed through the virtual relational 

schema offered by R2D against the query performance achieved through RDF 

visualization tools, XML files corresponding to the LUBM  dataset were generated for 

RDF stores of various sizes and a selection of four queries were run using R2D and 

Allegrograph’s Gruff. These queries were selected at random from the set of LUBM 

Benchmark SPARQL queries and their equivalent SQL versions were executed using 

R2D. Figure 9 displays the response times of each of the queries as the sizes of the 

databases vary.  

As can be observed, R2D’s performance is far superior to the existing direct RDF 

visualization. This could be because Gruff persists data on the hard disk in a proprietary 

manner, requiring additional time/resources for disk I/O, while R2D utilizes Jena’s in-

memory store to house the RDF data. The time taken for the SQL-to-SPARQL 

conversion (SQL-to-SPARQL Translation Algorithm) is negligible and nearly constant. 

Thus, R2D does not add any overheads to the SPARQL query performance. 

SQL queries issued against relational databases created by physically duplicating 

RDF data may possibly exhibit superior performance than their SPARQL equivalents 

since refined performance optimization options (such as indexes, mature query 

optimizers, etc.) have been at the disposal of relational databases for many decades now. 

Further, for each row of the RDBMS with ‘n’ columns, there are ‘n’ triple tuples in 

the corresponding RDF Store. Thus, the RDBMS equivalent of the RDF Stores generally 

has a fraction of the data in the RDF Stores which could be yet another contributor to 

better RDBMS response times than the RDF data store. However, this improved 

performance comes at the expense of additional disk space that is required due to 

duplication of data into the RDBMS, and additional system resources and human effort 

required to ensure that the duplicated data is kept synchronized with the original RDF 

store. On the other hand, for possibly a small price in terms of response time, R2D offers 

an avenue for users to continue to take advantage of the vast assortment of visualization 

tools that are readily available without having to “reinvent the wheel” for RDF stores or 

duplicate/synchronize RDF data. With skilled database administrators becoming rarer and 

more expensive, the importance of applications such as R2D becomes more pronounced 

as they offer a means to bypass the requirement of databases and their management. 



 

Figure 9: Response times for Selected LUBM Queries  

6.   CONCLUSION and FUTURE WORK 

The R2D framework presented in this paper was motivated by a dearth in the number and 

variety of data modeling, management, and visualization tools for RDF graph data. 

Though there are a several ongoing research efforts that attempt to address these 

deficiencies, most of the efforts involve either the painstaking process of creating new 

tools or the uneconomical alternative of duplicating data into existing relational stores 

raising a fresh crop of concerns such as resource wastage and synchronization issues. The 

chief goal of R2D is to bridge the gap between RDF data sources and the relational model 

in order to continue to leverage the benefits offered by existing traditional tools without 

any customization for RDF. A JDBC interface aimed at accomplishing this goal through 

a mapping between RDF Graph constructs and their equivalent relational counterparts 

was presented. A detailed description of the mapping constructs, the system architecture, 

and the modus operandi of the proposed system was discussed along with in depth 

discussion on the algorithms comprising the R2D framework. The feasibility of the 

proposed framework was demonstrated through a variety of experimental results in the 

form of screenshots and performance graphs. 

Future directions for R2D include improvisation of the normalization process for 

mixed blank nodes in order to arrive at better and more appropriate tables corresponding 

to such blank nodes. Enhancements to the S QL-to-SPARQL translation algorithm that 

would enable the handling of nested and correlated sub-queries are other aspects that are 

being explored.  
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Abstract. Handling huge amount of data scalably is a matter of concern
for a long time. Same is true for semantic web data. Current semantic
web frameworks lack this ability. In this paper, we describe a framework
that we built using Hadoop1 to store and retrieve large number of RDF2

triples. We describe our schema to store RDF data in Hadoop Distribute
File System. We also present our algorithms to answer a SPARQL3 query.
We make use of Hadoop’s MapReduce framework to actually answer the
queries. Our results reveal that we can store huge amount of semantic
web data in Hadoop clusters built mostly by cheap commodity class
hardware and still can answer queries fast enough. We conclude that
ours is a scalable framework, able to handle large amount of RDF data
efficiently.

1 Introduction

Scalibility is a major issue in IT world. Basically what it means is that a system
can handle addition of large number of users, data, tasks etc. without affecting its
performance significantly. Designing a scalable system is not a trivial task. This
also applies to systems handling large data sets. Semantic web data repositories
are no exception to that. Storing huge number of RDF triples and the ability to
efficiently query them is a challenging problem which is yet to be solved. Trillions
of triples requiring peta bytes of disk space is not a distant possibility any more.
Researchers are already working on billions of triples[13, 2]. Competitions are
being organized to encourage researchers to build efficient repositories4.

Distributed systems are always good candidates as a solution to scalibility
problems. Distributed databases are widely used to handle large amount of re-
lational data. However, a distributed repository for RDF data is yet to be built.
The challenges and technologies needed to build such a system for semantic
web data are unfolding as researchers move along that path. For building a
distributed repository for RDF data, one option may be to use the readily avail-
able distributed database systems for relational databases and come up with
1 http://hadoop.apache.org
2 http://www.w3.org/RDF
3 http://www.w3.org/TR/rdf-sparql-query
4 http://challenge.semanticweb.org



a relational schema to store RDF data. Researchers are already exploring the
optimal relational schema for that purpose [9]. Another option can be to build
a distributed system from ground up. The advantage of this approach is that
a system optimized to handle only RDF data can be built in this way. The
disadvantage is that in many cases we have to reinvent the wheel. But instead
of building the system from scratch, we can take a generic distributed storage
system and build a sematic web repository on top of that.

Such a system is Hadoop. It is a distributed file system where files can be
saved with replication. It provides high fault tolerance and reliability. Moreover,
it provides an implementation of MapReduce[8] programming model. MapRe-
duce is a functional programming model which is suitable for processing large
amount of data in parallel. In this programming paradigm, MapReduce processes
are run on independant chunks of data making parallelization easier.

Current semantic web frameworks like Jena5 do not scale well. These frame-
works run on single machine and hence cannot handle huge amount of triples.
For example, we could load only 10 million triples in a Jena in-memory model
running in a machine having 2 GB of main memory. In this paper, we describe
our work with RDF data and Hadoop. We devise a schema to store RDF data in
Hadoop. In a preprocessing stage, we process RDF data and put it in text files in
the distributed file system according to our schema. We chose Lehigh University
Benchmark[10] (LUBM) data generator to generate our data. We have a re-
trieval mechanism by MapReduce programming. We find that for many queries,
one MapReduce job is not enough. We need to have an algorithm to determine
how many jobs are needed for a given query. We devise such an algorithm which
not only determines the number of jobs but also their sequence and inputs. We
run all the LUBM benchmark queries. We run them on different sizes of data
sets starting from 100 million triples to 1 billion triples.

In the work we have done, our contributions are as follows: first, a storage
scheme to store RDF data in plain text files in Hadoop distributed file system,
and next a scalable algorithm to determine the details of MapReduce jobs needed
to answer a SPARQL query.

The remainder of this paper is organized as follows: in section 2 we discuss
works done by other researchers and our novelties using MapReduce for large
amount of data. In section 3 we discuss the architecture of our system. We
describe our data storage system in section 4. We discuss how we answer a
SPARQL query in section 5. We present the results of our experiments in section
6. Finally we draw some conclusions and discuss probable areas which we have
identified for improvement in future in section 7.

2 Related Works
MapReduce is an evolving technology now. The technology has been well received
by the community which handles large amount of data. Google uses it for web
indexing, data storage, social networking [4]. It is being used to scale up classifiers
for mining peta-bytes of data [5]. Data mining algorithms are being rewritten in
different forms to take the advantage of MapReduce technology [6]. Other areas

5 http://jena.sourceforge.net



where this technology is successfully being used are simulation [3]. Hadoop is an
Apache project which is an open source implementation of Google’s MapReduce
technology. It is being used to handle large amount of data for quite some time
now. Yahoo is using Hadoop’s scale-out for search and information retrieval [1].

The closest match to what we have done is the BioMANTA6 project. Re-
searchers of that project have done some work regarding large RDF data storage
in Hadoop. They proposed extensions to RDF Molecules[7] and implemented
a MapReduce based Molecule store [2]. They used MapReduce to answer the
queries. They have queried maximum 4 million triples. Our work differs in the
following ways: first, we start with 100 million triples and queried 1 billion triple
at the maximum. Second, we have devised a storage schema using files which is
tailored to improve query execution performace for RDF data. We store RDF
triples in files based on the predicate of the triple and the type of the object.
Third, we have a query rewriting algorithm for SPARQL queries which lever-
ages our storage schema and can convert a query to an equivalent shorter one
under some conditions. Finally, we also have an algorithm to determine the jobs
needed to answer a query. We can determine the input files of a job and the
order in which they should be run. To the best of our knowledge, we are the
first ones to come up with storage schema for RDF data with flat files, a query
rewritting algorithm which takes advantage of the schema and a MapReduce job
determination algorithm to answer a SPARQL query.

3 Proposed Architecture
Our architecture consists of several software components. We make use of Jena
Semantic Web Framework in data preprocessing step and Pellet OWL Reasoner7

in query execution. The architecture is shown in figure 1. The left column of the
figure depicts preprocessing steps for the data and the right column shows the
steps to answer a query.

We have three components for data generation and preprocessing. The LUBM
[10] data generator creates data in RDF/XML serialization format. We take
this data and convert it to N-Triples serialization format using our N-Triple
Converter component. This component uses Jena framework to convert the data.
The Predicate Based File Splitter takes the converted data and splits it into
predicate files. The predicate based files are then fed into the Object-Type Based
File Splitter which split the predicate files to smaller files based of type of objects.
These steps are described in section 4.2. The output of the last component are
then put into HDFS8.

Our MapReduce framework has three sub-components in it. It takes SPARQL
query from the user passes it to Job Decider and Input Selector. This component
decides how many jobs are needed and selects the input files and passes the
information to the Job Handler component which submits corresponding jobs to
Hadoop. It then relays the query answer from Hadoop to the user. To answer
queries that require inferencing, we use Pellet OWL Reasoner.

6 http://www.itee.uq.edu.au/ eresearch/projects/biomanta
7 http://clarkparsia.com/pellet
8 http://hadoop.apache.org/core/docs/r0.18.3/hdfs design.html



Fig. 1. The System Architecture

4 Data Preprocessing
For our experiments, we use LUBM[10] dataset. LUBM is a benchmark data
set designed to enable researchers evaluate their semantic web repository perfo-
mances [11]. The data set has a data generator which generates data about a
user specified number of universities. It has 14 benchmark queries. Researchers
have used LUBM data sets to compare their performances with other semantic
web repositories [14, 13, 12].

4.1 Data Generation and Storage
The LUBM data generator generates data in RDF/XML serialization format.
This format is not suitable for our purpose because we store data in HDFS in flat
files. If the data is in RDF/XML format then to retrieve even one triple we need
to parse the whole file and also it is not suitable as an input for a MapReduce
job. Instead we choose N-Triple to store the data in because we have a complete
triple in one line of a file which is very convenient to use with a MapReduce
job. We convert the data to N-Triple format and apply certain processing steps
on it to get to our intended data format. These steps are described in following
sections.

Hadoop is basically a distributed file system. It breaks large files into small
blocks having default size 64 MB. For improved fault tolerance, Hadoop repli-
cates these blocks. Hadoop does not cache any file for MapReduce jobs. The
replication and no-cache policy warrants us to use optimal storage policy for
storing RDF data.

4.2 File Organization
In HDFS a file takes space replication factor times its size. As RDF is text data,
it takes a lot space in HDFS to store a file. To minimize the amount of space, we
replace the common prefixes in URIs with some much smaller prefix strings. We



keep track of this prefix strings in a separate prefix file. This reduces the space
required by the data by a significant amount.

As there is no caching in Hadoop, each SPARQL query needs reading files
from HDFS. Reading directly from disk always have a high latency. To reduce
the execution time of a SPARQL query, we came up with an organization of files
which provides us with the capability to determine the files needed to search in
for a SPARQL query. The files usually constitute a fraction of the entire data
set and thus making the query execution much faster.

We do not store the data in a single file because in Hadoop file is the smallest
unit of input to a MapReduce job. If we have all the data in one file then the
whole file will be input to MapReduce jobs for each query. Instead we divide the
data in multiple steps. Predicate Split (PS): in the first step, we divide the
data according to the predicates. In real world RDF data sets, the number of
distinct predicates are just more than 10 or 20 [14]. This division immediately
enables us to cut down the search space for any SPARQL query which does not
have a variable9 predicate. For such a query, we can just pick a file for each
predicate and run the query on those files only. For simplicity, we name the
files with predicates e.g. all the triples containing a predicate p1:pred goes to
a file named p1-pred. However, in case we have a variable predicate in a triple
pattern10 and if we cannot determine the type of the object, we have to consider
all files. If we can determine the type of the object then we consider all files
having that type of object. We discuss more on this in section 5.1.

Predicate Object Split (POS): In the next step, we work with the type
information of objects. The rdf type file is first divided into as many files as
the number of distinct objects the rdf:type predicate has. For example, if in the
ontology, the leaves of the class hierarchy are c1, c2, ..., cn then we will create files
for each of these leaves and the file names will be like rdf-type c1, rdf-type c2,
... , rdf-type cn. Please note that the values c1, c2, ..., cn are no longer needed to
be stored inside the file as they can be easily retrieved from the file name. This
further reduces the amount of space needed to store the data. For each distinct
object values of the predicate rdf:type we get a file like this.

We divide other predicate files according to the type of the objects. Not all
the objects are URIs, some are literals. The literals remain in the file named by
the predicate i.e. no further processing is required for them. The objects move
into their respective file named as predicate type. For example, if a triple has the
predicate p and the type of the object is ci, then the subject and object appears
in one line in the file p ci. To do this division we need to join a predicate file with
the rdf-type files. Queries run much faster with POS schema than PS schema. In
one occasion, we could reduce time for query 2 in 1000 universities dataset from
9 hour and 51 minutes to only 10 minutes, a huge improvement.

Table 1 shows the size gain we get at each step for data of 1000 universities.
LUBM generator generates files of total 24 GB size. After splitting the data
according to predicates the size drastically comes down to only 7.1 GB which is

9 http://www.w3.org/TR/rdf-sparql-query/#sparqlQueryVariables
10 http://www.w3.org/TR/rdf-sparql-query/#sparqlTriplePatterns



Step Files Size (GB) Space Gain

N-Triples 20020 24

PS 18 7.1 70.42%

POS 18 6.6 7.04%

Table 1. Data size at various steps for 1000 universities

a 70.42% gain. This happens because of the absence of predicate columns and
also the prefix substitution. In the final step, we again gain 7.04% space as the
splitted rdf-type files no longer has the object column.

Listing 1.1. LUBM Query 1
1SELECT ?X WHERE {
2?X rd f : type ub : GraduateStudent .
3?X ub : takesCourse <http ://www.D0 .U0 . edu/GC0> }

We observed that all the LUBM SPARQL queries use the type information
heavily. We also observed that there are a large number of triples with rdf:type
predicates. These predicates are used in joins in all queries. Hence, the size of
the join output is very large. To reduce the join output size and also the query
execution time, we divided the rdf-type file according to the value of objects in
the triples.

For example, listing 1.1 shows LUBM query 1 which has the rdf:type predicate
in first its first triple patterns in line 4. Without the type split the input files
for this query would be rdf-type and ub-takesCourse. But with the type split, we
could use rdf-type GraduateStudent and ub-takesCourse as the input instead of
rdf-type and ub-takesCourse. The file rdf-type GraduateStudent is significantly
smaller than the file rdf-type. Thus with the type split, we are reducing the input
size, hence reducing the join outputs. This will make the query execution much
faster.

5 MapReduce Framework
Our MapReduce Framework is where we answer queries. The challenges we meet
to answer a SPARQL query are as follows: first to determine the number of jobs
needed to answer a query, second to minimize the size of intermediate files so
that data copying and network data transfer is reduced and finally to determine
number of reducers. We run one or more MapReduce jobs to answer one query.
The following section gives a brief discussion about Hadoop MapReduce.

In Hadoop, the unit of computation is called a job. A user can submit a job to
Hadoop JobTracker which is responsible for running a job. In each MapReduce
job, there are two phases: Map and Reduce. In the Map phase the map method
takes a pair of input key-value pair and may output zero or more key-value pairs.
In the Reduce phase, the values for each key are grouped together in a collection
and a key and iterator to values pair is passed to the reduce method. It can also
output zero or more key-value paires.

When a job is submitted to Hadoop JobTracker, Hadoop creates map pro-
cesses preferrably near the input data in the cluster. These map processes cannot
talk to each other and work independently. Same goes for reduce processes. This



lack of communication has the advantage of speed and simplicity. But the dis-
advantage is in one job we cannot perform all the joins necessary for a SPARQL
query without this communication. To overcome this problem, we must have
more than one joins for the queries where one job cannot do all the joins with-
out communication between map processes. We write the output of a job to an
intermediate file. This intermediate file is used as input to the subsequent job.
The algorithm to determine the joins done in a job is described in section 5.2.
5.1 Input Files Selection
Before determining the jobs, we select the files that need to be inputted to the
jobs. We take a query submitted by the user and iterate over the triple patterns.
In a triple pattern, if the predicate is variable then we select all the files as input
to the jobs and terminate the iteration. If the predicate is a variable but has a
type information associated to it, then we select all predicate files having object
of that file and add them to the input file set. If the predicate is concrete but
has no type information, we add all files for the predicate to the input set. If it
has a type information associated with it, we add the predicate file which has
objects of that type to the input set.

If a type associated with a predicate is not a leaf in the ontology tree, we
add all subclasses which are leaves in the subtree rooted at the type node in the
ontology tree.
5.2 The DetermineJobs Algorithm
To answer a SPARQL query by MapReduce jobs, we may need more than one
job. It is because we cannot handle all the joins in one job because of the way
Hadoop runs its map and reduce processes. Those processes have no inter process
communication and they work on idependent chunks of data. Hence, processing
a piece of data cannot be dependent on the outcome of any other piece of data
which is essential to do joins. This is why we might need more than one job
to answer a query. Each job except the first one depends on the output of its
previous job.

We devised Algorithm 1 which determines the number of jobs needed to
answer a SPARQL query. It determines which joins are handled in which job
and the sequence of the jobs. For a query Q we build a graph G = (V, E) where
V is the set of vertices and E is the set of edges. For each triple pattern in the
query Q we build a vertex v which makes up the set V . Hence |V | is equal to the
number of triple patterns in Q. We put an edge e between vi and vj , where i 6= j,
if and only if their corresponding triple patterns share at least one variable. We
label the edge e with all the variable names that were shared between vi and
vj . These edges make up the set E. Each edge represents as many joins as the
number of variables it has in its label. Hence, total number of joins present in
the graph is the total number of variables mentioned in the labels of all edges.
An example illustrates it better. We have chosen LUBM [10] query 12 for that
purpose. Listing 1.2 shows the query.

Listing 1.2. LUBM Query 12
1SELECT ?X WHERE {
2?X rd f : type ub : Chair .
3?Y rd f : type ub : Department .
4?X ub : worksFor ?Y .
5?Y ub : subOrganizationOf <http ://www. Univer s i ty0 . edu> }



The graph we build at first for the query is shown in figure 2. The nodes are
numbered in the order they appear in the query.

Algorithm 1 DetermineJobs(Query q)
Require: A Query object returned by RewriteQuery algorithm.
Ensure: The number of jobs and their details needed to answer the query.

1: jobs← φ
2: graph← makeGraphFromQuery(q)
3: joins left← calculateJoins(graph)
4: while joins left 6= 0 do
5: variables← getV ariables(graph)
6: job← createNewJob()
7: for i← 1 to |variables| do
8: v ← variables[i]
9: v.nodes← getMaximumV isitableNodes(v, graph)

10: v.joins← getJoins(v.nodes, graph)
11: end for
12: sortV ariablesByNumberOfJoins(variables)
13: for i← 0 to |variables| do
14: if |v.joins| 6= 0 then
15: job.addV ariable(v)
16: jobs left← jobs left− |v.joins]
17: for j ← i + 1 to |variables| do
18: adjustNodesAndJoins(variables[j], v.nodes)
19: end for
20: mergeNodes(graph, v.nodes)
21: end if
22: end for
23: jobs← jobs ∪ job
24: end while

25: return jobs

Fig. 2. Graph for Query 12 in Iteration 1 Fig. 3. Graph for Query 12 in Iteration 2

In figure 2, each node in the figure has a node number in the first line and
variables it has in the following line. Nodes 1 and 3 share the variable X hence
there is an edge between them having the label X. Similarly, nodes 2, 3 and
4 have edges between them because they share the variable Y . The graph has
total 4 joins.

Algorithm 1 is iterative. It takes a Query object as its input, initializes the
jobs set (line 1), builds the graph shown in figure 2 before entering first iteration
(line 2). It also calculates the number of jobs left (line 3). It enters the loop in
line 4 if at least one job is left. At the beginning of the loop it retrieves the set of
variables (line 5) and creates a new empty job (line 6). Then it iterates over the



variable (line 7 and 8), lists the maximum number of nodes it can visit by edges
having the variable in its label (lines 9). It also lists the number of joins that
exist among those nodes (line 10). For example, for variable Y we can visit nodes
2, 3 and 4. The joins these nodes have are 2-3, 3-4 and 4-2. The information it
collects for each variable is shown in table 2.

Variable Nodes Joins ‖Joins‖
Y 2, 3, 4 2-3, 3-4, 4-2 3

X 1, 2 1-2 1
Table 2. Iteration 1 Calculations

Variable Nodes Joins ‖Joins‖√
Y 2, 3, 4 2-3, 3-4, 4-2 3

X 1 0
Table 3. Iteration 1 - After choosing X

Variable Nodes Joins Total Joins

X 1, 2 1-2 1
Table 4. Iteration 2 Calculations

It then sorts the variables in descending order according to the number of
joins they cover (line 12). In this example, the sort output is the same as table
2. Then, in greedy fashion, it iterates over the variables and chooses a variables
if the variable covers at least one join (line 13 and 14). In each iteration, after it
chooses a variable, it eliminates all the nodes it covers from subsequent variable
entries (lines 17 to 19). It then calculates the number of joins still left in the
graph (line 16). For example, once the algorithm chooses the variable Y , the
nodes and joins for X becomes like table 3.

It also merges the nodes visited by the chosen variable in the graph (line 20).
Hence, after choosing Y it will not choose X as it does not cover any join any
more. Here the inner loop terminates. The joins it picked are the joins that will
be done in a job. The algorithm then checks whether any join is not picked (line
4). If such is the case, then more jobs are needed and so the algorithm goes to
the next iteration.

At the beginning of the subsequent iteration it again builds a graph from the
graph of the previous iteration but this time the nodes which took part in joins
by one variable will be collapsed into a single node. For our example, nodes 2,
3 and 4 took part in joins by Y . So they will collapse and form a single node.
For clarity, we name this collapsed node as A and the remaining node 1 of the
graph in figure 2 as B. The new graph we get like this is shown in figure 3. The
graph has total 1 join. We have listed the nodes which were collapsed in braces.

After building the graph, the algorithm moves on to list the maximum num-
ber of nodes, joins and total number of joins each variable covers. This is shown
in table 4. The algorithm chooses X and that covers all the joins of the graph.
The algorithm determines that no more job is needed and returns the job col-
lection.

5.3 Performing Join

In this section, we discuss how we implement joins needed to answer SPARQL
queries using MapReduce framework of Hadoop. Algorithm 1 determines the
number of job required to answer a query. It returns an ordered set of jobs.
Each job has associated input information. The Job Handler component of our
MapReduce framework runs the jobs in the sequence they apprear in the ordered



set. The output file of one job is the input of the next one. The output file of
the last job has the answer to the query.

Listing 1.1 shows LUBM query 1 which we will use to illustrate the way we
do join using map and reduce methods. The query has two triple patterns and
one join between them by the variable X. Our input selection algorithm selects
the file type GraduateStudent for the triple pattern of line 4 and for the triple
pattern of line 5 all files having the prefix takesCourse as the input to the only
job needed to answer the query.

In the map phase, we first tokenize the value which is actually a line of the in-
put file. Then we check the input file name and if input is from type GraduateStudent,
we output a key value pair having the subject URI as the key and a flag string GS
as the value. The value serves as a flag to indicate that the key is of type Graduat-
eStudent. The subject URI is the first token returned by the tokenizer. If the in-
put is not from that file then it must be from a file having the prefix takesCourse.
We then retrieve the subject and object from the input line by the tokenizer and
then check whether the object value is “http://www.D0.U0.edu/GC0”. If that
is the case, we output a key value pair having the subject URI as the key and
the object value as the value.

In the reduce phase, Hadoop groups all the values for a single key and for
each key provides the key and an iterator to the values collection. Using the
iterator we simply count the number of values in the values collection. If the
count is two then we know that the key is a URI to a graduate student who took
the course “http://www.D0.U0.edu/GC0”. It is because only if a URI satisfies
both conditions in the map phase, it can appear as a key in two output key value
pairs in that method.

6 Results

Due to space limitations we choose to report runtimes of six LUBM queries
which we ran in a cluster of 10 nodes with POS schema. Each node had the
same configuration: Pentium IV 2.80 GHz processor, 4 GB main memory and
640 GB disk space. The results we found are shown in table 5.

Universities Triples (million) Query1 Query2 Query4 Query9 Query12 Query13

1000 110 66.313 146.86 197.719 304.87 79.749 198.502

2000 220 87.542 216.127 303.185 532.982 95.633 272.521

3000 330 115.171 307.752 451.147 708.857 100.091 344.535

4000 440 129.696 393.781 608.732 892.727 115.104 422.235

5000 550 159.85 463.344 754.829 1129.543 132.043 503.377

6000 660 177.423 543.677 892.383 1359.536 150.83 544.383

7000 770 198.033 612.511 1067.289 1613.622 178.468 640.486

8000 880 215.356 673.0 1174.018 1855.5127 184.434 736.189

9000 990 229.18 727.596 1488.586 2098.913 214.575 821.459

10000 1100 273.085 850.503 1581.963 2508.93 286.612 864.722

Table 5. Query Runtimes



Table 5 has query answering times in seconds. The number of triples are
rounded down to millions. As expected, as the number of triples increased, the
time to answer a query also increased. Query 1 is simple and requires only one
join. We can see that it took the least amount of time among all the queries.
Query 2 is one of the two queries having most number of triple patterns. We can
observe that even though it has three times more triple patterns it does not take
thrice the time of query 1 answering time because of our storage schema. Query
4 has one less triple pattern than query 2 but it requires inferencing to bind 1
triple pattern. As we determine inferred relations on the fly, queries requiring
inferencing takes longer times in our framework. Query 9 and 12 also require
inferencing and query 13 has an inverse property in one of its triple patterns.

We can see that the ratio between the size of two datasets and the ratio
between the query answering times for any query are not the same. The increase
in time to answer a query is not proportionate to the increase in size of datasets.
In fact, the increase in time is always less. For example, there are ten times
triples in the dataset of universities 10000 than universities 1000 but for query
1 the time only increases by 4.12 times and for query 9 by 8.23 times. The later
one is the highest increase in time which is still less than the increase in the size
of the datasets. Due to space limitations, we do not report query runtimes with
PS schema here. We observed that PS schema is much slower than POS schema.

We also ran few queries in a small cluster of 4 nodes where each node has
the following configuration: Pentium IV 2.80 GHz processor, 1 GB main mem-
ory and 80 GB disk space. We ran queries for 1000 universities. Table 6 shows
the runtimes in seconds where we can see that the bigger cluster with superior
configuration is significantly faster than the smaller one.

Query 4-node cluster runtime 10-node cluster runtime % Improvement

1 83.225 66.313 25.5

2 272.726 146.86 85.7

12 92.485 79.749 15.97

Table 6. Query Runtimes Comparison

We also ran query 1 and 2 by Jena SDB11 model for 1000 universities in
a machine having 8 GB main memory, 2.80 GHz quad core processor and 1
TB disk space. We found that the queries take 4215.017 and 4882.969 seconds
respectively. These are about 63.56 and 33.25 times longer than our runtimes
with the larger cluster.

7 Conclusions And Future Works
We have presented a framework solution for handling large amount of RDF data.
Our system is a distributed one as it is based on Hadoop. Because of Hadoop
our system is highly fault tolerant. It is also readily scalable. To add resource
to our system, all one has to do is to add new nodes to the Hadoop cluster. We
have proposed a schema to store RDF data in plain text files. Finally, we have
proposed an algorithm to determine the jobs necessary to answer a SPARQL

11 http://jena.hpl.hp.com/wiki/SDB



query. The experiment we ran showed that our system is highly scalable. Not
only if we add data we do not decrease performance but also the delay introduced
to answer a query does not increase as much as the increment in data size.

We have identified a few items as future work. We will enable Algorithm 1 to
handle queries with optional triple pattern, devise a new algorithm to determine
the minimum number of jobs, gather and use summary statistics about data and
determine the optimal number of reducers for each job.
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ABSTRACT 
Resolving semantic heterogeneity across distinct data sources 

remains a highly relevant problem in the GIS domain requiring 

innovative solutions. Our approach, called GSim, semantically 

aligns tables from respective GIS databases by first choosing 

attributes for comparison. We then examine their instances and 

calculate a similarity value between them called entropy-based 

distribution (EBD) by combining two separate methods. Our 

primary method discerns the geographic types from instances of 

compared attributes. If successful, EBD is calculated using only 

this method. GSim further facilitates geographic type matching by 

replacing missing instance values in attributes via reverse 

geocoding and applying attribute weighting to quantify the 

uniqueness of mapped attributes. If geographic type matching is 

not possible, we then apply a generic schema matching method, 

independent of the knowledge domain, which employs normalized 

Google distance. We show the effectiveness of our approach over 

the traditional N-gram approach across multi-jurisdictional 

datasets by generating impressive results. 

Categories and Subject Descriptors 
I.2.4 [Artificial Intelligence]: Knowledge Representation 

Formalisms and Methods – semantic networks, representations 

(procedural and rule-based) 

General Terms 
Algorithms, Experimentation, Measurement, Reliability, Human 

Factors 

Keywords 

Schema matching, geographic information systems, gazetteer, 

reverse geocoding, type extraction, semantic similarity 

1.   INTRODUCTION 
The problem of information integration has experienced a number 

of manifestations over the last few decades, as solutions such as 

schema integration[5] and ontology alignment[4] have emerged to 

solve this problem for relational databases and ontologies, 

respectively. Whatever the form, the crux of this problem has 

always been the need to consolidate heterogeneous data sources 

with potentially different purposes under a single, unified 

representation. The alignment between different entities, such as 

tables in different geodatabases and concepts in ontologies, has 

emerged as one of the keys to determining the ultimate success of 

the Semantic Web. Furthermore, this problem has taken on special 

significance in domains such as geographic information systems, 

where effective approaches to problems as varied as geo-spatial 

tagging and geographic disambiguation are highly prized. As a 

result, a tremendous amount of effort has been expended to 

discover novel information integration strategies. 

Some of the more popular approaches have used instance 

similarity to semantically align data between two distinct data 

sources[1,2].  Using this approach, we match similarity between 

tables by first determining pairs of attributes between the tables 

that are to be compared. Next, for each pair, we examine the 

respective attributes‟ instance data and compute a semantic 

similarity score. Combining the scores from aligned attributes will 

determine similarity between the tables as a whole. 

In this paper we attempt to compare two pairs of GIS data sources 

using their respective table instances; the first pair contains tables 

describing similar models of transportation networks over 

multiple jurisdictions, while the other pair contains tables 

detailing varying geographic features beyond road networks. The 

data sources contain large variations in the geographic areas 

covered, the number of attributes and the number of instances. 

To measure instance similarity between compared attributes, we 

apply an algorithm which we will dub as GSim, and it consists of 

two distinct approaches. The primary approach determines the 

geographic types (GT) over the instances associated with 

compared attributes. This is done by leveraging an external data 

source known as a gazetteer[12,13].  The gazetteer would be able 

to match one or more GTs for as many instances as possible. 

Semantic similarity is calculated by considering the collection of 

types extracted from instances between the compared attributes. It 

is based on a quantity known as entropy-based distribution 

(EBD), which is defined as the ratio of the conditional entropy 

within each type over a pair of compared attributes with the 

entropy taken over all types.  

Whenever possible, GSim calculates semantic similarity between 

attributes using GTs alone. However, if too many instances within 

the compared attributes lack GT information, then GSim resorts to 

its secondary approach, which uses a generic schema matching 

algorithm based on a semantic distance measure known as 

normalized Google distance (NGD)[23]. This method is generic 

because it is applicable across knowledge domains. 

Despite the utility of NGD, solely relying on it to determine 

semantic similarity is unwise, particularly in the GIS domain. The 

reason is that a number of situations exist where the instances are 

 

 



determined to be semantically similar due entirely to their close 

geographic proximity. One such situation is depicted in Section 

4.3; GSim‟s usage of geographic semantic schema matching is 

justified in that case because two attributes, a city attribute and a 

county attribute, would match using NGD purely on the basis of 

their common geographic origins. The dissimilarity of the types of 

the attributes, therefore, could only be captured by using a GT 

lookup. On the other hand, the gazetteer does not contain 

information on every geographic feature, and so realistically, there 

will be many geodatabases which are unable to return a sufficient 

amount of GT information. This justifies the GSim‟s usage of 

generic semantic schema matching. 

The challenges that we will address in this paper are as follows. 

First, only in the ideal case does the gazetteer match one specific 

GT for each of the instances. In reality, some instance names, such 

as “Clinton”, are very common, and as a result, the gazetteer is 

likely to return several GTs. In other words, a 1:N mapping often 

exists between an instance of an attribute and the GTs which are 

assigned to it by a gazetteer. Thus, the challenge of handling 

multiple possible GTs for a given instance is addressed. The 

second challenge addressed by our research relates to the likely 

possibility of encountering missing or erroneous instances in 

attributes of geodatabases. Therefore, when attributes containing 

these instances are involved in a comparison with another 

attribute, then it is possible that a less-nuanced approach would 

compute an incorrect semantic similarity value. However, GSim 

takes this possibility into account by using the latitude and 

longitude values associated with an instance and performing 

reverse geocoding to retrieve the correct instance value. The third 

challenge addressed by our research is the problem of determining 

the most uniquely relevant attributes within a particular table. It is 

possible for two tables to share a high semantic similarity score 

based on matching attributes which are not relevant to the concept 

that the tables represent. GSim applies attribute weighting to 

measure table similarity by placing more weight on the most 

semantically relevant attributes. This way, the measured EBD 

value generated for any given table comparison will be based on 

attributes that represent the essence of the compared tables. 

The rest of this paper is organized as follows. In section 2, we 

discuss an overview of related work. Section 3 states definitions, 

the problem to be solved and our proposed solution. Section 4 

presents in detail the GSim algorithm, detailing both the 

geographic lookup component as well as the more generic NGD 

component. In Section 5 we present our results generated with 

GSim and compared them against those generated using N-grams. 

Finally, in section 6, we outline our future work. 

2.   RELATED WORK 

In this section, we will first present other work related to schema 

matching. Second, we present work in the GIS domain making 

use of a gazetteer. Third, we present work making use of reverse 

geocoding. Finally, we contrast our work with another approach 

used to solve the schema matching problem. 

The most closely related work in the GIS domain discusses 

schema and ontology matching for geodatabases and thesauri. 

Leme, Casanova et al[1] perform schema matching over GIS 

databases containing data represented by a dialect of OWL. 

Brauner, Intrator et al[2] perform instance matching over the 

exported schemas of geographical database Web services and 

apply their technique over the Geonames and ADL gazetteers. 

Brauner, Casanova et al[3] leverage instance mapping between 

distinct terms in feature type thesauri used to classify data in 

gazetteers, for the facilitation of successful thesaurus migration 

from one gazetteer to another. Some techniques involving the 
mapping of GIS ontologies also influenced our work. Most 

notably, Cruz, Sunna et al[4] describe AgreementMaker, a visual 

tool that provides a user with the ability to perform mappings 

between ontologies using a multi-faceted strategy involving 

automated techniques as well as manual specifications.   

A number of schema matching publications [5,6,7,8] tailored to 

the database community influenced our work. The survey of 

approaches to automated schema matching by Rahm and 

Bernstein[5] includes a taxonomy which uses several criteria to 

categorize matching approaches such as schema and instance 

based methods, element-level and structure-level methods, and 

linguistic and constraint-based methods. Dai, Koudas et al. [6] 

discuss instance-based schema matching using distributions of N-

grams among compared attributes. Bohannon et al.[7] investigate 

contextual schema matching, in which selection conditions and a 

framework of matching techniques are used to create higher 

quality mapping between attributes of compared schemas. Warren 

and Tompa [8] propose an iterative algorithm that deduces the 

correct sequence of concatenations of column substrings in order 

to translate from one database to another without the use of a set 

of training instances.   

Within the AI community, a number of works in the schema 
matching area applied machine learning and statistical methods to 

learn attribute properties from data and examples. Li and Clifton 

[9] describe a tool known as SEMINT, which uses neural 

networks to determine match candidates by matching attributes 

from similar clusters between attributes in a 1:1 match. Berlin and 

Motro[10] describe a tool known as Autoplex which uses 

supervised machine learning techniques for automating the 

discovery of instance for virtual database systems. Embley et al. 

[11] explore both 1:1 and m:n schema mapping techniques by 

applying knowledge obtained from a domain ontology and data 

frames. 

Much work in the GIS community making use of a gazetteer for 

information lookup influenced also our work. Zhou, Frankowski 

et al. [12] apply a deterministic, density-based clustering 

algorithm to semi-automatically discover gazetteers from users‟ 

travel data, as well as disambiguate between uninteresting and 

interesting results from the gazetteer using temporal techniques. 

Newsam and Yang[13] integrate a gazetteer with high-resolution 

remote sensed imagery to automate geographic data management 

more completely, and they also demonstrate  how gazetteers can 

be effectively used as a source of semi-supervised training data for 

geospatial object modeling. Pouliquen, Steinberger et al.[14] use a 

gazetteer lookup, as opposed to linguistic analysis, to search 

through natural language text and produce geographic maps and 

animations that represent the area referred to in the text.  

Some work in the GIS community involving reverse geocoding is 

related to our research. Zhou and Frankowski[15] evaluate the 

accuracy of personal place discovery using reverse geocoding and 

clustering through a set of evaluation metrics and an interactive 

evaluation framework. Joshi and Luo[16] employ reverse 

geocoding using location coordinates from image data to obtain 



nearby points of interest  connecting an image with its geographic 

location. Wilde and Kofahl[17] describe the use of reverse 

geocoding in retrieving location types as an essential component 

for a geo-enabled Web browser. 
 

Our paper presents an innovative instance matching algorithm that 

possesses a number of advantages over the N-gram approach 

proposed by Dai, Koudas et al., particularly in the GIS domain. 

An N-gram is a substring of length N consisting of contiguous 

characters. So for example, if N=2, then the word „GSim‟ has N-

grams „GS‟, „Si‟ and „im‟. First, GSim determines GTs for 

instances via a gazetteer as part of the process of determining an 

overall semantic similarity value. Because GSim uses domain-

specific information to determine the GT for a given instance, it is 

better equipped than the N-gram approach to solve the 

information integration problem among geodatabases. Second, 

GSim can retrieve missing instance values in geodatabases by 

using associated latlong values to perform reverse geocoding. This 

ability is not available using solely the N-gram approach.  Third, 

in case the geographic lookup component is unsuccessful, GSim 

leverages clustering of types for use on distinct keywords found 

between compared attributes via NGD. This approach is better 

able to capture the semantics of comparisons between attributes 

because words contain more implicit semantic information than 

N-grams. Using words, we can reference external data sources 

that allow for distance metrics to determine word relatedness. In 

general, this cannot be done with N-grams because they are 

usually just parts of words. Fourth, our new instance matching 

algorithm is flexible enough to allow for different types of 

semantic distance measures to be used. Treating the semantic 

distance measure as a pluggable component allows for a wider 

variety of experiments to be performed on a given instance set, 

which in turn leads to a better understanding of the kinds of 

semantic distance measures that best suits a particular type of 

data. Finally, the use of N-grams for instance similarity between 

data sources sometimes generates misleading results, especially in 

cases where data of different languages but similar semantics is 

being compared, or where there is a lack of shared instances 

between the compared attributes. 

3.   PROBLEM STATEMENT AND 

PROPOSAL 
 

3.1   Definitions 

First, we will provide definitions that will assist in defining the 

problem and describing GSim. 

Definition 1 (attribute) An attribute of a table T, denoted as 

att(T), is defined as a property of T that further describes it. 

 
Definition 2 (instance) An instance x of an attribute att(T) is 

defined as a data value associated with att(T). 

 
Definition 3 (keyword) A keyword k of an instance x associated 

with attribute att(T) is defined as a semantically relevant word 

representing a portion of the instance. 

 
In figure 1 below, the two attributes for the given table are 

roadName and City, two instances from the roadName attribute 

are “Johnson Rd.” and “School Dr.”, and the two keywords 

associated with the instance “School Dr.” are “School” and “Dr.”.   

 

                                
        Figure 1. Sample table containing two attributes and six    

                                             instances 

Definition 4 (type) A type t associated with attribute att(T) is 

defined as a class of related entities grouped together. 

We define two kinds of types: 

 
Definition 4a (geographic type (GT)) A geographic type GT 

associated with attribute att(T) is defined as a class of instances 

of att(T) that represent the same geographic feature. 

 
Definition 4b (non-geographic type (NGT)) A non-geographic 

type NGT associated with attribute att(T) is defined as a class of 

keywords from instances of att(T) that are semantically related to 

each other. 

 
Definition 5 (geographic type (GT) vector) A geographic type 

vector Tx ={GT1, GT2,….GTm} associated with an instance x of 

attribute att(T) is defined as a set of GTs. 

 
Definition 6 (geographic weight (GW) vector) A geographic 

weight vector Wx = {w1,w2,…wm} associated with a GT vector Tx 

={GT1,GT2,….GTm} for an instance x of attribute att(T) is defined 

as a list of real numbers between 0 and 1 representing the 

influence of a GT on the instance. 

 
Note that for all i, GTi є Tx of any instance x has weight wi є Wx. 

 

Definition 7 (geographic type (GT) set of attribute) A 

geographic type set of attribute att(T), denoted Tatt , is the set of 

GTs derived from the union of the types from all GT vectors for 

the instances of att(T). 

 

Definition 8 (non-geographic type (NGT) set of attribute) A 

non-geographic type set of attribute att(T), denoted NTatt, is the 

set of NGTs associated with keywords from instances of att(T). 

 
Definition 9 (geographic type (GT) weight list) A geographic 

type weight list Watt associated with attribute att(T) is the total 

type weights for each type in Tatt. 

 

In figure 2 below, the instances are “Victoria”, “Anacortes”, 

“Clinton” and “Edmonds”. The GT „City‟ contains the instances 

“Victoria” and “Clinton”, The GT vector for “Victoria” = {City, 

State, Feature} and for “Anacortes”, it is = {County}. The GW 

vector for “Victoria” is {1/3,1/3,1/3}, and for “Anacortes” it is 

{1}. If these four instances make up the entirety of attribute att, 



then Tatt is {City, State, Feature, County}, and the GT weight list 

Watt is {5/6, 1/3, 5/6, 2}. The details of the computation of Watt 

for figure 2 is shown in section 4.1.2. 

         
Figure 2. Sample instances of attribute att and their respective  

                              sets of GTs 

       
Figure 3. Sample keywords from an instance of attribute att  

                               and their respective  NGTs 

 

In figure 3 above, given an instance with a value of “Pacific Coast 

Highway”, there are two NGTs named generic type 1 and generic 

type 2. The NGT set NTatt of attribute att that contains this 

instance would have {generic type 1, generic type 2}, as well as 

other types from other instances of this attribute. 

3.2   Problem Statement 

Given two data sources, S1 and S2, each of which is composed of 

a set of tables/relations where {T11, T12, T13… T1M} є S1 and {T21, 

T22, T23… T2N} є S2, the goal is to determine the semantic 

similarity between S1 and S2. This is done by comparing the 

respective attribute names and instances between the tables from 

S1 and those from S2. S1 and S2 may be derived from any domain. 

Additionally, S1 and S2 may vary in regards to the number of 

constituent tables, the number of attributes and instances within a 

given table. With this in mind, an effective data source similarity 

procedure would be expected to match up tables which describe 

semantically similar data. Our goal is to quantify this semantic 

similarity given the instance data for each schema. 

 

3.3   Proposed solution 

We present GSim, an instance matching algorithm that generates 

semantic similarity values between compared attributes in 

different tables of a geodatabase based on two separate 

approaches. The primary approach assigns GTs to instances 

involved in compared attributes within two tables of the 

geodatabase with the help of a gazetteer. This results in a pair of 

GT sets, one for each attribute. The semantic similarity between 

the compared attributes is then computed using EBD over their 

respective GT sets. However, since gazetteers do not contain 

information for all geographic features, it is possible that attribute 

matching via geographic-type extraction will be ineffective, due to 

lack of information. In this case, we apply a generic schema 

matching method, applicable over any knowledge domain, that is 

based on the extraction and clustering of semantically relevant 

keywords as types based on NGD. Further details describing the 

GSim in its entirety are described in Section 4.1. It is our 

intention to clearly show that the use of GSim is better able to 

capture the true semantics that exist between compared attributes 

contained within GIS tables as opposed to using N-grams. 

It is assumed that we perform 1:1 comparisons between attributes 

from distinct tables and data sources. After calculating a semantic 

similarity value between compared attributes, we will repeat the 

process for all compared attributes between the tables. Next, a 

final similarity value between the tables is calculated using EBD. 

EBD is based on a comparison of the conditional entropy of the 

attributes, given a particular type, with the entropy of the 

attributes over all types: 

 

 

 

In this equation, A is the attribute, coming from either one table or 

another (since all table comparisons are 1-1), and T stands for the 

type of the attribute. For geographic matching, T would indicate a 

GT, such as „City‟ or „County‟, while for non-geographic 

matching, T would indicate a given generic type. For more details 

regarding the usage of EBD and its mathematical derivation, 

please see our previous work[19]. 

4.   DETAILS OF ALGORITHM 
 

This section describes GSim, our instance similarity algorithm, 

and its two components. The first, detailed in section 4.1, involves 

the use of a geographic lookup to determine whether the instances 

of compared attributes between two tables share similar GTs. If 

so, then an exact match for those instances is made using only 

GTs. If not, then section 4.2 describes the second component of 

GSim, which exclusively relies on a non-geographic measure of 

semantic similarity between instances of compared attributes. For 

our purposes, we use NGD as our non-geographic similarity 

measure. Despite the generalized utility of NGD, there are 

situations when this approach produces inaccurate results. One 

example such example is described in section 4.3, and we use this 

to justify our preference to match instances of compared attributes 

through GTs alone. 
 

4.1   Overview of GSim 
 

4.1.1   GSim Algorithm 
 

For Algorithm 1 below, the input consists of the attributes A1 є T 

in S1 and A2 є T‟ in S2 and gazetteer G. Line 1 initializes Tgaz, the 

set of all GTs recognized by gazetteer G, TA1UA2, the GT vector 

list for A1 U A2, NTA1UA2, the NGT vector list for A1 U A2, and 

WA1UA2, the GW vector list for A1 U A2.  Lines 2 and 3 extract the 

distinct instances from A1 and A2. Line 4 determines whether 

semantic similarity can be performed strictly by relying on GTs, 

or if NGD similarity will be necessary. GT similarity is only 

possible if a gazetteer is available, and if it contains sufficient GT 

information about enough of the instances. For our purposes, we 

established a threshold, tmin, which represents the minimum 

number of instances that contain GT information in G. If GT 

information can be found for a number of instances greater than or 

equal to tmin, then EBD is calculated using only GTs. This process 

is initiated in lines 5-9, where line 5 retrieves all available GTs, 

Tgaz, recognized by gazetteer G, lines 6-7 derives a GT vector list 

EBD =     H(A | T) 

                   H(A) 
(1) 



TA1 and its associated GW vector list WA1, consisting of GT 

vectors for each instance of A1 and A2. Lines 8-9 combine the GT 

vector lists and GW vector lists, respectively, for A1 and A2. If 

however, in line 4 if geotypingIsPossible() returns false, then we 

need to rely on a more generic measure like NGD to compute 

semantic similarity between the compared instances. This is done 

in line 11. The NGD component of GSim will be described in 

section 4.2. Line 13 calculates the final EBD value between A1 

and A2 given the combined type vector lists and weight vector 

lists of A1 and A2, and line 14 returns that EBD value. 

 

 
4.1.2   Assigning GTs to Instances 
 

We leverage a gazetteer as a way to help determine the GT of an 

instance. The gazetteer used for our purposes is Geonames [18], 

containing information on over 8 million geographic names. The 

gazetteer classifies locations into different categories, or types. 

Some examples of GTs include city, county, state and a general 

feature with several sub-classifications, such as lake, port, school, 

etc. Instances with more commonplace names are likely to be 

listed under multiple types in the gazetteer. As a result, a single 

instance may be associated with a list of GTs = {GT1, 

GT2…GTn}, where n is the number of GTs recognized by the 

gazetteer. However, as will be described in Algorithm 2, because 

an instance may have multiple GTs, the weight of that instance for 

each of those types is divided proportionately. Finally, an EBD 

calculation over the different GTs is performed. 

Algorithm 2 describes the process by which GTs and weights are 

assigned to instances. The input to the algorithm is the list of 

available GTs that are recognized by gazetteer G, along with IL, 

the list of instances associated with a given attribute, while the 

output is an ordered pair consisting of the GT vector list and GW 

vector list for the given attribute. Line 2 begins a loop that 

considers all instances in IL. Line 3 retrieves the set of GTs from 

Tgaz that instance x is associated with. Lines 4-5 assign the weight 

of each feature from Tx associated with the current instance. Line 

6 assigns to Wx the individual weight values calculated in lines 4-

5. Lines 7-8 aggregate the GT and weight vectors computed for 

instance x to Tatt and Watt, respectively. Finally, these vectors are 

returned as an ordered pair to GSim, which facilitates the EBD 

calculation between two compared attributes. 

 
Formally, let Tgaz = {GT1, GT2,……,GTm} be a set of GTs 

recognized by gazetteer G, with GTi, 0 <= i <= m, representing 

one of these types. For example, GTi may be a county, city, state, 

etc. An arbitrary instance x associated with attribute att(T) will be 

associated with a GT vector Tx = {GT‟1,  

GT‟2,…GT‟n}, n <= m and n > 0. Let W = (w1, w2,….wn) be a GW 

vector, where each wj is associated with each GT‟j in Tx for 

instance x, where |W| > 0 and all wk in W for x have a value of 1 / 

|W|. For example, if x was associated with three GTs, then the 

weight wj of each type tj‟ for x would be 1/3. 

As an example of illustrating the weighting of GTs, taking all 

instances from Figure 2 into account, the total weighting for the 

types listed are as follows: “City” = (1/3 + 0 + 1/2 + 0) = 5/6,   

“State” = (1/3 + 0 + 0 + 0) = 1/3, “Feature” = (1/3 + 0 + 1/2 + 0) 

=    5/6, and “County” = (0 + 1 + 0 + 1) = 2. 

 

4.1.3 Handling Incomplete Data 
 
GSim also possesses the ability to retrieve the appropriate 

instance information for a compared attribute if it is missing or 

incomplete. This is accomplished by leveraging the latitude and 

longitude value associated with that instance and performing 

reverse geocoding to retrieve the relevant instance 

information[22]. Specifically, this was accomplished using 

Google Maps reverse geocoding service [20]. Retrieving this 

missing information is important because it can affect the final 

EBD value calculated between two compared attributes despite 

many of the instance values missing. This can be useful, for 

example, in situations where tables containing attributes with 

sparse instances need to be compared. 

4.1.4   Attribute Weighting 

GSim also provides attribute weighting capabilities to penalize 

strong semantic correspondences between tables resulting from 

attribute mappings where the attributes in the mapped pair  

commonly-occur across all of the tables in their respective 

databases. Doing this allows us to refine the semantic similarity 



score generated between tables by focusing on the compared 

attributes that are unique relative to attributes found throughout 

all tables. Let S1 = (T11, T12…..T1M ) be the set of tables belonging 

to data source S1, and let S2 = (T21, T22….T2N )  be the set of tables 

belonging to data source S2, and suppose T1J and T2K are being 

compared for semantic similarity. Further suppose for the sake of 

simplicity that pairings between attributes of T1J and T2K have 

been set such that for all i, attribute i of T1J is matched with 

attribute i of T2K, and T1J and T2K have the same number of 

attributes. Before attribute weighting is applied, semantic 

similarity calculations between attribute i of T1J and attribute i of 

T2K occur. At this point, the EBD values of each attribute pair 

have equal weight. Recall that attribute-level EBD tells us which 

attributes are similar between compared tables. We will designate 

one such value between two attributes as EBDorig (att(T1J), 

att(T2K)). Realistically, however, some attribute pairs should be 

weighted higher than others. For example, given two tables, one 

called Road and another called Street, if the attribute „roadType‟ 

in the Road table (let us call it Road.roadType) was mapped to an 

attribute „streetType‟ in the Street table (let us call it 

Street.streetType), then this pair should contribute more 

substantially to the table similarity between Road and Street than 

a mapped attribute pair consisting of Road.roadName and 

Street.streetName. While Road.roadType and Street.streetType 

are two attributes that are not likely to be found in many other 

GIS tables, Road.roadName and Street.streetName are indeed 

likely to appear in other GIS tables, if, for example, these tables 

describe geographic objects that have some kind of street address 

such as a school, port or business. 

The key to attribute weighting in GSim is determining the 

uniqueness of a given attribute. This is accomplished by 

calculating the frequency of any attribute participating in a match 

throughout the tables of its database. Equation 2 below, which is 

based on inverse document frequency, computes this uniqueness: 

 

 

 

 

In equation 2, AUatt, the attribute uniqueness of att, is computed. 

Satt indicates the data source which contains attribute att (in one or 

more of its tables), and thus, |Satt| indicates the number of tables in 

this data source. The variable t represents an arbitrary table in Satt 

which contains attribute att. A high AUatt value is achieved when 

attribute att appears infrequently across the tables of Satt, while a 

low value of AUatt occurs for an attribute that is commonly-

occurring across the tables of Satt. The lowest possible value of 

AUatt is 0, which occurs when an attribute is found in every table 

of its database. Recall that a single EBD value is between two 

attributes, and thus, to measure pairwise uniqueness, we need a 

measure that accounts for the AUatt value for both attributes in a 

pair. This measure, called pair uniqueness  and designated as 

PUatt1,att2, may be calculated by taking the arithmetic of the AUatt 

values for each attribute in a pair, the minimum AUatt value out of 

the pair, the maximum AUatt value out of the pair, and in a 

number of other ways. For our purposes, we achieved the most 

promising results when calculating PUatt1,att2 as the average of 

AUatt1 and AUatt2. An important property of PUatt1,att2 is that it 

must be greater than or equal to 0, since the lowest value AUatt 

can have is 0. 

Pair uniqueness is then multiplied by the EBDorig value produced 

by the pair to give a corrected value called EBDcorr: 

 

 

 

The difference between EBDcorr(att1,att2) and EBDorig(att1,att2) , called 

pairwise semantic disparity (PSDatt1,att2), is then found between 

att1 and att2, and for all pairs of matching attribute pairs between 

T1J and T2K: 

 

 

Next, the arithmetic mean of the PSD values, dubbed PSDavg, 

amongst all of the attribute pairs for a table comparison is found. 

An attribute pair with a PSD value above PSDavg indicates that a 

greater discrepancy exists between EBDorig and EBDcorr relative to 

other attribute pairs. As a result, this pair should have the weight 

of its EBDorig value reduced in regards to table similarity. In 

contrast, an attribute pair with a PSD value below PSDavg 

indicates that relative to other pairs, its EBD discrepancy was less, 

and because of this, its attributes are more unique. Thus its 

EBDorig value should contribute more substantially to semantic 

similarity between the tables. The new weight assigned to the 

attribute pair depends upon how far above or below the PSD 

value is relative to PSDavg and relative to the PSD value of other 

attribute pairs.  

As an example, let four attribute mappings exist between two 

tables, designated att1a – att1b, att2a – att2b,  att3a – att3b and 

att4a –att4b. The pair att1a – att1b has an PSD of .174, att2a – 

att2b has a PSD value of .113,  att3a – att3b has a PSD value of 

.088 and att4a-att4b has a PSD value of .119.Then PSDavg would 

be .1235, the weight of the EBDorig between the attribute pairs 

would be changed as follows: att1a – att1b drops to 12.5%, att2a 

– att2b increases to 27.6%, att3a – att3b increases to 26.1%, and 

att4a – att4b increases to 33.8%. 

 

 

=  EBDorig(att1, att2)  x  PUatt1,att2 
(3) 

EBDcorr (att1, att2) 

PSDatt1, att2 = EBDorig(att1,att2) - EBDcorr(att1,att2) (4) 

(2) = log 
    |Satt | 

 |{t: att є t } | 
AUatt >=   0 



Attribute weighting, as described above for a single table 

comparison, is illustrated in Algorithm 3. 

4.2   Non-Geographic Matching 

If GT matching between compared attributes is not possible, then 

a non-geographic semantic similarity measure is applied by GSim. 

The distance metric used for NGT matching is known as the 

normalized Google distance. The EBD is then calculated by 

extracting the keywords making up compared instances and 

assigning them generalized semantic types. These types are 

represented as clusters of keywords, whose semantic distance 

from each other is given by NGD. 

Section 4.2.1 below first gives an overview of NGT matching 

using NGD. Section 4.2.2 provides further details on the K-

medoid clustering process, which is instrumental to the success of 

NGT matching. 

4.2.1   Overview of NGT Matching  

The algorithm for calculating the EBD between two compared 

attributes of tables in different data sources using NGT matching 

is as follows. The input is two compared attributes, with each one 

originating from a separate table, while the output is an EBD 

value indicating the semantic similarity between the input 

attributes. First, the respective keyword lists for each input 

attribute are extracted. Second, the keyword lists are combined 

into a single list for the comparison. This list is dubbed as 

Lkeywords. Third, all pairwise distances between the keywords are 

computed with the help of an external NGD repository, resulting 

in a pairwise NGD dictionary.  Fourth, the K-medoid() algorithm, 

which is described in Section 4.2.2., is executed, yielding a set of 

clusters, or NGTs, that represent generic semantic types. Finally, 

the calculation of EBD proceeds given the NGTs produced by K-

medoid(). 

4.2.2   K-Medoid Clustering 

The algorithm begins by determining the number of clusters K 

based on the size of Lkeywords for each pair of compared attributes. 

Second, exactly one keyword from Lkeywords is assigned to each of 

the K clusters in a process called initial seeding. Each of these 

keywords is then considered a medoid for its particular clustering. 

Third, we continuously assign each remaining keyword in Lkeywords 

that is not a medoid to the cluster to which it is most semantically 

related, while subsequently determining if any cluster medoids 

need to be recomputed. To do this, we need to use the NGD 

values between the keyword to be assigned to a cluster and all 

keywords already assigned to that same cluster. A given keyword, 

knew is assigned to the cluster associated with the smallest 

summation of the NGD values between knew and the cluster‟s 

constituent keywords. After all keywords have been assigned to 

clusters, finally, we determine if the medoid for any cluster needs 

to be recomputed. This is accomplished by examining each of the 

keywords in a particular cluster and computing an NGD 

summation between a single keyword in that cluster and all other 

words in that cluster. The keyword in that cluster that produces 

the lowest NGD summation will be assigned as the new medoid 

for that cluster. If no medoids have changed in any cluster, then 

the K-medoid algorithm is finished, and control proceeds to the 

calculation of the EBD between the compared attributes. 

However, if at least one medoid has changed in a particular 

cluster, then we begin a new clustering iteration. 
 

4.3   Justification of GT Matching in GSim 

Despite the utility of NGD over a number of domains, it tends to 

produce inaccurate results with regards to the GIS domain when 

the compared instances are geographically proximate, despite 

being completely different types. Figure 4 describes one particular 

example of this phenomenon. 

          

Figure 4. Example of how NGD can produce an inaccurate 

semantic similarity computation in geodata if the instances     

         being compared are geographically proximate 

 

The attribute “City”, associated with table RoadS1 is compared 

against the attribute “County” from table RoadS2. Although the 

instances are of different types, they are geographically proximate, 

as both the cities from “City” and the counties from “County” 

both describe the Dallas-Fort Worth area. As a result, even though 

the types are totally different, the exclusive usage of NGD will 

deem that the “City” attribute is semantically similar to the 

“County” attribute. This happens because NGD, by definition, is 

computed based on the probability of the co-occurrence of search 

terms x and y on a given web page indexed by the Google search 

engine. In many situations, a high probability of co-occurrence 

between x and y indicates that the terms are likely to be 

semantically similar to one another. However, as figure 4 shows, 

co-occurrence does not always imply similarity. Therefore, in 

order to correctly determine whether attribute pairs such as this 

one match, geographic type extraction is essential. 

5. EXPERIMENTS 

We now present three separate experiments that we conducted 

regarding matching between distinct data sources in the GIS 

domain. The first experiment measured GSim‟s ability to compute 

semantic similarity between two pairs of GIS databases. The 

second experiment tested GSim‟s ability to perform semantic 

similarity between tables containing a significant amount of 

missing geographic information. The third experiment illustrated 

GSim‟s attribute weighting feature, which gives it the ability to 

penalize table matches involving commonly-occurring attributes 

found through the GIS database and reward table matches 

containing attribute pairs that were unique to their respective 

tables. 

5.1   Semantic Similarity Experiment 

5.1.1    Dataset Details 



In the first experiment, two datasets from the GIS domain were 

used to evaluate the performance of GSim. The first dataset was     

created from instance data of the Road and Ferries package of a 

GIS data model known as GDF (Geographic Data Files)[21]. The 

second dataset details a wider assortment of GIS location features 

across the United States and their associated data beyond merely 

transportation networks. Some of the location features in this 

dataset include flight schools, piers, navigable waterways and 

Indian lands.  For both sets of data, the number of attributes and 

instances vary widely; for example, in the GIS location dataset, 

the Flight Schools table has the fewest number of attributes (27) 

and the Piers table has the most (76). Because data from several 

different areas of the United States were employed in our 

experiments, we effectively created a disjoint, multi-jurisdictional 

environment. Table 1 below displays a summary of the relevant 

information regarding the data involved in our experiments with 

both datasets. 

        Table 1. Description of transportation     

       dataset(top) & GIS Location Dataset (below) 

        

         
 
    Table 2a and 2b. Precision + recall values between           

    tables of S1 and S2 using N-grams and GSim relative to a    

    ground truth for (a: transportation dataset (b: GIS     

    location dataset   

       

 

 
 

5.1.2    Measurements and Parameters 
 

The results of the alignment of S1 and S2 of the compared tables 

for both the transportation dataset and the GIS location dataset 

using GSim and the N-gram method are shown in Tables 2a and 

2b, respectively. For each table comparison, there are four values. 

From left to right, the first two are the precision and recall 

(denoted as P and R, respectively) produced using N-grams 

between an attribute from a table in data source S1 and an attribute 

from a table in data source S2. The last two values are the 

precision and recall values produced by GSim between an 

attribute from a table in data source S1 and an attribute from a 

table in data source S2. As an example, for the comparison of 

Road from S1 and Ferry from S2 in table 2a, the precision and 

recall generated using N-grams are 0 and 0, respectively, while 

the precision and recall generated for GSim is .50 and 1.00, 

respectively. Next to each value is a ratio enclosed in parentheses; 

the numerator indicates the number of attribute mapping “hits” for 

a given table comparison and matching method, while the 

denominator indicates the total number of attribute mappings to 

be “hit” for that table comparison. The values produced by both 

methods exist relative to a reference alignment, or ground truth, 

which contains the attribute pairs that are supposed to be 

semantically similar. The ground truth for both datasets was 

created by human experts knowledgeable in the area of GIS. For 

our experiments, we set two standards that affected the results. 

First, we decided that whenever an attribute pair produced a 

similarity value (an EBD value) measured to be greater than or 

equal to .6, then the method determined that pair to be a match. 

Second, we set N-grams to be of size 2, since any size greater than 

2 would increase the number of possible N-grams by a margin 

significant enough such that the precision and recall values would 
almost always be too low to meet the match threshold for any 

dataset, thus rendering this method virtually useless as a semantic 

similarity measure for our experiments. Overall, the ground truth 

for the transportation dataset contained 29 correct mappings 

across all table comparisons, while the ground truth for the GIS 

location dataset contained 52 correct mappings across all table 

comparisons.  
 



5.1.3   Analysis of Results 
 

Table 2a shows the comparison of precision and recall values 

using both GSim and the N-gram method for the transportation 

dataset. Note that the precision and recall values generated by 

GSim are never lower than those produced by N-grams for any 

table comparison. In total, the average precision produced by 

GSim was .70, and its average recall was .72. In contrast, the 

average precision of N-grams was .38, and its average recall was 

.52. GSim achieved an 32% improvement over N-grams in 

precision, and a 20% improvement in recall. In fact, the only 

reason why N-grams even performed somewhat competently in 

this dataset was because of the large number of identical instances 

between many attribute pairs that happened to be semantically 

similar. Table 2b depicts even more dramatic improvements made 

by GSim. The precision and recall values for GSim are always 

higher than those produced by the N-gram method for any table 

comparison. In total, the average precision produced by GSim was 

.80, and its average recall was .61. In contrast, while the average 

precision of N-grams is .80, the average recall is a staggeringly 

low value of .06. In fact, the reason why N-grams‟ precision was 

able to match GSim‟s precision was due to the extremely low 

recall. The reason for the low recall value was primarily due to the 

lack of identical instances between the compared attributes. As a 

result, most of the comparisons using the N-gram method were 

not able to reach the .60 threshold in semantic similarity. We did 

not lower the match threshold below .6 because we felt that a 

match threshold of a value that was lower, such as .5, would not 

be a realistic match threshold for determining whether two 

schemas were similar or not. As a result, GSim‟s intrinsic 

semantic capabilities, largely resulting from GT extraction, allow 

it to achieve a 55% improvement on recall versus a syntactic 

method such as N-grams.   

 
Table 3. EBD values generated between selected tables of S1 

and S2 of GIS location dataset when incomplete values in data 

are filled in by gazetteer (number left of slash) and when the 

complete data is available (number  

                                        right of slash) 

            

5.2   Reverse Geocoding Experiment 

5.2.1 Measurements and Parameters 

The results in Table 3 above were produced by our second 

experiment. There are two values in each cell. The value to the 

right of the slash indicates the final EBD value computed between 

compared tables (found by averaging all of the EBD values 

between the attribute pairs of the tables) where no instance data 

was missing. The value to the left is the EBD value computed 

when incomplete data existed in the compared attributes of both 

tables.  In this experiment, we randomly removed 50% of the 

instance values from the “roadName” attribute common to all of 

the tables listed in Table 3, and from other attributes that 

participated in matches whose instance values represented 

geographic information. The idea was to determine the extent to 

which reverse geocoding, using latlong values for each instance 

and using our gazetteer, GeoNames, could approximate the 

correct semantic correspondence between tables. 

5.2.2   Analysis of Results 

As table 3 shows, although reverse geocoding does not return 

every instance value of an attribute involved in a comparison, at 

worst, the EBD value computed with 50% of the instance values 

missing for at least one attributes is 25% less than the actual EBD 

value (Schools-Flight Schools), and on average, the decrease in 

EBD value across all table comparisons is 14.6%. 

 

5.3 Attribute Weighting Experiment 

5.3.1    Measurements and Parameters 

To better illustrate the benefits of attribute weighting on matching 

tables, we preprocessed the attributes in a subset of the tables of 

the GIS location dataset from both databases to optimize GSim‟s 

ability to distinguish between commonly-occurring attributes and 

attributes that are more unique. The results of applying GSim‟s 

semantic weighting algorithm to a subset of the tables from the 

GIS location dataset are shown in Table 4 below. As can be seen, 

each cell contains two separate values; the value right of the slash 

represents the semantic similarity, measured as EBD, between the 

tables where all attribute mappings share equal weight, while the 

value left of the slash is the EBD produced when attribute 

weighting was used to distribute the weights among mappings 

according to uniqueness. The table names along the vertical axis 

of the table belong to S1, while the tables across the horizontal 

axis of the table belong to S2. 

Table 4. Two separate EBD values computed between a table 

from S1 and a table from S2. The  value in a given cell right of 

the slash indicates the EBD value produced with equal 

attribute weighting, while the value left of the slash is the EBD 

produced from attribute weighting 

         
 

5.3.2  Analysis of Results 

The results of table 4 show that in most cases, using attribute 

weighting causes the EBD between corresponding tables to be 

strengthened and the EBD between dissimilar tables to be 

weakened. The only exception to this trend was the drop in EBD 

measured between the Piers and Ports tables. This might indicate 

that the fairly strong semantic similarity between the tables was 

due to the contributions of commonly occurring attributes that 

were mapped to each other. Otherwise, the use of attribute 

weighting increase the EBD between pairs of corresponding tables 

(Flight Schools – Flight Schools and Schools-Schools) by 8.5% 

and 11.3%, respectively. Additionally, attribute weighting was 

used to reduce the semantic similarity between dissimilar table 

pairs (not including Piers-Ports) by an average of 19.1%.  



6. CONCLUSION AND FUTURE WORK 

In this paper, we described GSim, an algorithm that computes the 

semantic similarity of two tables belonging to distinct GIS data 

sources. It computes semantic similarity using two separate 

approaches. The first uses a gazetteer to extract GTs for all 

possible instances within the compared attributes. The weights of 

the GTs taken over all instances results in GT sets and GT weight 

lists, where each attribute features its own GT set and GT weight 

list. The similarity of these distributions determines the semantic 

similarity between the attributes, and the average over all attribute 

pairs determines the table similarity. GSim also compensates for 

situations when a lack of GT information for the instances is 

available by executing a domain independent semantic similarity 

algorithm leveraging normalized google distance. This results in 

the extraction of NGTs from the instances of the attributes, and 

semantic similarity is subsequently computed. GSim also uses 

reverse geocoding to make table comparisons possible, even with 

incomplete data. Additionally, GSim provides attribute weighting 

capabilities across tables in a GIS database that penalizes the 

similarity between table matches involving a high number of 

commonly occurring attributes found throughout the database, 

while enhancing table matches containing unique attribute 

mappings. Future efforts to improve GSim will focus on refining 

our GT extraction techniques so that we can leverage multiple 

gazetteers making use of heterogeneous feature type thesauri 

while enhancing our recall of the correct type information. Also, 

we plan to take into account geo-tagged information associated 

with images in order to enhance the accuracy of our matching 

scores. 

7.    REFERENCES 

[1]  Luiz André P. Paes Leme, Marco A. Casanova, Karin Koogan     

       Breitman, Antonio L. Furtado: Instance-Based OWL Schema  

       Matching. ICEIS 2009: 14-26. 

[2] Daniela F. Brauner, Chantal Intrator, João Carlos Freitas,      

       Marco A. Casanova: An Instance-based Approach for  

       Matching Export Schemas of Geographical Database Web  

       Services. GeoInfo 2007: 109-120. 

[3] Daniela F. Brauner, Marco A. Casanova, Ruy Luiz Milidiú:  

       Towards Gazetteer Integration Through an Instance-based  

       Thesauri Mapping Approach. GeoInfo 2006: 189-198. 

[4]  Isabel F. Cruz, William Sunna, Nalin Makar, Sujan Bathala:  

        A visual tool for ontology alignment to enable geospatial  

        interoperability. J. Vis. Lang. Comput. 18(3): 230-254  

        (2007). 

[5] E.Ralun and P. A. Bernstein, “A survey of approaches to  

       automatic schema matching”, VLDB Journal, vol. V10, pp.  

       334-350, 2001. 

[6] Bing Tian Dai, Nick Koudas, Divesh Srivastava, Anthony K.  

       H. Tung, and Suresh Venkatasubramanian, "Validating  

       Multi-column Schema Matchings by Type," 24th  

       International Conference on Data Engineering (ICDE),  

       2008. 

 

 

 

 

[7]  P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster, “Putting  

       context into schema matching.” in VLDB, 2006, pp. 307–    

       318. 

[8] R. H. Warren and F. W. Tompa, “Multi-column substring  

       matching for database schema translation.” in Proc. VLDB,  

       2006, pp. 331–342. 

[9] W.S. Li and C. Clifon, “Semint: a tool for identifying  

       attribute correspondence in heterogeneous databases using  

       neural networks,” Data Knowl. Eng., vol. 33, no. 1,pp.49-84,  

       2000. 

[10]  J. Berlin and A. Motro, “Autoplex: Automated discovery of  

         instance for virtual databases,” in Proc. CoopIS, 2001, pp.  

         108-122. 

[11]  D.W. Embley, L. Xu, and Y. Ding, “Automatic direct and  

          indirect schema mapping: experiences and lessons learned,”  

          SIGMOD Rec., vol. 33, no. 4, pp. 14–19, 2004. 

[12] Changqing Zhou, Dan Frankowski, Pamela J. Ludford,  

         Shashi Shekhar, Loren G. Terveen: Discovering personal  

         gazetteers: an interactive clustering approach. GIS 2004:  

         266-273. 

[13]  Shawn Newsam, Yi Yang: Integrating gazetteers and remote  

         sensed imagery. GIS 2008: 26. 

[14] Bruno Pouliquen, Ralf Steinberger, Camelia Ignat, Tom De  

         Groeve: Geographical information recognition and  

         visualization in texts written in various languages. SAC  

         2004: 1051-1058. 

[15] Changqing Zhou, Dan Frankowski, Pamela J. Ludford,  

         Shashi Shekhar, Loren G. Terveen: Discovering personally       

         meaningful places: An interactive clustering approach. ACM  

         Trans. Inf. Syst. 25(3): (2007). 

[16] Dhiraj Joshi, Jiebo Luo: Inferring generic activities and  

         events from image content and bags of geo-tags. CIVR  

         2008: 37-46. 

[17] Erik Wilde, Martin Kofahl: The locative web. LocWeb 2008:       

.        1-8. 

[18]   www.geonames.org 

[19] Jeffrey Partyka, Neda Alipanah Latifur Khan, Bhavani  

         Thuraisingham and Shashi Shekhar, “Content-based  

         Ontology Matching for GIS Datasets”, University of Texas  

         at Dallas (UTD Technical Report # UTDCS-22-08). 

[20]   http://code.google.com/apis/maps/documentation/  

          services.html#ReverseGeocoding 
 

[21]   http://www.ertico.com/en/about_ertico/links/gdf_-    

          _geographic_data_files.htm 
 

[22]   Michael D. Lieberman, Hanan Samet, Jagan     

          Sankaranarayanan, and Jon Sperling: STEWARD:  

          architecture of a spatio-textual search engine. In  

          Proceedings of the 15th International Symposium on  

         Advances in Geographic Information Systems. (ACM GIS  

         2007). 
 

[23]  Rudi Cilibrasi, Paul M. B. Vitányi: The Google Similarity  

         Distance CoRR abs/cs/0412098:(2004)  

  

 

 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhou:Changqing.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Frankowski:Dan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Ludford:Pamela_J=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Terveen:Loren_G=.html
http://www.informatik.uni-trier.de/~ley/db/conf/gis/gis2004.html#ZhouFLST04
http://dblp.uni-trier.de/db/indices/a-tree/n/Newsam:Shawn.html
http://dblp.uni-trier.de/db/conf/gis/gis2008.html#NewsamY08
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Pouliquen:Bruno.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Ignat:Camelia.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Groeve:Tom_De.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Groeve:Tom_De.html
http://www.informatik.uni-trier.de/~ley/db/conf/sac/sac2004.html#PouliquenSIG04
http://www.informatik.uni-trier.de/~ley/db/conf/sac/sac2004.html#PouliquenSIG04
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhou:Changqing.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Frankowski:Dan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Ludford:Pamela_J=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Terveen:Loren_G=.html
http://www.informatik.uni-trier.de/~ley/db/journals/tois/tois25.html#ZhouFLST07
http://www.informatik.uni-trier.de/~ley/db/journals/tois/tois25.html#ZhouFLST07
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Luo:Jiebo.html
http://www.informatik.uni-trier.de/~ley/db/conf/civr/civr2008.html#JoshiL08
http://www.informatik.uni-trier.de/~ley/db/conf/civr/civr2008.html#JoshiL08
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kofahl:Martin.html
http://www.informatik.uni-trier.de/~ley/db/conf/www/locweb2008.html#WildeK08
http://www.ertico.com/en/about_ertico/links/gdf_-
http://dblp.uni-trier.de/db/indices/a-tree/v/Vit=aacute=nyi:Paul_M=_B=.html
http://dblp.uni-trier.de/db/journals/corr/corr0412.html#abs-cs-0412098


Smarter Searches using Location Driven Knowledge Discovery and Mining
Satyen Abrol Tahseen Al-khateeb

 Department of Computer Science
     University of Texas at Dallas 
{sxa079300, tahseen, lkhan}@utdallas.edu

Latifur Khan

ABSTRACT

In  the  present  world  scenario,  everybody is  on the lookout  for 
suitable housing options, each having different needs (e.g. elderly 
are  looking  for  safe,  quiet  neighborhood,  while  students  are 
looking for affordable apartments close to the university/school). 
For e.g. Craigslist currently does not have a map version, making 
the  process  of  apartment  searching  a  very  long  and  laborious 
process.  This  creates  a  need  for  software  that  is  significantly 
superior  to  current  web  search  tools.  We  demonstrate  the 
development of such a tool which takes the  craigslist apartment 
listings  as  the  input,  and provides  the  user  with  the  output  on 
Google  maps.  We  then  integrate  this  functionality  with  the 
information collected from location based extraction of various 
web sources such as the city police blotter which makes apartment 
searching simpler  and faster,  helping the user to  make a better 
decision.  We  also  discuss  the  challenges  that  are  faced  in  the 
development  process,  the  raw  and  unstructured  nature  of  the 
documents,  the  existence  of  Geo-Non  Geo  &  Geo-Geo 
disambiguities and our approach in identifying the location of the 
apartment  from  informal  text  (geo-parsing  and  geo-tagging  of 
content)  to  ensure  maximum  coverage  of  the  listings.  In  this 
prototype we also show integration of point of interests such as 
locations of grocery stores, religious places, hospitals etc. along 
with the advertisement on the maps.

Categories and Subject Descriptors
D.3.3 [Information Search and Retrieval]

General Terms
Design, Algorithm, Experimentation, Verification

Keywords
Information retrieval, Text mining, Natural language processing, 
Gazetteer, Geo-parsing, Disambiguation

INTRODUCTION
The task of identifying the correct location of documents such as 
emails, news, web pages etc. has always been greatly beneficial 
for  the  purposes  of  data  mining and information  retrieval.  The 
identification of location can be used for location based services 
e.g. to find the nearest ATM machine to your house. The internet, 
now days, is filled with locally targeted advertisement. So, if an 
end user says that he is right now in Dallas, the website displays 
ads for restaurants in and around Dallas. And similarly the search 
engines, after determining the user’s location give a higher weight 
to search results which refer to his geographic area.

Geo-parsing is the process of determining geographic coordinates 
of textual words and phrases that occur in unstructured content, 
such as "six miles east of Paris". You can also geo-parse location 
references from other forms of media, e.g. audio content in which 

a  speaker  mentions  a  place.  With  geographic  coordinates  the 
features can be mapped and entered into Geographic Information 
Systems. Once the coordinates are identified the applications plot 
the geo-parsed text on to a map. 

Geo-parsing goes beyond geo-tagging (or geo-coding) as it deals 
with  ambiguous  and  unstructured  text.  There  are  two  types  of 
ambiguities  that  exist:  Geo/Non-Geo and Geo/Geo ambiguities. 
Geo/non-geo  ambiguity  is  the  case  of  a  place  name  having 
another, non geographic meaning, e.g. Paris might be the capital 
of France or might refer the socialite, actress Paris Hilton. Geo-
geo  ambiguity  arises  from the  two  having  the  same  name  but 
different geographic locations, e.g. Paris is the capital of France 
and is also a city in Texas.  Smith  et al.  report that 92% of all 
names occurring in their corpus are ambiguous [7].  

Researchers have used a variety of methods to tackle the problem 
of correctly geo-parsing the documents. In the domain of NLP, the 
techniques  of  machine  learning  are  employed  to  identify  the 
location from their structure and context. We take the Craigslist 
advertisements  consisting of  raw unstructured text,  and identify 
locations  from  them.  However,  the  extracted  locations  are 
ambiguous and we use our weight based algorithm to identify one 
single correct location.

In our work, we have made several contributions. First, a tool is 
developed that facilitates to display Craigslist advertisement onto 
Google  maps  along  with  other  relevant  information.  This 
integrated information is obtained from aggregation and analysis 
of data from POI databases and police blotters in an efficient and 
timely  manner.  Second,  we  devise  an  efficient  algorithm  to 
identify  and  disambiguate  the  correct  location  from  the 
unstructured  text  of  the  Craigslist  advertisement.  Third,  we 
describe various scenarios that  our algorithm exploits  to devise 
heuristics and strategies that increase the coverage and accuracy 
on  the  map.  Finally,  we  have  developed  a  fully  functional 
prototype and tested on real dataset collected from the Craigslist 
website.

The research paper  is organized as  follows.  Section 2 analyzes 
craigslist and its problems as a source of geo-information. Section 
3 describes the types  of  ads and the technical challenges faced 
involved in each of them.  Section 4 discusses the disambiguation 
algorithm, and describes how it identifies and disambiguates the 
location in the text.  Section 5 and 6 show how we associate a 
confidence  value  with  the  location  and  the  integration  of  web 
sources respectively. Section 7 surveys and compares the related 
work in this domain.  Section 8 and 9 discusses the results and 
concludes with some pointers for the future work.

CRAGSLIST AND ITS PROBLEMS
Craigslist is  a  centralized  network  of  online  communities, 
featuring  free online  classified  advertisements –  with  sections 



devoted  to  jobs,  housing, personals,  for-sale, 
services, community, gigs, résumés, and discussion forums [1]. 

Fig 1: Architecture of the Craigslist-Google Maps system

The site serves over twenty billion page views per month, putting 
it in 22nd place overall among web sites worldwide, eighth place 
overall  among  web  sites  in  the  United  States  (according 
to Alexa.com on June 19, 2009).

Currently Craigslist does not support a map version. So, even if 
someone is looking for an apartment near a particular location, he/
she has to browse through hundreds of listings manually before 
one can come across a good potential apartment. This makes the 
process of apartment searching a long and unpleasant process.  In 
addition to this, the user has to separately look on the internet for 
the other things like crime, median family income, and point of 
interests like grocery stores, religious places, hospitals etc. This 
creates a need for  a tool that displays  the Craigslist  ads on the 
Google  Maps,  integrated  along  with  crime  statistics,  school 
information, and other points of interest (POIs), so that it becomes 
easier for the user to make a decision.

The  content  of  the  craigslist  ads  consists  of  text  that  is 
unstructured  and  consists  of  a  lot  of  grammatical  and  spelling 
errors.  Therefore,  it  becomes  more  difficult  to  identify  and 
disambiguate the location of the apartment/house.

Figure 1 illustrates the architecture of our system. Left most entry 
of the architecture shows the processing and storing of essential 
information  from  an  advertisement.  The  middle  and  right 
databases  store  the  crime  information  and  the  location  based 
Points of Interests (POIs). 

TECHNICAL CHALLENGES
As mentioned  earlier,  the  Craigslist  ads  consist  of  unstructured 
data, usually having a location embedded in the text.  Here, we 
describe six scenarios into which all of the Craigslist ads can be 

broadly categorized. We then describe how we deal with each of 
them so as to identify and disambiguate the location.

3.1 Ads with Physical Address (APA)
APA  contains  ads  which  has  a  complete  physical  address 
mentioned with house number, street name and zip. The ads with 
Google/Yahoo map links also fall in this category.  For such ads 
the  location  extraction  is  done  through  Regular  Expression 
matching and these ads usually have a CAF value (see section 5).

3.2 Ads with just One Street name (ASN)
ASN consists  of  the  ads that  have a  street  name or  a  location 
embedded in the usual unstructured text. It is for this case that we 
use  the  disambiguation  algorithm,  to  identify  the  potential 
location of the apartment. The ads in this category in the absence 
of a  block number  fall  in  the medium or low confidence level 
category.

3.3 Ads with Intersections (AwI)



Fig. 2: A typical craigslist ad having the location as an intersection

Sometimes,  the  ad  publisher  describes  the  location  of  the 
apartment as “near A and B” or “A at B”, where ‘A’ and ‘B’ are 
the  street  names.  If  the  disambiguation  algorithm  returns  two 
different  street  names  with  comparable  weights  and  close 
proximity  to  each  other,  we  check  for  the  streets  in  the 
intersection database, for the possibility of an intersection and its 
coordinates. 

3.4 Ads with just Phone Numbers (APN)
Ads with just a phone number and no mention of the street name 
or intersection are located using the White Pages reverse lookup. 
We get the location of the person to whom the phone is registered. 
Such ads associated with very low values of confidence since we 
have no proof whether the address is of the realtor or the actual 
apartment  location.  The  same  strategy  is  used  to  boost  up  the 
confidence  level  for  ASN  and  AwI  ads  (see  Disambiguation 
Algorithm for details)

3.5 Ads having just Neighborhood (AwN)
There is a major portion of the ads that has just the name of the 
neighborhood such as Uptown, Downtown, Turtle Creek etc. This 
can help us in narrowing down the area and we can increase the 
accuracy  of  the  location.  We  search  only  the  ads  where  the 
algorithm returns no address. We maintain a table of all popular 
neighborhoods for each city,  created from information extracted 
from Wikipedia listings. We search the ads for the neighborhoods 
obtained from this table and on a match allocate the location of 
the apartment as the neighborhood. This also means a low CAF 
value (see Section 5) as compared to a physical address. This is 
especially helpful to users who are looking for an apartment in a 
particular area or neighborhood.

3.6 Ads with No Information (ANI)
This section is formed by ads where there is no mention of any 
street name or potential address, does not have a phone number or 
it  is  a  mobile  or  unpublished  number.  For  such  ads,  the 
identification of an accurate location is not possible and we just 
specify the city as the location.

Fig. 3: Diagram showing the process of identification and 
disambiguation of locations

DISAMBIGUATION ALGORITHM
The algorithm LocationFinder(Ads) is divided into several steps. 
In this section we describe the each of the steps that go into the 
process  of  identification  and  disambiguation  of  the  apartment 
location. 

Algorithm 1 LocationFinder (Ads)

Input: Set of Ads for determining location

Output: location of the each of the ads

 1: For each ad A ε Ads

 2:      (S, W)       Street_Disambiguation (A)

 3:      RS        Street [Reverse_Phone (A)]

 4:      for each Si ε S do

 5:           NW       Find Preceeding_Word (Si)

 6:  Wi         Wi + Wt_func(NW)

 7:  If (Si==RS) then Wi       Wi + WRS   // If street from 
reverse lookup matches Si , then boost score 

8:    (S1, S2, R)     Intersect (S, W)   /* Pick two intersecting streets 
with highest weights with close mutual weights */           

 9:      If (R==true) then

10:         location       LatLong(S1, S2)

11:         else location      Smax-weight (S, W)

In line 2, for each ad, we call the method, Street_Disambiguation 
that helps to identify and partly disambiguate the locations. The 
method  returns  the  vector  containing  all  possible  street  names 
with their weights. In line 3, we get search the text for a 10-digit 
number and use the White pages to do a reverse phone number 
lookup and extract  the street  name from the address.  Next,  for 
each street  in  the  vector,  we  identify  the  words  preceding and 
succeeding it. In line 6, on the basis of this we then boost up the 
weights of the street concepts. Then we boost up the scores of all 
those street  concepts  where  the  street  names match from those 
obtained from the reverse phone lookup. After this iteration, we 
first check for the possibility of an intersection. For this we pass 



the whole vector to a method Intersect which returns true with the 
street names, S1 and S2; false otherwise. In case of an absence of 
an intersection, we choose the street with the maximum weight to 
be the location.

We  now describe  the  Street_Disambiguation  method  in  detail. 
The first step of the method involves removal of all those words 
from  the  craigslist  text  that  are  not  references  to  geographic 
locations.  For  this,  we  use  the  CRF Tagger,  which  is  an open 
source tagger for English with an accuracy of close to 97% and a 
tagging speed of 500 sentences per second [2]. The CRF tagger 
identifies  all  the  proper  nouns from the text  and term them as 
keywords  {K1, K2,…,Kn}.  In  the  next  step,  the  TIGER 
(Topologically Integrated Geographic Encoding  and Referencing 
system) [3] dataset is searched for identifying the street and city 
names from amongst them. The TIGER dataset is an open source 
gazetteer  consisting of topological  records and shape files  with 
coordinates for counties, zip codes, street segments, etc. for the 
entire US. 

Algorithm 2 Street_Disambiguation (A)

Input: A: Craigslist Ad

Output: Vector (S, W): Streets and weights vector

 // Phase 1

 1:  for each keyword, Ki 

 2:       for each Sj ∈ Ki     //Sj - Street Concept

 3:            for each Tf ∈ Sj 

 4:         type       Type (Tf) 

 5:                     If (Tf occurs in A) then WSj           WSj + Wtype      

  // Phase 2

 6:  for each Ki 

 7:     for each Sj ∈ Ki 

 8:       for Tf ∈ Sj , Ts ∈ SL

 9:   If (Tf = Ts) and (Sj ≠ SL) then 

10:                        type       Type (Tf) 

11:       WeightSj       WeightSj + Wtype  

 12:  return (S, W) 

We search the TIGER gazetteer for the concepts {C1,  C2….Cn} 
pertaining  to  each  keyword.  Now  our  goal  for  each  keyword 
would be to pick out the right concept amongst the list, in other 
words disambiguate the location. For this, we use a weight based 
disambiguation method. In the phase 1, we assign the weight to 
each  concept  based on  the occurrence of  its  terms  in  the  text. 
Specific concepts are assigned a greater weight as compared to the 
more general ones. In phase 2, we check for correlation between 
concepts, in which one concept subsumes the other. In that case 
the more specific concept gets the boosting from the more general 
concept. If a more specific concept Ci is part of another Cj then the 
weight of Cj is added to that of Ci.

4.1 Creating the Intersection Database

The intersection database is created from the TIGER shape files. 
TIGER dataset  contains the streets divided into segments,  each 
uniquely identified by the starting and the ending Nodes IDs. If 
two streets intersect, they will have at least one of the two nodes 
common to both as shown in Fig 4 and Fig 5. 

Fig 4: showing the creation of intersection database

Fig 5 : showing two streets (Thackery St. and Stefani Dr.) intersecting 
and hence having a common Node ID 

We  perform  this  pre-processing,  check  the  database  for  two 
different  named  streets  having  one  node  in  common.  We also 
store the geometric coordinates of the intersection to be able to 
identify an intersection.  Algorithm 3 describes the algorithm to 
find the intersection from the street-weight vector.

Algorithm 3 Intersect (S, W)

Input: (S, W): Streets and weights vector

Output:   (S1,  S2,  R): Two intersecting streets and R is true for 
intersection; false otherwise

 1:  S1       Streetmax-weight (S, W)

 2:  for each S0 ε S

 3:      S2       { S0 : S0 ε S, S0 ≠ S1 and |W (S0) – W (S1)|<Wmin-diff }

 4:       if TIGER_INTERSECT (S1, S2) == true then

     return (S1, S2, true)

 5:  return (null, null, false)

In the first step, select the street with the maximum weight as S1. 
Then, among the remaining street concepts it looks for a street-
concept, S2 that is different from S1, but has similar weight and is 
in close proximity to it. It then checks the intersection database for 



an intersection.  If  there  is  an intersection,  it  returns  true along 
with the names of the two streets; false otherwise. 

E.g. City carries 10 points, state 5 and a street name carries 15 
points.  For  the  keyword  “Campbell”,  consider  the  concept  of 
{Street} Campbell St. / {City} Dallas/ {County} Dallas/ {State} 
Texas/  {Country}  USA.  The  concept  gets  15  points  because 
Campbell is a street name, and it gets an additional 10 points if 
Dallas is also mentioned in the text. In phase 2, we consider the 
relation  between  two  keywords.   Considering  the  previous 
example, if {Campbell St., Dallas} are the keywords appearing in 
the text, then amongst the various concepts listed for “Campbell” 
would be {Street} Campbell  St./{City} Dallas/{County} Dallas/
{State}  Texas/{Country}  USA  and  one  of  the  concepts  for 
“Dallas” would be {City} Dallas/{County} Dallas/{State} Texas/ 
{Country} USA. Now, in phase 2 we check for such correlated 
concepts, in which one concept subsumes the other. In that case 
the more specific concept gets the boosting from the more general 
concept. Here, the above mentioned Dallas concept boosts up the 
more  specific  Campbell  concept.  After  the  two  phases  our 
complete  we  re-order the concepts in descending order of their 
weights. 

Next, we prune out the concepts where the county in the domain. 
E.g. the domain of Dallas-Fort Worth area would comprise of 12 
counties.  If  we  have  a  concept  having  the  county  to  be  not 
amongst  those  twelve,  we  remove  it.  The  next  step  involves 
boosting  of  a  concept  based  on  what  occurs  just  before  the 
keyword in the original ad. E.g. if it is a sequence of digits,  or 
words  like  “at”,  “near”,  “close  to”,  “around”,  it  increases  the 
possibility of the keyword being a  street name we boost up the 
weight  accordingly.  Another  heuristic  technique  we  use  is  the 
reverse phone number lookup. If the ad has a phone number, we 
do a  reverse  phone number  lookup using White  pages  and for 
published numbers get the address. If the address also mentions 
Campbell,  we further boost up the weight of the street-concepts 
having Campbell  as  the  street  name.  Now,  we  send the vector 
having all the streets and their weights to the Intersect (S, W) and 
check for an intersection. If the street-weight vector has Campbell 
Rd. with the highest weight and Coit Rd. with comparable weight 
and the intersection database has an entry with Coit and Campbell, 
the intersection is returned as location. 

CONFIDENCE-ACCURACY FACTOR
After we have identified and disambiguated the highest weighing 
concept  from the  text,  which  refers  to  the  street  name  or  city 
name, we calculate its Confidence-Accuracy Factor (CAF). CAF, 
a number between 0 and 1, is a measure of the accuracy and the 
confidence  of  the  apartment’s  location.  Accuracy  defines  the 
exactness,  or  correctness  we  have  of  the  location.  e.g.  a  street 
name  will  have  a  lower  accuracy  as  compared  to  street-
intersection which will have a lower accuracy as compared to an 
address with a house number and street name. The confidence part 
of CAF describes the source of the location. It ascertains the belief 
in correctness of the source. Hence, an address obtained from the 
reverse  phone  number  lookup  will  have  a  low  confidence  as 
compared to a Google/Yahoo maps link. Depending on the CAF 
value, we map the apartment either as a cloud for low, a dart for 
medium and a house for high confidence-accuracy factor.

CAF = CAFconfidence + CAFaccuracy

CAFconfidence = ∑ αi / (2 * Wmax)

Where, αi is the confidence factor of the source and Wmax 

is  the maximum confidence (e.g.  a google/yahoo link 
with  a  phone  no.  which  verifies  it).  αgoogle/yahoo > 
αdisambiguation-algo > αreverse-phone

CAFaccuracy = βi / (2 * βmax)

Where βi is the accuracy factor and βmax is the accuracy 
value for a location with block number, street and city 
(most accurate). βblock-street-city > βintersection-city > βstreet-city > βcity

Fig. 6: Flowchart showing the working of the Mash up

INTEGRATION OF DATA SOURCES
While looking for an apartment, apart from the basic things like 
rent, location etc., the user is also interested in other facts like the 
safety  of  the  neighborhood,  the  nearby  public  amenities  like 
parks,  schools  etc.  Fig4.  shows  the  flowchart  describing  this 
integration.  From  the  ad  we  extract  the  information  like  rent, 
location,  number  of  bedrooms and bathrooms and store  it  in  a 
relational database. We also have location based information like 
crime,  point  of  interests  stored.  In  this  we  describe  how  we 
collect, analyze and integrate this information and show it on the 
map in a way that makes more meaning to the user.

6.1 Points of Interest (POI)
Points of Interest refer to the various specific point locations that 
someone may find useful or interesting. We had a comprehensive 
database of the over 300 POIs, provided by Homeland Security 
Information Program (HSIP). Amongst them, we selected 10 that 
pertained to the interests of someone looking for  an apartment. 
These  included  grocery  stores,  places  of  worship,  parks,  gas 
stations, schools etc. So when a user is looking an apartment apart 
from the basic things like rent, no. of bedrooms he also can see 
the nearest POIs on the same map. 

To  search  the  database  for  the  nearest  POIs  to  the  potential 
apartment  we  use the  R-tree  indexing. R-trees are typically  the 
preferred method for indexing spatial data. Objects (shapes, lines 
and  points)  are  grouped  using  the minimum  bounding 
rectangle (MBR). Objects are added to an MBR within the index 
that will  lead to the smallest  increase in its  size.   We create a 
minimum  bounding  rectangle  for  each  city  which  allows  for 
efficient and effective query processing, which is one of the key 
aspects of the application.

6.2 Crime Statistics and other Information



Safety of the neighborhood is a key considering while someone is 
looking  for  an  apartment.  For  this  reason,  we  try  to  provide 
certain pointers for the type of neighborhood such as the crime 
rating, median family income and the percentage of high school 
graduates.  For the crime rating,  we periodically scan the police 
blotter, aggregate the information, and present it in a scale from 0 
to  10  so  that  it  makes  more  sense  to  the  user.  Similarly  we 
integrate the median family income and percentage of high school 
graduates and display it along with other details of the apartment.

Fig 9 shows a potential apartment with nearest gas stations and 
hospitals. Clicking on the apartment icon gives other information 
about it including location, rent, bedrooms, crime rating, median 
family income, high school graduates and the link to the ad on 
Craigslist.

Fig 7: Screenshot #1 shows the front page of the application

Fig 8: Screenshot #2 shows all apartments for the Dallas-Fort Worth 
area

Fig 9: Screenshot #3 showing a potential apartment with information 
and nearby hospitals and gas-stations.

RELATED WORK
The  problem  of  geographic  location  identification  and 
disambiguation has been dealt with mostly two approaches. One 
involving the concepts of machine learning and NLP and the other 
using data mining approach with the help of gazetteers.

In NLP and machine learning a lot of previous work is done on 
the more general topic of Named Entity Recognition (NER). Most 
of the work makes  use of structured and well-edited text  from 
news articles or sample data from the conferences.

Most research work relies on NLP algorithms and less on machine 
learning techniques. The reason for this is that machine learning 
algorithms require training data that is not easy to obtain. Also, 
their  complexity  makes  them less  efficient  as  compared  to  the 
algorithms using the gazetteers.

Other researchers use a 5-step algorithm, where the first two steps 
of the algorithm are reversed. First, only terms appearing in the 
gazetteer  are  short  listed.  Next,  they  use  NLP  techniques  to 
remove the non-geo terms. Li et al [6] report a 93.8% precision on 
news and travel guide data.

McCurley [8]  analyzes  the  various  aspects  of  a  web  page  that 
could have a geographic association, from its URL, the language 
in the text, phone numbers, zip codes etc. Names appearing the 
text may be looked up in White Pages to determine the location of 
the person. His approach is heavily dependent on information like 
zip  codes  etc.  and  is  hence  successful  in  USA,  where  it  is 
available  free  but  is  hard  to  obtain  for  other  countries.  Their 
techniques rely on heuristics and do not consider the relationship 
between geo-locations appearing in text.

The gazetteer based approach relies on the completeness of the 
source and hence cannot identify terms that are not present in the 
gazetteer. But on the other hand they are less complex than NLP, 
machine learning techniques are hence faster.

Amitay et al. [7] present a way of determining the page focus of 
web pages using the gazetteer approach and after using techniques 
to prune the data. They are able to correctly tag individual name 
place occurrences 80% of the time and are able to recognize the 
correct focus of the pages 91% of the time. But they have a low 
accuracy for the geo/non geo disambiguation.

Lieberman et al. [9]  describe the construction of a spatio-textual 
search engine  using the gazetteer  and NLP tools,  a  system for 
extracting,  querying  and  visualizing  textual  references  to 



geographic locations in unstructured text documents. They use an 
elaborate technique for removing the stop words, using a hybrid 
model  of  Part-of-Speech  (POS)  and  Named-Entity  Recognition 
tagger. POS helps to identify the nouns and NER tagger annotates 
them  as  person,  organization,  and  location.  They  consider  the 
proper nouns tagged as locations. But this system doesn’t work 
well  for  text  where  name  of  a  person  is  ambiguous  with  a 
location. E.g. Jordan might mean Michael Jordan, the basketball 
player or it might mean the location. In that case the NER tagger 
might remove Jordan considering it to be name of a person. For 
removing geo-geo ambiguity they use the pair strength algorithm. 
Pairs of feature records are compared to determine whether or not 
they give evidence to each other, based on the familiarity of each 
location,  frequency of each location,  as well  as their  document 
and  geodesic  distances.  They  do  not  report  any  results  for 
accuracy  of  the  algorithm  so  comparison  and  review  is  not 
possible.

Craigslist acts as a medium for realtors and owners/renters for free 
and  easy  interaction.  Existing  apartment  lookup  sites  are  not 
dynamic and will not show an apartment or house that has been 
vacated very recently and is for rent/sale. Nor will  it show any 
special  deals  that  the  realtor  is  offering.   Previous  attempts  to 
mash Craigslist and Google maps [10, 11, and 12], focus only on 
the graphical interface and functionality, and lack a sophisticated 
location extraction and hence are not able to display it or fail to do 
so  accurately.  These  sites  only  display  the  listings  having  the 
Google/Yahoo maps link in it and use no geo-tagging technique. 
Other sites such as http://www.allurstuff.com [13] do a good job 
of giving a measure of accuracy but pick only the address that 
comes after the term “Location” in the advertisement. In addition 
to  these there is no site that  integrates  data  sources  to  provide 
useful other meaningful information like crime, points of interest 
etc.

RESULTS
We used a dataset comprising of 2500 randomly chosen ads from 
the  Craigslist  website  for  one  day  for  the  Dallas  Fort  Worth 
Listings.  We then removed the HTML content and cleaned the 
data of text that was recurring in each ad but was irrelevant for all 
purposes.  We  then  geo-tagged  these  first  by  looking  for 
Google/Yahoo  maps  link,  a  direct  physical  address  or  reverse 
phone  lookup  in  them.  This  portion  of  the  results  guarantees 
100% accuracy. Fig 8 shows the internal distribution of output.

Fig 10: The internal distribution of ads with physical address

 More than half of these had a map link; rest was almost equally 
divided between the exact physical address and the reverse phone 
number  lookup.  Then,  for  the  remaining  we  applied  our 

Disambiguation  algorithm and then  manually  checked  the  geo-
tags for correctness. The algorithm either returned a location or in 
the absence of a high weight street returned “null” indicating the 
absence of a street name. For those ads for which the algorithm 
returned “null”, we tried to find the neighborhood from the list of 
neighborhoods gathered from crawling Wikipedia. 

Fig 11: Results of the Craigslist-Google Maps System

Fig  9  shows  the  results  of  our  approach.  For  518  (20.72%) 
documents  we  were  able  to  either  get  an  address  from 
Google/Yahoo  map  link  or  physical  address  from  regular 
expression matching or White pages reverse phone lookup. Next, 
on  this  set  of  1982  we  used  the  algorithm,  for  which,  the 
algorithm returned street  names  for  861 (34.44%) and returned 
“null”  for  the  remaining  1121.  Finally,  we  applied  our 
“neighborhood  determining”  technique  to  successfully  identify 
neighborhoods for 20.40% ads. For the remaining 24.44% we still 
do not have an address and hence we cannot plot on the map.

We  then  tested  the  correctness  of  our  algorithm  by  manually 
annotating the entire set of documents and comparing it with the 
results. Fig 10 shows the Precision, Recall and F-measure values 
for the dataset using different approaches.  

Fig 12: shows the Precision and Recall values of our system compared 
to just Google/Yahoo Maps-link approach.

Using our approach we get a precision of 0.577, recall of 0.776 
and an F-measure  of  0.662.  Obviously,  precision value  for  the 
Google/Yahoo  maps  is  1,  but  clearly  the  recall  value  for  out 
approach  is  much  higher  as  compared  to  the  simple 
Google/Yahoo links approach showing a 3 times more coverage. 
The  coverage  is  even  lesser  for  other  known  websites  which 
create a Craigslist-Google Maps mash-up.

http://www.allurstuff.com/


CONCLUSION AND FUTURE WORK
We  developed  an  apartment  searching  tool,  which  takes  the 
Craigslist  ads  as  the  source and shows  them on Google  Maps, 
integrated  with  other  services  such  as  crime  ratings,  points  of 
interest etc making it easier for the user to come to a decision. We 
also make use of a disambiguation algorithm to correctly identify 
the location of the apartment and to increase the coverage. With 
each apartment we also associate a CAF value to give the user an 
idea  the  confidence  and  accuracy  we  have  in  the  correct 
positioning of the location. 

The  results  show  a  significant  increase  in  the  coverage  as 
compared to other sites. Since the data is so unstructured and the 
annotation  of  street  names  is  a  difficult  task,  there  is  a  still  a 
segment  of  ads  for  which  we  still  couldn’t  find  a  location.  In 
future  we  would  like  to  extend  our  system  to  increase  the 
coverage by improving the algorithm. Other future work includes 
improving  the  GUI,  making  the  system more  user  oriented  by 
giving him preferences to narrow down the search, and include 
user reviews.
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