

PAPERS ON SEMANTIC WEB RESEARCH

AT THE UNIVERSITY OF TEXAS AT DALLAS

Part I: Ontology Alignment and RDF Query Processing

Funded by

Intelligence Advanced Research Projects Activity

and

National Geospatial Intelligence Agency

2007-2009

Point of Contact:

Prof. Latifur Khan

lkhan@utdallas.edu

24 August 2009

A-PDF Merger DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com

TABLE OF CONTENTS

Published Papers

1. “A Relational Wrapper for RDF Reification”

Sunitha Ramanujam, Anubha Gupta, Latifur Khan, Steven Seida and Bhavani

Thuraisingham

Proc. of Third IFIP WG 11.11 International Conference on Trust Management (IFIPTM),

West Lafayette, USA, June 15-19, 2009 (also Invited to Electronic Commerce Research

Journal (ECRJ), Springer--Special Issue on Trust and Privacy Aspects of Electronic

Commerce).

2. “Relationalizing RDF stores for tools reusability”

Sunitha Ramanujam, Anubha Gupta, Latifur Khan, Steven Seida, Bhavani M.

Thuraisingham

In Proc. of 18th International Conference on World Wide Web, WWW 2009, Madrid,

Spain, April 20-24, 2009, Page: 1059-1060.

3. “Content-based Ontology Matching for GIS Datasets,”

Jeffrey Partyka, Neda Alipanah, Latifur Khan, Bhavani Thuraisingham, and Shashi

Shekhar

In Proc. of 16th ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems (ACM GIS 2008), Page 407-410, Irving, California, November,

2008.

4. “Ontology Alignment Using Multiple Contexts”

Jeff Partyka, Neda Alipanah, Latifur Khan, Bhavani M. Thuraisingham, Shashi Shekhar

In Proc. of International Semantic Web Conference (Posters & Demos), Karlsruhe,

Germany, October, 2008.

5. “Geospatial data qualities as web services performance metrics”

Ganesh Subbiah , Ashraful Alam , Latifur Khan , Bhavani Thuraisingham,

Proceedings of the 15th annual ACM international symposium on Advances in

geographic information Systems (ACM GIS 2007), November 07-09, 2007, Seattle,

Washington.

6. “DAGIS: A Geospatial Semantic Web Services Discovery and Selection Framework,”

Ganesh Subbiah , Ashraful Alam , Latifur Khan , Bhavani Thuraisingham,

Proceedings of the Second International Conference on GeoSpatial Semantics (GeoS

2007), 268-277, Mexico City, Mexico, November, 2007.

Accepted Papers

7. “R2D: A Bridge between the Semantic Web and Relational Visualization Tools,”

Sunitha Ramanujam, Anubha Gupta, Latifur Khan, Steven Seida and Bhavani

Thuraisingham

To appear in Proc. of Third IEEE International Conference on Semantic Computing,

Berkeley, CA, USA - September 14-16, 2009.

8. "RDFKB: Efficient Support For RDF Inference Queries and Knowledge Management,"

James Mcglothlin, and Latifur Khan

To appear in International Database Engineering & Applications Symposium (IDEAS)

Cetraro (Calabria), Italy, 16-18 September 2009.

9. “R2D: Extracting relational structure from RDF stores”

Sunitha Ramanujam, Anubha Gupta, Latifur Khan, Steven Seida, Bhavani M.

Thuraisingham

To appear in Proc. of ACM/IEEE International Conference on Web Intelligence,

September, 2009, Milan, Italy.

10. “Semantic Schema Matching Without Shared Instances,”

Jeff Partyka, Neda Alipanah, Latifur Khan, and Bhavani M. Thuraisingham

To appear in Proc. of Third IEEE International Conference on Semantic Computing,

Berkeley, CA, USA - September 14-16, 2009.

Submitted Papers

Invited Journal Paper

11. "R2D: A Framework for the Relational Transformation of RDF Data"

Sunitha Ramanujam, Anubha Gupta, Latifur Khan, Steven Seida, Bhavani

Thuraisingham

Invited to the special issue on International Journal of Semantic Computing, World

Scientific Press.

Conference Papers

12. “Storage and Retrieval of Large RDF Graph Using Hadoop and MapReduce,”

Mohammad Farhan Husain, Pankil Doshi, Latifur Khan, Bhavani Thuraisingham

Submitted to the 1st International Conference on Cloud Computing (CloudCom 2009),

December 1-4, 2009, Beijing, China

13. “Geographically-Typed Semantic Schema Matching,”

Jeffrey Partyka, Latifur Khan, Bhavani Thuraisingham

Submitted to ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems (ACM GIS 2009), Seattle, Washington, USA, November 2009.

14. “Smarter Searches using Location Driven Knowledge Discovery and Mining,”

Satyen Abrol, Tahseen Al-khateeb, Latifur Khan

Submitted to ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems (ACM GIS 2009), Seattle, Washington, USA, November 2009.

A Relational Wrapper for RDF Reification

Sunitha Ramanujam1, Anubha Gupta1, Latifur Khan1, Steven Seida2, Bhavani
Thuraisingham1

1 The University of Texas at Dallas, Richardson TX 75080, U.S.A
2 Raytheon Company, Garland TX 75042, U.S.A

{sxr063200, axg089100, lkhan, bxt043000}@utdallas.edu, steven_b_seida@raytheon.com

Abstract. The importance of provenance information as a means to trust and
validate the authenticity of available data cannot be stressed enough in today’s web-
enabled world. The abundance of data now accessible due to the Internet explosion
brings with it the related issue of determining how much of it is trustworthy.
Provenance information, such as who is responsible for the data or how the data
came to be, assists in the process of verifying the authenticity of the data. Semantic
web technologies such as Resource Description Framework (RDF) include the
ability to record such provenance information through the process of reification.
RDF’s popularity has resulted in a demand for modeling and visualization tools. The
work presented in this paper, called R2D, attempts to address this demand by
innovatively integrating existing, stable technologies such as relational systems with
the newer web technologies such as RDF. The work in this paper extends our earlier
work by adding support for the RDF concept of reification. Reification enables the
association of a level of trust and confidence with RDF triples, thereby enabling the
ranking/validation of the authenticity of the triples. Details of the algorithmic
enhancements to the various components of R2D that were made to support RDF
reification are presented along with performance graphs for queries executed on a
database containing crime records data from a police department..

Keywords: Resource Description Framework, Data Provenance, Reification, Data
Interoperability.

1 Introduction

The extensive growth of the Internet and associated web technologies has catalyzed
research into the notion of a “Semantic Web”. This notion is envisioned to augment
human reasoning and data management abilities with automated access, extraction, and
interpretation of web information. Amongst the many methodologies and standards that
are being released periodically as part of the Semantic Web initiative is the Resource
Description Framework (RDF) [1], a domain-independent data model that enables

A-PDF Merger DEMO : Purchase from www.A-PDF.com to remove the watermark

mailto:bxt043000%7D@utdallas.edu
http://www.a-pdf.com

interoperability between applications that exchange machine-comprehendible information
on the Internet. RDF records information in the form of triples, each consisting of a
subject, a predicate, and an object. The predicate is typically a verb and denotes the
relationship that exists between the subject and the object. RDF’s rapidly increasing
popularity as a web content data storage paradigm has necessitated research in the field of
visualization tools to inspect and manage data stored using this model. While efforts are
ongoing to develop new tools for this purpose, alternate research efforts are underway that
focus on integrating benefits and features available in existing methodologies with the
advantages offered by the newer web technologies.

R2D, the work presented in this paper, is one such alternative research effort the
objective of which is to salvage the time, effort, and resources expended in the
development of existing, stable, relational tools by reusing them for RDF data
visualization purposes. The advantages of relationalizing RDF stores using applications
such as R2D are manifold and include continued leveraging of the knowledge gained by
relational database domain experts, reduction of learning curves associated with mastery
of new tools, and availability of new technology to resource-constrained small and
medium-sized organizations unwilling to invest in expensive tools for fledgling
technologies such as RDF [2].

R2D enables the visualization, inspection, and examination of RDF stores using
traditional and mature relational tools. The gap between the two paradigms is bridged,
through R2D, using a JDBC wrapper that presents, at run-time, a virtual relational version
of the RDF store, thereby eliminating the necessity to duplicate and synchronize data.
This paper extends the work in [3] by incorporating support for the concept of RDF
reification at every stage of R2D’s deployment.

Reification is an important RDF concept that provides the ability to make assertions
about statements represented by RDF triples. With the increasing number of online
resources and sources of information that become available each day, the need to
authenticate the available sources becomes essential in order to be able to judge the
validity, reliability, and trustworthiness of the information [4]. This authentication is
facilitated by augmenting the sources with provenance information, i.e., information
describing the origin, derivation, history, custody, or context of a physical or electronic
object [5]. RDF Reification, a means of validating a statement/triple based on the trust
level of another statement [6], is the solution offered by the WWW consortium for users
of RDF stores to record provenance information. Thus, RDF reification is a key
component of any application requiring stringent records of the basis/foundation behind
every piece of information in the data store. In particular, reification plays a critical role in
security-intensive applications where it is imperative to maintain the privacy and
ownership of sensitive data. The provenance information captured using reification can be
used, in such applications, to monitor and control data access. The contributions of this
paper are as follows.

• We propose a mapping scheme for relationalization of RDF Stores. The mapping
algorithm extends the algorithm in [3] by including new constructs to handle and
process reification information

• Based on the created map file, we propose a transformation process that generates a
normalized, domain-specific virtual relational schema corresponding to the RDF store.
The transformation algorithm in [3] is extended to include tables and relationships for
reification data

• We extend the SQL-to-SPARQL translation algorithm in [3] by including the ability to
optionally retrieve reification data, when present, through joins
The organization of the paper is as follows. A brief overview of related research efforts

in the relational-to-rdf arena, in either direction, is provided in the following section. R2D
mapping preliminaries in terms of the high-level system architecture and mapping
constructs are given in section 3 while Section 4 presents detailed descriptions of the
various algorithms involved in the mapping process. Section 5 highlights the
implementation specifics of the proposed system with sample visualization screenshots
and performance graphs for a diverse range of queries on databases of various sizes.
Lastly, Section 6 concludes the paper

2 Related Work

With RDF being the current buzzword in the “Semantic Web” community, research
efforts are underway in various aspects of RDF such as RDF-ising relational and legacy
database systems, transforming traditional SQL queries into RDF query languages such as
RDQL and SPARQL, and optimizing performance of queries issued against RDF data
sources. However, the overall concept and objectives of R2D are unique since all research
efforts attempt to integrate relational database concepts and Semantic Web concepts from
a perspective that is opposite to that considered in our work. The only research with
objectives very closely aligned with R2D that we have been able to identify till date is
RDF2RDB [7] and differences between the two frameworks are tabulated in Table 1.

Table 1: Comparison between RDF2RDB and R2D

RDF2RDB R2D

Involves data replication resulting in resource
wastage and synchronization issues

No data replication/ synchronization issues since
relational schema is virtual

Requires presence of ontological information
(rdfs:class, rdf:property) for successful mapping

No ontological information required. Mapping
discovered through extensive examination of triple
patterns

Schema may have unnecessary tables and may not
be truly normalized

No unnecessary tables created for to 1:N or N:1
relationships

No details on blank nodes or reification data
handling

Meaningful transformations included for blank nodes
and reification nodes

No SQL-to-SPARQL transformation Since relational schema is only virtual, comprehensive

SQL-to-SPARQL transformation algorithm is
included

The D2RQ project [8], an extensively adopted open source project is another
significant player in the RDBMS-RDF mapping arena. The goals of D2RQ are the exact
reverse of our goals. They attempt to create a mapping from relational databases to RDF
Graphs, and transform RDF queries into corresponding SQL queries, thereby making
relational data accessible through RDF applications. Our goal, on the other hand, is to
enable RDF triples to be accessed through relational applications. RDF123 [9], an open
source translation tool, also uses a mapping concept in the spreadsheet domain where the
users define mappings between the spreadsheet semantics and RDF graphs for richer
translation.

Other efforts in the reverse direction include [10] where Perez and Conrad use
relational.OWL to extract the semantics of a relational database and automatically
transform them into a machine-readable and understandable RDF/OWL ontology. A few
contributions that actually consider the mapping process from the same perspective as our
research (i.e., from RDF to relational model) are the ones listed in [11]. However, all
models are very generic, involving non-application-specific tables such as resources,
literals, statements etc. that would make the determination of the problem domain
addressed by the model difficult without examining the actual data. Further, none of the
models discuss the concept of RDF reification and the relational transformation of the
same. In contrast, R2D details a mapping scheme for representing provenance information
in a relational format and enables the users to actually arrive at a complete Entity-
Relationship Diagram.

The query processing component of R2D which comprises the SQL-to-SPARQL
transformation process, once again, has no comparable counterpart while many efforts,
[12, 13, 14], are underway in the other direction, namely, SPARQL-to-SQL conversion.
Chebotko, et. al. [12] propose an algorithm to translate SPARQL queries with arbitrary
complex optional patterns to an equivalent SQL statement. Chen, et. al. [13] discuss a
methodology that supports integration of heterogeneous relational databases using the
RDF model. An SQL-based RDF Querying Scheme is presented in [14] where the RDF
querying capability is made a part of the SQL. The current research efforts presented
above indicate that no current solutions address the issue of enabling relational
applications to access RDF data without data replication. Hence, to the best of our
knowledge, R2D is unprecedented.

3 R2D Architecture and Preliminaries

Figure 1 illustrates the architecture of the proposed system along with the specific R2D
modules that are responsible for each function provided by R2D. R2D’s primary objective
is to present, through a JDBC interface, a relational equivalent of RDF triples stores to
visualization tools that are based on a relational model. It also provides an SQL Interface

that generates SPARQL versions of SQL queries and passes the same to the SPARQL
Query Engine layer for processing and RDF data retrieval.

Figure 1: R2D System Architecture and Modules

At the heart of the RDF-to-Relational transformation process is the R2D mapping
language – a declarative language that expresses the mappings between the RDF Graph
constructs and relational database constructs. In order to better understand the constructs
comprising the R2D mapping language, let us consider the sample scenario illustrated in
Figure 2.

Figure 2: Sample Scenario involving Crime Data

Every solid node with outgoing edges, such as OffenceURI, represent a
subject/resource. Edges, such as Address, Description, and Victim, represent predicates
and the solid nodes at the end of the edges, such as <Street>, <Description>, and
<Victim>, represent objects. Empty solid nodes, such as the nodes at which the Address
and ReportingOfficer predicates terminate represent blank nodes. The nodes in dashed
lines represent reified nodes with the “s”, “p”, “o”, and “t” representing the “rdf:subject”,
rdf:predicate, “rdf:object”, and the “rdf:type” predicates of the reification quad. Other
predicates of the reification nodes (other than “s”, “p”, “o”, and “t” predicates) represent
non-quad predicates. The non-quad reification properties chosen in this example may not
represent actual provenance information. They were primarily chosen to illustrate proof of
concept. Elements of Figure 2 are used, wherever applicable, to facilitate better
comprehension of the mapping constructs which are discussed in the remainder of the
section.

Some of the R2D mapping constructs pertaining to regular resources and blank nodes
that are essential in order to effortlessly comprehend the work in this paper are briefly
described below. A complete list of mapping constructs can be found in [3].

r2d:TableMap: The r2d:TableMap construct refers to a table in a relational database. In
most cases, each rdfs:class object will map to a distinct r2d:TableMap, and, in the absence
of rdfs:class objects, the r2d:TableMaps are inferred from the instance data in the RDF
Store. Typically, every solid node with multiple predicates in an RDF graph maps into an
r2d:TableMap if a similar TableMap does not already exist.
Example: The RDF graph in Figure 2 results in the creation of a TableMap called
“Offence”.

r2d:ColumnBridge: r2d:ColumnBridges relate single-valued RDF Graph predicates to
relational database columns. Each rdf:Property object maps to a distinct column attached
to the table specified in the rdfs:domain predicate. In the absence of rdf:property/domain
information, they are discovered by exploration of the RDF Store data.
Example: The Description, Victim, and Date predicates in Figure 2 become
r2d:ColumnBridges belonging to the Offence r2d:TableMap.

r2d:SimpleLiteralBlankNode: r2d:SimpleLiteralBlankNodes help relate RDF Graph
blank nodes that consist purely of distinct simple literal objects to relational database
columns. Predicates off of an r2d:SimpleLiteralBlankNode become columns in the table
corresponding to the subject of the blank node.
Example: The object of the Address predicate in Figure 2 is an example of an
r2d:SimpleLiteralBlankNode which has distinct literal predicates of Street, Block, and
Apt, which are, in turn, translated into columns of the same names in the Offence
r2d:TableMap.

r2d:ComplexLiteralBlankNode: This construct refers to blank nodes in an RDF Graph
that have multiple object values for the same subject and predicate concept associated
with the blank node. An r2d:ComplexLiteralBlankNode results in the generation of a

separate r2d:TableMap with a foreign key relationship to the table representing the subject
resource of the blank node.
Example: The object of the ReportingOfficers predicate in Figure 2 is an example of an
r2d:ComplexLiteralBlankNode that has multiple object (Badge) values for the subject
(OffenceURI) and predicate (ReportingOfficers) concept associated with the blank node.
The relational transformation for ReportingOfficers involves the generation of an
r2d:TableMap of the same name. This ReportingOfficers r2d:TableMap includes as
columns the Badge r2d:ColumnBridge and the Offence_PK column which references the
primary key of the Offence r2d:TableMap.

The concept of reification is supported using many of these previously defined
constructs along with a few new constructs and the details of the same listed in Table 3.

r2d:ReificationNode: The r2d:ReificationNode construct is used to map blank nodes
associated with “reification quads”. Under certain scenarios an r2d:ReificationNode
results in the generated of a new “reification” r2d:TableMap. These scenarios are
discussed in detail in Section 4.2. The mapping constructs specific to
r2d:ReificationNodes are discussed next.
Example: The non-solid nodes corresponding to the Address-Street predicate, the Victim
predicate, and the ReportingOfficers-Badge predicate in Figure 2 are examples of
r2d:ReificationNodes named Address_Street_Reif, Victim_Reif, and
ReportingOfficers_Badge_Reif respectively.

r2d:BelongsToTableMap: This constructs connects an r2d:ReificationNode to the
r2d:TableMap corresponding to the resource associated with “rdf:subject” of the
r2d:ReificationNode. This information is recorded in the R2D Map File for use
during the SQL-to-SPARQL translation.
Example: OffenceURI is the value of the rdf:subject predicate of the Victim_Reif
r2d:ReificationNode. The r2d:TableMap corresponding to OffenceURI is Offence.
Hence, the r2d:BelongsToTableMap construct corresponding to Victim_Reif is set to
a value of Offence, thereby connecting the reification node to a relational table.

r2d:BelongsToBlankNode: This construct connects an r2d:ReificationNode to the
r2d:[Simple/Complex][Literal/Resource]BlankNode corresponding to the blank node
associated with the “rdf:subject” of the r2d:ReificationNode.
Example: The rdf:subject of the Address_Street_Reif reification node in Figure 2
consists of a blank node resource called Address, which is an
r2d:SimpleLiteralBlankNode. Hence, for this reification node the
r2d:BelongsToBlankNode construct is used to associate Address_Street_Reif to the
Address blank node.

NOTE: Since the rdf:subject of a reification node can either refer to a proper resource
or a blank node, the r2d:BelongsToTableMap and r2d:BelongsToBlankNode
constructs are mutually exclusive. These are primarily required to enable the

generation of appropriate SPARQL WHERE clauses during SQL-to-SPARQL
translation.

r2d:ReifiedPredicate: This construct is used to record the predicate corresponding to
the “rdf:predicate” property of the reification quad mapped by the
r2d:ReificationNode construct. This information is, again, required for appropriate
SPARQL query generation.
Example: The complete URI of the Victim predicate of OffenceURI is recorded under
the Victim_Reif reification node using the r2d:ReifiedPredicate construct.

Predicates of r2d:ReificationNodes are mapped using the r2d:ColumnBridge construct
described earlier in this section. Some of the important mapping constructs specific to
r2d:ColumnBridges include:

r2d:BelongsToReificationNode: This construct connects an r2d:ColumnBridge to an
r2d:ReificationNode entity and is a mandatory component of r2d:ColumnBridges
belonging to reification nodes.
Example: The r2d:BelongsToReificationNode associated with the Victim_Gender
r2d:ColumnBridge is assigned a value of Victim_Reif, thereby linking the
Victim_Gender column with its reification node.

r2d:DataType: This construct specifies the datatype of the r2d:ColumnBridge to
which it is associated and comes into play when the structure of the virtual relational
database schema objects is examined.
Example: The Address_Block column bridge may have an r2d:DataType of Integer
while the Victim_Gender column bridge has an r2d:DataType of String.

r2d:Predicate: This construct is used to store the fully qualified property name of the
predicate which is associated with the reification r2d:ColumnBridge. This
information is used during the SQL-to-SPARQL translation to generate the SPARQL
WHERE clauses required to obtain the value of the r2d:ColumnBridge
Example: The complete URI of the Victim_Gender predicate of the Victim_Reif
reification node is recorded using the r2d: Predicate construct.

The following sections describe how each of the above mentioned R2D constructs is
utilized to transform provenance information available in RDF stores through the
reification concept into their relational equivalents.

4 Reification within the R2D Framework

In order to bring to fruition R2D’s vision and objectives, various algorithms were
designed and developed to implement each component, highlighted in Figure 1, within the
R2D framework. The algorithmic details of each R2D module for translation of regular
resources and blank nodes are described in depth in [3] and are omitted from this paper

due to space constraints. The following sections discuss the algorithmic aspects
specifically associated with the presentation of a relational view of RDF reification data.

4.1 Mapping Reification Nodes – RDFMapFileGenerator

The RDFMapFileGenerator is the first component in the R2D transformation framework.
It is responsible for the generation of a map file containing the correlations between meta-
data gleaned from the input RDF store and their relational schema equivalent.

The reification data processing component of the RDFMapFileGenerator is quite
straightforward. Every blank node corresponding to a “reification quad” is mapped using
the r2d:ReificationNode construct. If the “rdf:subject” property of the “reification quad”
mapped by the r2d:Reification construct is a resource, the r2d:BelongsToTableMap
construct is used to associate the “reification quad” with the r2d:TableMap corresponding
to the resource. If the “rdf:subject” property is a blank node, the
r2d:BelongsToBlankNode construct is used to associate the “reification quad” to the r2d:
[Simple/Complex][Literal/Resource]BlankNode associated with the “rdf:subject” blank
node. Further, if the rdf:object property of the “reification quad” refers to another
resource, then r2d:RefersToTableMap construct is used to store this relationship. This
information is used in the case of 1:N relationships between two TableMap entities during
the SQL-to-SPARQL transformation. Column 1 of Table 2 is the mapping file excerpt for
the Victim_Reif and the Address_Street_Reif reification nodes from Figure 2.

Every non-quad predicate of the reification blank node is mapped using the
r2d:ColumnBridge construct and is associated with its reification node using the
r2d:BelongsToReificationNode construct. Furthermore, the datatype of the object
corresponding to the non-quad predicate is mapped using the r2d:Datatype construct and
the URI of the non-quad predicate itself is recorded using the r2d:Predicate construct, for
use during the SQL-to-SPARQL transformation. An excerpt from the mapping file that
includes information for the Victim_Gender and the Address_Street_Direction properties
of the corresponding reification nodes from Figure 2 is listed in Column 2 of Table 2.

Table 2: Mapping of Reification Nodes and their Predicates in the R2D Map File

Map File Excerpt for Reification Nodes Map File Excerpt for Predicates of Reification Nodes

map:Victim_Reif a r2d:ReificationNode;
r2d:belongsToTableMap map:Offence;
r2d:datatype xsd:String;
r2d:reifiedPredicate <http://Victim>;
.
map: Address_Street_Reif a

r2d:ReificationNode;
r2d:belongsToBlankNode map: Address;
r2d:datatype xsd:String;
r2d:reifiedPredicate <http://Address/Street>;
.

map: Victim_Gender a r2d:ColumnBridge;
r2d:belongsToReificationNode map: Victim_Reif;
r2d:datatype xsd:String;
r2d:predicate <http:// Reification/Gender>;
.
map: Address_Street_Direction a r2d:ColumnBridge;
r2d:belongsToReificationNode map:Address_Street_Reif;
r2d:datatype xsd:String;
r2d:predicate <http://Reification/StreetDirection>;
.

Complex reification nodes, such as ones that contain one or more blank node predicates,
are processed using the Depth-First-Search tree algorithm (similar to mixed blank nodes
processing [3]). Every blank node encountered during DFS is mapped using the
r2d:SimpleLiteralBlankNode construct. Every predicate of the blank node is mapped
using the r2d:ColumnBridge construct and is linked to it’s parent blank node using the
r2d:BelongsToBlankNode construct. Every complex reification node is mapped using the
r2d:ComplexReificationNode construct. Blank node objects belonging to an
r2d:ComplexReificationNode are connected to the r2d:ComplexReificationNode using the
r2d:BelongsToReificationNode construct.

4.2 Relationalizing Reification Data – DBSchemaGenerator

The second stage of the R2D transformation framework, the DBSchemaGenerator,
involves the actual virtual, normalized, relational schema generation for the input RDF
store based on information in the map file created in stage one. Details of the algorithm
pertaining to the relational transformation of reification data are discussed below.
01 Algorithm DBSchemaGenerator (for Reification)
02 Input: RDF-to-Relational Schema Mapping File
03 Output: A Normalized Relational Schema
04 Begin
05 For every entry of type r2d:ReificationNode or r2d:ComplexReificationNode
06 ParentTable = ReificationNode.BelongsToTableMap OR ReificationNode.BelongsToBlankNode
07 If ParentTable.Type = "Table" OR ParentTable.Type = "SimpleLiteralBlankNode" then
08 If ReificationNode.ReifiedPredicate refers to MultiValuedColumnBridge then
09 If MVCB represents N:M relationship then
10 ReificationTable = Table corresponding to MVCB
11 Else /* Line 09 if */
12 ParentTable = Table on N-side of the relationship
13 ReificationTable = ParentTable_Reification
14 End if /* Line 09 if */
15 Else /* Line 08 if */
16 ReificationTable = ParentTable_Reification
17 If reification table for ParentTable does not exist then
18 Tables += ReificationTable
19 End if
20 End if /* Line 08 if */
21 Else /* Line 07 if */
22 ReificationTable = Table Corresponding to Blank Node
23 End if /* Line 07 if */
24 For every entry of type r2d:ColumnBridge with r2d:BelongsToReificationNode
25 If column does not exist in ReificationTable then
26 ReificationTable.columns += column
27 End if
28 End For /* Line 24 For */
29 For every entry of type r2d:SimpleLiteralBlankNode(SLBN) with r2d:BelongsTo(Complex)ReificationNode
30 For every r2d:ColumnBridge with r2d:BelongsToBlankNode = above SLBN
31 Repeat Steps 24-28
32 End For /* Line 30 For */

33 For every entry of type r2d:SimpleLiteralBlankNode that belongs to Line 29’s SLBN
34 Repeat Steps 29-36
35 End For /* Line 33 For */
36 End For /* Line 29 For */
37 End For /* Line 05 For */
38 End Algorithm

Figure 3: DBSchemaGenerator Algorithm

Case (a) For every r2d:TableMap in the virtual relational schema corresponding to an
RDF store an additional r2d:TableMap (i.e., a virtual relational table) of type
“ReificationTable” is created in the schema if any of the following conditions hold:
a) An r2d:ColumnBridge corresponding to a predicate of a resource that maps to the

r2d:TableMap is reified
b) A r2d:MultiValuedColumnBridge (MVCB) that results in the addition of a column to

this r2d:TableMap is reified
c) A predicate corresponding to an r2d:SimpleLiteralBlankNode (SLBN) associated

with a resource that maps to the r2d:TableMap is reified
d) An r2d:ColumnBridge associated with a predicate of an r2d:SimpleLiteralBlankNode

(SLBN) object is reified.
This additional reification table houses the columns corresponding to every single-

valued property (other than the 4 properties comprising the quad) of the “reification
quads” arising from the 4 conditions described above. In order to better understand the
intricacies of the algorithm let us consider the scenario depicted in Figure 2.

The reification of the Victim predicate in Figure 2 is an example of condition (a) above
while reification of the Street predicate of the Address SLBN is an example of condition
(d). The relational transformation of these reification nodes results in the creation of a new
virtual relational table (called Offence_Reification) with the following columns
(corresponding to the predicates of the reification quads): Address_Street_Direction,
Victim_Gender, Victim_Race, and Victim_Age.

Case (b) In the case of reification of MultiValuedColumnBridges that result in the
creation of a new join table and reification of other kinds of blank nodes other than
SLBNs (more details on the various blank node types and their relational representations
can be found in [3]), no new reification table is created. Non-quad properties
corresponding to such reifications are added as columns to the existing r2d:TableMaps
resulting from relationalization of the MVCBs and blank nodes. Reification of the Badge
predicate of the ComplexLiteralBlankNode (CLBN) ReportingOfficers in Figure 2 is one
such example where an OfficerName column (corresponding to the non-quad predicate of
the reification node for Badge) is added to the Offence_ReportingOfficers TableMap that
results from the relational transformation of the ReportingOfficers CLBN.

Complex reification nodes are nodes where the non-quad predicates include one or
more (nested) blank nodes. Due to the numerous types of such mixed combinations that
are possible, it would be nearly impossible to arrive at an accurate normalized
representation of the same. Hence, r2d:ComplexReificationNodes are processed by
flattening their relational equivalents. Depending on whether Case (a) or Case (b) is

applicable to the r2d:ComplexReificationNode, either a new or an existing table houses
the reification columns. Predicates of literal and resource objects that are at the leaf nodes
of the tree rooted at the r2d:ComplexReficationNode are translated into columns in that
table.

4.3 Querying Reification Data – SQL-to-SPARQL Translation

The final stage of the R2D transformation framework involves the translation of SQL
statements issued against the virtual relational schema generated by stage 2 into
equivalent SPARQL queries that are executed against the actual RDF store. This is
achieved through the translation algorithm, which also ensures that triples retrieved from
the RDF store are returned to the relational visualization tool in the expected tabular
format. The translation algorithm presented here extends the earlier version [3] by
including the ability to translate queries issued against the virtual tables corresponding to
reification data.

The SQL-toSPARQL translation process transforms single or multiple table queries
with or without multiple where clauses (connected by AND, OR, or NOT operators) and
Group By clauses. Due to space constraints, only a high level description of the algorithm
is discussed below along with examples to illustrate the translation process.

In order to understand the intricacies of the translation algorithm, let us consider the
following SQL query based on the scenario depicted in Figure 3.
SELECT address_street, address_street_direction, address_block, victim_gender,
reportingOfficers_badge, reportingOfficers_name FROM Offence, Offence_Reification,
Offence_ReportingOfficers where Offence.Offence_pk = Offence_Reification.Offence_pk AND
Offence.Offence_pk = Offence_ReportingOfficers.Offence_pk WHERE address_block = ‘1100’;

The first step in the translation process involves the generation of the SPARQL
SELECT clause. For every field in the original SQL SELECT list, a variable is added to
the SPARQL SELECT list. The SPARQL SELECT list after fields processing is:
SPARQLSelect = SELECT ?address_street, ?address_street_direction, ?address_block, , ?
victim_gender, ?reportingOfficers_badge, ?reportingOfficers_badge_name

The processing of regular columns for generation of SPARQL WHERE and FILTER
clauses is described in [3]. The resulting SPARQL WHERE clause after processing of
regular, non-reification columns as detailed in [3] is as follows:
SPARQLWhere = WHERE {

?Offence <http://Offence/Address> ?Offence_Address .
?Offence_Address <http://Offence/Address/Street> ? address_street .
?Offence_Address <http://Offence/Address/Block> ? address_block .
?Offence <http://Offence/ReportingOfficers> ?Offence_ReportingOfficers .
?Offence_ReportingOfficers http://Offence/ReportingOfficers/Badge ?reportingOfficers_badge
FILTER (?address_block = ‘1100’) }

http://Offence/ReportingOfficers/Badge

(a) For fields belonging to tables of type “ReificationTable” corresponding to non-
complex reification nodes, if the reification quad to which the field belongs reifies a
resource (and not a blank node), clauses of the form [OPTIONAL] { ?reificationQuad
<rdf:subject> ?resourceTableMap . ?reificationQuad <rdf:predicate> ?
reificationQuad.r2d:ReifiedPredicate . ?reificationQuad <non-quadPredicate> ?
reificationColumn . ?reificationQuad <rdf:object> ?reifiedObjectField .} are added to the
SPARQL WHERE clause. The reification quad corresponding to the victim_gender
column is one such reification. The OPTIONAL keyword is optional and is only required
for queries involving outer joins. Also, if the field corresponding to the object being
reified is not part of the SPARQL WHERE clause, an appropriate selection clause is
added to the same. The SPARQL WHERE clauses resulting from the processing of the
victim_gender column are:

REIFClause1 = ?Offence <http://Offence/Victim> >offence_victim .

?Victim_Reif <rdf:subject> ?Offence . ?Victim_Reif <rdf:Predicate>
<http://Offence/Victim> . ?Victim_Reif <rdf:Object> ?offence_victim . ?Victim_Reif
<http://Offence/Victim/Gender> ?victim_gender.

Processing of reification columns belonging to
{Literal/Resource}MultiValuedColumnBridge ({L/R}MVCB) tables is similar to the
above case with an additional step to identify the parent table from which the
{L/R}MVCB table is derived through normalization.

In the case of RMVCB tables where the rdf:object of the reification quad is a resource
that maps to another r2d:TableMap (through the r2d:refersToTableMap construct), an
additional clause of the form
?subjectResourceTableMap <reificationQuad.r2d:ReifiedPredicate> ?
objectResourceTableMap . is added to the SPARQL WHERE clause.

(b) For fields belonging to tables of type “ReificationTable”, if the reification quad
to which the field belongs reifies a blank node, clauses of the form given below are added
to the SPARQL WHERE clause. Further, if the rdf:object of the reification quad is a
resource mapping to another r2d:TableMap then the following additional clause of the
form ?BlankNode <reificationQuad.r2d:ReifiedPredicate> ?objectResourceTableMap .
is appended to the SPARQL WHERE Clause.

?ParentTableofBlankNode <BlankNodePredicate> ?BlankNode . [OPTIONAL] {?
reificationQuad <rdf:subject> ?BlankNode . ?reificationQuad <rdf:predicate> ?
reificationQuad.r2d:ReifiedPredicate . {?reificationQuad <rdf:object> ?reifiedObjectField .?
reificationQuad <non-quadPredicate> ?reificationColumn}

The address_street_direction reification column belonging to the “Name” SLBN in
Figure 3 is an example such a reification and the addition to the SPARQL WHERE clause
after processing of the same is as given below.

REIFClause2 = ?Address_Street_Reif <rdf:subject> ?Offence_Address . ?Address_Street_Reif
<rdf:Predicate> <http://Offence/Address/Street> . ?Offence_Address <rdf:Object> ?

http://Offence/Victim/

address_street . ?Address_Street_Reif <http://Offence/Address/Street/Direction> ?
address_street_direction .

Reification columns belonging to CLBNs are processed in a manner very similar to the
previous scenario (Scenario (b)). The reification column ReportingOfficers_Badge_Name
belonging to the “ReportingOfficers” CLBN in Figure 3 falls in this category and the
SPARQL WHERE clauses for this reification are as follows.

REIFClause3 = ?ReportingOfficers_Reif <rdf:subject> ?Offence_ReportingOfficers . ?
ReportingOfficers_Reif <rdf:Predicate> <http://Offence/ReportingOfficers/Badge> . ?
ReportingOfficers_Reif <rdf:Object> ?reportingOfficers_badge . ?ReportingOfficers_Reif <http://
Offence/ReportingOfficers/Badge/Name> ?reportingOfficers_badge_name .

Reification columns belonging to r2d:TableMaps corresponding to all other kinds of
blank nodes are processed using either scenario (a) or (b) depending on the whether the
“rdf:subject” of the reification node is a resource or a blank node.

(c) For fields derived from complex reification nodes, the sequence of predicates
leading from the reification node to the (leaf) field are obtained by traversing the tree
structure stored during the map file generation process. A WHERE clause is added to the
SPARQL WHERE for each of the predicates in sequence.

After the translation procedures described above are applied to the given example SQL
statement, the final transformed SPARQL Query is:
SPARQL Statement = SPARQLSelect+ SPARQLWhere+ REIFClause1+ REIFClause2+
REIFClause3

The transformed SPARQL Query is executed and the retrieved data is returned in
relational format seamlessly.

5 Experimental Results

The hardware used for our simulation exercises was a Windows machine with 4GB RAM
and 2 GHz Intel Dual Core processor. The software platforms and tools used include Jena
2.5.6 to manipulate the RDF triples data, MySQL 5.0 to house the RDF data in a
persistent manner, and DataVision v1.2.0, an open source relational tool,
[http://datavision.sourceforge.net/], to visualize, query, and generate reports based on the
RDF data. Lastly, BEA Workshop Studio 1.1 Development Environment along with Java
1.5 was used for the development of the algorithms and procedures detailed in Section 4.

5.1 Experimental Datasets

The dataset used in the experiments below is a subset of crime data downloaded from a
police department website. The data has triples pertaining to cities and zip codes where
crimes were committed, and details of committed crimes as illustrated in Figure 3. While

the DataVision screenshots include actual, valid crime data, the voluminous datasets used
in the query performance evaluations was artificially generated through a data loading
program. However, the structure of the simulated data was kept identical to that of the
actual crime dataset and, hence, the results obtained can be directly applied to actual
crime data of those volumes. For query performance experiments, Jena’s in-memory
model was used to load and query the data.

5.2 Simulation Results

The relational equivalent of the crime data was generated using the
RDFMapFileGenerator and DBSchemaGenerator Algorithms detailed in Section 4. The
time taken by the map file generation process without any data sampling incorporated for
RDF stores of various sizes, with and without reification information, was compared with
time taken for the same process when two sampling methods were applied and the results
are illustrated in Figure 4. Reified versions of the crime dataset were created by adding
reification information to the Address (Address_Type) and Victim (Gender, Race, Age)
objects in Figure 2. This reification information was created for 50% of the offence data
in the data stores.
The process is especially time-intensive for large databases without structural information
(which is the case with our experimental data set) but this is only to be expected since the
RDFMapFileGenerator has to explore every resource to ensure that no property is left
unprocessed. Furthermore, since even adding reification information for only 50% of the
triples in the RDF store resulted in a 25% increase in the size of the data store, the
increase in map file generation time for databases with reification information is also
predictable. However, the sampling techniques applied improved the performance of the
algorithm by a large factor.

Figure 4: Map File Generation Times with/without Sampling for reified/un-reified data

Figure 5 is a screenshot of DataVision’s Report Designer along with an inset of the
database schema as seen by DataVision. The r2d:SimpleLiteralBlankNode associated with
Offence-Address is resolved into columns belonging to the Offence table, and the

r2d:ComplexLiteralBlankNode associated with Offence-ReportingOfficers is resolved into
a 1:N table of the same name. Reification columns are segregated into corresponding
reification tables. This schema is populated through the GetDatabaseMetaData Interface
in the Connection class of the JDBC API within which the two algorithms,
RDFMapFileGenerator and DBSchemaGenerator, are triggered. At this juncture, the
Statement, the Prepared Statement, and the ResultSet JDBC Interfaces are invoked, which
in turn trigger the SQL-to-SPARQL translation algorithm and return the obtained results
to DataVision in the expected tabular format.

Figure 5: DataVision Report Designer, Relational Schema, and Query Processing

While DataVision has options to specify aggregation and grouping functions,
DataVision’s support group has, for reasons that are not applicable to our academic test
environment, disabled the GROUP BY facility. For the purposes of our research, we have
enabled the functionality.

An excerpt from the output returned to DataVision by the SQL-to-SPARQL translation
algorithm for the SQL statement in Figure 5 is shown in Figure 6. Selected fields from
this output were utilized by another independent application to plot the crime details on
Google maps as also illustrated in Figure 6.

Figure 6: Excerpt from Datavision’s output in report form and Google Maps plot form

In order to study the performance impact incurred by reification two versions of 4
queries were executed on simulated crime datasets of various sizes. The second version
was created by including one or more reification fields to the first version. Figure 7
displays the response times of each of the queries as the sizes of the databases vary.

Figure 7: Response times for the chosen Queries

As was anticipated, reification adds overheads to query processing times as adding a
reification quad for a triple results in the addition of a minimum of 4 to 5 extra triples to
the data store. However, the time taken for SQL-to-SPARQL conversion is negligible and
nearly constant. Thus, R2D does not add overheads to the SPARQL query performance.

SQL queries issued against relational databases created by physically duplicating RDF
data may exhibit even better performance since refined performance optimization options
have been at the disposal of relational databases for many decades. However, this
improved performance comes at the expense of additional disk space due to duplication of
data, and additional system resources and human effort required to synchronize the data.
On the other hand, for possibly a small price in terms of response time, R2D offers an
avenue for users to continue to take advantage of readily available visualization tools
without having to “reinvent the wheel”.

6 Conclusion

Provenance Information plays a pivotal role in evaluating quality of data and determining
trust in the source of data. This paper extends the R2D framework in [3] by including the
ability to represent provenance information available in RDF stores, through the process
of reification, in a relational format accessible through traditional relational tools. A
JDBC interface aimed at accomplishing this goal through a mapping between RDF
reification constructs and their equivalent relational counterparts was presented. The
modus operandi of the proposed system was described along with in depth discussion on
the algorithms comprising the R2D framework. Graphs highlighting response times for
map file generation and query processing obtained using databases of various sizes, both
with and without reification data, were also included. Future directions for R2D include
providing support for the ability to relate an entity key field to multiple r2d:TableMaps
corresponding to resources belonging to different classes, and improving the
normalization process for mixed blank nodes and complex reification nodes.

7 References

1. W3C Recommendation (2004) RDF Primer. http://www.w3.org/TR/rdf-primer/.
Accessed 28 January 2009

2. Hendler J (2006) RDF Due Diligence. http://civicactions.com/blog/rdf_due_diligence.
Accessed 15 January 2009

3. Ramanujam S, Gupta A, Khan L et al (2008) A Framework for the Relational
Transformation of RDF Data. UTD Technical Report UTDCS-40-08.
http://www.utdallas.edu/~sxr063200/Paper2.pdf. Accessed 29 January 2009

4. Da Silva Almendra V, Schwabe D (2006) Trust Policies for Semantic Web
Repositories. In Second Semantic Web Policy Workshop: 17-31

5. Buneman P, Chapman A, Cheney J (2006) Provenance Management in Curated
Databases. In Proceedings of the 2006 ACM SIGMOD International Conference on
Management of Data: 539-550

6. Powers S (2003) Practical RDF. O’Reilly Media.
7. Teswanich W, Chittayasothorn S (2007) A Transformation of RDF Documents and

Schemas to Relational Databases. In IEEE PacificRim Conferences on
Communications, Computers, and Signal Processing: 38-41

8. Bizer C, Cyganiak R, Garbers J et al (2007) The D2RQ Platform.
http://www4.wiwiss.fu-berlin.de/bizer/d2rq/. Accessed 29 January 2009

9. Han L, Finin T, Parr C et al (2008) RDF123: From Spreadsheets to RDF. International
Semantic Web Conference, LNCS 5318: 451-466

http://www4.wiwiss.fu-berlin.de/bizer/d2rq/
http://www.utdallas.edu/~sxr063200/Paper2.pdf
http://civicactions.com/blog/rdf_due_diligence
http://www.w3.org/TR/rdf-primer/

10. Perez de Laborda C, Conrad S (2006) Bringing Relational Data into the Semantic Web
using SPARQL and Relational OWL. In: 22nd International Conference on Data
Engineering Workshops:55

11. Melnik, S (2001) Storing RDF in a Relational Database.
http://infolab.stanford.edu/~melnik/rdf/db.html. Accessed 29 January 2009

12. Chebotko A, Lu S, Jamil HM et al (2006) Semantics Preserving SPARQL-to-SQL
Query Translation for Optional Graph Patterns. Technical Report TR-DB-052006-
CLJF. Wayne State University. Accessed 15 January 2009

13. Chen H, Wu Z, Wang H et al (2006) RDF/RDFS-based Relational Database
Integration. 22nd International Conference on Data Engineering: 94-104

14. Chong EI, Das S, Eadon G et al (2005) An Efficient SQL –based RDF Querying
Scheme. 31st International Conference on Very Large Databases: 1216-1227.

http://infolab.stanford.edu/~melnik/rdf/db.html

Relationalizing RDF Stores for Tools Reusability
Sunitha Ramanujam1, Anubha Gupta1, Latifur Khan1, Steven Seida2, Bhavani Thuraisingham1

1 The University of Texas at Dallas
800, West Campbell Road

Richardson, TX 75080-3021
{sxr063200, axg089100, lkhan,

bxt043000}@utdallas.edu

2 Raytheon Corporation
1200 South Jupiter Road

Garland, TX 75042
steven_b_seida@raytheon.com

ABSTRACT
The emergence of Semantic Web technologies and standards such
as Resource Description Framework (RDF) has introduced novel
data storage models such as the RDF Graph Model. In this paper,
we present a research effort called R2D, which attempts to bridge
the gap between RDF and RDBMS concepts by presenting a
relational view of RDF data stores. Thus, R2D is essentially a
relational wrapper around RDF stores that aims to make the variety
of stable relational tools that are currently in the market available to
RDF stores without data duplication and synchronization issues.

Categories and Subject Descriptors
D.2.12 [Interoperability]: Data Mapping and Interoperability
between applications

General Terms
Algorithms, Design, Management.

1. INTRODUCTION
Every new data storage paradigm comes with its own demands for
data modeling and visualization tools to simplify data management.
In order to salvage the time, effort, and resources exhausted in the
development of such tools for existing, mature technologies such as
relational database management systems, it would be prudent to
focus on research efforts that attempt to recycle these tools for new
data models such as the RDF Graph Model. R2D is one such effort
that attempts to eliminate the learning curves associated with
mastering new tools and to leverage the advantages offered by the
relational tools while continuing to reap the benefits provided by the
newer web technologies and standards such as RDF.

R2D, which could be considered as the complement of D2RQ [1]
since it works in the reverse direction, uses a declarative mapping
scheme for the translation of RDF Graph structures to equivalent
relational schema constructs. Functionalities provided by R2D are:
• Ability to infer the entities comprising the RDF store, their

attributes, and the relationships that exist between them.
• Ability to generate a meaningful, normalized, domain-specific

relational schema corresponding to the RDF store.
• Ability to appropriately transform blank nodes, RDF containers,

and RDF collections to relational entities/attributes.
• Ability to access information in a non-RDBMS data store using

relational data visualization tools
• Ability to query a non-RDBMS data store using conventional

SQL statements
R2D is implemented as a JDBC wrapper around RDF stores and the
system architecture is illustrated in Figure 1.

Figure 1. R2D System Architecture

At the heart of the transformation of RDF Graphs to virtual
relational database schemas is the R2D mapping language and
details of the same are presented below.

2. R2D Mapping Constructs
The chief construct of the R2D mapping language is the TableMap,
which refers to a table in a relational database. Each rdfs:class
object in the RDF store maps to a distinct r2d:TableMap, and, in the
absence of rdfs:class objects, the r2d:TableMaps are inferred from
the instance data in the RDF Store. Each TableMap entity has a set
of columns which correspond to the predicates associated with the
resource mapped by the TableMap. Simple predicates are mapped
using the r2d:ColumnBridge construct while multi-valued predicates
are mapped using the r2d:MultiValuedColumnBridge construct.
Foreign key relationships are handled using the
r2d:refersToTableMap construct. R2D also supports a variety of
blank node scenarios such as single or multi-valued literal blank
nodes, single or multi-valued resource blank nodes, and mixed
(literal/resource) blank nodes using a variety of constructs that are
described in [2]. RDF features such as RDF Containers and RDF
Collections are also supported using the above-mentioned blank
node mapping constructs. Lastly, R2D provides the
r2d:MultiValuedPredicate construct to handle RDF triples that
essentially map to multi-valued attributes in the relational domain.
The “MultiValued” constructs are vital to ensure the generation of a
normalized relational schema corresponding to the RDF store.

3. RDF Modules
There are three modules comprising the R2D framework. A) The
first module is the RDFMapFileGenerator module which takes an
RDF triples database as input and produces a mapping file as output.
The map file generator includes detailed specifications to handle a
variety of RDF blank nodes, containers, and collections. This
module can be bypassed in the presence of a domain expert who can
provide the mapping file manually. B) The second module is the
DBSchemaGenerator, which parses the map file generated by the

Copyright is held by the author/owner(s).
WWW 2009, April 20-24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

WWW 2009 MADRID! Poster Sessions: Wednesday, April 22, 2009

1059

first module and, for the RDF store, presents a list of relational
tables, columns, and the relationships between them. C) The last
R2D module is the SQL-to-SPARQL transformation process that
transparently converts any SQL statement issued against the virtual
relational schema generated by DBSchemaGenerator into its
SPARQL equivalent, and transforms the results obtained from the
SPARQL Query Engine into a relational/tabular format. This
module includes the ability to translate SQL pattern matching and
aggregation functionality into appropriate SPARQL clauses where
applicable.

4. SAMPLE SCENARIO
The example RDF database stored using Jena 2.5.6 and considered
for experimentation and elucidation purposes is one which has
information pertaining to employees, departments, and projects.
Employees have literal properties such as Name and Address. They
also have blank nodes that contain phone numbers and projects
information for the employee, and a resource predicate that
associates a department with each employee. The map file excerpt
corresponding to the Employee entity is listed in Figure 2 along
with the relational schema corresponding to the RDF store, as seen
through the relational visualization tool, DataVision [3]. A more
detailed description of the various R2D Mapping constructs and
schema generation processes can be found in [2].

Figure 2: Map File Excerpt for "Employee" and Relational

Schema for RDF Store
The mapping information from the map file is used by the SQL-to-
SPARQL translator to convert any SQL statements issued against
the virtual relational schema into its SPARQL equivalent. One such
query issued through DataVision and its converted SPARQL
equivalent is illustrated in Figure 3.

Figure 3: SQL-to-SPARQL Transformation

5. PERFORMANCE RESULTS
The performance of data retrieval using R2D was compared with
that obtained using an RDF visualization tool called GRUFF [4]
using a variety of queries of varying complexity. R2D queries were
fired against Jena’s in-memory data store. Table 1 lists the results
obtained for an RDF triples database size of 0.5M.

Table 1: Query Performance Results

QUERY GRUFF R2D

3 Projections, 1 Where clause for LIKE, 2-table join 315secs 8secs
4 Projections involving properties and
SimpleLiteralBlankNodes, 3 Where clauses
involving LIKE and equality operators connected
using conjunction and disjunction, 2-table join

315secs 6secs

3 Projections involving properties and
SimpleResourceBlankNodes, 3-table join

600secs 6secs

4 Projections from both types of blank nodes above,
aggregation function using Group By, 3-table join

550secs 8secs

The performance results highlight the fact that R2D’s performance
is far superior to that of the direct RDF visualization tool. Further,
the time taken by the SQL-to-SPARQL translation process is
negligible and, hence, R2D does not add any overheads to the
SPARQL Query processing performance.

6. CONCLUSION
In today’s highly web-enabled world, R2D offers users the ability to
reuse existing knowledge and resources by enabling the integration
of traditional mature and stable relational tools with the newer
semantic web technologies such as RDF stores. The competitive
query performance results obtained through R2D make it a viable
contender in the RDF data visualization and management arena.
Future work includes support for reification.

7. REFERENCES
[1] Bizer, C., and Cyganiak, R. D2R – Publishing Relational

Databases on the Semantic Web. 5th International Semantic
Web Conference, 2006

[2] Ramanujam, S., Gupta, A., Khan, L., Seida, S., Thuraisingham,
B. A Framework for the Relational Transformation of RDF
Data. UTD Technical Report UTDSC-40-08.
http://www.utdallas.edu/~sxr063200/Paper2.pdf, 2008.

[3] DataVision. The Open Source Report Writer.
http://datavision.sourceforge.net/

[4] GRUFF. A Grapher-Based Triple-Store Browser for
Allegrograph. http://agraph.franz.com/gruff/

WWW 2009 MADRID! Poster Sessions: Wednesday, April 22, 2009

1060

 Content-based Ontology Matching for GIS Datasets

Jeffrey Partyka1, Neda Alipanah1, Latifur Khan1, Bhavani Thuraisingham1, Shashi Shekhar2

Department of Computer Science

University of Texas at Dallas1

University of Minnesota2

{jlp072000, na061000, lkhan, Bhavani.thuraisingham}@utdallas.edu1

shekhar@cs.umn.edu2

ABSTRACT
The alignment of separate ontologies by matching related
concepts continues to attract great attention within the database
and artificial intelligence communities, especially since semantic
heterogeneity across data sources remains a widespread and
relevant problem. In particular, the Geographic Information
System (GIS) domain presents unique forms of semantic
heterogeneity that require a variety of matching approaches.

Our approach considers content-based techniques for aligning GIS
ontologies. We examine the associated instance data of the
compared concepts and apply a content-matching strategy to
measure similarity based on value types based on N-grams present
in the data. We focus special attention on a method applying the
concepts of mutual information and N-grams by developing 2
separate variations and testing them over GIS dataset including
multi-jurisdictions. In order to align concepts, first we find the
appropriate columns. For this, we will exploit mutual information
between two columns based on the type distribution of their
content. Intuitively, if two columns are semantically same, type
distribution should be very similar. We justify the conceptual
validity of our ontology alignment technique with a series of
experimental results that demonstrate the efficacy and utility of
our algorithms on a wide-variety of authentic GIS data.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods – semantic networks, representations
(procedural and rule-based)

General Terms
Algorithms, Measurement, Design, Reliability, Experimentation,
Human Factors

Keywords

Ontology, Ontology Alignment, Schema Matching, Geographic
Information Systems, Dataset

1. INTRODUCTION
Ontology alignment is the most recent form of the information
integration problem. The most popular definition of an ontology is
that of a "formal, explicit specification of a shared
conceptualization" proposed by Gruber[1]. In practice, ontologies
for a given domain consist of a series of classes (or concepts)
along with their properties, restrictions and instances, many of
which are related by various types of relationships. The alignment
of ontologies, therefore, entails deriving correspondences between
concepts and their associated properties and instances.

Ontology matching continues to attract extensive interest,
particularly with regards to the domain of GIS. Related work
includes [2], which formally describes the various ways in which
semantic heterogeneity may be encountered during the ontology
alignment process in the GIS domain. Sunna and Cruz [3]
describe matching ontologies using structural properties such as
sibling similarity and descendant’s similarity. Using these ideas,
they introduce an ontology alignment tool for use in the GIS
domain called AgreementMaker [4].

In developing a strategy for aligning GIS ontologies, we consider
a novel approach based on the information theoretic concept of
mutual information that utilizes content-matching techniques
Specifically, we identify type distributions over distinct N-grams
among the columns within the instance data of compared concepts
and use these to obtain a similarity value (from now on the words
column and attribute are used interchangeably). An N-gram is
simply a substring of length N consisting of contiguous
characters. In particular, using distinct types we strive to capture
patterns from both the raw text of GIS datasets and encoded
versions of this text which substitute the individual letters for their
character types (i.e., letters are replaced by an ‘a’, numbers are
replaced by a ‘n’, etc.)

A number of schema matching publications describing methods
tailored more to the database community influenced our work.
Dai, Koudas et al. [5] discussed content-based schema matching
based on distributions of N-grams among compared columns.
Despite the influence of this publication, some crucial differences
exist between their approach and the methods explained here.
First, their approach used data sources containing raw text from

“Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM GIS ’08, November 5–7, 2008. Irvine, CA, USA
(c) 2008 ACM ISBN 978-1-60558-323-5/08/11...$5.00"

any given domain, whereas our methods specifically targeted the
GIS domain. Second, their approach is designed for the area of
schema matching, while our methods are made for the area of
ontology matching, which means that in our work, additional
complexities needed to be considered, such as concept matching
over names as well as content. Third, they defined statistical types
only over distributions of N-grams and used these to determine
column similarity. In addition to this idea, our approach considers
a number of variations. One of these treats N-grams themselves as
distinct types extracted from the tuple values of compared
columns. Also, these two approaches are applied over regular text
and over encoded text, which allowed us to observe our
algorithm’s performance over vastly different kinds of data.

The rest of this paper is organized as follows. In section 2, we
discuss the problem to be solved and our proposed solution for
content similarity at both the conceptual and attribute levels. Next,
in section 3, we present a series of experiments and their
associated results.

2. PROBLEM STATEMENT AND
PROPOSAL

2.1 Problem Statement
Given 2 data sources, S1 and S2, each of which is represented by
ontologies O1 and O2, the goal is to find similar concepts between
O1 and O2 by examining their names and their respective
instances. Let us assume that O1 and O2 are derived from the GIS
domain. Figures 1 and 2 display O1 and O2, the ontologies to be
aligned. Also displayed for each ontology are their constituent
concepts and two sample identifying attributes for each concept.
Both ontologies are derived from the Roads and Ferries package
of the Geographic Data Files (GDF) data model and the Ontology
for Traffic Networks.

Figure 1. Concepts and attributes of ontology O1

Figure 2. Concepts and attributes of ontology O2.

With this in mind, an effective ontology alignment procedure
would be expected to match up concepts which are semantically
equivalent. In this case, O1 and O2 both feature Road and Ferry
concepts, so a strong similarity value between each one would be
expected. Furthermore, a close semantic equivalence would also
seem to exist between the Residential Area concept of O1 and the
Address Area concept of O2, and Traffic Area of O1 and Enclosed
Traffic Area of O2. There may also be a fairly strong semantic
similarity between Junction of O1 and Intersection of O2. Our goal
is to determine this semantic similarity given instances for
concepts.

2.2 Content Similarity

In order to do ontology alignment, we need to determine the
similarity between concepts C1 and C2, which come from two
different ontologies O1 and O2, respectively. For this, first we
need to find similarity between the attributes of C1 and C2. Recall
that each concept may have a set of attributes. For attribute
similarity, without loss of generality, first we focus on 1:1
matching and later will apply our algorithm to 1:M matching. We
will pick an attribute a from C1 and compare it with all attributes
in C2 based on the EBD derived from attribute similarity.
Attribute a will be assigned with the attribute in concept C2 which
gives the largest Entropy based distribution (EBD) (see Section
2.2.2).

2.2.1 Measuring type similarity

Content matching between two concepts involves measuring the
similarity between the instance values for a pair of attributes. This
is accomplished by extracting instance values from the compared
attributes, subsequently extracting a characteristic set of N-grams
from these instances, and finally comparing the respective N-
grams for each attribute. During all of our experiments involving
N-grams in this paper, the value of N was set equal to 2.

We experiment with a number of varying approaches using 2-
grams that ultimately determines the instance similarity between
the compared attributes. In our first approach, called DNF
(distinct N-gram features), we extract distinct N-gram features
from the instances themselves and consider each unique 2-gram

extracted as a value type. The similarity between the attributes is
measured by determining the disparity between the 2-grams
extracted and between the frequency of 2-grams they have in
common. An alternative approach to the aforementioned method
of content similarity via 2-gram feature extraction, called TPF
(tuple features) is to collect all 2-grams and their corresponding
frequencies for each tuple value within one of the compared
attributes and use this information to construct a 2-gram set. In
this case, the set of 2-grams itself would be considered a value
type, rather than any of the individual 2-grams.

2.2.2 Measuring type similarity

Although different versions of the attribute similarity algorithm
involving N-grams have been discussed, we have yet to discuss
the specific measure used to quantify similarity between
compared attributes. This measure is known as Entropy Based
Distribution (EBD), and it takes the following form:

EBD = H(C | T) (1)
 H(C)

In this equation, C and T are random variables where C indicates
the union of the column types C1 and C2 involved in the
comparison and T indicates the value type. EBD is a normalized
value with a range from 0 to 1, where 0 indicates the lowest EBD,
or no similarity whatsoever between compared attributes, and 1
indicates the highest EBD. Our experiments involve 1:1
comparisons between attributes of compared concepts, so the
value of C would simply be C1 U C2. H(C) represents the entropy
of a set of instance values for a particular attribute (or column)
while H(C|T) indicates the conditional entropy of a set of instance
values associated with a particular value type.

Intuitively, EBD is a comparison of the ratio of column types for
each distinct value type (conditional entropy) with column types
in C (entropy). A column C contains high entropy if it is impure;
that is, the ratios of column types making up C are similar to one
another. On the other hand, low entropy in C exists when one
column type exists at a much higher ratio than any other type.
Conditional entropy is similar to entropy in the sense that ratios of
column types are being compared. However, the difference is that
we are finding a ratio of column types for each distinct value type.
Figure 4 provides examples to help visualize the concept.

Figure 4. Distribution of column types and value types. EBD is
high on the left figure since H(C) is similar to H(C|T) and it is
low on right because H(C) and H(C|T) have dissimilar values

Figure 4 provides examples to help visualize the concept. In both
examples, crosses indicate column types originating from C1,
while squares indicate column types originating from C2. The
value types are represented as clusters (larger circles), each of
which is associated with a number of tuple values from C1 and C2.
In the left figure, the total number of crosses is 8 and the total
number of squares is 9, which implies that entropy is very high.
The conditional entropy is also quite high, since the ratios of
crosses to squares within 2 of the clusters are equal and nearly
equal within the other. Thus, the ratio of conditional entropy to
entropy will be very close to 1, since the ratio of crosses to
squares is nearly the same from an overall perspective and from
an individual cluster perspective. The right figure portrays a
different situation: while the entropy is 1.0 (since the number of
crosses is equal to the number of squares overall), the ratio of
crosses to squares within each individual cluster varies
considerably. One cluster features all crosses and no squares,
while another cluster features a 3:1 ratio of squares to crosses.
When computing the EBD value for this example, we will derive
a value that is lower than the EBD for the first example because
H(C | T) will be a much lower value. Intuitively, this makes sense
because the ratios of value types between the compared attributes
are dissimilar.

2.2.3. Algorithm for 1:M content matching

Algorithm 1 below describes our approach to 1:M matching. Let a
be a column from concept A in O1 that is compared with M
columns b1...M (M <= N), where N is the total number of columns
in C2) from concept B in O2. The algorithm for this matching is as
follows:

Algorithm 1 Multiple Match
Input: Attribute a for concept A and Ontology O1 and a set
attributes b1, b2,…bN for concept B and Ontology O2

Output: Determining concatenation of M attributes b from O2

which are most similar to a from O1

1: for each attribute bi � B, (0 <= i <= N)

2: EBD Find_ content_ sim (a, bi)
3: add EBD to Similarity list SL
4: end for
5: Sort SL in descending order based on EBD
6: Pick Colk of highest EBD from SL without replacement
7: EBD Find_content_ sim (a, Colk)
8: Repeat
9: If SL is not empty then
10: Colhighest Pick an attribute from SL with highest
 EBD without replacement
11: Colk Concat (Colhighest , Colk)
12: EBD’ Find_content_ sim (a, Colk)
13: else
14: break;
15: end if
16: Until (EBD’-EBD) > δ
17: return ColK

The algorithm takes as input one attribute a from concept A є O1

and N attributes named b1, b2,…bN from B є O2. Lines 2 and 3
compute the EBD and add them to a similarity list. Line 5 sorts
the list based on EBD values in decreasing order. In line 6, the
algorithm picks the attribute with the largest EBD. Line 7 finds
the new value of EBD for concatenated attributes of b and
attribute a. In line 8, the algorithm use a loop and checks if SL is

not empty so that we would be able to find another similar column
with regard to EBD in greedy fashion (if exists). This loop will be
finished when the difference between new EBD and previous
EBD is less than a threshold or SL is empty. In other words, we
could not find any new attributes that will help us to improve the
EBD score.

3. EXPERIMENTS

We now present the experiments that we conducted regarding
concept matching between 2 separate ontologies in the GIS
domain.

3.1 Dataset

Because data from several different areas of the United States
were employed in our experiments, we effectively created a multi-
jurisdictional GIS environment. The number of instances is as low
as 24 (Ferry) and as high as 91059 (Junction and Intersection).
Meanwhile, the number of attributes is as low as 3 (Ferry) and as
high as 26 (Enclosed Traffic Area) and the geographic scope
ranges from a particular city (ie. Dallas) to an entire state
(Virginia).

3.2 Results

The results of the alignment of O1 and O2 using content similarity
of the compared concepts are shown in
Table 1. Each cell in the table represents a similarity
calculation between one concept in O1 and another
concept in O2, and is composed of four separate values. The first
two values represent the content similarity over
encoded text using TPF and DNF, respectively. The last
two values represent content similarity over regular text
using TPF and DNF, respectively. For example, between the
concepts of Junction of O1 and Intersection of O2, the TPF was
measured at .76, the DNF was measured at .97, the TPF was
measured at .33, and the DNF was measured at .58. From the
results, a number of conclusions can be drawn. First, for most of
the concept comparisons, the calculated similarity values
generated by using DNF, independent of the text type, are
significantly higher than the values generated by TPF. These
results can be explained due to the more stringent matching
requirements of a value type in TPF as opposed to DNF. Keep in
mind that for 2 tuples to have a matching value type in TPF, the
sets of 2-grams contained within each must match exactly. If there
is even one 2-gram contained in one tuple that the other tuple
lacks, then the tuples will represent different value types in TPF.
The end result of this situation will be that the tuples will not have
any value type information in common. However, in DNF, these
same tuples would be able to match on nearly all of their 2-grams,
which in turn would raise the conditional entropy H(C|T) and
result in a higher overall EBD value between the compared
columns.

Table 1. EBD values between concepts of O1 and O2

The second observation to be made from Table 1 is that the EBD
values obtained over raw text were far lower than those obtained
over encoded text. The reason for this is because for DNF in the
case of raw text, the large increase in the number of possible 2-
grams generated trivially leads to a larger number of value types
between the compared columns. For TPF, all that is required to
distinguish one 2-gram set from another is a single 2-gram.
Consequently the number of unique sets of 2-grams generated via
TPF will also rise sharply. Because of the expanded possibilities
in 2-grams and 2-gram sets in raw text, there will also be far more
value types present within the compared columns. This means that
there is a greater possibility of unmatched types, and as a result,
the conditional entropy values are more likely to be dissimilar. A
final observation from Table 1 is that despite the discrepancies
noted above, some sensible correlations emerge. For instance, the
concepts Traffic Area and Enclosed Traffic Area share a high
concept similarity based on TPF and DNF over both encoded and
raw text. This is particularly evident when measuring the relative
similarity values for either concept as compared to other matching
concepts. The content similarity between Traffic Area and
Enclosed Traffic Area using TPF over encoded text was .80, a
minimum of .38 higher than other concepts for Traffic Area (with
the second closest being .42 from Address Area) and .45 higher
than other concepts for Enclosed Traffic Area (with the second
closest being .35 from Residential Area). Notable correlations also
existed between Residential Area-Address Area and Junction-
Intersection.

REFERENCES
[1] T. R. Gruber (1993), “A Translation Approach to Portable
Ontology Specifications,” Knowledge Acquisition, 5(2), 199-220.
[2] Guillermo Nudelman Hess, Cirano Iochpe, Alfio Ferrara,
Silvana Castano, "Towards Effective Geographic Ontology
Matching," GeoS 2007, pp. 51-65.
[3] William Sunna, "Multilayered Approach to Aligning
Heterogeneous Ontologies",Ph.D. dissertation, University of
Illinois at Chicago, 2007.
[4] William Sunna and Isabel Cruz, "Structure-based Methods to
Enhance Geospatial Ontology Alignment", Second International
Conference on Geospatial Semantics, Mexico City, Mexico,
November 2007.
[5] Bing Tian Dai, Nick Koudas, Divesh Srivastava, Anthony K.
H. Tung, and Suresh Venkatasubramanian, "Validating Multi-
column Schema Matchings by Type," 24th International
Conference on Data Engineering (ICDE), pp. 120-129, 2008.

 Ontology Alignment Using Multiple Contexts

Jeffrey Partyka
1
, Neda Alipanah

1
, Latifur Khan

1
, Bhavani Thuraisingham

1
, Shashi Shekhar

2

Department of Computer Science

University of Texas at Dallas
1

University of Minnesota
2

{jlp072000, na061000, lkhan, Bhavani.thuraisingham}@utdallas.edu1

shekhar@cs.umn.edu2

ABSTRACT
Ontology alignment involves determining the semantic

heterogeneity between two or more domain specifications by

considering their associated concepts. Our approach considers

name, structural and content matching techniques for aligning

ontologies. After comparing the ontologies using concept names,

we examine the instance data of the compared concepts and

perform content matching using value types based on N-grams

and Entropy Based Distribution (EBD). Although these

approaches are generally sufficient, additional methods may be

required. Subsequently, we compare the structural characteristics

between concepts using Expectation-Maximization (EM). To

illustrate our approach, we conducted experiments using authentic

geographic information systems (GIS) data and generate results

which clearly demonstrate the utility of the algorithms while

emphasizing the contribution of structural matching.

Categories and Subject Descriptors

I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods – semantic networks, representations

(procedural and rule-based)

General Terms
Algorithms, Measurement, Design, Reliability, Experimentation,

Human Factors

Keywords
Ontology, Ontology Alignment, Schema Matching, Geographic

Information Systems, Dataset

1. INTRODUCTION

Ontology alignment is the most recent incarnation of the

information integration problem. A popular definition of an

ontology is that of a "formal, explicit specification of a shared

conceptualization", proposed by Gruber. In practice, ontologies

for a given domain consist of a series of classes (or concepts)

along with their properties, restrictions and instances, many of

which are related by various types of relationships. The alignment

of ontologies, therefore, entails deriving correspondences between

concepts and their associated properties and instances.

2. PROBLEM STATEMENT AND

PROPOSAL

Given 2 data sources, S1 and S2, each of which is represented by

ontologies O1 and O2, the goal is to find similar concepts between

O1 and O2 by examining their names, respective instances and

structural properties. Let us assume that O1 and O2 are derived

from the GIS domain.

The challenge involved in the alignment of these ontologies,

assuming that they have already been constructed, is based on the

derivation of procedures that will maximize the semantic

similarity between any two concepts between the ontologies.

 The ontology matching process consists of the matching of

names, content and structure between compared concepts. The

name match attempts to determine the degree of synonymy

between the concept names. The content match determines

similarity between the instances of each concept by measuring

their mutual information, and it accomplishes this by the

extraction of N-grams from the compared columns. The structural

match determines similarity by leveraging the EM algorithm and

the respective neighborhoods of all concepts to determine the

most likely correspondences that occur between the ontologies.

The overall similarity between two concepts is an equally

weighted normalized sum of the name similarity, content

similarity and structural similarity.

3. ONTOLOGY MATCHING ALGORITHM

3.1 Name Similarity
The first part of our approach attempts match concepts between

two ontologies by measuring similarities between their names.

The process consists of three steps. First, we check to see if an

exact match exists between the compared concepts. If so, then a

value of 1.0 is assigned to the name matching component of the

overall similarity. If not, then we proceed with verifying whether

the compared concept names are synonyms. To do this, an

external dictionary such as WordNet is used to compute a

semantic similarity score of the names between 0 and 1. If the

words have any relation whatsoever, the semantic score returned

by WordNet will represent the name matching component of the

overall similarity. If there is no relation at all between the words,

then the name similarity between the concepts is determined via

the Jaro-Winkler string similarity metric.

3.2 Content Similarity
Content matching is accomplished by extracting instance values

from the compared attributes, subsequently extracting a

characteristic set of N-grams from these instances, and finally

comparing the respective N-grams for each attribute. An N-gram

is simply a substring of length N consisting of contiguous

characters. For our experiments, the value of N was set equal to 2.

The measure that was used to quantify similarity between

compared attributes is known as Entropy Based Distribution

(EBD), and it takes the following form:

 ��� ��
���	
�

����

In this equation, C and T are random variables where C indicates

the union of the column types C1 and C2 involved in the

comparison and T indicates the value type (2-gram for an instance

value). EBD is a normalized value from 0 to 1, where 0 indicates

no similarity between compared attributes, and 1 indicates that the

attributes are identical. In our experiments, C = C1 U C2. H(C)

represents the entropy of a set of instance values for a particular

attribute (or column) while H(C|T) indicates the conditional

entropy of a set of instance values for a particular value type.

3.3 Structural Similarity

In many situations, name and content matching are insufficient for

reducing semantic heterogeneity during ontology alignment. As a

result, our approach also attempts to match concepts by

considering their surrounding structural characteristics.

Specifically, we leverage the Expectation-Maximization algorithm

to generate a mathematical model which indicates the most likely

set of correspondences between concepts of O1 and concepts of

O2. We compare all neighbors of a concept C1 from O1 and

compare against all neighbors of a concept C2 from O2 to yield the

structural similarity between C1 and C2.

In adopting this algorithm, we decided to treat the concepts of

each ontology as observable values while designating the set of

correspondences between concepts in O1 and O2 as hidden values.

Next, we decided that our mathematical model should be a

mixture model represented by a similarity matrix SM consisting

of |O1| rows and |O2| columns, where each individual entry

represents an individual component of the mixture. Each entry

indicates with a particular confidence value between 0 and 1 (for

practical purposes, a probability value) whether or not a

correspondence exists between a concept from O1 and a concept

from O2. If a correspondence is indicated, then the entry has a

value of 1, otherwise, the value is 0.

4. EXPERIMENTS

4.1 Datasets

Because data from several different areas of the United States

were employed in our experiments, we effectively created a multi-

jurisdictional GIS environment. GIS data assigned to concepts for

O1 is disjoint with the data assigned to the concepts for O2. The

number of instances is as low as 24 (Ferry) and as high as 91059

(Junction and Intersection). Meanwhile, the number of attributes

is as low as 3 (Ferry) and as high as 26 (Enclosed Traffic Area),

and the geographic scope ranges from a particular city (ie. Dallas)

to an entire state (Virginia).

4.2 Results

Table 1 below shows the results of concept matching between O1

and O2 using name similarity, content similarity, and structural

similarity via EM.

 Table 1. Name + Content + Structure Similarity between

 concepts of O1 and O2

All of the correct correspondences between concepts of O1 and O2

are identified by a wide margin. Name similarity makes its

strongest contribution to the accuracy of the algorithm regarding

obvious correspondences such as Road-Road and Ferry-Ferry

while failing to match correspondences such as Residential Area-

Address Area and Junction-Intersection whose names are not

similar. On the other hand, content similarity solves many of these

problems by matching common N-grams existing among the

instances of these concepts. While many of the correspondences

are identified by name and content similarity, some, such as

Traffic Circle-Intersection, remain unidentified, and others, such

as Residential Area-Address Area are identified only weakly. To

alleviate these problems, structure level matching via EM was

applied. After doing this, correspondences that should be strong

between concepts such as Residential Area-Address Area are

associated with proportionally higher scores. Even in the situation

where there does not exist a single correspondence that is

significantly stronger than another, the composite algorithm

captures the semantics appropriately. This occurs for the

correspondences between Traffic Circle-Intersection and Traffic

Circle-Road. Since a Traffic Circle is both a Road and an

Intersection, the fact that the correspondence values are similar

verifies the accuracy of our approach.

5. CONCLUSION

In this paper, we have outlined an algorithm that aligns two

separate ontologies from the GIS domain using name similarity,

content similarity and structural similarity. We focused on the

structural similarity algorithm, which exploits EM to help

determine the set of correspondences between concepts of two

different ontologies. In regards to future efforts, we will expand

our structure-level matching techniques to more accurately and

thoroughly examine concept similarity. We will also analyze

some of the more traditional techniques, such as sibling

relationship similarity, and analyze its effects.

Geospatial Data Qualities as Web Services Performance
Metrics

Ganesh Subbiah Ashraful Alam Latifur Khan Bhavani Thuraisingham
Department of Computer Science, Erik Johnson School of Engineering and Computer Science

University of Texas at Dallas

ganesh.subbiah@student.utdallas.edu, malam@utdallas.edu,

lkhan@utdallas.edu, bhavani.thuraisingham@utdallas.edu

ABSTRACT

Service discovery is the crucial phase in the emerging Geospatial
Semantic Web to select functionally similar services for the user
query. Quality of Service (QoS) based service discovery,
popularly studied in traditional Web Services, applies also to
Geospatial Web Services. QoS allows service clients to fine-tune
their search according to their specific needs and criteria. In high-
performance service-based geospatial applications, it becomes an
interesting research challenge to identify geospatial parameters to
further improve the search process. In this paper we have
proposed a set of geospatial criteria that can be used alongside the
regular QoS parameters in service discovery and invocation. We
show that using this novel approach of incorporating domain-
specific drill-down information in addition to the commonly used
QoS parameters yield more accurate and trustable Web services
platform. We use the proposed geospatial parameters as
performance metrics in the experimental evaluation of our
application. The parameters reflect geospatial data quality
attributes already standardized and well-studied in geospatial
literature.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics – complexity measures,

performance measures, process metrics.

General Terms

Algorithms, Performance, Design, Reliability, Experimentation,
Security.

Keywords

Geospatial Semantic Web, Semantic Web Services, Security,
Trust, SOA, OWL-S, RDF

1. INTRODUCTION
Web services are increasingly seen as an invaluable part of any
large-scale data query and dissemination strategy. The rise of
Service Oriented Architecture (SOA) to provide intra- and inter-

domain business services has ensured the rapid growth of Web
services as the primary delivery platform. Business can query,
find, and invoke specific services to perform their tasks instead of
relying on bulky applications with superfluous features. Web
services are a perfect suit for the geospatial domains since
geospatial features are easy to modularize and serve to clients. As
a result, clients can retrieve only the pertinent data according to
their need.

Geospatial web services have been an active area of research in
the context of geospatial non-interoperability problems. The
collaborative effort by the industry and federal geospatial
clearinghouses has focused on the standardization process to
mitigate the non-interoperability problems. Although the
importance of geospatial web services is well established, their
efficiency is often questionable. Geospatial data tends to be
voluminous even for few features; consequently on-the-fly data
fetching becomes infeasible. Moreover, the data comes in various
modalities even though they represent the same base facts. For
instance, aerial imagery can be viewed at different resolution and
vector data can be represented in different granularities. Then
there is the issue of data quality that further exacerbates the
efficiency of geospatial web services. To eliminate the above
impediments, web services are incorporated with the Quality of
Service (QoS) parameters that provide a baseline contract of what
a client wants and what to expect from a service provider.

The issue of QoS has provided a major area of Web services
research ([3],[4]). In [3][4] ,QoS based service selection is used to
find trustworthiness of web services. The common theme in the
geospatial QoS literature is to use the regular QoS parameters to
efficiently exchange geospatial data [5]. The addition of domain
information in the QoS values has been overlooked by researchers
so far. Also there is not much work done on using geospatial
specific QoS for estimating the trustworthiness of the geospatial
web service

Our experience in building end-to-end geospatial web services
frameworks [1,2], we have found that the client requirements
revolve around four major threshold types: completeness,
resolution, accuracy, and data type [6]. While there are other
requirements as well, these four appear on a consistent basis. The
completeness, resolution, and accuracy criteria pertain to
qualitative side of geospatial data, whereas data type refers to the
format of the data. Our approach is to combine these four criteria
alongside the generic QoS parameters to yield a more
customizable and client-centric geospatial web services platform.
We refer to these four criteria as GQoS- Geospatial Quality of
Service metrics.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM GIS ’07, November 7–9, 2007, Seattle, WA, USA.
Copyright 2007 ACM 978-1-59593-914-2/07/11...$5.00

Proceedings of the 15th International Symposium on Advances in Geographic Information Systems
 ACM GIS 2007

In this paper, we propose a framework which provides a
mechanism to select trustworthy geospatial web services based on
geospatial quality parameters. The application is based on our
work on semantically annotated geospatial web services discovery
We develop an application called DAGIS (Discovery of
Annotated Geospatial Information Services)[2], which we
augment with GQoS and perform experimental evaluations to
show its usefulness in identifying trust measures dynamically and
to eliminate untrustworthy services for the query. This DAGIS
framework provides a methodology to realize the semantic
interoperability both at the geospatial data encoding level and also
for the service framework. DAGIS is an integrated platform that
provides the mechanism and architecture for building geospatial
data exchange interfaces using the OWL-S Service ontology.
Coupled with the geospatial domain specific ontology for
automatic discovery, dynamic composition and invocation of
services, DAGIS is a one-stop platform to fetch and integrate
geospatial data.

The rest of the paper is organized as follows. Section 2 presents
the DAGIS architecture. The proposed GQoS metrics are
described in section 3. Section 4 describes service selection
algorithm using GQoS parameters. The experiments are reported
in section 5.

2. DAGIS PLATFORM for GEOSPATIAL

SERVICES
In DAGIS ([1]), we focus on devising an improved query
mechanism through semantic annotations. The application allows
clients to query on a visual interface for geospatial data. The
returned results can be intermingled with other types of data if
requested. The results retrieved by a client can be displayed on the
interface or stored on disk files. This section describes the DAGIS
architecture.

2.1 Motivating Scenario
 “Find movie theaters within 30 miles of 75080” is a query posed
by users on current geospatial information systems and search
engines. This query is an example of the type of requests carried
out by service providers on the web. Service providers would
often embed or layer the geospatial data in other kinds of data
(e.g., medical, temporal, transactions etc.). The following sections
describe how DAGIS platform handles queries of this nature.

2.2 Service Selection and Discovery
First, a query profile is generated based on the client request. The
profile contains the functional and QoS metrics of the specified
parameters in the client request. These requirements are used by
the Matchmaker agent for selecting the appropriate service
providers. In this phase, a DAGIS application module, henceforth
referred to as DAGIS agent or simply agent, communicates with
the Matchmaker agent for geospatial service selection (Figure 1).
Prior to the service discovery, the agents of each service provider
advertise the respective OWL-S service profiles to the
Matchmaker. The Matchmaker in our framework does capability
based reasoning using the Pellet OWL-DL reasoner. The
implemented Matchmaker for this framework is based on the
OWL-S MX Matchmaker, a hybrid Matchmaker that
complements logic based reasoning with approximate matching
based on syntactic IR based computations.

2.3 Service Invocation
In the this phase, the DAGIS agent has the selected Service
Provider’s Uniform Resource Identifier (URI) from the discovery
process and invokes the provider by calling one or more business
methods on the URI. The service provider agent uses the same
domain ontology as the DAGIS agent for semantic annotations of
its services. The DAGIS agent does the invocation of the service
through OWL-S grounding. The OWL-S grounding in turn uses
WSDL grounding to invoke the Web Service using AXIS in our
framework.

3. GEOSPATIAL QUALITY of SERVICE

(GQoS)

We have proposed a set of four geospatial attributes, commonly
used to specify data quality for various standards, to incorporate
into our base framework (i.e., DAGIS). They augment the generic
QoS parameters to allow geospatial users more precise control
over their query. There are many advantages in using this
approach. Traditional Web services provide the modularity but
take away the ability to precisely control the use of the data. To
get around this problem, one can retrieve a large amount of data
from a service provider and perform offline filtering or various
types of modifications themselves. However, this is a very
inefficient and time-consuming procedure since a lot of
processing is done post hoc. The GQoS parameters allow clients
to restrict the types of service providers it is interested in before
any processing on the data is done. If there is no provider
available that matches the client criteria, then the client can alter
the query and resubmit. These GQoS Parameters are added as
OWL-DL classes to our QoS Ontology described in our previous
paper [1].

In this section, we describe the following GQoS parameters:
Accuracy, Resolution, Completeness, and Types.

3.1 Accuracy
Accuracy of geospatial data is defined in terms of (Attribute,
Value) tuple, where attribute refers to a geographic concept/object
and the Value is its measurement. We assume geospatial service
providers provide data that conform to such tuples. We also
assume that there is an objective assessment of all concept values.
Governmental agencies, for example, would be assumed to have

1. Register/
 Advertise

 3. Service Discovery,
 Service Enactment

Matchmaker

Service

Providers

DAGIS
Agent

Matching Engine DAGIS
Interface

2. Query

Figure 1. DAGIS System Architecture

2

the most accurate object values in the event that there are multiple
values for a geographic object.

3.2 Resolution
Resolution refers to the amount of detail that can be determined in
space, time or theme. Both image and vector data have resolution
properties. Image resolution generally refers to pixel details where
more pixels per unit of an image mean better clarity. Vector data
can be represented in either fine or coarse granularity. The coarser
the data is, the less information is available about vector points of
an object’s shape. Resolution is also related to accuracy because
the level of resolution affects the database specification against
which accuracy is assessed.

3.3 Completeness
Completeness refers to the absence of omissions in a provider
database. Completeness is distinct from accuracy in that the errors
that result in lack of completeness are not incorrect encoding of
object values. Instead, when a service provider fails to keep its
database updated with latest data is considered to have incomplete
data. For instance, the road Atlas of 2006 contains data about
roads and highways built since the previous Atlas editions were
published. As a result, the 2006 version would contain more
complete information than the one from year 2000.

3.4 Data Types
Data types refer to the format of desired data. Even though the
area of geospatial data interoperability has made a lot of progress,
various reasons still exist that lead clients to request specific type
of data format. For instance, although Open Geospatial
Consortium (OGC) has been pushing Geography Markup
Language (GML) as a standardized data exchange platform, not
all geospatial applications support it. As a result, it would be
rather inconvenient for a user of such an application to request
data from a provider only to end up with GML data. If the user
could specify that along with other requirements in the query, he
can avoid spending time on retrieving useless data.

4. PROPOSED ALGORITHM to

IMPLEMENT GQoS PARAMETERS

During the Semantic Service Discovery Phase[2.2], the query
profile of the user is submitted to the matchmaker for determining
the functional matches from the set of published services. The
Matchmaker returns a set of functionally similar services if the
query to be solved involves single service provider; otherwise
returns a dynamically composed service if the query requires
service orchestration.

4.1 New Service Discovery Algorithm

To incorporate the GQoS values, we add a step to the DAGIS
service discovery algorithm. The new algorithm operates as
follows.

1. Service providers publish profiles to Matchmaker
2. Generate query profile
3. Find semantically similar services for the query using

the functional parameters :input and output parameters
4. If there is no such service from step 3, dynamically

compose complex service using the services registered
using DAGIS Composer Algorithm [2]

5. Sort the Functionally Similar Semantic Services using
the GQoS Algorithm (see Figure 3)

6. Return the URI of the best Service from step 5 to user

We will describe the approach developed by us for performing the
Step 5 of the service discovery algorithm. The QoS selection
differs when we have a dynamic composition that involves
computing the aggregate QoS values of the services dynamically,
which is also one of our contribution in this paper.

4.2 GQoS Algorithm

Interaction Model: The Environment is comprised of registered
service providers S1, S2 … Sj, , Users U1, U2 … Ui, matchmakers
M1, M2 … Mk. In our interaction model we assume only one
matchmaker. We employ special monitoring services which get
the user reports on QoS relevance feedback which are called Trust
Monitors TM1, TM2 ... TMl. Matchmaker can also additionally act
as Trust Monitor,

Service providers publish their QoS values (sq1,p1) , (sq2,p2) , …
where (sqi, pi) are vector pairs of concepts and their values. Users
provide the QoS requirements for every query as (uq1,r1), (uq2,r2) ,
… where (uqi ,ri) are vector pairs of concepts and user required
values. GQoS vector values pis , ri are fuzzy values which are in
the range [1,5] . 1 is the worst GQoS support available and 5 is
the best support available for that GQoS parameter.

S1

S2

Sj

U2

U1

Ui

M1

TM1

Figure 2. Interaction Model

User Query List UQ = {(uq1,r1), (uq2,r2)
….(uqn,rn)}

TargetMatch // Number of concept matches
required

Gval = 0 for all services

1. ∀Sj in Functional Match Set F

2. dist = 0.0

3. ∀qi:qi=quality concept in uq

4. If qi matches with a concept in sqj

5. conceptmatch = conceptmatch +1

6. dist += |ri - pi|

7. If concept match >= TargetMatch then

8. Gval = diff/conceptmatch

9. Return F sorted by ascending order of

 Gval scores.

 Figure 3: GQoS Similarity Match Algorithm

3

In the First Phase, for each registered Service Provider j in the
functional match set F of the Query Q, a Gval is evaluated using
the advertised QoS parameters. Gval is the Manhattan distance
averaged over the number of quality concept matches between the
user requirement and the service provider advertised GQoS
values.

Gval = ∑ (r – p) / conceptmatch

The GQoS Similarity Match Algorithm is illustrated in figure 3 to
select a set of services. All the Service providers are set with Gval
= 0 and the target concept matches between query and service
provider concept is set to a constant (is 3 in our experiments). In
Step 1 for every service Sj returned from Functional Set F
returned from Matchmaker. The similarity between r and p vectors
is meausred using Manhattan Distance. For every quality concept
qi in Vector uq , if there is a ConceptMatch (exact, subsumes)
with a concept in sqj, conceptmatch is incremented. The diff is
updated for this match, In step 7 we check if there are at least
target number of matches for meeting the user requirement, we
compute the Gval as average distance over the concept matches in
step 8. Step 9 returns the F in ascending order of Gval.

In the second phase of the GQoS measurements, we use the user
feedback to update the advertised GQoS parameters of the
selected service Si as follows. All the user reports pertaining to the
similar query Q posed is aggregated here in this phase. The user
feedback list UF of every user is evaluated as shown in Figure 4.

In our model, user reports are considered to be credible as only
authenticated users of the system can log on to the system for
service discovery. The evaluation of the credibility of user values
reported is not in scope of our work. We assume that the Service
Providers who publish their service descriptions to the

matchmaker do not cancel their registration during the interaction
for at least a certain number of iterations (say 10) to facilitate the
catching of untrusted providers. In future, we would maintain logs
of the interactions to capture these cancellation scenarios also.

5. EXPERIMENTAL EVALUATION

The experiment and evaluation results are to be shown during the
demo at the poster session.

6. CONCLUSION

In this paper, we have successfully proposed geospatial data
parameters which are used in the automatic service discovery for
emerging semantic enabled geospatial web. The framework
proposed and implemented helps to distinguish the untrustworthy
service providers by penalizing them using the performance

metrics evaluated by keeping the user in the loop. We are working
on further experiments which show the increase in the precision
and relevance measures due to these proposed geospatial quality
metrics. This work provides an intuitive way to select trustworthy
semantic web services using the geospatial data quality parameters
along with QoS measures which is novel step towards the
building geospatial web of trust.

Appendix A Dagis Semantic Query Interface

Appendix B User Feed back Form for a Query

7. REFERENCES
[1] Ashraful Alam, Ganesh Subbiah and Bhavani

Thuraisingham: Reasoning with Semantics-aware Access
Control Policies for Geospatial Web Services. 2006 ACM
Workshop on Secure Web Services (SWS),

[2] Ashraful Alam, Ganesh Subbiah, Latifur Khan, and Bhavani
Thuraisingham: DAGIS: A Geospatial Semantic Web
Services Discovery and Selection Framework, Second
International Conference on geospatial semantics GeoS2007

[3] Maximilien, E. M. and Singh, M. P. 2004. Toward
autonomic web services trust and selection. In Proceedings
of the 2nd international Conference on Service Oriented
Computing ,ICSOC '04. ACM Press.

[4] Le-Hung Vu, Manfred Hauswirth, and Karl Aberer: QoS-
based Service Selection and Ranking with Trust and
Reputation Management,2005 International Conference on
Cooperative Information Systems (CoopIS), Nov 2005

[5] Wen-jun Li, Shu-neng Zhao, Heng Sun, Xiao-bin Zhang,
"Ontology-Based QoS Driven GIS Grid Service Discovery,"
skg, p. 49, Second International Conference on Semantics,
Knowledge, and Grid (SKG'06), 2006

[6] Veregin H and Hargitai P 1995 An evaluation matrix for
geographical data quality. In Guptill S C and Morrison J L
(eds) Elements of spatial data quality. Oxford: Elsevier 167-
188.

Aggregate Feedback Vector FV;

For every Service Provider Sj

1. Read every User Feedback List UiF received =
{(uq1,f1), (uq2,f2) ….(uqn,fn)} where i=1:n

2. FV = FV + {(uq1,f1), (uq2,f2) ….(uqn,fn)}
3. End For

4. FVavg = FV / n

5. Update each QoS parameter sqj of Sj as

 pj = pj (1 – Fv) + Pj

Figure 4: GQoS Propagation Algorithm

4

F. Fonseca, M.A. Rodríguez, and S. Levashkin (Eds.): GeoS 2007, LNCS 4853, pp. 268–277, 2007.
© Springer-Verlag Berlin Heidelberg 2007

DAGIS: A Geospatial Semantic Web Services
Discovery and Selection Framework

Ashraful Alam, Ganesh Subbiah, Latifur Khan, and Bhavani Thuraisingham

Department of Computer Science,
University of Texas at Dallas, Dallas, TX 75083

{malam,ganesh.subbiah,lkhan,bhavani.thuraisingham}@utdallas.edu

Abstract. The traditional Web services architecture uses a keyword based
search to match a query to one or more service providers. However, a world-to-
word matching to discover a service provider is too simplistic for geospatial
data and fails to capture matches that advertise their functionality using domain-
dependent terminology. In this paper, we present DAGIS (Discovering
Annotated Geospatial Information Services) – a semantic Web services based
framework for geospatial domain that has graphical interface to query and
discover services. It handles the semantic heterogeneities involved in the
discovery phase and we propose algorithms for selecting the best service
through QoS (Quality of Service) based semantic matching. The framework is
capable of performing dynamic compositions on the fly through a back chaining
algorithm. The framework is evaluated by solving queries posed by users in
various geospatial decision making scenarios.

1 Introduction

Geospatial data plays a pivotal role in value-added content exchange between
software agents or amongst people. The ability to provide additional dimensions to
otherwise monotonic information has led to an enormous increase in the use of
geospatial services. A rather underrated aspect behind such an escalation is the fact
that spatially-aware data is more amenable to human cognition than strictly textual
information. A far more appreciated aspect is that the integration of diverse data types
with geospatial sources has yielded practical business and research benefits. Medical
data overlapped with digital maps provides wealth of information in forecasting
epidemics; population research centers can trace genealogical data over a region to
discover social trends and so forth. This growing interest and activity level in the
geospatial domain is further edified by more than 232 million hits on Google TM for
the keyword ‘geospatial.’ Geospatial data is characterized by multitude data formats
and data models and integration of this valuable data is crucial for the businesses and
applications on the World Wide Web. But lack of a common unified framework for
discovery, collection, and dissemination of geospatial data is characterized by the
coherent heterogeneities present at both the syntactic and the semantic level.

Web Services driven Service Oriented Architecture model provides a mechanism
to handle the syntactic heterogeneities to an extent for geospatial data sources. The

 DAGIS: A Geospatial Semantic Web Services Discovery and Selection Framework 269

current geospatial standards recommended by OGC- a flagship consortium that
specifies standards for describing the geospatial data and services are founded on
these principles of providing geospatial data interoperability. On the other side,
emergence of semantic web and its associated technologies which aims to transform
the web data sources into intelligent knowledge repositories that will use web agents
to reason and infer information in more sophisticated manner. Semantic Web
technologies provide strikingly similar standards for better interoperability of data and
services with less human intervention for the World Wide Web. This prompted the
researches from both the communities towards the vision of geospatial semantic web
for realizing semantic interoperability of geospatial data. The recent OGC geospatial
semantic web interoperability experiments are a major step towards this vision.

It’s argued by researches Semantic interoperability is an important goal but hard to
pin down due to lack of common accepted formal specifications. Kuhn [13]
establishes that Service Signatures needs to be semantically annotated to achieve
semantic interoperability but the challenge of annotating proper semantics for web
services description and automatic discovery is imminent.

In this paper, we propose DAGIS – Discovery of Annotated Geospatial
Information Services framework for building geospatial semantic web services using
the OWL-S Service ontology coupled with the geospatial domain specific ontology
for automatic discovery, dynamic composition and invocation. The algorithms
developed for this framework enables semantic matching of functional and non-
functional services during each phase of Service Orientation. In addition, our
approach makes use of [2] since its hybrid mechanism seems to produce better results.

There has been major work done on geospatial data interoperability. Vckovski et al.
[7] and Goodchild et al. [8] address various interoperability issues related to spatial data
processing of vectors and graphics, semantics, heterogeneous databases and
representation. OGC identified that the key to solve interoperability issues are through
the interface of software components where data and its operations are inseparable. This
resulted in syntactic specification for geospatial data exchange through Geography
Markup Language [9]. Operations on features in GML are implemented through web
services [1]. Web Feature Service (WFS), Web Map Service (WMS), Web Coverage
Service (WCS) are the core standards for Web services being developed by OGC to
allow distributed geo-processing systems to provide complex services.

The rest of the paper is organized as follows. Section 2 presents the DAGIS
architecture, its automatic discovery mechanism, dynamic composition algorithms
and the invocation mechanism. Section 3 presents QoS based service selection.
Finally, section 4 presents complex queries.

2 DAGIS Framework

Integration of geospatial and non-geospatial information tasks involves separate data
sources and service providers. Executing the tasks with minimal human intervention
is the motivation behind our proposed architecture. The implementation of the
architecture -- called DAGIS -- focuses on devising improved query mechanisms
through automated reasoning using a domain specific ontology. We have built
DAGIS as a prototype application that is useful for finding information for local

270 A. Alam et al.

businesses over a geographical region. We have identified the major phases in
developing this framework. These phases are discussed in the following sections.

DAGIS provides an immediate advantage over other web 2.0 and GIS based map
solutions. The latter products have limitations when the following types of queries are
encountered: “Find Movie Theaters between Richardson, TX and Irving, TX”. This
geospatial query is commonly posed by users looking for local information around the
geographical regions of interest. Current solutions do not recognize the semantics of
the geospatial operator “between” in this query. We posed this query on Google Maps
and observed that it is oblivious to the presence of such operators.

2.1 DAGIS System Architecture

DAGIS system architecture is described in this section. Functionality of each of the
components is addressed through a running example. We distinguish the layers that
constitute an end-to-end query execution and result display. The major layers are the
presentation layer, semantic middleware layer and the ontology data layer. DAGIS
Framework has major components at each of this layer.

DAGIS Query Browser Portlet: In the presentation side, the DAGIS query browser
portal gets the user query. We have developed a Java™ portlet that provides the
required interface for the query.

DAGIS Agent: DAGIS agent, placed at the semantic middleware layer, fetches the
query parameters from the user. We can deploy multiple DAGIS agents in this layer.
In our current application we describe the behavior of a single DAGIS agent. This
agent communicates with the DAGIS Matchmaker using OWL-S (formerly known as
DAML-S) [5] service ontology language. It automatically constructs an OWL-S query
for the given user query.

DAGIS Matchmaker: DAGIS Matchmaker is the component that performs semantic
matching between the submitted queries and the semantic web service providers
present in the registry. It performs both functional and non functional based selection
and service discovery.

DAGIS Composer: DAGIS Composer dynamically builds service chain to solve the
user query when there is no single service provider available to match user query
requirements. This dynamic composition is done automatically and the composed
service URI is returned back to the Matchmaker.

OWL-S Registry: The semantic web services are stored in this registry, which acts like
a catalogue of useful services.

WSDL Registry: The WSDL registry is any standard UDDI or public web services
registry such as www.x-methods.net and www.salcentral.com.

WSDL2OWLS Converter: This converter converts the WSDL service description file
to OWL-S file. The XSLT conversions are currently done manually, but in the future
there would be full fledged automatic conversion package.

Figure 1 shows how the aforementioned components fit into the DAGIS
framework. Initially a user requests for service through a query browser (i.e., portlet).
DAGIS agent receives the query and forwards it to a matchmaker. The matchmaker

 DAGIS: A Geospatial Semantic Web Services Discovery and Selection Framework 271

inquires the OWL-S registry to determine a match. The matchmaker is responsible for
talking to the domain ontologies through a common OWL-S API and performing the
semantic interpretation of the terms. Figure 1 also shows the separation of layers
based on their functional requirements. The presentation layer allows the client to
actually input the query. Then we have the middleware layer that allows
interchangeable components to provide meta-service related functionality such as
service search and reasoning. It is important that the middleware layer is not tied to a
special platform or architecture. It should be abstracted in a way so that other layers
do not have dependency on the underlying details of the middleware components.
This abstract also encourages extensibility by swapping in and out modules to fit
one’s needs. The third layer consists of the ontologies including the service and
domain ontologies. We describe the workflow of the DAGIS architecture in more
details in the following sections.

Fig. 1. DAGIS system architecture

2.2 Geospatial Ontology Development Phase

In our work, we have developed geospatial service ontology to describe concepts used
by geospatial web services. The concepts defined in our ontology were developed in
accordance with OGC Web Services Specification Architecture. The QoS ontology
developed is described along with QoS selection process. Figure 2 shows the snapshot
of our geospatial ontology developed for DAGIS. The businesses are categorized
under the geocoder results class. City, Latitude, Map, State, Zip code are also
subclasses of this class. The different kinds of geospatial web services are categorized

272 A. Alam et al.

under the main class OGCSemanticWebServices. These subclasses are Feature
Handling Services and Mapping Services. Web Feature Service like Gazetteer Service
is part of Feature Handling Service. Coverage Portrayal Service, Feature Portrayal
Service, Web Map Services are subclasses of Mapping Services.

2.3 Automatic Semantic Query Profile Generation

After the user submits the query, it is disambiguated using our developed ontology;
subsequently, an OWL-S service profile is automatically generated. In the next step
the query profile is used by the DAGIS Agent for service discovery and selection of
the service providers that will solve this query.

The DAGIS Agent uses this semantic profile for selecting the appropriate service
provider from the matchmaker agent. The following figure shows a snapshot of the
profile for a simple query: ‘Find Movie Theaters within 30 miles of zip code 75080’.
The profile of this OWL-S file has input ZipCode, distance 30 miles and output
required is movie theaters. Figure 3 shows the query profile generated by DAGIS
agent in response to the user query.

Fig. 2. Snapshot of geospatial service ontology

2.4 Geospatial Service Selection and Discovery

The service selection based on the functional and non-functional requirements of the
generated query profile is used by the DAGIS Matchmaker agent for selecting the
appropriate service providers. The Matchmaker in our framework does capability
based reasoning using the Pellet OWL-DL reasoner. Our implementation of the
Matchmaker for this framework is developed by extending the OWL-S MX
Matchmaker [2]. It is Java™-based and uses Pellet for logic based filtering. It also
uses loss-of-information, extended Jacquard, and Jensen-Shannon information
divergence based similarity metrics for complementary approximate matching. We
extend this hybrid matchmaker to handle service selection based on QoS. There are
different degrees of matches based on the similarity. The similarity criteria form a

 DAGIS: A Geospatial Semantic Web Services Discovery and Selection Framework 273

<profile:Profile rdf:about="#QueryProfile">
<profile:hasInput>
<process:Input rdf:ID="ZipCode">
<process:parameterType

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://127.
0.0.1/Ontology/OGCServiceontology.owl#ZipCode</process:parameterTyp
e>

</process:Input>
</profile:hasInput>
<profile:hasOutput>
<process:Output rdf:ID="Movie Theaters">
<process:parameterType

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>http://127.0.0.1/Ontology/OGCServiceontology.owl#MovieTheaters</

process:parameterType>
</process:Output>
</profile:hasOutput>
</profile>

Fig. 3. Generated query profile

lattice based on how relaxed the similarity is. EXACT match is least relaxed and
FAIL is most relaxed.

3 QoS Based Service Selection

The QoS based automatic service selection plays a crucial role in the matchmaking
process when there is more than one registered service provider providing similar
functionalities. In our proposed system, trust calculations are established through
capability based matching of the QoS parameters. QoS parameters are the
nonfunctional attributes that aid in the dynamic service discovery and selection. This
facilitates the dynamic computation of the trust for the service provider and selection
can be made for a suitably trusted service by the client.

Our architecture is based on agent-based trust framework where the different QoS
parameters characterized under various dimensions for describing the quality are
captured in the client profile and the providers’ profiles. The proposed geospatial
services ordering metric (GSOM) for QoS evaluation and for establishing trust is
described in the following section.

3.1 QoS Ontology

Our QoS ontology is developed in line with the upper and middle ontologies as
described in [11]. This facilitates modular development and can easily be extended for
our geospatial domain concepts defined in the geospatial ontology. The main concepts
in the QoS ontology are:

• Quality: Representing the measurable nonfunctional concept of a service.
• QAttribute: The value of a quality concept is determined by the type of QAttributes

that constitute that concept.

274 A. Alam et al.

• QMeasurement: This described the measurement of quality which can be
subjective or objective

• QRelationship: For describing relationship between two or more quality concepts.

During the service discovery phase, the query profile of the user is submitted to the
matchmaker for determining the functional matches from the set of published
services. The Matchmaker returns a set of functionally similar services if the query to
be solved involves single service provider; otherwise, it returns a dynamically
composed service. To incorporate the QoS based selection, we add a step to this
service discovery process. The new algorithm operates as follows.

1. Service providers publish profiles to Matchmaker
2. User submits query and corresponding semantic query profile is generated
3. Find semantically similar services for the queBry using the functional

parameters – that is, the input and output parameters
4. If there is no such service from step 3, dynamically compose complex

service using the services registered using DAGIS composer algorithm
5. Sort the functionally similar semantic services using the GQoS Algorithm
6. Return the URI of the best service from step 5 to user

We will describe the approach developed by us for performing the step 5 of the
above service discovery algorithm. The QoS selection differs when we have a
dynamic composition. In that case, it involves computing the aggregate QoS values of
the services dynamically, which is one of our contributions in this paper.

3.2 QoS Selection Algorithm

Interaction Model: The environment is comprised of registered service providers S1,
S2 … Sj, users U1, U2 … Ui, matchmakers M1, M2 … Mk. In our interaction model
we assume only one matchmaker. We employ special monitoring services that get
user reports on QoS relevance feedback called trust monitors TM1, TM2 ... TMl.

Fig. 4. Interaction model

Service providers publish their QoS values (sq1, p1), (sq2, p2) …where (sqi, pi) are
vector pairs of concepts and their values. Users provide QoS requirements for every
query as (uq1,r1), (uq2,r2) , … where (uqi ,ri) are vector pairs of concepts and user
required values (see Figure 4). During feedback loop, users submit their feedbacks as

S

S

S

U

U

U

T

T

 DAGIS: A Geospatial Semantic Web Services Discovery and Selection Framework 275

U1j, U2j, U3j where j is index for the service provider j selected during each query
iteration process.

In the first phase, for each registered service provider j in the functional match set
F of the query Q, a Gval is evaluated using the advertised QoS parameters. The QoS
similarity matching algorithm is illustrated in Figure 5. All the service providers are
initially set with Gval = 0 and the target concept matches between query and service
provider concept are set to 3. In step 1 for every service Sj a functional set F is
returned from the Matchmaker. The aggregated difference in the user expected and
provided values is stored in diff, which was initially set to 0. For every quality
concept qi in Vector uq, if there is a concept match (exact, subsumes etc.) with a
concept in sqj, ConceptMatch is incremented. The diff is updated for this match. In
step 7 we check if there are at least target number of matches for meeting the user
requirement; then we compute the Gval as average diff in step 8. Step 9 ensures that as
Gval is updated through propagation algorithm (discussed next), when it goes above
the threshold T, service sj is considered to be untrustworthy and removed from set F.
Step 11 returns the F in ascending order of Gval.

In the second phase we use the user feedback to update the advertised GQoS
parameters of the selected service Si as follows. For every query Q posed by Ui , Cij is
the conformance value vector submitted by Ui for Sj to TMl. The satisfaction of the
user on each QoS parameter he had specified is measured qualitatively through Cij on
a fuzzy scale. This is used to get the weighted expectation vector (Uij * Cij) of a user.
The feedback vector is used to update the Pi of Service Si in step 4 in QoS
propagation algorithm (Not reported here). In our model, user reports are considered
to be credible only for authenticated users of the system, who log on to the system for
service discovery. We assume that the service providers that publish their service
descriptions to the matchmaker do not cancel their registration during the interaction
for at least a certain number of iterations. The current model sets a hard number on
the lower bound of the provider availability period to determine untrustworthy
providers. The period is defined in terms of the number of iterations a provider was
available for the Matchmaker. Right now this number is 10, but in the future we will
maintain logs of the interactions to capture these cancellation scenarios also.

4 Complex Queries Using DAGIS

The scenario described in section 2.1 is a relatively simple one that involves selection
of a single service provider. Real world scenarios often involve complex queries that
necessitate dynamic composition of different service providers. To explain the
complexities further, we restate the example from section 2.1. Consider the following
query “Find movie theaters within 30 miles of Richardson?”.

We use the DAGIS visual interface to drive the user query, thereby bypassing the
need to parse natural language based queries. Based on the client query profile a
search is performed in service registry to discover matching OWL-S profiles. Since
there is no service that takes city as input and returns movie theaters within a certain
radius, the matchmaker resorts to decomposing the query into multiple atomic
processes using DAGIS decomposer algorithm. Decomposing the query into two
atomic parts results in a successful Web service execution since there is a profile that

276 A. Alam et al.

User Query List UQ = {(uq1, r1), (uq2, r2) …. (uqn, rn)}
TargetMatch = 3
Gval = 0 for all services
findSimilarityMatch()
1. ∀Sj in Functional Match Set F
2. diff = 0.0
3. ∀qi:qi=quality concept in uq
4. If qi matches with a concept in sqj
5. conceptmatch = conceptmatch +1
6. diff += |pj–ri|
7. If concept match >= TargetMatch
8. Gval = diff/conceptmatch
9. If Gval > T
10. remove Sj from F.
11. Return F sorted by ascending order of Gval scores.

Fig. 5. QoS similarity match algorithm

outputs zip-codes given a city and there is a second profile that outputs movie theaters
given a zip-code. The Compose Sequencer component constructs the composite
service.

4.1 DAGIS Composition and Sequencing Algorithm

The composer and sequencer algorithms in this section are based on the Recursive
Back Chaining algorithm proposed in [12]. To construct the service chain, our
algorithm is recursively called for each likely service available in the service registry.
A service is selected only if its output is equivalent to desired output of the requesting
client. We also have a sequencer algorithm that provides composite process chaining
for non-atomic processes. This algorithm uses a trivial bind function to create a
mapping between input and output parameters of two processes (a hash map can be
used to represent the mapping data structure in the actual implementation).

4.2 Service Invocation

In this phase, the DAGIS Agent has the selected service provider’s OWL-S URI from
the discovery process and invokes the service provider. In this scenario, the selected
service has an Atomic Process – GetTheaterProcess. As the service provider agent
also uses the same domain ontology as the DAGIS Agent for semantic annotations of
its services. This is the major benefit of sharing the semantic concepts using a unified
ontology framework. The DAGIS agent does the invocation of the service through
OWL-S grounding. The OWL-S grounding then uses WSDL grounding to invoke the
Web Service using AXIS in our framework. The OWL-S API used in this system
provides the execution engine and monitoring environment to monitor the process
execution and for exception handling.

 DAGIS: A Geospatial Semantic Web Services Discovery and Selection Framework 277

References

1. Sondheim, M., Gardels, K., Buehler, K.: GIS Interoperability. In: Longley, P., Goodchild,
M., Maguire, D., Rhind, R. (eds.) Geographical Information Systems 1 Principles and
Technical Issues, John Wiley & Sons, New York (1999)

2. Klusch, M., Fries, B., Sycara, K.: Automated Semantic Web Service Discovery with
OWLS-MX. In: AAMAS. Proceedings of 5th International Conference on Autonomous
Agents and Multi-Agent Systems, Hakodate, Japan, ACM Press, New York (2006)

3. Srinivasan, N., Paolucci, M., Sycara, K.: An Efficient Algorithm for OWL-S Based
Semantic Search in UDDI. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS,
vol. 3387, pp. 96–110. Springer, Heidelberg (2005)

4. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D.,
Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.: Bringing
Semantics to Web Services: The OWL-S Approach. In: Cardoso, J., Sheth, A.P. (eds.)
SWSWPC 2004. LNCS, vol. 3387, pp. 26–42. Springer, Berlin (2005)

5. OWL-S: Semantic Markup for Web Services. W3C member submission (2004), available:
http://www.w3.org/Submission /OWL-S/

6. Egenhofer, M.: Toward the Semantic Geospatial Web. In: Voisard, A., Chen, S.-C. (eds.)
ACM-GIS, McLean (2002)

7. Včkovski, A., Brassel, K.E., Schek, H.-J. (eds.): Interoperating Geographic Information
Systems. In: Včkovski, A., Brassel, K.E., Schek, H.-J. (eds.) INTEROP 1999. LNCS,
vol. 1580, Springer, Berlin (1999)

8. Goodchild, M.F., Egenhofer, M., Feeas, R., Kottman, C.: Interoperating Geographic
Information Systems. Proceedings of Interop 1997, Santa Barbara, CA, Norwell, MA.
Kluwer, Dordrecht (1998)

9. Geography Markup Language (GML) version 3.1.1 Specification, available:
http://opengis.net/gml/

10. Sirin, E., Bijan Parsia, B.: The OWL-S Java API. In: McIlraith, S.A., Plexousakis, D., van
Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, Springer, Heidelberg (2004)

11. Li, L., Horrock, I.: A Software Framework for Matchmaking Based on the Semantic Web
Technology. In: Proceedings of 12th Int Conference on the World Wide Web, Workshop
on E-Services and the Semantic Web (2003)

12. Renier Gibotti, F., Gilberto, R.: GeoDiscover – a Specialized Search Engine to Discover
Geospatial Data in the Web. In: 7th Brazilian Symposium on GeoInformatics (2005)

13. Kuhn, W.: Geospatial Semantics: Why, of What, and How? In: Spaccapietra, S., Zimányi,
E. (eds.) Journal on Data Semantics III. LNCS, vol. 3534, pp. 1–24. Springer, Heidelberg
(2005)

R2D: A Bridge between the Semantic Web and Relational Visualization Tools

Sunitha Ramanujam1, Anubha Gupta1, Latifur Khan1, Steven Seida2, Bhavani Thuraisingham1

1 The University of Texas at Dallas
Richardson, Texas, U.S.A.

{sxr063200, axg089100, lkhan,
bxt043000}@utdallas.edu

2 Raytheon Corporation
Garland, Texas, U.S.A.

steven_b_seida@raytheon.com

Abstract – The widespread deployment of Resource Description
Framework has resulted in the emergence of a new data
storage paradigm, the RDF Graph Model, which, in turn,
requires a rich suite of modeling and visualization tools to aid
with data management. This paper presents R2D (RDF-to-
Database), an effort whose goal is to enable reusability of
relational tools on RDF data. R2D aims to transform RDF
data, at run-time, into an equivalent normalized relational
schema, thereby bridging the gap between RDF and RDBMS
concepts and making the abundance of existing relational tools
available to RDF Stores. The work in this paper extends our
earlier work by including the ability to map blank nodes,
which are used to represent complex relationships between
entities, and to perform pattern matching and aggregation
functions on data. The R2D system architecture, mapping
constructs, and algorithms, with particular emphasis on blank
node handling, are presented along with descriptions of the
algorithms comprising R2D. Performance graphs and screen-
shots of a relational visualization tool that uses R2D to access
RDF data are presented as evidence of the feasibility of our
research.

Keywords: Semantic Web, Resource Description Framework,
Relational Databases, Data Interoperability

I. INTRODUCTION

In today’s increasingly networked world, the need to
augment human reasoning has kicked off the Semantic Web
initiative, for which various standards are being developed.
One such standard, the Resource Description Framework
[1], is the current buzzword in the Semantic Web
Community and the focus of the work in this paper. RDF’s
simplicity and suitability to unstructured and semi-
structured data that is typically available on the web have
increased the demand for data stores that use the RDF
Graph data model and offer the ability to store and query
RDF data [2].

The growing number of RDF stores have, as with any
data store with massive amounts of information, spawned an
associated requirement of tools for the management and
visualization of this data. However, most of the current data
modeling, visualization, and business intelligence tools that
are widely available in the market today are still based on
the more mature relational models [3]. Further, small and
medium-sized organizations that are resource constrained
may not have the ability or inclination to take risks
associated with investing in fledgling technologies such as

RDF and the tools for the same [4]. In order to avoid the
learning curves associated with new tools and continue to
leverage the advantages offered by traditional/ relational
tools without losing out on the benefits offered by the newer
web technologies and standards, the gap between the two
needs to be bridged.

The motivation behind our research is to arrive at a
solution to the bridging problem without the need to create
an actual physical relational schema and
duplicate/synchronize data. Our approach, called R2D
(RDF-to-Database), provides a relational interface to data
stored in the form of RDF triples. R2D, which is a relational
wrapper around RDF data stores, is a bridge that hopes to
enable existing relational tools to work seamlessly with
RDF Stores without having to make extensive modifications
or waste valuable resources by replicating data
unnecessarily. This paper elaborates on [5] and extends the
work in [6] by including the ability to handle blank nodes
and RDF container objects. Blank nodes are nodes that are
neither URI references nor literals and are typically used to
associate a resource with a set of properties that together
represent complex data. They are a vital component of RDF
graphs and their relationalization is the primary focus of this
paper. The paper also discusses enhancements to the SQL-
to-SPARQL transformation that now permit pattern
matching and aggregation on RDF data. Our contributions
in this paper are:
• We propose a mapping scheme for the translation of
RDF Graph structures to an equivalent normalized relational
schema that extends the work in [6] by including the ability
to process blank nodes and RDF Container objects.
• Based on the mapping file created, we propose a
transformation process that presents, at run-time, a
normalized, non-generic, domain-specific, virtual relational
schema view of the given RDF store. The algorithm in [6] is
extended through the addition of normalization rules for
different blank node scenarios.
• We propose a mechanism, which now includes pattern
matching and aggregation facilities, to transform any
relational SQL queries issued against the virtual relational
schema into the SPARQL equivalent, and return triples data
to end-users in a tabular format.
• The proposed framework imposes no restrictions on the
nature of RDF triples or their storage mechanisms as it is a
purely virtual layer that does not involve duplication of the

mailto:bxt043000%7D@utdallas.edu

RDF data. Hence, data updates are immediately visible
through R2D without explicit synchronization activities.
• Lastly, we provide a JDBC interface that includes all of
the above functionalities and that can be plugged seamlessly
into existing visualization tools.

The organization of this paper is as follows. Section II
presents a brief overview of related work. Section III
discusses R2D mapping preliminaries and relationships
handled. R2D’s system architecture and algorithms are
presented in Section IV. Section V highlights the
implementation details with sample visualization
screenshots and performance graphs for the map file
generation process and for a diverse range of queries, and
lastly, section VI concludes the paper.

II. RELATED WORK

The objective of R2D is unique and has no comparable
counterparts. However, several research efforts to bring
relational database concepts and semantic web concepts
together exist, albeit from a perspective that is opposite to
that considered in our work. These include D2RQ [7] and
Virtuoso RDF Views[8], which are essentially mapping
efforts that take a relational schema as input and present an
RDF interface of the same as output. RDF123 [9], an open
source translation tool, also uses a mapping concept,
however its domain is spreadsheet data. Triplify [10] is
another effort at publishing linked data from relational
databases and it achieves this by extending SQL and using
the extended version as a mapping language.

One research whose objectives are very closely aligned
with ours is the RDF2RDB project [3]. Like in R2D, the
authors in [3] attempt to arrive at a domain-specific,
meaningful relational schema equivalent for an RDF store,
however, RDF2RDB involves data replication with the
triples data being dumped into a relational schema, and
therefore is subject to the synchronization and space issues
discussed previously. Moreover, for successful mapping,
RDF2RDB requires the presence of ontological information
in the form of schema definitions such as rdfs:class and
rdf:property. R2D, on the other hand, can arrive at mapping
details with or without explicit ontology information.

Furthermore, the relational mapping in [3] involves the
creation of a table for each property in the RDF graph
regardless of the cardinality of the relationship represented
by the property. As a result, the resulting schema may not
be truly normalized and may contain more tables than
necessary due to the presence of properties representing 1:N
or N:1 types of relationships. R2D avoids these unnecessary
tables by taking such conditions into consideration. The
authors in [3] also do not discuss the details of how blank
nodes are handled by their research, if at all. Lastly, since
RDF2RDB involves creation of an actual physical relational
schema with the RDF data duplicated into the same, there is
no SQL-to-SPARQL conversion component. Since R2D
performs a virtual conversion at run-time the SQL-to-
SPARQL transformation process is an integral component
of the same and is, to the best of our knowledge, the first of
its kind. The Hybrid model presented in [11] is another

mapping methodology that is similar to [3] in terms of
relational schema generation and, hence, has the same
drawbacks as [3].

The query processing component of R2D which
comprises the SQL-to-SPARQL transformation process,
once again, has no comparable counterpart while many
efforts, [12, 13, 14], are underway in the other direction,
namely, SPARQL-to-SQL conversion. The authors in [12]
discuss a translation methodology that supports integration
of heterogeneous relational databases using the RDF model.
An SQL-based RDF Querying Scheme is presented in [13]
where the RDF querying capability is made a part of the
SQL; however, the RDF data is stored in a single database
table. In [14], the authors partition the RDF graph data to
store sub-graph information with the objective of reducing
join costs and improving query performance.

From the above discussions, it is apparent that none of
the research efforts address the issue of enabling relational
applications to access RDF data without data replication.
Therefore, we believe R2D makes a vital contribution to the
data interoperability arena.

III. R2D PRELIMINARIES

R2D’s system architecture is illustrated in Figure 1. The
work presented in this research focuses on presenting,
through a JDBC Interface, a tabular equivalent of the RDF
triples database to the visualization tools, and on an SQL
Interface that generates SPARQL versions of SQL queries
and passes the same to the Query Engine layer for
processing and RDF data retrieval.

Figure 1. R2D System Architecture

The RDF Store at the bottom of Figure 1 is examined by
the RDFMapFileGenerator Algorithm (Item A in Figure 1)
and an RDF-to-RelationalSchema mapping file is generated
by the same using the constructs discussed in Section III
(A). The DBSchemaGenerator Algorithm (Item B in Figure
1) takes this mapping file as input and presents to the
relational visualization tool a domain-specific, virtual
relational schema corresponding to the RDF store.
Alternatively, users of the visualization tool can choose to
issue SQL queries against the virtual relational schema to
access the RDF data. At this point R2D’s SQL-to-SPARQL
Translation Algorithm (Item C in Figure 1) performs the

necessary query translations, invokes the SPARQL query
engine, and returns the results to the visualization tool in a
tabular format.

At the heart of the RDF-to-Database transformation is
the R2D mapping language – a declarative language that
expresses the mappings between RDF Graph constructs and
relational database schema constructs. Figure 2 illustrates a
sample scenario from which examples are used, wherever
applicable, to augment the subsequent discussions on R2D
constructs.

Figure 2. Sample Scenario

A. R2D Mapping Constructs

This section discusses R2D constructs specific to blank
nodes and their handling. Details on non-blank-node-
specific constructs such as r2d:TableMap, r2d:keyField, and
r2d:[MultiValued]ColumnBridge can be found in [5, 6].

r2d:SimpleLiteralBlankNode (SLBN): SLBNs help
relate RDF Graph blank nodes that consist purely of distinct
simple literal objects to relational database columns.
Example: The object of the “Name” predicate in Figure 2
is an example of an SLBN which has distinct literal
predicates of “First”, “Middle”, and “Last”, which are, in
turn, translated into columns of the same names in the
“Employee” r2d:TableMap.

r2d:MultiValuedSimpleLiteralBlankNode (MVSLBN):
This construct maps duplicate SLBNs and, while the
processing of the predicates is identical to the
(SingleValued) SLBN, this construct results in the
generation of a separate r2d:TableMap with a foreign key
relationships to the table representing the subject resource of
the blank node. In the event the predicates leading to the
blank nodes are distinct, an r2d:MultiValuedPredicate
(MVP) is created and a “TYPE” column corresponding to
the MVP is included in the r2d:TableMap. Example: The
objects of the “HomeAddress” and the “WorkAddress”
predicates in Figure 2 together form a MVSLBN.

r2d:ComplexLiteralBlankNode (CLBN): This construct
refers to blank nodes in the RDF Graph that have multiple
literal object values for the same subject and the predicate
concept associated with the blank node. An
r2d:ComplexLiteralBlankNode typically results in the
generation of a separate r2d:TableMap with a foreign key
relationship to the table representing the subject resource of

the blank node. Example: The object of the “Phone”
predicate in Figure 2 is an example of a CLBN that has
multiple object (<Cell>) values for the subject (URI/EmpA)
and a predicate (Cell) concept associated with the blank
node.

r2d:MultiValuedComplexLiteralBlankNode
(MVCLBN): This construct maps duplicate complex literal
blank nodes and the processing of the predicates is identical
to the (SingleValued) CLBN case except in the event the
predicates leading to the blank nodes are distinct, in which
case an r2d:MultiValuedPredicate (MVP) is created and a
“TYPE” column corresponding to the MVP is included in
the r2d:TableMap. Example: Consider a scenario where
the “Phone” predicate in Figure 2 is replaced with two
similar predicates, “PastPhNums” and “CurrentPhNums”,
each of which are CLBNs. The objects of these two
predicates together form an MVCLBN.

r2d:SimpleResourceBlankNode (SRBN): This
construct helps map blank nodes that have multiple
predicates leading to resource objects belonging to the same
object class. SRBNs typically identify N:1 or N:M
relationships between the subject resource and the object
resource classes. RDF containers that represent collections
of similar resource objects are represented using the SRBN
construct. Example: The object of the “Projects” predicate
in Figure 2 is an example of a SRBN that has multiple
resource objects that are instances of the “Project”
class/r2d:TableMap.

r2d:ComplexResourceBlankNode (CRBN): CRBNs
represent blank nodes that have distinct or non-distinct
predicates leading to objects belonging to different object
classes. This construct also identifies N:1 or N:M
relationships between the subject resource class and each of
the object classes and typically result in the creation of as
many join tables as the number of distinct object classes
leading off of the CRBN. RDF containers that represent
collections of different types of object resources are
represented using CRBNs. Example: The object of the
“OtherActivities” predicate is an example of a CRBN that
has multiple resource objects each of which is an instance
of a different (one “Course” and one “Training”) class.

r2d:MultiValued{Simple/Complex}ResourceBlankNod
e (MVSRBN and MVCRBN): Duplicate simple/complex
resource blank nodes are represented using the MVSRBN
and MVCRBN constructs respectively. Like other
MultiValued constructs, the processing for these is also
identical to their SingleValued counterparts except in the
event the predicates leading to the blank nodes are distinct,
in which case an r2d:MultiValuedPredicate (MVP) is
created and a “TYPE” column corresponding to the MVP is
included in the r2d:TableMap. Example: Consider a
scenario where the “Projects” predicate in Figure 2 is
replaced with two similar predicates, “PastProjects” and
“CurrentProjects”, each of which are SRBNs. The objects
of these two predicates together form an MVSRBN.

r2d:MixedBlankNode: Blank Nodes consisting of a
mixture of literal, resource, and other blank node objects are
mapped using the r2d:MixedBlankNode construct. This

construct results in the creation of a r2d:TableMap as
described in Table 1.

The mapping constructs specific to single-valued and
multi-valued column bridges are applicable to blank nodes

as well and are discussed in [6]. The virtual relational
schema generated by R2D for the sample scenario in Figure
2 is illustrated in Figure 3 and the schema generation details
are discussed in Section IV (B).

Figure 3: Equivalent Relational Schema for the Sample Scenario in Figure 2

B. Types of Blank Nodes and Relationships

Table 1 summarizes the blank node constructs that are
provided by R2D and the RDBMS relationships
corresponding to them in the virtual relational schemata. It
also provides appropriate examples from Figure 2 wherever
applicable. RDBMS relationships corresponding to non-
blank-node entities in the RDF graph can be found in our
earlier work in [6].

TABLE 1. MAPPING BETWEEN R2D AND RDBMS TERMS

R2D CONSTRUCTS RDBMS RELATIONSHIP
r2d:ColumnBridge Column (Example: <Nickname>)
r2d:SimpleLiteral
BlankNode
(Ex: <Name>)

Column
(Ex: <First>, <Middle>, <Last>)

r2d:Complex
LiteralBlankNode
(Ex: <Phone>)

Multi Valued Attribute (resulting in a
new table (that includes a TYPE
column) for the 1:N relationship)

r2d:[Simple/
Complex]
ResourceBlank Node
(Ex:<Projects>,
<OtherActivities>)

Primary-Key/Foreign-Key
relationship. Either a Column in
parent table (1:N relationship) or a
Column in a new join table (N:M
relationship)

r2d:MultiValued
{Simple/Complex}
(Literal/ Resource)
BlankNode (Ex:
Home/WorkAddress)

If no references to other table – Multi-
valued Attribute (resulting in new
table for 1:N relationship); Else
Column in a new join table (N:M
relationship)

r2d:MixedBlank Node Multi-valued Attribute (results in the
creation of a r2d:TableMap which
contains as fields every literal or
resource leaf node object that is an
element of the tree rooted at the
r2d:MixedBlankNode)

r2d:refersToTableMap Foreign Key (Ex: <DeptID>)
r2d:MultiValued
Predicate

“Type” column in parent table
(Ex: Phone_Type for <Phone>)

IV. R2D: A PROTOTYPE DESIGN

In keeping with the objectives of this research, several
RDF-to-RDBMS bridging algorithms were designed and

developed in addition to the design of the RDF-to-
Relational mapping language discussed in Section III. The
following subsections discuss these algorithms.

A. RDFMapFileGenerator

The first step in the R2D Framework is map file
generation realized through the RDFMapFileGenerator
algorithm that automatically generates an RDF-to-Relational
mapping file through extensive examination of RDF data.

Table 2 lists the relationship between some key
OWL/RDFS Ontology terminologies and R2D constructs to
relational concepts.

TABLE 2.RDFS/OWL V/S R2D: NOTIONAL MAPPING

OWL/RDFS
CONSTRUCTS

RELATIONAL CONCEPT

rdfs:class Table
rdf:property Column
rdf:domain Table that the rdf:property is a column of
rdf:range Datatype of the column
rdf:type predicate Values of Primary Key column of the table

However, the transformation process is not always as
straightforward or well-defined as Table 2 suggests. There
are currently many RDF Graphs in existence that either do
not have any, or have incomplete structural information
included along with the data. RDFMapFileGenerator works
on RDF Stores with or without such structural information.
A high-level discussion of the algorithm is provided below.

The data structure discovery process is as follows. When
structural information about the RDF database is available,
the algorithm discovers schema definitions and creates
appropriate Table and Column structures as per the
mappings in Table 2. Next, instance data is processed, using
three procedures, to identify and account for those
predicates that may not have been defined through explicit
rdf:property definitions.

The first procedure, ProcessLiteralPredicate, is used to
process predicates that have literal objects. For every literal
predicate that does not have a column corresponding to
itself, a new column is added to the TableMap
corresponding to the resource to which the predicate

belongs. If the resource contains more than one such
predicate (i.e. the resource contains multiple literal object
values for the same predicate), then the column type of the
corresponding column is set to
r2d:MultiValuedColumnBridge, otherwise it is a simple
r2d:ColumnBridge.

The second procedure, ProcessResourcePredicate,
handles predicates that have resource objects. A new
potential column is added for every resource predicate that
belongs to the subject resource. After all resource predicates
are processed duplicate predicates (i.e., predicates that have
objects belonging to the same object class) are examined
and eliminated. During this consolidation process, any
potential columns that refer to the same object resource
class are combined and set to
r2d:MultiValuedColumnBridges while columns referring to
distinct object resource classes are set to r2d:ColumnBridge.
This consolidation is mandatory in order to arrive at a
normalized and logically sound relational schema. In cases
where the objects belong to the same object class but the
predicates have distinct predicate names, a
MultiValuedPredicate object is created which reflects this
fact. These MultiValuedPredicates typically become
“TYPE” fields in the corresponding r2d:TableMaps in the
relational schema.

Blank node predicates, handled through the third
procedure, ProcessBlankNode, are processed and classified
into the categories described in Section III (A) depending on
whether the blank node objects are literals, resources, blank
nodes, or a combination of the same. If every predicate off
of the blank node contains a literal object (such as the Name
and Phone blank nodes) then, for each predicate off of the
blank Node, the ProcessLiteralPredicate procedure is called
which works as described above. If every column generated
through the ProcessLiteralPredicate procedure is a simple
r2d: ColumnBridge (such as the Name blank node) then the
BlankNode is set to r2d:SimpleLiteralBlankNode. If any of
the columns are r2d:MultiValuedColumnBridges (such as
the Phone blank node) then the BlankNode is set to
r2d:ComplexLiteralBlankNode. If no such blank node has
been previously encountered, this blank node is added to the
set of blank nodes. If a similar blank node is already an
element of the set of blank nodes, the blank node type is set
to r2d:MultiValuedSimpleLiteralBlankNode (such as the
blank nodes corresponding to the HomeAddress and
WorkAddress predicates) or
r2d:MultiValuedComplexLiteralBlankNode respectively.

In case of blank nodes that contain only resource
objects, every predicate off of such blank nodes is processed
using the ProcessResourcePredicate procedure, also
discussed above. As before, the consolidation process is
carried out after all predicates off of the blank nodes are
processed. If the number of consolidated columns is equal to
1 (such as in the case of the Projects blank node), the blank
node type is set to r2d:SimpleResourceBlankNode,
otherwise (as in the case of the OtherActivities blank node)
it is set to r2d:ComplexResourceBlankNode. As in the
previous case, if a similar blank node exists, the blank node
type is set to r2d:MultiValuedSimpleResourceBlankNode or

r2d:MultiValuedComplexResourceBlankNode respectively;
otherwise, the blank node is added to the set.

Blank nodes that contain a mixture of literal objects,
resource objects, and other blank nodes, are considered to
be of type r2d:MixedBlankNodes and they are processed
using the Depth-First-Search graph algorithm. The topmost
blank node is considered the root of the tree and the
procedure is as follows. For every literal or resource
predicate off of a blank node, a column is created and added
to the blank node entity. Additionally, for every blank node
predicate off of a blank node, a new Blank Node entity is
created and added to an array of blank nodes and is also
added as a column to the original blank node. This way, the
hierarchy of the tree rooted at the topmost blank node is
maintained. This hierarchy is required during the SQL-to-
SPARQL conversion to retrieve data associated with blank
nodes appropriately.

Every unique processed blank node is added to the set of
blank nodes for further processing by the
DBSchemaGenerator algorithm described next.

B. DBSchemaGenerator

The map file generation process is followed by the
actual relational schema generation process which is the
next stage in the R2D process and is achieved using the
DBSchemaGenerator algorithm. This algorithm takes the
RDF-to-Relational Schema mapping file generated in
Section IV (A) and returns a virtual, appropriately
normalized relational database schema consisting of entities/
tables and the relationships between them. A description of
the algorithm follows.

[6] describes how entries of type r2d:TableMap,
r2d:ColumnBridge, r2d:MultiValuedColumnBridge, and
r2d:MultiValuedPredicate are handled.

The processing of non-nested blank nodes of various
kinds is as follows. For SLBNs (such as the blank node
object of the Name predicate) every r2d:ColumnBridge
entry that belongs to the blank node is simply added as a
column to the table to which the SLBN belongs (as
indicated by the r2d:belongsToTableMap construct for the
blank node). Blank nodes of type CLBN (such as the object
of the Phone predicate) result in the creation of a new table
that represents a 1:N relationship between the subject and
the objects of the blank node. In addition, CLBN tables
invariably include a “Type” column associated with the
r2d:MultiValuedPredicate that is typically a part of the
blank node. Entries of type SRBNs and CRBNs (such as
objects of the Projects and OtherActivities predicates
respectively) typically result in creation of join tables with
the primary keys of tables corresponding to the subject
resource and the object resource included as fields in the
join table. Further, if the predicates corresponding to the
column bridges belonging to these blank nodes are
MultiValued, an additional “TYPE” column is created and
added to the join table.

The processing of MVSLBN results in the creation of a
new table, contrary to the SLBN scenario. This table has as
columns the primary key of the table corresponding to the
blank node’s r2d:belongsToTableMap value, and all the

r2d:ColumnBridges that belong to the MVSLBN. The
processing of MVCLBN and r2d:MultiValued
{Simple/Complex}ResourceBlankNode is very similar to
their SingleValued counterparts with the only difference
being the inclusion of an additional field in the event the
predicate corresponding to the blank node is an “MVP”.

Blank nodes of type r2d:MixedBlankNode result in
tables which have as columns the primary key column of the
table corresponding to the r2d:belongsToTableMap
construct of the topmost blank node, and the literal and
resource objects that are at the leaf nodes of the tree rooted
at the topmost mixed/nested blank node. These leaf nodes
are discovered using a recursive procedure which explores
the predicates in a depth-first manner.

C. SQL-to-SPARQL Translation

This algorithm corresponds to the final phase of the R2D
transformation process where the SQL-to-SPARQL
translation is performed. The algorithm, which takes an
SQL Statement as input and returns an appropriate
SPARQL equivalent as output, is an enhancement over the
work in [6] with functionalities added to process queries
involving underlying blank nodes, and to provide pattern
matching and data aggregation abilities. The algorithmic
details follow.

First, the input query is parsed to identify the tables,
fields, and Where and Group By clauses, if present. The
parsed query is then transformed into its SPARQL form and
executed. Any data aggregation is achieved by appending an
ORDER BY clause to the transformed SPARQL query. The
actual group functions are calculated on the data obtained
through the execution of the appended SPARQL query and
the aggregated results are returned to the relational tool in a
tabular format. In order to better understand the
transformation procedure let us consider the following
query based on the sample scenario illustrated in Figure 2 in
Section III.
SELECT Name_First, Name_last, Phone_Value, department_name FROM
employee, employee_Phone, department WHERE employee.employee_PK
= employee_Phone.employee_PK and employee_Phone.Phone_Type =
<http://Phone/Cell> and employee.department_id =
department.department_id AND (name_First LIKE ‘ABC%’ OR
employee_pk = <http://empl/123>);

The SPARQL SELECT is generated by adding a
variable for every field (including aggregated fields, and
fields in the SQL WHERE clauses) in the SQL SELECT
list. After this step the SPARQL SELECT list for our
example is as follows:
SparqlSELECT = SELECT ?name_First ?name_Last, ?Phone_Value ?

department_name

The SQL WHERE clauses are added, with minor
modifications, to the FILTER clause of the SPARQL
statement. If the field in the SQL WHERE clause is a
primary key, the field name is replaced with the “?
subject<Index>” variable where Index corresponds to the
table, or the parent table in the case of derived tables
(corresponding to blank nodes) to which the field belongs.
WHERE clauses involving non-primary key fields are
added directly to the SPARQL FILTER clause. In the case

of the LIKE operator, the value on the right-hand-side is
converted to an equivalent regular expression construct (by
appropriately using the “^’, “$”, “.”, and “.*” special
characters in place of the “%” and “?” characters used in the
LIKE expression) and the “regex” function is used on this
converted expression in the FILTER clause.

Upon completion of the SQL WHERE clause
processing, the FILTER clause for our example is:
SparqlFILTER = FILTER (?Phone_Type = <http://Phone/Cell> &&
employee_department_id = subject1 && (regex(?name_First, “^ABC”)
|| ?subject0 = http://empl/123) }

The WHERE clause corresponding to
employee.employee_PK = employee_Phone.employee_PK is
eliminated in the SPARQL equivalent since
employee_Phone is a derived table corresponding to the
employee resource itself. Further, since the primary key
field refers to the subject resource, the primary key fields
associated with the employee and department tables are
replaced with the corresponding ?subjecti variables where i
is the unique tableIndex associated with the tables to which
the primary keys belong.

The SPARQL WHERE clause is generated as follows.
For non-derived tables and derived tables corresponding to
multi-valued attributes clauses of the form ?
subject<tableIndex> <Field.Predicate> ?<Field.Name> are added for
every field in the table. For derived tables corresponding to
blank nodes and for fields belonging indirectly to non-
derived tables (i.e. SimpleLiteralBlankNode fields), clauses
of the form ?subject<tableIndex> <BlankNode.Predicate> ?
<BlankNode.Name>
and ?<BlankNode.Name> Field.Predicate <Field.Name>
are added to the SPARQL WHERE clause. The SPARQL
WHERE clause after the processing of predicates associated
with the non-derived table, Department, and the processing
of fields belonging indirectly to the non-derived table,
Employee (caused by the SimpleLiteralBlankNode
corresponding to the multi-valued attribute, Name), is as
follows:
SparqlWHERE = WHERE {
?subject0 <http://empl/Name> ?employee_name .
?employee_Name <http://Name/First> ?name_First .
?employee_Name <http://Name/Last> ? name_Last .
?subject0 <http://empl/deptId> ?employee_department_id .
?subject1 <http://dept/dept_name> ?department_name .

Since a field cannot be specified in the FILTER clause
without being a part of the SPARQL WHERE clause, the
field employee_department_id is added to the SPARQL
WHERE clause above despite not being a part of the
SPARQL or SQL SELECT list.

For derived tables corresponding to multi-valued
attributes or non-mixed blank nodes that contain multi-
valued predicates, such as EmployeePhone, SPARQL where
clauses of the form
?subject<tableIndex> ?<MVPColumn.Name> ?

<NonMVPColumn.Name> and
 ?<BlankNode.Name> ?<MVPColumn.Name> ?
<NonMVPColumn.Name>
are added, respectively. Further, for every predicate
belonging to the multi-valued predicate field, a clause of the
form ?MVPColumn.Name = <PredicateName> is added to the

http://dept/dept_name
http://empl/deptId
http://empl/123
http://Phone/Cell

SPARQL FILTER clause. The processing of predicates
associated with the derived table, Employee_Phone,
containing a multi-valued predicate column called
Phone_Type results in the following additions to the
SPARQL WHERE clause:
SparqlWHERE = SparqlWHERE +
?subject0 http://empl/Phone ?employee_Phone .
?employee_Phone ?Phone_Type ?Phone_Value .

 Lastly, in the case of mixed blank nodes, for each field
belonging to the mixed blank node table, the sequence of
predicates leading from the topmost subject (of the mixed
blank node) to the field are obtained by traversing the tree
structure stored during the MapFileGeneration process and a
Where clause is added to the SPARQL WHERE for each of
the predicates in the sequence.

The SPARQL WHERE and FILTER clauses are added
to the SPARQL Query and the final query is:
SparqlQUERY = SparqlSELECT + SparqlWHERE + SparqlFILTER

This transformed query is executed by the SQL-to-
SPARQL-Translation Algorithm using the SPARQL Query
Engine and the retrieved data is returned in relational format
seamlessly.

V. IMPLEMENTATION SPECIFICS

The hardware used in the implementation of R2D was a
computer running Windows Vista with 2 GB RAM and 2.00
GHz Intel Core2 Duo Processor. The software platforms
and tools used include MySQL 5.0 to house the relational
equivalent of the given RDF store, Jena 2.5.6
[http://jena.sourceforge.net/index.html] to manipulate the
RDF triples, Java 1.5 for development of the algorithms
detailed in Section IV, and DataVision v1.2.0
[http://datavision.sourceforge.net/] to visualize/generate
reports based on RDF data.

A. Experimental Dataset

Two datasets were used in the experimentation process.
The optimized version of the map file generation process
was executed against the first dataset which is based on the
publications domain described in [6] in order to enable an
apples-to-apples performance comparison against the earlier
work. The second dataset is a subset of the scenario in
Figure 2 and includes the “Employee”, “Department”, and
“Project” resources along with the blank nodes for “Name”,

“Phone” and “Projects”. The query performance
experiments and reporting tool outputs presented here are
based on this second dataset.

B. Experimental Results

The relational equivalent of the second dataset was
generated using the algorithms detailed in Section IV. The
open source visualization tool DataVision, which expects a
relational schema as input, was used to view the virtual
relational schema generated, query the data using SQL
statements, and generate reports off of the data. The times
taken by the map file generation process, with and without
data sampling, for RDF stores with and without ontological
information are illustrated in Figure 4. The process is
especially time-intensive for large databases without
structural information (which is the case with our
experimental data set) but this is only to be expected since
RDFMapFileGenerator has to explore every resource to
ensure that no property is left unprocessed. The sampling
techniques applied improved the performance of the
algorithm by a large factor.

Although applying sampling techniques typically result
in a reduction in accuracy, we did not encounter this
problem in our experiments. The reason is that the RDF data
sets we used in our experiments (including the synthetic
data set used in this paper, and the LUBM
[http://swat.cse.lehigh.edu/projects/lubm/] dataset) did not
have too much variance in the predicates of each resource
class. For example, the Lecturer resource in the LUBM
dataset had the same set of predicates irrespective of the
number of such resources that existed in the RDF store.
Thus, sampling of one Lecture resource resulted in the same
relational entity (and attributes) as the entity generated after
the processing of multiple Lecturer resources. Most of the
other resources in our datasets also exhibited similar
structural properties and hence accuracy continued to
remained intact and independent of the sampling techniques
as well as the sample sizes used in our experiments.

The rest of the experiments and results presented in this
section use the second dataset described earlier. The
“Fields” Window in Figure 5 is a screenshot of the
relational database schema as seen by DataVision,
populated through the JDBC GetDatabaseMetaData
Interface which executes the DBSchemaGenerator
Algorithm.

Figure 4. Map File Generation Times

http://datavision.sourceforge.net/
http://jena.sourceforge.net/index.html
http://empl/Phone

Figure 5. Equivalent Relational Schema as seen by DataVision and DataVision’s Report Designer

As shown, the r2d:SimpleLiteralBlankNode, Employee-
Name, is resolved into columns belonging to the Employee
table, the r2d:ComplexLiteralBlankNode associated with
Employee-Phone is resolved into a 1:N table called Phone,
and the r2d:SimpleResourceBlankNode associated with
Employee-Projects is resolved into a N:M table called
Projects. As stated before, this schema is populated through
the GetDatabaseMetaData Interface in the Connection class
of the JDBC API within which the two algorithms,
RDFMapFileGenerator and DBSchemaGenerator, are
triggered.

The “DataVision Report Designer” Window in Figure 5
shows DataVision’s query building process for a sample
query involving a GROUP BY clause. At this juncture, the
Statement, Prepared Statement, and ResultSet JDBC
Interfaces are invoked, which trigger the SQL-to-SPARQL
Translation algorithm and return the obtained results to
DataVision in the expected tabular format. DataVision, like
any other relational reporting/visualization tool, has options
to specify aggregation and grouping conditions and
functions, the DataVision support group has, for various
reasons that are not applicable to our academic test
environment, disabled the GROUP BY facility. For the
purposes of our research, we have enabled the functionality
and the results, appropriately grouped per the desired
aggregate function, are as displayed in Figure 5.

In order to compare the performance of queries executed
using the virtual relational schema offered by R2D against
the query performance achieved through existing RDF
visualization tools, a selection of four queries were run
against databases of various sizes using R2D and

Allegrograph’s Gruff [http://agraph.franz.com/gruff/], a
grapher-based triple-store browser, and the results are
displayed in Figure 6.

As can be seen, R2D’s performance was far superior to
that of Gruff’s. This could be because Gruff persists data on
the hard disk in a proprietary manner, requiring additional
time/resources for disk I/O, while R2D utilizes Jena’s in-
memory store to house the RDF data. The time taken for
SQL-to-SPARQL conversion is negligible and nearly
constant. Thus, R2D does not add any overheads to the
SPARQL query performance and offers an avenue for users
to continue to take advantage of readily available
visualization tools without data replication or
synchronization issues.

VI. CONCLUSION

The stimulus behind the research in this paper is a dearth
in the number and variety of data modeling and
visualization tools for RDF graph data. The types of RDF
Graphs and SQL queries handled and transformed by the
current implementation of R2D were expanded from the
previous version [6] by including the ability to handle
different kinds of blank nodes. Pattern matching and data
aggregation functionalities were also added to R2D. With
skilled database administrators becoming rarer and more
expensive, the importance of applications such as R2D
becomes more pronounced as they offer a means to bypass
the requirement of databases and their management. Future
directions for R2D include support for reification concepts,
improving the normalization process for mixed blank nodes,
and translation rules for nested/correlated SQL sub-queries.

Figure 6. Response Times for Chosen Queries

REFERENCES

[1] W3C Recommendation, “RDF Primer”, Feb, 2004.
http://www.w3.org/TR/rdf-primer/.

[2] A.Muys, “Building an Enterprise-Scale Database for RDF
Data”, 2006,
http://www.netymon.com/papers/muysa06buildforrdf.pdf

[3] W.Teswanich, S,Chittayasothorn, “A Transformation of RDF
Documents and Schemas to Relational Databases”, IEEE
PacificRim Conferences on Communications, Computers, and
Signal Processing, 2007, pp. 38-41.

[4] J.Hendler, “RDF Due Diligence”, 2006.
http://civicactions.com/blog/rdf_due_diligence.

[5] S.Ramanujam, A.Gupta, L.Khan, S.Seida, and
B.Thuraisingham, “Relationalizing RDF Stores for Tools
Reusability”, 18th International World Wide Web Conference,
2009, pp. 1059-1060.

[6] S.Ramanujam, A.Gupta, L.Khan, and S.Seida, “R2D:
Extracting relational structure from RDF stores”, International
Conference on Web Intelligence, 2009, in press.

[7] C.Bizer, and A.Seaborne, “D2RQ – Treating Non-RDF
Databases as Virtual RDF Graphs”, 3rd International Semantic
Web Conference, 2004.

[8] O.Erling, and I.Mikhailov, “RDF Support in the Virtuoso
DBMS”, 1st Conference on Social Semantic Web, 2007, pp.
1617-5468.

[9] L.Han, T.Finin, C.Parr, J.Sachs, and A.Joshi, “RDF123: From
Spreadsheets to RDF”, International Semantic Web
Conference, LNCS 5318, 2008, pp.451-466.

[10] S.Auer, S.Dietzold, J.Lehmann, S.Hellmann, and
D.Aumueller, “Triplify – Light-Weight Linked Data
Publication from Relational Databases”, 18th International
World Wide Web Conference, 2009, pp. 621-630.

[11] Z.Pan, and J.Heflin, “DLDB: Extending Relational Databases
to Support Semantic Web Queries”, Practical and Scalable
Semantic Systems, 2003, pp.109-113.

[12] H.Chen, Z.Wu, H.Wang, and Y.Mao, “RDF/RDFS-based
Relational Database Integration”, 22nd International
Conference on Data Engineering, 2006, pp.94-104.

[13] E.I.Chong, S.Das, G.Eadon, and J.Srinivasan, “An Efficient
SQL-based RDF Querying Scheme”, 31st International VLDB
Conference, 2005, pp. 1216-1227.

[14] Y.Yan, C.Wang, A.Zhou, W.Qian, L.Ma, and Y.Pan,
“Efficiently Querying RDF Data in Triple Stores”, 17th

International Conference on World Wide Web, 2008, pp.
1053-1054.

http://civicactions.com/blog/rdf_due_diligence
http://www.netymon.com/papers/muysa06buildforrdf.pdf
http://www.w3.org/TR/rdf-primer/

RDFKB: Efficient Support For RDF Inference Queries and
Knowledge Management

James P. McGlothlin
The University of Texas at Dallas

800 West Campbell Road
Richardson, TX 75080

jpm083000@utdallas.edu

Latifur R. Khan
The University of Texas at Dallas

800 West Campbell Road
Richardson, TX 75080

lkhan@utdallas.edu

ABSTRACT
RDFKB (Resource Description Framework Knowledge Base) is a
relational database system for RDF datasets which supports
inference and knowledge management. Significant research has
addressed improving the performance of queries against RDF
datasets. Generally, this research has not addressed queries
against inferred knowledge. Solutions which do support inference
queries have done so as part of query processing. Ontologies
define the rules that govern inference for RDF datasets. These
inference rules can be applied to RDF datasets to derive additional
facts through methods such as subsumption, symmetry and
transitive closure. We propose a framework that supports
inference at data storage time rather than as part of query
processing. The dataset is increased to include all knowledge
whether explicitly specified or derived through inference with a
negligible overhead. Queries against inferred data are simplified,
and performance is increased.

Categories and Subject Descriptors
H.2.1[Database Management]: Logical Design- data models,
schema and subschema.

General Terms.
Design, Performance.

Keywords
Semantic Web, Resource Description Framework, Data Models,
Information Integration and Retrieval, Logic and Databases,
Knowledge Base Management Systems, Ontology.

1. INTRODUCTION
A knowledge base can be defined as “a special kind of database
for knowledge management, providing the means for the
computerized collection, organization and retrieval of
knowledge.” [9] The goal of RDFKB is to provide solutions to
convert RDF datasets into knowledge bases, while preserving
efficient performance. In order to support the retrieval of

knowledge, and not simply the recording of facts, the knowledge
base must enable answering queries that require inference and
deductive reasoning.

A simple example of inference is the well-known logical
syllogism from the ancients Greeks:

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

The core strategy of RDFKB is to apply all known inference rules
to the dataset to determine all possible knowledge, and then store
all this knowledge. Inference is performed at the time the data is
stored rather than at query time. When new data is added to the
database, we execute the inference engine and attempt to
determine and store all additional facts that can be inferred. In the
syllogism example above, we would actually add “Socrates is
mortal” to the database. Thus, the dataset contains all known
knowledge, and it can be directly queried; there is no need for
further inference at query execution time.

The World Wide Web Consortium [1] defines the RDF data
format as the standard mechanism for describing and sharing data
across the web. All RDF datasets can be viewed as a collection
of triples, where each triple consists of a subject, a property and
an object. OWL (The Web Ontology Language)[10] defines rules
for inference. In OWL, the following constructs are some
examples of ontology rules that will allow the inference of new
RDF triples from existing knowledge: rdfs:subClassOf,
owl:equivalentClass, owl:equivalentProperty, owl:sameAs,
owl:inverseOf, owl:TransitiveProperty, owl:SymmetricProperty,
rdfs:subPropertyOf, and owl:intersectionOf. RDF and OWL have
“provable inference” and “rigorously defined notions of
entailment”[11]. Therefore, the semantics of the RDF documents
and ontology concretely define what information can be known.

The key elements of RDFKB's solution are
a) Inference is performed at storage time and inferred

triples are persisted
b) Data is stored in relational databases using efficient

schema
Performing inference at storage time simplifies queries and
improves query performance[15]. Using relational databases for
storage provides efficiency and robustness[3][7][15]. The
simplest way to store data in a relational database is to simply
create a three column table of RDF triples. However, research
shows that this is not the most efficient solution[4][5]. Many
alternative solutions have been proposed including vertical
partitioning[4], sextuple indexing[6], RDF-3X[15], and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IDEAS 2009, September 16-18, Cetraro, Calabria [Italy]
Editor: Bipin C. DESAI
Copyright ©2009 ACM 978-1-60558-402-7/09/09 $5.00

RDFJoin[8]. None of these solutions store inferred data or
address the task of querying inferred knowledge. Inference
queries against these databases require detailed knowledge and
encoding of the ontology logic, and require unions and joins to
consolidate the inferred triples. There are existing solutions that
perform inference in memory[14], providing simpler queries.
There are even solutions which support inference and relational
database storage[14][15], but they have fixed schema and do not
support customized tables for efficiency. Such solutions pay a
large query performance penalty due to increasing the dataset to
include the inferred triples. RDFKB supports inference at storage
time combined with efficient database schema in a manner that
not only simplifies queries but also improves performance.

Traditionally, databases have sought to avoid storing redundant
information. Instead, we propose to increase redundancy. There
are two reasons why traditional databases and knowledge bases
have not attempted to store such inferred knowledge, and have,
instead, supported inference as part of query processing. The first
is that transactional databases seek to reduce redundancy in order
to preserve and enforce referential integrity. However, semantic
web databases should not be viewed as traditional transactional
databases. RDFKB supports adding new knowledge to the
database, but we are not concerned with supporting transactions
that delete or change triples in the dataset. Such updates can still
be performed, but in these instances the inference is recalculated.
The second reason is that it has been considered too expensive
and broad a search to attempt to infer all possible knowledge. At
the time of query execution, there is information about which
knowledge relates to the query, and this can be used to limit the
scope of the inference search. However, we are concerned with
query performance rather than the performance of adding
knowledge to the database. With our solution, all inferred
knowledge can be stored without a query performance penalty.

The remainder of this paper is organized as follows: In Section 2,
we provide background information on technology used by our
project. In Section 3, we specify our architecture. In Section 4,
we present implementation solutions for several types of inference
that are defined in OWL. In Section 5, we evaluate queries
defined by the Lehigh University Benchmark (LUBM)[2] that
involve inference, and we specify implementation solutions and
performance results for these queries. In Section 6, we examine
related research. In Section 7, we present areas for future work,
and we make some conclusions.

2. BACKGROUND
RDFKB relies on adding inferred RDF triples to the dataset. This
would not be a viable solution unless these triples can be added
and stored without increasing the performance cost of queries.
The database schema documented in RDFJoin: A Scalable Data
Model for Persistence and Efficient Querying of RDF Datasets
[8] allows us to add new inferred triples to the dataset without a
performance penalty. Therefore, while RDFKB's design is not
contingent upon using this particular database storage scheme, our
solution is implemented and tested using the RDFJoin technology.

RDFJoin stores the RDF triples in five base tables: the
SOIDTable, the PropertyIDTable, the POTable, the SOTable and
the PSTable. The SOIDTable and the PropertyIDTable simply
map each unique property, subject or object to a sequential id
number. Each URI or literal appears in the table only once

regardless of how many times it appears in the dataset. The
PSTable includes three columns: the PropertyID, the SubjectID
and the ObjectBitVector. The POTable contains three columns:
the PropertyID, the ObjectID and the SubjectBitVector. The
SOTable contains three columns: the SubjectID, the ObjectID and
the PropertyBitVector.

The bit vectors are the key to the RDFJoin approach, and the
reason why RDFJoin is able to store inferred triples at little or no
cost. The length of the ObjectBitVector in the PSTable and the
SubjectBitVector in the POTable is equal to the max(SOID) in the
SOIDTable. Each and every unique subject or object URI or
literal in the dataset has a corresponding bit in these bit vectors.
In the PSTable, there is a bit in the bit vectors for each unique
URI, indicating whether that URI appears as an object in a triple
with the corresponding property and subject. Similarly, in the
POTable, there is a bit in each SubjectBitVector to indicate if
each subject URI appears with that property and object in a triple
in the dataset.

Figure 1 shows an example dataset and some of the corresponding
RDFJoin tables. The subject of the first triple in the dataset is
“UTD”. According to the SOIDTable, the SubjectID for UTD=1.
The property of the first triple is “fullName”, which has
PropertyID=1 according to the PropertyIDTable. The object,
“The University of Texas at Dallas”, has SOID=2 from the
SOIDTable. Therefore, the PSTable has a tuple with
PropertyID=1, SubjectID=1 and the 2nd bit in the ObjectBitVector
set on. SOID=3 would indicate “Richardson”. There is no triple
<UTD fullName Richardson> therefore the 3rd bit in the bit vector
is 0. However, if we were to add such a triple, it would not
increase the number of bits stored, it would only change this third
bit to 1.

Our inference solution relies upon adding additional triples for all
inferred knowledge. Typical RDF databases incur a performance
penalty for increasing the number of triples in the data set.
However, except for a potential reduction in the achievable
compression rate, RDFJoin does not incur this penalty. Instead,
RDFJoin incurs a performance penalty only when the dataset's
vocabulary is increased. RDFJoin queries experience a
performance reduction in a linear fashion corresponding to the
number of unique URIs and literals in the dataset. This is because
there is already a bit in the tables for each and every possible
combination of the known subjects, properties and objects. Many
times, inferred triples will not introduce unique URIs at all, and if
unique URIs are introduced, they are only unique for that
ontology rule. While an RDF dataset may include millions of
triples, the number of unique terms in the ontology is generally
not large. For our experiments, in Section 5, we utilize the
LUBM (Lehigh University Benchmark)[2] dataset with more than
44 million RDF triples. For this dataset, 20,407,385 additional
triples are inferred, yet only 22 unique URIs are added by this
inference. Thus, there is no performance penalty for the addition
of the millions of inferred triples, only for the addition of 22 new
URI terms. For these reasons, the RDFJoin solution provides a
database scheme that allows inferred triples to be added to the
dataset at almost no performance cost.

EXAMPLE DATASET:

<UTD, fullName, The University of Texas at Dallas>
<UTD, locationCity, Richardson>
<UTD, locationState, TX>
<ComputerScience, subOrganizationOf, UTD>
<James McGlothlin, worksFor, ComputerScience>
<James McGlothlin, position, GraduateStudent>
<Latifur Khan, worksFor, ComputerScience>
<Latifur Khan, position, Professor>
<James McGlothlin, position, ResearchAssistant>
<James McGlothlin, advisedBy, Latifur Khan>
<James McGlothlin, takesCourse, CS7301>
<Latifur Khan, teacherOf, CSC7301>
<CSC7301, fullName, Data Mining>
<James McGlothlin, authorOf, RDFJoin>
<Latifur Khan, authorOf, RDFJoin>

PropertyIDTable
fullName 1

locationCity 2

locationState 3

subOrganizationOf 4

worksFor 5

position 6

advisedBy 7

takesCourse 8

teacherOf 9

authorOf 10

SOIDTable
UTD 1

University of Texas At Dallas 2

Richardson 3

TX 4

ComputerScience 5

James McGlothlin 6

Graduate Student 7

Latifur Khan 8

Professor 9

Research Assistant 10

CSC7301 11

Data Mining 12

RDFJoin 13

PSTable
PropertyID SubjectID Objects (bit vector)

1 1 0100000000000

1 11 0000000000010

2 1 0010000000000

3 1 0001000000000

4 5 1000000000000

5 6 0000100000000

5 8 0000100000000

6 6 0000001001000

6 8 0000000010000

7 6 0000000100000

8 6 0000000000100

9 8 0000000000100

10 6 0000000000001

10 8 0000000000000

POTable
PropertyID ObjectID Subjects (bit vector)

1 2 1000000000000

1 12 0000000000010

2 3 1000000000000

3 4 1000000000000

4 1 0000100000000

5 5 0000010100000

6 7 0000010000000

6 9 0000000100000

6 10 0000010000000

7 8 0000010000000

8 11 0000010000000

9 11 0000000100000

10 13 0000010100000

Figure 1: RDFJoin Tables and Example Dataset
3. ARCHITECTURE
The core of the RDFKB design is that for each RDF triple, we
infer all possible additional RDF triples, store this data, and make
it accessible to queries.It is not the intention of this project to
attempt to identify and implement each and every possible rule of
inference. There are many such rules defined by the RDF
ontologies, and these can change and be added to over time.
Moreover, there may be inference rules that are not specified in
the ontology at all. Specific domains may have business logic that
includes domain-specific inference. For these reasons, we allow
each inference rule to execute independently and to store its own
inference data.

RDFKB defines a global function add(subject, property, object).
This function encapsulates the details of our schema from the
user. The user does not have to have any knowledge of the
database tables and schema to add triples to the dataset.
Furthermore, the database user does not have to have any
knowledge concerning inference. The simple act of adding triples
to the dataset invokes the inference process without any
intervention by the user.

RDFKB's architecture is that each inference rule registers a
function add(subject, property, object). When a triple is added,
these functions are each executed, and every inference rule has the
opportunity to derive and add more triples. The order that the
inference rules are executed is not relevant. The only change the
inference rule is allowed to make to the database is to add more
triples by calling the global add function.

This is a recursive solution that only requires a one level inference
search. As an example, assume there is an inference rule to
support subClassOf. Assume an ontology that defines Steak as a
class that is a subClassOf Meat, and Meat as a class that is a
subClassOf Food. Now, if we add a triple <FiletMignon type
Steak>, the inference rule will add another triple <FiletMignon
type Meat>. Then, the same inference rule will be executed on
this new triple, and add another triple <FiletMignon type Food>.

One issue that should be addressed is whether there are any
unwanted effects of adding extra triples to the dataset. Usually,
enforcing distinction in the dataset will negate the effect of
additional triples; RDF triples only appear once in the dataset.
While it is possible that two different inference rules will add the
same RDF triple (for example if James is a student and an

employee, both of these facts can be used to infer James is a
person), this duplication has no effect. The query does not have
to address this issue, because it is handled when the inference is
executed, at addition time. There are also times when a query will
not want to perform any inference or query inferred data. For
example, a cardinality query such as “How many jobs does John
have?” should not take in to account the fact that his employer is
part of a transitive suborganization hierarchy. Also, sometimes
we may simply want to know the exact type an instance is
declared as, and not include all the further information that can be
inferred. Generally, the responsibility to know that inference is
not sought rests with the query. Therefore, our architecture
creates a second copy of all tables, including all triples from the
dataset but ignoring all triples added by the inference rules. These
tables are simply labeled with the extension _Without_Inference.
A query can retrieve information from these tables when inference
should be specifically avoided.

4. ONTOLOGY
This section presents details and examples for OWL ontology
inference rules.. Many of the OWL examples contained in this
section are taken directly from the OWL Web Ontology Language
Reference[10] and from the OWL ontology file for the Lehigh
University Benchmark (LUBM)[2]. For each of these rules, we
have implemented and registered an inference rule with RDFKB.
The inference rule simply checks if the condition of the rule is
met, and if so determines and adds the triple on the right side of
the equation. For example, with subClassOf (Section 4.1), the
condition is that property='type' and object=ClassA, and the
action is add(subject, type, ClassB) where ClassA is a subclass
and ClassB is its superclass in the ontology.

4.1 subClassOf
Rule: if ClassA subClassOf ClassB then

<Subject type ClassA> → <Subject type Class B>

Ontology:
<owl:Class rdf:ID="Corvette"

 <rdfs:subClassOf rdf:resource="SportsCar" />
</owl:Class>

Base triple:
<Vehicle1 type Corvette>

Inferred triple:
<Vehicle1 type SportCar>

4.2 equivalentClass
Rule: if ClassA equivalentClass ClassB then
<Subject type ClassA> → <Subject type ClassB> &&
<Subject type ClassB> → <Subject type ClassA>

Ontology:
<owl:Class rdf:about="US_President">
<equivalentClass rdf:resource="Commander_in_Chief"/>
</owl:Class>

Base triple:
<BarackObama type US_President>

Inferred triple:
<BarackObama type Commander_in_Chief>

4.3 subPropertyOf
Rule: if property1 subPropertyOf property2 then

<Subject property1 Object> → <Subject property2 Object>

Ontology:
<owl:ObjectProperty rdf:ID="hasMother">
 <rdfs:subPropertyOf rdf:resource="#hasParent"/>
</owl:ObjectProperty>

Base triple:
<GeorgeWBush hasMother BarbaraBush>

Inferred triple:
<GeorgeWBush hasParent BarbaraBush>

4.4 TransitiveProperty
Rule: if property1 is TransitiveProperty then
<Subject property2 Object1> &&
<Subject property1 Object2>

→ <Subject property2 Object2>

Ontology:
<owl:TransitiveProperty rdf:ID="subRegionOf">

<rdfs:domain rdf:resource="#Region"/>
<rdfs:range rdf:resource="#Region"/>

</owl:TransitiveProperty>

Base triples:
<Texas subRegionOf UnitedStates>
<Austin locatedIn Texas>
<UnitedStated subRegionOf NorthAmerica>

Inferred triples:
<Austin locatedIn UnitedStates>
<Texas subRegionof NorthAmerica>
<Austin locatedIn NorthAmerica>

4.5 SymmetricProperty
Rule: if property1 is SymmetricProperty then
<Subject property1 Object> → <Object property1 Subject>

Ontology:
<owl:SymmetricProperty rdf:ID="friendOf">

<rdfs:domain rdf:resource="#Human"/>
<rdfs:range rdf:resource="#Human"/>

</owl:SymmetricProperty>

Base triple:
<Jane friendOf John>

Inferred triple:
<John friendOf Jane>

4.6 inverseOf
Rule: if property1 is inverseOf property2 then
<Subject property1 Object> → <Object property2 Subject>

Ontology:
<owl:ObjectProperty rdf:ID="hasChild">

<owl:inverseOf rdf:resource="#hasParent"/>
</owl:ObjectProperty>

Base triple:
<GeorgeWBush hasParent BarbaraBush>

Inferred triple:
<BarbaraBush hasChild GeorgeWBush>

4.7 intersectionOf
Rule: determine the subsumption resulting from intersection,

and add this subsumption as though an actual subclass was
specified.

Ontology:
<owl:Class rdf:ID="Employee">
 <rdfs:label>Employee</rdfs:label>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#worksFor" />
 <owl:someValuesFrom>

 <owl:Class rdf:about="#Organization" />
 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

Base triple:
<James type Employee>

Inferred triple:
<James type Person>

5. QUERY IMPLEMENTATION AND
EXPERIMENTAL RESULTS

Lehigh University Benchmark (LUBM) [2] dataset has been used
to evaluate the performance of many RDF data storage solutions
including Hexastore[6] and RDFJoin[8]. LUBM defines queries
that require inference. In prior research, the approach has been to
either avoid the queries that include inference or to support these
queries by translating them into unions of subqueries without
inference. RDFKB supports these queries as defined, without
requiring the query to have any knowledge of the inference. This
section includes performance results and analysis for each of these
queries. The LUBM queries that require inference are queries 3,
5, 6, 11, and 13; therefore, these are the queries implemented and
tested here.

All of our experiments here were performed on a system with an
Intel Core 2 Duo CPU @ 2.80 GHz, with 8GB RAM, running 64
bit Windows. Our code was developed in Java, C++, and SQL,
and we tested with the MonetDB column store database. We
created a database using the LUBM dataset with 400 universities
and 44,172,502 tuples. After all inference rules are applied, this
dataset grows to 64,579,887 triples. In our graphs, we show the
number of original triples in the dataset; inferred triples are not
included. This makes the comparison to other technologies more
accurate, as they do not store inferred triples.

There is no high-performance solution with inference that uses
relational databases for RDF datasets. It seems uninformative to
compare our results with solutions that access and parse RDF
documents directly, and the performance of such tools is slower
by many orders of magnitude. Therefore we chose two relational
database RDF solutions to compare with: vertical partitioning[4]
and RDFJoin[8]. Neither of these solutions provides automated
support for inference. Instead, the query implementation requires
specific knowledge and encoding of the ontology logic. These
queries require a minimum of 4 subqueries and 3 unions, and a
maximum of 29 subqueries.

We additionally tested with a single triples table sorted by
property, subject, object and subject, property, object. The triple
store implementation consistently performed slower than vertical

partitioning or RDFJoin. Therefore, we chose not to document
these results in order to avoid saturating the graphs.

5.1 LUBM Query 3
(type Publication ?X)
(publicationAuthor ?X http://www.Department0.University0.edu/
AssistantProfessor0)
Publication has a wide hierarchy in the LUBM ontology.
Therefore, to perform this query would normally involve querying
many different subclasses of Publication and unioning the results
together. Without RDFKB, this query in SQL requires 10 unions
to support all the different classes in the Publication hierarchy.
With our inference solution, this query involves selecting two
subject bit vectors and executing a single or operation.

In the actual dataset, LUBM defines all publications as type
Publication, and does not in fact ever define an instance of any of
its subclasses. If we were to assume this knowledge, RDFJoin
would actually be as fast or faster than RDFKB. Since we cannot
assume this knowledge, RDFJoin is slightly slower due to the
time needed to attempt to query these subclasses. This query is a
subject-subject join. In the vertical partitioning solution, subject-
subject are linear merge joins, so vertical partitioning is fairly
efficient. Figure 2 shows the performance results for RDFKB,
RDFJoin and VP (Vertical Partitioning) for Query 3.

5.2 LUBM Query 5
(type Person ?X)
(memberOf ?X http://www.Department0.University0.edu)
This query invokes five kinds of inference rules: subClassOf,
subPropertyof, inverseOf, TransitiveProperty and intersectionOf.
Person is the superclass of a wide variety of subclass types.
memberOf has many subproperties, and has an inverse: member.

There are 21 classes in the Person hierarchy in the LUBM
ontology. In the LUBM dataset, there are instantiations for 8 of
these classes. Therefore, to query ?x type Person using vertical
partitioning or RDFJoin requires 21 subqueries; 8 of which will
return results that must be unioned together. There are three
different ways to express memberOf in the dataset. It can be
expressed directly with the memberOf property, or through the
subProperty worksFor, or through the inverse property member.
To perform this query with vertical partitioning or RDFJoin
requires that triples with all three properties be queried. To make

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

Figure 2: Performance Results for LUBM Query 3

RDFKB
VP
RDFJoin

Triples (in millions)

Ti
m

e
(in

 s
ec

on
ds

)

matters more difficult, the range of the memberOf property is type
Organization. Organization is affected by the transitive property
subOrganizationOf. So it is necessary to query if the subject is a
memberOf or worksFor any entity that in turn is a
subOrganizationOf http://www.Department0.University0.edu.
Transitive closure is not limited to a single level, therefore it is
necessary to repeat this loop until the organization does not
appear as a suborganization. In point of fact, there is no
subOrganizationOf department, so this transitive closure will not
introduce any new results, but it still must be attempted.

5.3 LUBM Query 6
(type Student ?X)
This query requires the subClassOf inference rule as well as the
intersectionOf rule. There are 4 different classes that should be
included in this query. So, without inference, 4 subqueries and
three unions are required. While this is the simplest query
evaluated here, it requires a selection based on object and has low
selectivity. Vertical partitioning is sorted on subject rather than
object, and therefore pays a performance penalty. Figure 4 shows
the performance results for Query 6.

5.4 LUBM Query 11
(type ResearchGroup ?x)
(subOrganizationOf ?x http://www.University0.edu)
This query requires the TransitiveProperty infeorence rule.
Research groups are not defined as a subOrganizationOf
universities in the dataset; this requires transitive closure. This
query is highly selective, and does not involve a class hierarchy,
which improves the efficiency of the non-inference solutions.
However, unlike in Query 5, the transitive closure does add data

to the result set as the research groups are defined as
subOrganizations of departments, rather than the university.
Transitive closure requires a subject-object join, which in the
vertical partitioning solution requires a nested loop. Figure 5
shows the performance results for Query 11.

5.5 LUBM Query 13
(type Person ?X)
(hasAlumnus http://www.University0.edu ?X)

This query requires four types of inference: subClassOf,
intersectionOf, inverseOf and subPropertyOf. hasAlumnus is not
defined in the dataset, but the ontology defines it as the inverseOf
degreeFrom. Even degreeFrom is not defined in the dataset, but
the ontology defines subproperties of degreeFrom that are
defined in the dataset. As already stated, Person includes 21
different class specifications. To query the property hasAlumnus
requires querying 5 separate properties. All of these subqueries
then have to be unioned together to recreate this inference during
query processing. Only hasAlumnus, which actually never appears
in the dataset, involves a subject-object join, and this join will
never actually be executed as hasAlumnus returns no results. So
this is a subject-subject join, and all of the unions are subject-
subject merge joins. Figure 6 shows the performance results for
Query 13.

5.6 TradeOffs
RDFKB stores all inferred data rather than performing inference
at query time. Thus, inference is calculated at storage time, more
triples are persisted, and more triples are loaded into memory.
The trade-offs of this approach are added storage time, increased
storage space requirements, and increased memory consumption.
The number of stored triples is increased by 46.2% for our LUBM
dataset. We have asserted that the architecture of RDFJoin

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Figure 3: Performance Results for LUBM Query 5

RDFKB
VP
RDFJoin

Triples (in millions)

Ti
m

e
(in

 s
ec

on
ds

)

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

Figure 4: Performance Results for LUBM Query 6

VP
RDFKB
RDFJoin

Triples (in millions)

Ti
m

e
(in

 s
ec

on
ds

)

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

Figure 6: Performance Results for LUBM Query 13

RDFKB
VP
RDFJoin

Triples (in millions)

Ti
m

e
(in

 s
ec

on
ds

)

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

Figure 5: Performance Results for LUBM Query 11

RDFKB
VP
RDFJoin

Triples (in millions)

Ti
m

e
(in

 s
ec

on
ds

)

minimizes the costs of this trade-off. To validate this, we
designed and executed tests to quantify the costs.

To perform all of the queries and tests outlined in Section 5,
involving 44 million triples, our maximum memory usage was
3.713 GB. This memory consumption is only 3.7% higher than
RDFJoin without inference.

Obviously, the size of the database is increased 100% by storing a
second copy of the tables without the inferred triples. There is no
other significant increase in the database size (<0.2%) resulting
from adding the inferred triples. There is a reduction in the
achievable compression ratio. In our experiments with the LUBM
dataset, this reduction varied from 6.3% to 9.8%.

RDFKB does support adding triples to the dataset, and inference
is calculated at the time the triples are added. This increases the
amount of time required to add and store triples. Figure 7 shows
the time to add triples for RDFJoin, for RDFKB and for just
inference. Adding a triple to RDFKB includes adding it to the
RDFJoin tables. Therefore, the time added as a result of inference
is the time difference between between RDFJoin and RDFKB.
This is plotted on the graph and labeled “Inference Only”, i.e. the
actual cost of inferring the triples and storing them. This cost is
12% of the overall time cost of the additions for 10 million triples.
We assert that a 12% increase in the time to add triples to the
dataset is well worth it to achieve the added functionality of
inference and a significant improvement in query performance.

5.7 Performance Summary
Table 1 provides a summary performance comparison of RDFKB,
RDFJoin and vertical partitioning. In every query, RDFKB
consistently achieves the best performance, and the performance
gain increases as the dataset grows, demonstrating scalability.

Furthermore, RDFKB requires no special coding or understanding
of the ontology to develop these queries. No unions are required
to implement any of the queries within the RDFKB system.. Even
if the inference logic for the other solutions is discovered from the
ontology and performed automatically, the subqueries and unions
would still be required as the inferred knowledge is not part of the
dataset. Thus, hard-coding the query specifics yields the fastest
solution vertical partitioning or RDFJoin can provide.

RDFKB consistently outperforms both vertical partitioning and
RDFJoin and eliminates the need for complex queries or
understanding of the ontology by the developer.

Table 1: Performance Improvements
Query
#

% query time reduction
 vs vertical partitioning

% query time reduction
 vs RDFJoin

3 92.9% 67.4%
5 99.6% 92.0%
6 99.6% 60.0%
11 98.4% 84.7%
13 99.3% 91.2%

6. RELATED WORK
Jena [14], a semantic web framework for Java, supports a
framework for registering and executing inference rules that is
similar to RDFKB. Jena and RDFKB both define a Java abstract
class (Jena calls this Reasoner) that specifies the interface to the
inference rule implementation, factory methods to instantiate
instances of this class, and a registration system. Jena's
getRawModel() API provides similar support to the
_Without_Inference tables in RDFKB, and Jena allows
Reasoners to add additional “virtual” triples to the dataset. Jena
even provides an OWL reasoner that implements most of the same
inference rules implemented in our experiments. However, there
are several important differences between Jena's inference support
and that of RDFKB. Inferred data is not persisted with Jena;
inference is performed at query time, or precomputed using the
prepare() method. Furthermore, while Jena does support
persistence of triples to relational databases, it does so only as an
alternative storage method and requires a fixed schema. Thus,
adding millions of inferred triples will incur a performance
penalty because a schema such as RDFJoin can not be used to
store the data. Finally, RDFKB supports growing the dataset. If
triples are added in Jena, this will cause all the deduced triples to
be discarded, and inference will be reprocessed across the entire
dataset.

In An Approach to RDF(S) Query, Manipulation and Inference
on Databases[15], Lu et al. propose a solution to RDF inference
that is based on top of relational databases. In this research, they
propose to infer knowledge at storage time and store all inferred
triples. In this way, the strategy is very similar to RDFKB. They
also reach similar conclusions concerning the superiority of this
approach to inference during query processing. However, this
database's schema incurs a performance penalty for the storage of
inferred triples. Because RDFKB utilizes column stores and
RDFJoin, it is able to achieve greater performance. Our
experiments show that our solution is highly scalable, and
performs efficiently with very large datasets. In [15], the query
time steadily increases as the dataset grows. The reported
experiments involve much smaller datasets than our testcases, and
the reported query performance is several orders of magnitude
slower the RDFKB's performance results.

There is significant research involving efficient database schemata
for RDF datasets. In Column Stores for Wide and Sparse
Data[3], Abadi proposes using column store databases, and, in
Scalable Semantic Web Data Management Using Vertical
Partitioning[4], Abadi et al. propose partitioning the dataset into
two column tables for each predicate. In Hexastore: Sextuple
Indexing for Semantic Web Data Management[6], Weiss et al.
propose a main memory schema using sextuple indexing. In

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Figure 7: Performance Results for Adding Triples

RDFJoin
RDFKB
Inference Only

Triples (in millions)

Ti
m

e
(in

 m
in

ut
es

)

RDF-3X: a RISC-style engine for RDF[17], Neumann et al.
propose a RDF indexing system with an efficient query processor.
In all of these solutions, specialized schemata and indexes are
used to improve query performance. However, none of these
solutions provide a solution for inference queries. RDFJoin and
RDFKB leverage concepts from these designs, including subject-
subject merge joins and sextuple indexing. However, unlike these
solutions, RDFJoin can add triples without a performance penalty
except when the vocabulary is increased. RDFKB utilizes this
technology to provide a high performance inference solution.

7. FUTURE WORK AND CONCLUSIONS
One area for future work is to develop inference rules based on
logic outside of OWL ontology files. There are specialized
ontology tools and description logic systems that provide rules
and axioms. There are also tools such as WordNet[12] which can
be used for textual inference. The total of all unique noun, verb,
adjective and adverb strings in WordNet 3.0 is 147,278[12]. This
is much smaller than the number of unique URIs in our LUBM
test dataset, less than 0.3% of the size actually. Therefore, even
taking into account that many of these strings have multiple
meanings that must be accounted for, it is very reasonable to
claim that we can store every combination of triples of words in
RDFKB and execute and store textual inference using WordNet.

Inference involving probabilities is also left as future work. OWL
defines inference rules that are absolute, so reasoning with
uncertainty has not been addressed. Ontology mapping and
handling multiple RDF schemata is also a problem for future
work. Generally, ontology mapping involves probabilistic
reasoning as well since there is uncertainty involved in mapping
automation[18][19][20]. One potential solution is to store the
probability of the triple being in the dataset, rather than simply a 1
or 0 in the bit vector. In this case, the bit vectors would become
vectors of fractions, where each fraction represents a probability.
The future work would be to utilize RDFKB to store, retrieve and
manage this information in conjunction with the RDF dataset.

We have proposed a solution for adding inference to RDF datasets
stored in relational databases. This solution is efficient and
scalable. RDFKB outperforms existing solutions, and the
performance improvement increases as the dataset increases,
which demonstrates scalability. Query processing does not
require any knowledge of inference rules to access inferred data.
Queries become simpler and more efficient.

The definition of knowledge base requires a knowledge base to
provide for “computerized collection, organization and retrieval
of knowledge.”[9] Our solution, RDFKB, uses inference rules to
acquire and complete knowledge in the database. RDFKB
organizes and persistently stores the inferred data, allowing
simple and efficient query retrieval of the knowledge. Therefore,
we assert that RDFKB is a highly functional and efficient
knowledge base for managing RDF information.

8. REFERENCES
[1] World Wide Web Consortium (W3C).

http://www.w3c.org.

[2] Lehigh University Benchmark (LUBM).
http://swat.cse.lehigh.edu/projects/lubm.

[3] Abadi, D.J. Column Stores for Wide and Sparse Data.
In Proceedings of CIDR. 2007, 292-297.

[4] Abadi, D.J., Marcus, A., Madden, S., and Hollenbach,
K.J. Scalable Semantic Web Data Management Using Vertical
Partitioning. In Proceedings of VLDB. 2007, 411-422.

[5] Chong, E.I., Das, S., Eadon, G., and Srinivasan, J. An
Efficient SQL-based RDF Querying Scheme. In Proceedings of
VLDB. 2005, 1216-1227.

[6] Weiss, C, Karras, P, and Bernstein, A. Hexastore:
Sextuple Indexing for Semantic Web Data Management. In
Proceeding of VLDB. 2008.

[7] Chen, H., Wu, Z., Wang, H., and Mao, Y. RDF/RDFS-
based Relational Database Integration. In Proceedings of ICDE.
2006, 94-94.

[8] McGlothlin, J., Khan, L. RDFJoin: A Scalable Data
Model for Persistence and Efficient Querying of RDF Datasets.
Technical Report UTDCS-08-09.
http://www.utdallas.edu/~jpm083000/rdfjoin.pdf.

[9] http://en.wikipedia.org/wiki/Knowledge_base

[10] Web Ontology Language.
http://www.w3.org/2004/OWL.

[11] Resource Description Framework (RDF): Concepts and
Abstract Syntax. http://www.w3.org/TR/rdf-concepts.

[12] WordNet: A Lexical Database for the English
Language. http://wordnet.princeton.edu.

[13] Broekstra, J., Klein, M.C.A., Decker, S., Fensel, D.,
Harmelen, F.V., and Horrocks, I. Enabling knowledge
representation on the Web by extending RDF schema. In
Proceedings of WWW. 2001, 467-478.

[14] Jena- A Semantic Web Framework for Java.
http://jena.sourceforge.net/.

[15] Lu, J., Yu, Y., Tu, K., Lin, C., and Zhang, L. An
Approach to RDF(S) Query, Manipulation and Inference on
Databases. In Proceedings of WAIM. 2005, 172-183.

[16] Neumann, T. and Weikum, G. RDF-3X: a RISC-style
engine for RDF. In Proceedings of PVLDB. 2008, 647-659.

[17] Sidirourgos, L., Goncalves, R., Kerstten, M., Nes, N.
and Manegold. S. Column-Store Support for RDF Management:
not all swans are white. In Proceedings of VLDB. 2008.

[18] Cali, A., Lukasiewicz, T., Predoiu, L., and
Stuckenschmidt, H. Tightly Integrated Probabilistic Description
Logic Programs for Representing Ontology Mappings. In
Proceedings of FoIKS. 2008, 178-198.

[19] Cali, A. and Lukasiewicz, T. Tightly Integrated
Probabilistic Description Logic Programs for the Semantic Web.
In Proceedings of ICLP. 2007, 428-429.

[20] Curino, C., Quintarelli, E., and Tanca, L. Ontology-
Based Information Tailoring. In Proceedings of ICDE
Workshops. 2006, 5-5.

R2D: Extracting Relational Structure from RDF Stores

Sunitha Ramanujam1, Anubha Gupta1, Latifur Khan1, Steven Seida2, Bhavani Thuraisingham1

1 The University of Texas at Dallas
{sxr063200, axg089100, lkhan,

bxt043000}@utdallas.edu

2 Raytheon Corporation
steven_b_seida@raytheon.com

Abstract – The enthusiastic acceptance of Resource Description
Framework (RDF) as a data model has given birth to a new
data storage paradigm, namely, the RDF Graph model. The
pool of modeling and visualization tools available for RDF
stores is limited due to the technology being in its fledgling
stage. The work presented in this paper, called R2D (RDF-to-
Database) is an effort to make available, to RDF data stores,
the abundance of relational tools that are currently in the
market. This is done in the form of a JDBC wrapper around
RDF Stores that presents a relational view of the stores and
their data to the modeling and visualization tools. This paper
presents key R2D functionalities and mapping constructs,
procedures for every stage of R2D deployment, and sample
results in the form of screenshots and performance graphs.

Keywords: Semantic Web, Resource Description
Framework, Relational Databases, Data Interoperability

I. INTRODUCTION

In recent years, the explosion of the Internet has resulted
in the emergence of an evolutionary stage of the World
Wide Web, namely, the Semantic Web. To realize the
Semantic Web vision various standards, such as Resource
Description Framework [1], are being developed to enable
users to access information more efficiently and accurately.
The simplicity and flexibility offered by RDF data models
have resulted in an increase in the number of data stores that
use the RDF Graph model.

Such a plethora of RDF information stores have,
consequently, given rise to the need for tools to manage and
visualize this data, However, most of the currently available
data modeling, visualization, and management tools are still
based on the more mature models such as relational and
tabular models [2]. In order to continue to leverage the
advantages offered by relational tools without losing out on
the benefits offered by newer web technologies, the gap
between the two needs to be bridged.

One method to bridge this gap is to create an equivalent
relational schema in an existing Relational Database
Management System and copy the RDF triples data into the
corresponding tables in the relational schema. This approach
leads to space wastage due to duplication of the data in the
RDF store. Further, synchronization of the data in the two

stores is another issue to be considered, and some sort of
resource and time intensive mechanism would have to be in
place to ensure that the relational store is a true and current
version of the RDF store.

We propose a solution to the bridging problem without
the need to create an actual physical relational schema and
duplicate data. The work presented in this paper, called R2D
(RDF-to-Database), is a bridge that hopes to enable existing
relational tools to work seamlessly with RDF Stores without
having to make extensive modifications or waste valuable
resources by replicating data unnecessarily. Our research
provides a relational interface to data stored in the form of
RDF triples and, to the best of our knowledge, has no
comparable counterparts. Our contributions are:
• We propose a mapping scheme for the translation of RDF

Graph structures to an equivalent relational schema
• The proposed mapping process includes the ability to

map, through extensive examination of instance data,
even “sloppy” RDF Graphs that either do not have any, or
have incomplete structural/schema information included
along with the data.

• Based on the RDF-to-RDBMS map file created, we
propose a transformation process that presents a
normalized, non-generic, domain-specific, virtual
relational schema view of the given RDF store

• We propose a mechanism to transform any relational SQL
queries issued against the virtual relational schema into its
SPARQL equivalent, and return the triples data to the
end-user in a relational/tabular format

• We provide all of the above in the form of a JDBC
interface that can be plugged into existing visualization
tools seamlessly.

Section II provides an overview of current research in the
relational-to-rdf arena. Section III discusses R2D’s modus
operandi and mapping constructs. The algorithms involved
in the mapping process are described in Section IV followed
by experimental results in Section V. The paper concludes
with a discussion on the advantages of this research in
Section VI.

II. RELATED WORK

While the overall concept of R2D is unique and has no
comparable counterparts, several research efforts exist that

mailto:bxt043000%7D@utdallas.edu

attempt to bring relational database concepts and semantic
web concepts together, albeit from a perspective that is
opposite to that considered in our work. Some of these
efforts include D2RQ [3] and Virtuoso RDF Views [4]
which are essentially mapping efforts between relational
schema and OWL/RDFS concepts where a relational
database schema is taken as input and an RDF interface of
the same is presented as output. Triplify [5] is another effort
at publishing linked data from relational databases and it
achieves this by extending SQL and using the extended
version as a mapping language. RDF123 [6], an open source
translation tool, also uses a mapping concept, however its
domain is spreadsheet data and it attempts to achieve
spreadsheet-to-RDF translation by allowing users to define
mappings between spreadsheet semantics and RDF graphs.

The Hybrid model [7] is the nearest match to the mapping
methodology in our work, however, since the model
generates a table for every property in the ontology, it
results in unnecessary tables in the case of 1:N relationships
between subject and object resources. R2D avoids this by
adding a foreign key column to the appropriate table when
processing 1:N relationships. The hybrid model also fails on
RDF graphs which do not include schema information while
R2D is able to glean structural information even in the
absence of ontological constructs.

As can be seen from the above discussions, none of the
existing research efforts address the issue of enabling
relational applications to access RDF data without data
replication. Thus, to the best of our knowledge, R2D is the
first endeavor to address this issue.

III. R2D PRELIMINARIES

The architecture of the proposed system and the deployment
sequence of the algorithms comprising R2D are illustrated
in Figure 1. R2D’s functionality is made available as a
JDBC Interface that can be plugged into any visualization
tool that is based on a relational data model.

Figure 1. R2D Architecture & Deployment Sequence

Table 1 tabulates the notional mapping between
OWL/RDFS Ontology terminologies and relational
concepts that is adopted by R2D.

Table 1: Notional Mapping between RDFS/OWL and R2D

OWL/RDFS RELATIONAL CONCEPT

TERMS
rdfs:class Table
rdf:property Column
rdfs:domain Table that the rdf:property is a column of
rdfs:range Datatype of the column
rdf:type Values of the Primary Key column of the table

At the heart of the relational transformation of RDF Graphs
is the R2D mapping language –a declarative language that
expresses the mappings between RDF Graph constructs and
relational database schema constructs. In order to better
explain the R2D mapping language constructs, examples
from the sample scenario in Figure 2 are included where
applicable.

Figure 2. Sample Scenario

The constructs of the current version of the mapping
language are presented below.

r2d:TableMap: The r2d:TableMap construct refers to a
table in a relational database. In most cases, each rdfs:class
object will map to a distinct r2d:TableMap, and, in the
absence of rdfs:class objects, the r2d:TableMaps are
inferred from the instance data in the RDF Store. Example:
The RDF Graph in Figure 2 results in the creation of a
TableMap called “Student”.

The mapping constructs specific to an r2d:TableMap are
as follows.

r2d:keyField: The r2d:keyField construct specifies the
primary key attribute for the r2d:TableMap to which the
field is attached. The data value associated with the field
specified by r2d:keyField is the object of the “rdf:type”
predicate belonging to the rdfs:class subject
corresponding to its r2d:TableMap. Example: An
r2d:keyField (primary key) called “Student_PK” field is
attached to the “Student” TableMap and one of its
values, corresponding to the sample scenario in Figure 2,
is “URI/StudentA”.

r2d:ColumnBridge: r2d:ColumnBridges relate single-
valued RDF Graph predicates/properties to relational
database columns. Each rdf:Property object maps to a
distinct column attached to the table specified in the
rdfs:domain predicate. In the absence of

rdf:property/domain information, they are discovered by
exploration of the RDF Store data.
Example: The “Name” and “Member Of” predicates in
Figure 2 become r2d:ColumnBridges belonging to the
“Student” r2d:TableMap
r2d:MultiValuedColumnBridge(MVCB): Those RDF

Graph predicates that have multiple object values for the
same subject are mapped using the MVCB construct.
MVCBs typically correspond to RDF constructs such as
RDF containers and collections and are used to indicate N:1
and N:M relationships between the virtual relational schema
tables.
Example: The “Works On” predicate in Figure 2 is an
example of an MVCB mapping.
r2d:SingleValuedBlankNode (SVBN): This construct

helps relate blank nodes with distinct predicates to relational
database columns. In the virtual relational schema, the blank
node is ignored and the predicates of blank nodes are treated
as having simple 1:1 relationships to the subject of the blank
node.
Example: The object of the “Address” predicate in Figure
2 is an example of an SVBN that has the distinct predicates
of “Street”, “City”, and “State”.
r2d:MultiValuedBlankNode (MVBN): This construct

refers to blank nodes in the RDF Graph that contain
repeating predicates. These blank nodes have multiple
object values for the same subject and predicate concept
associated with the blank node. An MVBN typically results
in the generation of a separate r2d:TableMap with a foreign
key relationship.
Example: The object of the “Phone” predicate in Figure 2
is an example of an MVBN that has multiple object (Cell)
values for the subject (URI/StudentA) and predicate (Cell)
concept associated with the MVBN.
The mapping constructs specific to column bridges and
blank nodes are described below.

r2d:belongsToTableMap(BTTM): This construct
connects a r2d:ColumnBridge or MVCB to an
r2d:TableMap. Every r2d:ColumnBridge must specify a
value for either this construct or the
r2d:belongsToBlankNode construct. Example: The
“Name” predicate in Figure 2 is associated with the
resource “URI/StudentA”, an instance of the “Student”
r2d:TableMap. Hence, the BTTM construct corresponding
to “Name” r2d:ColumnBridge is set to a value of
“Student”, thereby connecting the ColumnBridge to a
table.

r2d:belongsToBlankNode (BTBN): This construct ties a
r2d:ColumnBridge or MVCB to an SVBN or an MVBN.
Example: The “Street” r2d:ColumnBridge corresponding
to the “Street” predicate in Figure 2 is associated with the
“Address” SVBN. Hence, for the “Street”
r2d:ColumnBridge the BTBN construct is used to associate
it to the “Address” blank node.

r2d:refersToTableMap (RTTM): This construct is
optional for column bridges and is only used for those

triples that contain a resource object for a predicate. This
construct is used to generate primary key-foreign key
relationships within the virtual relational schema.
Example: The object of the “Member Of” predicate in
Figure 2 is a resource that translates to another
r2d:TableMap called “Department”. Hence the
“MemberOf” r2d:ColumnBridge includes the RTTM
construct with a value of “Department”.
r2d:predicate: The r2d:predicate construct is used to store
the fully qualified property name of the predicate which
corresponds to the column bridge. This information is used
during the SQL-to-SPARQL translation to generate the
SPARQL WHERE clauses required to obtain the value of
the r2d:ColumnBridge

r2d:MultiValuedPredicate (MVP): This construct is used
when there are multiple predicate names that refer to the
same overall object type despite each individual object
having a different value. r2d:MultiValuedPredicates are
also used to keep track of the predicates associated with
RDF containers and RDF collections.

r2d:datatype: This construct specifies the datatype of its
column bridge and is derived from the rdfs:range predicate
or, in its absence, by examination of the object values of
the predicate.

The virtual relational schema generated by R2D for the
scenario in Figure 2 is as illustrated in Figure 3. Section IV
(B) explains how this schema is arrived at.

Figure 3. Equivalent Relational Schema for Scenario in Figure 2

IV. R2D: A PROTOTYPE DESIGN

In addition to the design of the RDF-to-Relational mapping
language discussed in the previous section, the objectives of
this research are to develop algorithms that enable the
relationalization of RDF stores. These algorithms comprise
the R2D framework and are discussed in the following
subsections.

A. RDFMapFileGenerator

The RDFMapFileGenerator algorithm automatically
generates an RDF-to-Relational mapping file. It takes as
input the RDF Store that is to be transformed and produces
the transformation mapping file as output. The
RDFMapFileGenerator algorithm works on RDF Stores
with or without structural/schema information.

When structural information about the triples database is
present the RDFMapFileGenerator algorithm discovers the

schema definitions and creates appropriate Table and
Column mappings based on the schema information.
Predicates belonging to instances with structural
information are processed and added to the r2d:tableMap
corresponding to the “rdfs:class” of the instance using the
constructs defined in Section III.

Instances without structural information are handled by
creating a potential TableMap for each such instance. For
every simple predicate of such resources, a new column is
added to the resource’s TableMap if a column
corresponding to a predicate does not already exist in the
TableMap. Additionally, the nature of the relationship that
exists between all predicates (both pre-defined and
undefined) and the subject is also determined. If the subject
contains multiple object values for the same predicate then
column type of the corresponding column is set to MVCB.
Otherwise, the column type is set to r2d:ColumnBridge.
This determination is mandatory in order to arrive at a
normalized and logically sound relational schema.

Furthermore, cardinality estimation is performed during
the processing of predicates for those predicates that link
subjects to objects that are resources and not literals.
Whenever 1:N or N:M relationships are identified the
corresponding predicate is mapped using the MVCB or
MVBN construct, whichever is applicable. Once all
predicates are processed, the potential TableMap is
compared with other existing TableMaps; if an identical
TableMap exists, the potential TableMap is discarded,
otherwise it is added to the list of TableMaps.

B. DBSchemaGenerator

The DBSchemaGenerator module is the next stage in the
R2D process. This algorithm takes the RDF-to-Relational
Schema mapping file generated in Section III (A) and
returns a virtual, appropriately normalized relational
database schema consisting of entities/tables and the
relationships between them. A high-level description of the
algorithmic details follows.

For every entry of type r2d:TableMap in the map file one
relational table is added to the virtual relational schema. For
the sample scenario in Figure 2, a virtual table called
Student is created corresponding to the Student
r2d:TableMap. The more complex structures such as
r2d:SingleValuedBlankNodes (SVBNs),
r2d:MultiValuedBlankNodes (MVBNs), and
r2d:MultiValuedColumnBridges (MVCBs) are handled as
follows. For SVBNs, the predicates belonging to the blank
node are associated with the table corresponding to the
subject of the blank node object. Thus, the Street, City, and
State predicates of the Address SVBN in Figure 2 are added
as columns to the Student table.

When an MVBN or MVCB with literal objects is
encountered (this is equivalent to a multi-valued attribute in
relational database terminology) a new table is added to the
virtual relational schema and the primary key fields of the
table associated with the r2d:belongsToTableMap construct

specified for the MVBN or MVCB are added as fields to
this new table.

The object of the “Phone” predicate in Figure 2 is an
example of an MVBN. The relational transformation for
Phone involves the generation of an r2d:TableMap of the
same name. This Phone r2d:TableMap includes as columns
a Type field that holds the values of the multi-valued
predicates off of the MVBN (in our sample scenario, the
Type field will hold the values “Cell” and “Work”), and a
Value field that holds the object values of the predicates off
of the MVBN. Additionally, the r2d:TableMap also
includes, as foreign key, the Student_PK column which
references the primary key of the Student r2d:TableMap.

In RDF graphs where the MVBN or MVCB has objects
that are resources themselves (as indicated by the
r2d:refersToTableMap construct specified for the MVBN or
MVCB), the type of relationship that exists between the
subject and the object of the MVBN/MVCB is assessed. If
an N:M relationship exists between the {subject, object}
pair, a join table is added to the virtual relational table list
and the primary key fields of both the tables (corresponding
to the subject and the object) are added to this join table.
The Works On predicate in Figure 2 is an example of one
such MVCB whose relational transformation results in the
generation of a new r2d:TableMap of the same name. This
new TableMap represents the N:M relationship between
Student and Research and has the primary keys of both the
tables included as fields. If the {subject, object} pair shares
a 1:N or N:1 relationship, the primary key of the referred
table is added to the attribute list of the referring table.

Finally, entries of type r2d:ColumnBridge in the map file
are processed by adding the column bridge as an attribute to
the table or blank node referred to in the
r2d:belongsToTableMap or r2d:belongsToBlankNode
construct specified for the column bridge.

C. ProcessSQLStatement

The final stage in the R2D process is the SQL-to-SPARQL
translation where SQL statements issued against the virtual
relational schema are parsed, translated into equivalent
SPARQL queries that are executed against the RDF Store,
and the results are returned in relational format. The
algorithm for this stage is called ProcessSQLStatement. Due
to space constraints only a brief description of this
algorithm is provided here. Very broadly, for every field in
the original SQL select list, a variable is added to the
SPARQL SELECT list. Next, the predicates of every non-
primary-key field in the SPARQL SELECT list are retrieved
and added to the SPARQL WHERE clause to bind the
SELECT list variables. SQL WHERE clauses of the types
(field <operator> <value/field2>) are typically included in
the FILTER clause which is then added to the SPARQL
Query. The transformed SPARQL Query is executed, and
the retrieved data is returned to the visualization tool in
relational format seamlessly. Figure 4 shows a sample SQL

query and its SPARQL equivalent and tabular results as
generated by ProcessSQLStatement.

Figure 4: SQL-to-SPARQL Transformation

V. IMPLEMENTATION SPECIFICS

The hardware used in the implementation of R2D was a
computer running Windows Vista with 2 GB RAM and 2.00
GHz Intel Core2 Duo Processor. The software tools used
include Jena 2.5.61 to manipulate the RDF triples, MySQL
5.0 to house the relational equivalent of the given RDF
store, Java 1.5 for development of the algorithms detailed in
Section IV, and DataVision 1.2.02 to visualize/generate
reports based on RDF data. The performance experiments
conducted and the reporting tool outputs presented below
are based on the IngentaConnect’s publication domain3 that
includes information about journals, issues, and articles.
Synthetic RDF triples data stores of various sizes were
created based on IngentaConnect’s schema in Jena for
performance evaluation exercises.

The relational equivalent of the RDF data set was
generated using the RDFMapFileGenerator and
DBSchemaGenerator Algorithms detailed in Section IV. An
open source visualization tool, DataVision, which expects a
relational schema as input, was used to view the virtual
relational schema generated, query the data using SQL
statements, and generate reports off of the data. Figure 5
displays the time taken by the map file generation process
for RDF stores of various sizes and the database schema as
seen by DataVision.

1 http://jena.sourceforge.net/index.html
2 http://datavision.sourceforge.net
3 www.ingentaconnect.com

The map file generation process is especially time-
intensive for large databases without structural information
(which is the case with our experimental data set) since
RDFMapFileGenerator has to explore every resource to
ensure that no property is left unprocessed. Sampling
methods can be used to improve performance, but at the risk
of reduction in accuracy. Also, if a domain expert is
available, this step can be bypassed completely by providing
a map file manually.

Figure 5: Response Time for RDFMapFileGenerator

Figure 6 illustrates DataVision’s query building process.
Based on the fields chosen (in the “Report Designer”
window), the table linkages (i.e., joins, illustrated in the
“Table Linker” inset) specified, and additional record
selection criteria specified (illustrated in the “Record
Selection Criteria” inset), DataVision generates an
appropriate SQL query, as shown in the “SQL Query” inset,
to extract the required data. At this juncture, the Statement,
PreparedStatement, and ResultSet JDBC Interfaces are
invoked which trigger ProcessSQLStatement and return the
results to DataVision in the expected tabular format.

Figure 6. DataVision Query Processing

To compare the performance of queries executed through
the virtual relational schema offered by R2D against the
query performance from an equivalent RDBMS, a physical
relational schema corresponding to the publications data
was created in MySQL and populated with data similar to
the triples data in the Journal-Issue-Article RDF data store
in Jena. Four queries were run against Jena RDF stores and
MySQL relational databases of various sizes and the
response times are displayed in Figure 7.

Figure 7. Response times for Queries

The time taken for the SQL-to-SPARQL conversion
(ProcessSQLStatement Algorithm) is negligible and nearly
constant. Hence, R2D does not add any overheads to the
SPARQL query performance. The fact that the relational
(SQL) queries exhibit superior performance than their
SPARQL equivalents is not surprising since refined
performance optimization options have been at the disposal
of relational databases for many decades now. Further, for
each row of the RDBMS with ‘n’ columns, there are ‘n’
triple tuples in the corresponding RDF Store. Thus, for the
datasets considered, the RDBMS equivalent of the RDF
Stores had approximately two-thirds less data than the RDF
Stores which was another contributor to better RDBMS
response times than the RDF data store.

However, this improved performance comes at the
expense of additional disk space due to duplication of data
into the RDBMS, and additional system resources/human
effort required to ensure that the duplicated data is kept
synchronized with the original RDF store. On the other
hand, for a small price in terms of response time, R2D
offers an avenue for users to continue to take advantage of
the vast assortment of visualization tools that are readily
available without having to duplicate/synchronize RDF
data.

VI. DISCUSSION

The R2D framework in this paper is an attempt at
integrating relational concepts with semantic web concepts
with the objective of permitting reusability of tools that are
based on a relational model. Since current storage methods
for RDF stores involve housing the triples in a relational

database, some factions may consider R2D to be a "double-
wrapping" application that provides a relational wrapper
around RDF stores that are, in turn, stored in a relational
database. However, almost every storage mechanism
involves the creation of a generic, non-application-specific
<s,p,o> table that would make the determination of the
problem domain addressed by the model difficult without
examining the actual data. Further, querying data, using
SQL, from such a generic table, to arrive at meaningful
information is not a trivial task. It would involve umpteen
self-joins on the same table and would require the presence
of a domain expert with detailed knowledge of the data.
This is because, using these models, it would be impossible
for a user to infer the schema and the entities, the attributes,
and relationships comprising the same. R2D offers the users
the ability to do just this and enables them to actually arrive
at a complete domain-specific Entity-Relationship Diagram
using the RDF-to-Relational Schema transformation process
and fire SQL queries against the same.

Further, R2D, unlike other mapping efforts, can generate
an equivalent relational schema even for "sloppy" data (in
which ontological constructs/schema definitions are absent)
through extensive examination of the data to identify groups
of instances that have mostly the same properties associated
with them. The degree of accuracy of the generated schema
in the absence of structural information may not be as high
as when such information is available due to uncertainties
regarding similarity of the tables generated in the relational
schema. Decisions such as "how similar should two tables
be before they are considered to be the same and
consolidated" depends, in the absence of structural
information, on similarity thresholds set within the
algorithm and accuracy varies depending on the thresholds.

REFERENCES

[1] RDF Primer. W3C Recommendation. 2004.
http://www.w3.org/TR/rdf-primer/

[2] W.Teswanich, and S.Chittayasothorn, “A Transformation of
RDF Documents and Schemas to Relational Databases”, In
IEEE PacificRim Conferences on Communications,
Computers, and Signal Processing, 2007, pp. 38-41

[3] C.Bizer, R.Cyganiak, J.Garbers, and O.Maresch, “The D2RQ
Platform”, 2009, http://www4.wiwiss.fu-berlin.de/bizer/d2rq/

[4] O.Erling, and I.Mikhailov, “RDF Support in the Virtuoso
DBMS”, In 1st Conference on Social Semantic Web, 2007, pp.
1617-5468.

[5] S.Auer, S.Dietzold, J.Lehmann, S.Hellmann, and
D.Aumueller, “Triplify – Light-Weight Linked Data
Publication from Relational Databases”, In 18th International
World Wide Web Conference, 2009, pp. 621-630.

[6] L.Han, T.Finin, C.Parr, J.Sachs, and A. Joshi, “RDF123:
From Spreadsheets to RDF”, International Semantic Web
Conference, 2008, pp. 451-466.

[7] Z.Pan, and J.Heflin, “DLDB: Extending Relational Databases
to Support Semantic Web Queries”, In Practical and Scalable
Semantic Systems, 2003, pp. 109-113.

http://www4.wiwiss.fu-berlin.de/bizer/d2rq/
http://www.w3.org/TR/rdf-primer/

Semantic Schema Matching Without Shared Instances

Jeffrey Partyka, Latifur Khan, Bhavani Thuraisingham

Department of Computer Science, The University of Texas at Dallas
800 West Campbell Road

Richardson, TX, 75083-0688, United States
{jlp072000, lkhan, Bhavani.thuraisingham

} @utdallas.edu

 Abstract

 Semantic heterogeneity across data sources
remains a widespread and relevant problem requiring
innovative solutions. Our approach towards resolving
semantic disparities among distinct data sources
aligns their constituent tables by first choosing
attributes for comparison. We then examine their
instances and calculate a similarity value between
them known as entropy-based distribution (EBD). One
method of calculating EBD applies a state-of-the-art
instance matching strategy based on N-grams in the
data. However, this method often fails because it relies
on shared instance data to determine similarity. This
results in an overestimation of semantic similarity
between unrelated attributes and an underestimation
of semantic similarity between related attributes. Our
method resolves this using clustering and a measure
known as Normalized Google Distance. The EBD is
then calculated among all clusters by treating each as
a type. We show the effectiveness of our approach over
the traditional N-gram approach across multi-
jurisdictional datasets by generating impressive
results.

1. Introduction

 The problem of information integration has
experienced a number of manifestations since its
inception, which resulted from the meteoric popularity
of relational databases after the 1960's. However, the
core of this problem has always been the need to
consolidate heterogeneous data sources under a single,
unified schema. Over the last few decades, a
tremendous amount of effort has been expanded to
discover novel information integration strategies.

 In this paper we attempt to compare two pairs of
data sources by examining the instances of compared
tables; the first pair of data sources contains tables
describing similar models of transportation network
over multiple jurisdictions, while the other pair
contains tables detailing varying geographic features.
The data sources contain large variations in the
geographic areas covered, the number of attributes,
and the number of instances.
 To measure instance similarity between compared
attributes we will attempt to match the respective
distributions of their representative types. A type will
be defined as a common representation of a group of
related pieces of data. Once all types for the compared
attributes have been accounted for, the semantic
similarity between the attributes is calculated using a
measure known as entropy-based distribution (EBD).
EBD is based on the ratio of the conditional entropy
within the types extracted for a pair of compared
attributes with the entropy over all types.
 We examine two different instance similarity
algorithms. The first examines keywords in the
compared attributes and extracts subsequences of their
characters known as N-grams. The idea behind this
method is that keywords that share more N-grams are
more semantically similar to one another. However,
this idea often proves to be incorrect in situations
where few shared instances exist over multiple
jurisdictions. The second approach, which we will dub
as the TSim algorithm, executes instance matching by
applying a similarity metric known as the Normalized
Google Distance (NGD). The end result is a group of
distinct clusters (hence types), each of which contains
a unique set of keywords related to each other through
common semantic features. The similarity between the
attributes is then computed by calculating the EBD.
Because we do not have to depend on shared N-grams
for semantic similarity, our instance matching

algorithm can derive a more realistic measure of the
implicit semantics existing between any given pair of
attributes from distinct data sources.
 Our main contributions are as follows. First, we
display the inadequacies of the N-gram approach by
testing it on multiple datasets and highlighting its
inability to identify correct semantic correspondences
between attributes due to its reliance on shared
instances. Second, we propose a new algorithm, called
TSim, that derives semantic similarity between
attributes of compared tables without the need for
shared instances. This is accomplished through K-
medoid clustering of the instance data associated with
the attributes into distinct semantic types, with the
help of NGD. Finally, we show the effectiveness of
our approach relative to the traditional N-gram method
through lucid results on two separate datasets.
 The rest of this paper is organized as follows. In
section 2, we discuss an overview of related work.
Section 3 states the problem to be solved and our
proposed solution. Section 4 presents in detail the
TSim algorithm alongside the current, state-of-the-art
approach that depends on shared N-grams. In Section
5 we present results. Finally, in section 6, we outline
our future work.

2. Related work

 A number of schema matching publications
[1,2,3,4,5] tailored to the database community and
instance-based ontology matching [9,10] from the
ontology matching community, influenced our work.
The survey of approaches to automated schema
matching by Rahm and Bernstein[1] includes a
taxonomy which uses several criteria to categorize the
matching approaches such as schema and instance
based methods, element-level and structure-level
methods, and linguistic and constraint-based methods.
Dai, Koudas et al. [2] discuss instance-based schema
matching using distributions of N-grams among
compared attributes. Bohannon et. al[3] investigate
contextual schema matching, in which selection
conditions and a framework of matching techniques
are used to create higher quality mapping between
attributes of compared schemas. Warren and Tompa
[4] propose an iterative algorithm that deduces the
correct sequence of concatenations of column
substrings in order to translate from one database to
another without the use of a set of training instances.
 Our paper presents an innovative instance matching
algorithm that possesses a number of advantages over
the N-gram approach proposed by Dai, Koudas et al.
First, our new instance matching approach leverages
clustering of types for use on distinct keywords found
between compared attributes. This approach is better
able to capture the semantics of comparisons between
attributes because words contain more implicit

semantic information than N-grams. Using words, we
can reference external data sources that allow for
distance metrics to determine word relatedness. In
general, this cannot be done with N-grams because
they are usually just parts of words. Second, our new
instance matching algorithm is flexible enough to
allow for different types of semantic distance measures
to be used. Treating the semantic distance measure as
a pluggable component allows for a wider variety of
experiments to be performed on a given instance set,
which in turn leads to a better understanding of the
kinds of semantic distance measures that best suits a
particular type of data. Finally, the use of N-grams for
instance similarity between data sources sometimes
generates misleading results, especially in cases where
data of different languages but similar semantics is
being compared.
 Since we use Google distance to calculate
similarity there is some relevant work. Gligorov et al.
[7] apply Google distance [6] to clearly distinguish
between pairs of words which are not semantically
related and pairs of words that possess a close
semantic relation. However, our approach differs from
their approach in the following ways. First, Gligorov
et al. use Google distance to automatically assign
appropriate weights (or importance) to the similarity
between concepts associated with a concept hierarchy
for the purposes of ontology matching. On the other
hand, we use Google distance as a measure to aid in
the construction of cohesive clusters containing
similar-themed keywords which are then used to
perform automated schema matching between
individual concepts. Next, Gligorov et al. do not
consider instance-based matching; they purely exploits
concept labels while our idea of matching is based on
the instances associated with the compared concepts.

3. Problem statement and proposal

3.1 Definitions
First, we will provide definitions that will assist in
defining the problem and describing TSim.

Definition 1 (attribute) An attribute of a table T,
denoted as att(T), is defined as a property of T that
further describes it.

Definition 2 (instance) An instance x of an attribute
att(T) is defined as a data value associated with att(T).

Definition 3 (type) A type t associated with attribute
att(T) is defined as a class of related entities grouped
together.

In figure 1 below, the two attributes for the given table
are roadName and City, and two instances from the
roadName attribute are “Johnson Rd.” and “School
Dr.”.

 Figure 1. Sample table containing two
 attributes and six instances

3.2. Problem statement

 Given two data sources, S1 and S2, each of which is
composed of a set of tables/relations where {T11, T12,
T13… T1M} S1 and { T21, T22, T23… T2N} S2, the goal is
to determine the semantic similarity between S1 and S2.
This is done by comparing the respective attribute
names and attribute values, or instances, between the
tables from S1 and those from S2. S1 and S2 may be
derived from any domain. Additionally, S1 and S2 may
vary in regards to the number of constituent tables, the
number of attributes and instances within a given
table.

3.3. Proposed solution

 We present two separate instance matching
algorithms that generate semantic similarity values
between compared attributes in different tables. The
first, based on the ideas of mutual information and
entropy, extracts features consisting of sequences of
characters with length N known as N-grams from the
values of the compared attributes [2]. Each N-gram
extracted is considered a distinct value type, and the
ratios of value types originating from each attribute is
determined to be their overall semantic
correspondence. While this method can be successful
for certain datasets, it can produce incorrect results for
others, such as a multi-jurisdiction dataset, where
no/few shared instances exist. Section 4 outlines in
detail one such situation. The second instance
matching algorithm, based on the extraction and
clustering of semantically relevant keywords as types,
treats distinct keywords extracted from compared
attributes, rather than N-grams, as features. Further
details describing the algorithm are described in
Section 4.3. However, it is our intention to clearly
show that the use of TSim on distinct keywords is
better able to capture the true semantics that exist
between compared attributes contained within tables..
 It is assumed that we perform 1:1 comparisons
between attributes from distinct tables and data

sources. After calculating a semantic similarity value
between compared attributes, we will repeat the
process for all compared attributes between the tables.
Next, a final similarity value between the tables is
calculated.

4. Matching algorithm: semantic similarity
between two tables

4.1. Instance similarity using N-grams

 Instance matching between two concepts involves
measuring the similarity between the instance values
across all pairs of compared attributes. This is
accomplished by extracting instance values from the
compared attributes, subsequently extracting a
characteristic set of N-grams from these instances, and
finally comparing the respective N-grams for each
attribute. N may be any number, so during all of our
experiments involving N-grams in this paper, the value
of N was set equal to 2.

4.1.1. Feature Extraction of N-grams

 We extract distinct N-grams from the instances and
consider each unique N-gram extracted as a type. A
type in this context is defined as 2-gram represented
by an identifying string of length 2. As an example, for
the string "Locust Grove Dr." that might appear under
an attribute named Street for a given concept, some 2-
grams that would be extracted are 'Lo', 'oc', 'cu', 'st', 't ',
'ov', 'Dr' and so on. Since each of these 2-grams are
different, each one would represent a distinct type.

4.1.2. Measuring attribute similarity

 N-gram similarity is based on a comparison
between the concepts of entropy and conditional
entropy known as Entropy Based Distribution (EBD):

EBD = H(C | T)
 H(C)

 In this equation, C and T are random variables
where C indicates the union of the attribute types C1

and C2 involved in the comparison (C indicates
"column", which we will use synonymously with the
term “attribute”) and T indicates the type, which in
this case is a distinct N-gram. EBD is a normalized
value with a range from 0 to 1.
 Entropy is defined as the measure of the
uncertainty associated with a random variable,
whereas conditional entropy is defined as the
uncertainty associated with one random variable given
the value of a second random variable. Conditional
entropy is defined as follows:

(1)

 Our experiments involve 1:1 comparisons between
attributes of compared tables, so the value of C would
simply be C1 U C2. H(C) represents the entropy of a
group of types for a particular column (or attribute)
while H(C | T) indicates the conditional entropy of a
group of types. For more details regarding the usage of
EBD and its mathematical derivation, please see our
previous work[8].

4.2. Motivation For TSim

4.2.1. Problems With N-grams as a Measure For
Semantic Similarity

 N-grams are susceptible to generating misleading
results. For example, if an attribute named 'City'
associated with a table from S1 is compared against an
attribute named 'ctyName' associated with a table from
S2, the attribute values for both concepts might consist
of city names from different parts of the world. 'City'
might contain the names of North American cities, all
of which use English and other Western languages as
their basis language, while 'ctyName', might describe
East Asian cities, all of which use languages that are
fundamentally different from English or any Western
language. Using human intuition, it is obvious that the
comparison occurs between two semantically similar
attributes. However, because of the tendency for
languages to emphasize certain sounds and letters over
others, the extracted sets of 2-grams from each
attribute would very likely be quite different from one
another. For example, some values of 'City' might be
"Dallas", "Houston" and "Halifax", while values of
'ctyName' might be "Shanghai", "Beijing" and
"Tokyo". Based on these values alone, there is
virtually no overlap of N-grams. Because most of the
2-grams belong specifically to one attribute or the
other, the calculated EBD value would be low. This
would most likely be a problem every time global data
needed to be compared for similarity.

4.2.2. Overview of the TSim Algorithm

 To overcome the problems of the N-gram
approach, we need a method that is free from the
syntactic requirements of N-grams and uses the
keywords in the data in order to extract relevant
semantic differences between compared attributes.
This method, known as TSim, extracts distinct
keywords from the compared attributes and
determines their types by leveraging K-medoid
clustering to group together keywords of the same

type based on a semantic distance metric known as the
Normalized Google Distance (NGD). The EBD is then
calculated by comparing all instances of keywords
representing each type, where a cluster is considered a
distinct type.

4.3. The TSim algorithm

 We determine semantic similarity between two
separate data sources through K-medoid clustering of
the keywords extracted from the compared attributes.
The distance metric used in assigning keywords to
clusters is known as Normalized Google Distance.

4.3.1. Normalized Google Distance

 Before describing the process in detail, NGD must
first be formally defined:

In this formula, f(x) is the number of Google hits for
search term x, f(y) is the number of Google hits for
search term y, f(x,y) is the number of Google hits for
the tuple of search terms xy, and M is the number of
web pages indexed by Google. For more information
about NGD, consult the work by Gligorov et al[7].

4.3.2. Clustering the Keywords

 Once the keyword list for a given attribute
comparison has been created, all related keywords are
grouped into distinct clusters. From here, we calculate
the conditional entropy of each cluster by using the
number of occurrences of each keyword in the cluster,
which is subsequently used in the final EBD
calculation between the two attributes. The clustering
algorithm used is the K-Medoid algorithm, which is
described in the next section.

4.3.3. The K-Medoid Algorithm

The K-medoid algorithm begins by first determining
the number of clusters, dubbed K. This is based on the
size of Lkeywords for each attribute comparison. Second,
exactly one keyword from the list is assigned to each
of the K clusters in a process called initial seeding.
The keywords assigned to the clusters in this step are
known as medoids. Third, we assign each keyword in
Lkeywords that is not a medoid to the cluster to which it is
most semantically related, while subsequently
determining if any cluster medoids need to be
recomputed. To do this, we need to use the pairwise
NGD values list between the keyword to be assigned
to a cluster and all keywords already assigned to that

(3)

same cluster. Finally, after all keywords have been
assigned to clusters, we determine if the medoid for
any cluster needs to be recomputed. This is
accomplished by examining each of the keywords in a
particular cluster and computing an NGD summation
between a single keyword in that cluster and all other
words in that cluster. The keyword in that cluster that
produces the lowest NGD summation will be assigned
as the new medoid for that cluster. If no medoids have
changed in any cluster, then the K-medoid algorithm is
finished, and control proceeds to the calculation of the
EBD between the compared attributes. However, if at
least one medoid has changed in a particular cluster,
then we begin a new clustering iteration.

5. Experiments

 We now present the experiment that we conducted
regarding matching between distinct data sources in
the GIS domain.

5.1. Experimental Setup

 Two separate datasets from the GIS domain were
used to evaluate the performance of TSim. The first
dataset was created from instance data of the Road and
Ferries package of a GIS data model known as GDF
(Geographic Data Files). The second dataset details a
wider assortment of GIS location features across the
United States and their associated data beyond merely
transportation networks. Some of the location features
in this dataset include flight schools, piers, navigable
waterways and Indian lands. For both sets of data, the
number of attributes and instances vary widely; for
example, in the GIS location dataset, the Flight
Schools table has the fewest number of attributes (27)
and the Piers table has the most (76). Because data
from several different areas of the United States were
employed in our experiments, we effectively created a
disjoint, multi-jurisdictional environment. Table 1
below displays a summary of the relevant information
regarding the data involved in our experiments with
both datasets.

 Table 1. Description of (a) transportation
 dataset & (b) GIS Location Dataset

 Table 2a and 2b. Comparison of EBD values
 generated by the N-gram method and TSim
 for correct attribute correspondences. In
 table 2a (left), the N-gram method
underestimates the similarity, and in table 2b
(right), N-grams overestimate the similarity

5.2. Results
 An illustration of the tendency of the N-gram
method to underestimate the value of correct attribute
correspondences relative to TSim and overestimate the
value of incorrect correspondences is displayed in
table 2a(left) above for the GIS location dataset and in
table 2b(right) for transportation dataset. For table 2a,
in all five comparisons, the attributes are clearly
related (ie: Ports.COUNTY and Piers.COUNTY).
However, the N-gram method generates low EBD
values for these comparisons (right column of table),
while TSim generates high EBD values (left column
of table). The reason for this is the inability of the N-
gram method to relate two attributes together without
the use of shared instances. As long as the compared
attribute values are made of widely varying N-gram
types, this method will always produce a low EBD
value. On the other hand, because TSim does not rely
on shared instances to determine semantic similarity, it
is able to correctly assign a high EBD score between
the attributes. On average, for the five comparisons
above, the N-gram method underestimates the EBD
score by 77%. Table 3b illustrates that the use of
shared instances by the N-gram method can also lead
to the exaggeration of similarity scores between
unrelated attributes. For example, Traffic Area.County
and Ferry.DSP both contain county data including the
word “county”, but DSP (which stands for
‘Destination Port’) also contains the names of towns
and other geographic features. The N-gram method
will match any instances containing the word “county”
as well as other instances sharing common words, thus
incorrectly raising its EBD computation. On average,

for the five comparisons in table 3b, the N-gram
method overestimates the EBD score by 266 %.
 The results of the alignment of S1 and S2 of the
compared tables for both the transportation dataset and
the GIS location dataset using TSim are shown in
tables 3a and 3b, respectively. Each cell contains the
EBD value produced using TSim between a table from
S1 (names listed along the vertical axis of the table)
and a table from S2 (names listed along the horizontal
axis of the table).

Table 3a and 3b. EBD values generated
between tables of S1 and S2 of (a:
transportation dataset (left table) (b: GIS
 location dataset (right table)

 In table 3a, the EBD values obtained using TSim
for the comparisons between Road-Road, Residential
Area-Address Area, Traffic Area-Enclosed Traffic
Area, and Ferry-Ferry are 0.553, 0.552, 0.958, and
0.564 respectively. Each of these represented the
correct correspondences, and TSim identified them as
those with the highest semantic similarity. In addition,
tables that are semantically dissimilar, such as Ferry-
Road and Traffic Area-Address Area were correctly
recognized as such by TSim, as scores of .127 and
.219 were generated. Similar results are also obtained
in table 3b. Both of these datasets illustrate the
tendency for the N-gram approach to overestimate
incorrect correspondences and underestimate correct
correspondences. For example, in table 3a, some of the
EBD values produced via TSim for Road-Address
Area, Road-Enclosed Traffic Area, and Road-Ferry
are 0.22, 0.27 and 0.28 respectively. On the other
hand, using the N-gram method, the scores generated
for these comparisons were 0.44, 0.43 and 0.48
respectively. The scores were overestimated by 100%,
59% and 71% respectively. In table 3b, using TSim,
the EBD values produced for Flight Schools(S1)-
Schools(S2), Piers-Ports and Piers-NavWaterways are
.615, .633 and .616. Using the N-gram approach, the
scores generated are .182, .388 and .137. In this case,
the N-gram method underestimated the scores by
70.5%, 38.8% and 77.8%, respectively.

6. Conclusion & Future Work

 We outlined two algorithms that align distinct data
sources using instance similarity. The first algorithm
aligns instances between compared attributes by

extracting distinct N-grams from them and measuring
their semantic similarity by calculating an EBD value.
The second algorithm, TSim, determines the semantic
types of keywords in compared attributes using
clustering and an external data source which leverages
the Normalized Google Distance. Future efforts will
focus on exploring the possibility of a hybrid instance
matching technique that combines selected elements
of the N-gram approach and TSim.

7. References

[1] E.Ralun and P. A. Bernstein, “A survey of approaches to
automatic schema matching”, VLDB Journal, vol. V10, pp.
334-350, 2001.
[2] Bing Tian Dai, Nick Koudas, Divesh Srivastava,
Anthony K. H. Tung, and Suresh Venkatasubramanian,
"Validating Multi-column Schema Matchings by Type,"
24th International Conference on Data Engineering (ICDE),
2008.
[3] P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster,
“Putting context into schema matching.” in VLDB, 2006,
pp. 307–318.
[4] R. H. Warren and F. W. Tompa, “Multi-column
substring matching for database schema translation.” in
Proc. VLDB, 2006, pp. 331–342.
[5] W.S. Li and C. Clifon, “Semint: a tool for identifying
attribute correspondence in heterogeneous databases using
neural networks,” Data Knowl. Eng., vol. 33, no. 1,pp.49-84,
2000.
[6] Rudi Cilibrasi, Paul M. B. Vitányi: The Google
Similarity Distance CoRR abs/cs/0412098:(2004)
[7] R. Gligorov, W. Kate, Z. Aleksovski, F. Harmelen:
Using Google distance to weight approximate ontology
matches. WWW 2007:767-776
[8] Jeffrey Partyka, Neda Alipanah Latifur Khan, Bhavani
Thuraisingham and Shashi Shekhar, “Content-based
Ontology Matching for GIS Datasets”, University of Texas
at Dallas (UTD Technical Report # UTDCS-22-08).
[9] Shenghui Wang, Gwenn Englebienne and Stefan
Schlobach, "Learning Concept Mappings from Instance
Similarity", Proceedings of the 7th International Semantic
Web Conference, ISWC 2008, LNCS 5318, pp 339-355,
2008.
[10] Christian Wartena and Rogier Brussee, "Instance-Based
Mapping Between Thesauri and Folksonomies", In: Proc. of
the 7th International Semantic Web Conference, ISWC
2008, LNCS 5318, pp 356-370, 2008.

R2D: A FRAMEWORK FOR THE RELATIONAL TRANSFORMATION OF

RDF DATA

SUNITHA RAMANUJAM, ANUBHA GUPTA, LATIFUR KHAN, BHAVANI THURAISINGHAM

The University of Texas at Dallas, Richardson TX 75080, U.S.A

{sxr063200, axg089100, lkhan, bxt043000}@utdallas.edu

STEVEN SEIDA

 Raytheon Company, Garland TX 75042, U.S.A

steven_b_seida@raytheon.com

The astronomical growth the World Wide Web resulted in data explosion that has, in turn, has given

rise to a need for data representation methodologies and standards to present required information in

a rapid and automated manner. The Resource Description Framework is one such standard proposed

by W3C to address the above need. The ubiquitous acceptance of RDF on the Internet has resulted in

the emergence of a new data storage paradigm, the RDF Graph Model, which, as with any data

storage methodology, requires data modeling and visualization tools to aid with data management.

This paper presents R2D (RDF-to-Relational), a relational wrapper for RDF Data Stores, which aims

to transform, at run-time, semi-structured RDF data into an equivalent normalized relational schema,

thereby bridging the gap between RDF and RDBMS concepts and making the abundance of

relational tools currently in the market available to the RDF Stores. The primary R2D functionalities

and mapping constructs, the high-level system architecture, and deployment sequence diagrams are

presented along with algorithms and performance graphs for every stage of the transformation

process and screen-shots of a relational visualization tool using R2D as evidence of the feasibility of

the proposed work.

Keywords: Semantic Web, Resource Description Framework, Relational Databases, Data

Interoperability

1. INTRODUCTION

The unleashing of the Internet has resulted in a plethora of information sources becoming

available, making today’s world increasingly networked and progressively more reliant

on electronic sources of data. The need to augment human reasoning and decision making

abilities has resulted in the emergence of an evolutionary stage of the World Wide Web,

namely, the Semantic Web. The Semantic Web is envisioned to facilitate the automated

storage, exchange, and usage of machine-readable information interspersed throughout

the web [1]. To this end various standards are being developed to enable users to access

information more efficiently and realize the Semantic Web vision. One standard, which is

the current buzzword in the Semantic Web Community, is the Resource Description

Framework [2], which is the foundation for the Semantic Web and the focus of the

research presented in this paper. The RDF standard is proposed by the World Wide Web

consortium for encoding knowledge with the express purpose of changing the web from

being a platform for distributed presentations to one for distributed knowledge [3]. RDF’s

suitability to unstructured and semi-structured data that is typically available on the web,

and the simplicity and flexibility offered by RDF data models have resulted in increasing

demand for data stores that use the RDF Graph model and offer the ability to store and

query RDF data [4].

The growing number of RDF stores have, as with any data store with massive

amounts of information, spawned an associated requirement for tools and technologies

for the management and visualization of this data. However, most of the current data

modeling, data visualization, data management, and business intelligence tools that

widely are available in the market today are still based on the more mature models such

as relational and tabular models [5]. The tools available for RDF data are fewer and less

mature than the selection for RDBMSs. Further, small and medium-sized organizations

that are typically resource constrained may not have the ability or inclination to take risks

associated with investing in fledgling technologies such as RDF and the tools for the

same [6]. Relational databases have been around for several decades more than semantic

web technologies, giving them the advantage of time to refine their tools and

methodologies. For the same reasons, skilled personnel experienced in relational

methodologies are available in greater numbers than RDF experts. In order to avoid the

learning curves associated with new tools and continue to leverage the advantages offered

by the traditionally-oriented tools without losing out on the benefits offered by the newer

web technologies and standards, the gap between the two needs to be bridged.

The motivation behind our research is to arrive at a solution to the bridging problem

without the need to create an actual physical relational schema and duplicate data and we

propose one such solution. Our approach, called R2D (RDF-to-Database), is a bridge that

hopes to enable existing traditional tools to work seamlessly with RDF Stores without

having to make extensive modifications or waste valuable resources by replicating data

unnecessarily. This paper expands on the work in [7, 8] and provides a relational

interface to data stored in the form of RDF triples. It includes the ability to handle blank

nodes and RDF container objects along with enhancements to the SQL-to-SPARQL

transformation that now permit aggregation on RDF data. As before, the RDF Store is

explored and mapped to a relational schema at run-time and end-users of visualization

tools are presented with the normalized relational version of the store on which they can

perform operations as they would on an actual physical relational database schema. The

contributions of this paper are as follows.

• We propose a mapping scheme for the translation of RDF Graph structures to an

equivalent normalized relational schema. The proposed mapping schema builds on

the schema presented in [7] and includes several constructs and rules to handle a

variety of blank nodes and RDF Container objects such as Bags and Sequences.

• Based on the RDF-to-RDBMS map file created, we propose a transformation process

that presents a normalized, non-generic, domain-specific, virtual relational schema

view of the given RDF store.

• We propose a mechanism to transform any relational SQL queries issued against the

virtual relational schema into the SPARQL equivalent, and return the triples data to

the end-user in a relational format. The proposed mechanism includes string

matching procedures and aggregation facilities.

• We provide all of the above in the form of a JDBC interface that can be plugged into

existing visualization tools and we present the feasibility of our algorithms and

processes through experiments conducted using the LUBM Benchmark data set, and

an open source visualization tool, RDF store, and relational database.

The organization of the paper is as follows. Section 2 presents a brief overview of

related research efforts in the relational-to-rdf arena. Section 3 describes R2D’s system

architecture and modus operandi, mapping constructs and types of relationships handled.

Section 4 presents detailed descriptions of the various algorithms involved in the

mapping process. Section 5 highlights the implementation specifics of the proposed

system with sample visualization screenshots and performance graphs for the map file

generation process with and without various sampling methods and for a diverse range of

queries on databases of various sizes and, lastly, Section 6 concludes the paper.

2. RELATED WORK

Several research efforts exist that attempt to bring relational database and semantic web

concepts together, albeit from a perspective that is opposite to that considered in our

work. The most notable amongst these in terms of the objectives being very closely

aligned with ours is the RDF2RDB project [5]. Like in R2D, the authors in [5] attempt to

arrive at a domain-specific, meaningful relational schema equivalent for an RDF store but

the similarity ends there. RDF2RDB, like most of the other transformation efforts

described below, involves data replication with the triples data being dumped into a

relational schema, and therefore is subject to synchronization and space issues. Moreover,

in order to successfully map the RDF data into an equivalent relational schema,

RDF2RDB requires the presence of ontological information in the form of schema

definitions such as rdfs:class and rdf:property. R2D, on the other hand, can arrive at

mapping information with or without explicit ontology information. In the absence of

RDF Schema definitions, R2D discovers the mapping through extensive examination of

the triple patterns and the relationships between resources.

Furthermore, the relational mapping in [5] involves the creation of a table for each

property in the RDF graph regardless of the cardinality of the relationship represented by

the property. As a result, the resulting schema may not be truly normalized and may

contain more tables than necessary due to the presence of properties representing 1:N or

N:1 types of relationships. R2D avoids these unnecessary tables by taking such

conditions into consideration. The authors in [5] also do not discuss the details of how

blank nodes are handled by their research, if at all, while R2D is capable of wading

through a variety of blank nodes and arriving at meaningful transformations of the same.

The Hybrid model presented in [9] is another mapping methodology that is similar to [5]

in terms of relational schema generation and, hence, has the same drawbacks as [5].

The D2RQ project [10], an extensively adopted open source project, and one that our

work is very closely modeled on in terms of the components/modules of the system, is

another significant player in the RDBMS-RDF mapping arena.. The goals of D2RQ are

the exact reverse of the goals of our research. While they attempt to create a mapping

from a relational database to an RDF Graph, and transform RDF queries into

corresponding SQL queries, thereby making relational data accessible through RDF

applications, our goal is to enable RDF triples to be accessed through relational

applications. Hence, despite the concept of mapping files and query conversions being

common between D2RQ and R2D, each of the two researches address very different

needs. The work in [11] is yet another effort that, like D2RQ, also uses a declarative meta

schema consisting of quad map patterns that define the mapping of SQL data to RDF

ontologies. RDF123 [12], an open source translation tool, also uses a mapping concept,

however its domain is spreadsheet data and it attempts to achieve richer spreadsheet-to-

RDF translation by allowing the users to define mappings between the spreadsheet

semantics and RDF graphs. Triplify [13] is another effort at publishing linked data from

relational databases and it achieves this by extending SQL and using the extended version

as a mapping language.

Other mapping efforts in the reverse direction include the work presented in [14, 15,

16]. In [14] the authors use relational.OWL to extract the semantics of a relational

database and automatically transform them into a machine-readable and understandable

RDF/OWL ontology. The authors in [15, 16] also essentially perform a relational-to-

ontology mapping but here, they expect to be given some target ontology and some

simple correspondences between the atomic relational schema elements and the concepts

in the ontology to begin the mapping process with. 3Store [17] is an implementation

where the model includes non-application-specific tables such as triples, symbols,

datatypes, etc. Using this model, it would be impossible for the user to determine the

problem domain addressed by the model or to infer the schema by identifying the entities,

the attributes, and any relationships that exists between any of them. R2D offers the users

the ability to do just this and enables them to actually arrive at a complete Entity-

Relationship Diagram using the RDF-to-Relational Schema transformation process.

The query processing component of R2D which comprises the SQL-to-SPARQL

transformation process, once again, has no comparable counterpart while many efforts

are underway in the other direction. In [18], the authors propose an algorithm to translate

SPARQL queries with arbitrary complex optional patterns to an equivalent SQL

statement to be fired against a single relational table called Triples(subject, predicate,

object) that stores the RDF triples. The authors in [19] discuss a methodology that

supports integration of heterogeneous relational databases using the RDF model. Given a

set of semantic mappings between relational schemas and RDF ontology, the goal in [19]

is to effectively answer RDF queries by rewriting them into a set of equivalent source

SQL queries. An SQL-based RDF Querying Scheme is presented in [20] where the RDF

querying capability is made a part of the SQL, however, the RDF data is, once again,

stored as a collection of triples in a single database table. In [21], the authors partition the

RDF graph data by adding an extra column to the triples table to store sub-graph

information with the objective of reducing join costs and improving query performance.

As can be seen from the discussions above, none of the research efforts address the

issue of enabling relational applications to access RDF data without data replication and,

hence, to the best of our knowledge, R2D is the first endeavor to address this issue.

3. R2D Preliminaries

As stated earlier, the principal goal of this research is to ensure seamless availability of

RDF data to existing tools, in particular, data visualization tools, that are equipped to

work with relational or tabular data. The architecture of the proposed system and the

deployment sequence are illustrated in Figure 1.

Figure 1. (a) R2D System Architecture; and (b) Deployment Sequence

The RDF Store at the bottom of Figure 1 (a) is examined by the

RDFMapFileGenerator Algorithm (Item A in Figure 1(a)) and an RDF-to-

RelationalSchema mapping file is generated, if it does not already exist, by the algorithm

using the constructs discussed in Section 3.1. The DBSchemaGenerator Algorithm (Item

B in Figure 1(a)) takes this mapping file as input and presents to the relational

visualization tool a domain-specific, virtual relational schema corresponding to the RDF

store. Alternatively, users of the visualization tool can choose to issue SQL queries

against the virtual relational schema to access the RDF data. At this point R2D’s SQL-to-

SPARQL Translation Algorithm (Item C in Figure 1(a)) performs the necessary query

translations, invokes the SPARQL query engine, and returns the results to the

visualization tool in a tabular format.

At the heart of the transformation of RDF Graphs to virtual relational database

schemas is the R2D mapping language which is a declarative language that expresses the

mappings between RDF constructs and relational database schema constructs. In order to

better explain the constructs comprising the R2D mapping language, examples from the

sample scenario in Figure 2, based on the LUBM dataset, are included where applicable.

The constructs of the current version of the mapping language are presented below.

3.1. R2D Mapping Constructs

r2d:TableMap: The r2d:TableMap construct refers to a table in a relational database. In

most cases, each rdfs:class object will map to a distinct r2d:TableMap, and, in the

absence of rdfs:class objects, the r2d:TableMaps are inferred from the instance data in the

RDF Store. Example: The RDF Graph in Figure 2 results in the creation of a TableMap

called “Student”.

The mapping constructs specific to an r2d:TableMap are as follows.

r2d:keyField: The r2d:keyField construct specifies the primary key attribute for the

r2d:TableMap to which the field is attached. The data value associated with the field

specified by r2d:keyField is the object of the “rdf:type” predicate belonging to the

rdfs:class subject corresponding to its r2d:TableMap. Example: An r2d:keyField

(primary key) called “Student_PK” field is attached to the “Student” TableMap and

one of its values, corresponding to the sample scenario in Figure 2, is

“URI/StudentA”.

Figure 2: Sample Scenario based on LUBM Schema

r2d:ColumnBridge: r2d:ColumnBridges relate single-valued RDF Graph

predicates/properties to relational database columns. Each rdf:Property object maps to a

distinct column attached to the table specified in the rdfs:domain predicate. In the

absence of rdf:property/domain information, they are discovered by exploration of the

RDF Store data. Example: The “Nickname” and “Member Of” predicates in Figure 2

become r2d:ColumnBridges belonging to the “Student” r2d:TableMap

r2d:MultiValuedColumnBridge(MVCB): Those RDF Graph predicates that have

multiple object values for the same subject are mapped using the MVCB construct.

MVCBs typically correspond to RDF constructs such as RDF containers (rdf:Bag,

rdf:Alt, rdf:Seq) and RDF collections and are used to indicate N:1 and N:M relationships

between the virtual relational schema tables. Example: The “Works On” predicate in

Figure 2 is an example of an MVCB mapping.

r2d:SimpleLiteralBlankNode (SLBN): SLBNs help relate RDF Graph blank nodes

that consist purely of distinct simple literal objects to relational database columns.

Example: The object of the “Name” predicate in Figure 2 is an example of an SLBN

which has distinct literal predicates of “First”, “Middle”, and “Last”, which are, in

turn, translated into columns of the same names in the “Student” r2d:TableMap.

r2d:MultiValuedSimpleLiteralBlankNode (MVSLBN): This construct maps

duplicate SLBNs and, while the processing of the predicates is identical to the

(SingleValued) SLBN, this construct results in the generation of a separate r2d:TableMap

with a foreign key relationships to the table representing the subject resource of the blank

node. In the event the predicates leading to the blank nodes are distinct, an

r2d:MultiValuedPredicate (MVP) is created and a “TYPE” column corresponding to the

MVP is included in the r2d:TableMap. Example: The objects of the “HomeAddress” and

the “WorkAddress” predicates in Figure 2 together form a MVSLBN.

r2d:ComplexLiteralBlankNode (CLBN): This construct refers to blank nodes in the

RDF Graph that have multiple literal object values for the same subject and the predicate

concept associated with the blank node. An r2d:ComplexLiteralBlankNode typically

results in the generation of a separate r2d:TableMap with a foreign key relationship to the

table representing the subject resource of the blank node. Example: The object of the

“Phone” predicate in Figure 2 is an example of a CLBN that has multiple object

(<Cell>) values for the subject (URI/StudentA) and a predicate (Cell) concept associated

with the blank node. The relational transformation for “Phone” involves the generation

of an r2d:TableMap of the same name. This “Phone” r2d:TableMap includes as columns

a “Type” field that holds the values of the predicates off of the MVBN (in our sample

scenario, the “Type” field will hold a value of “Cell” and “Work”), and a “Value” field

that holds the object values of the predicates off of the MVBN. Additionally, the

r2d:TableMap also includes, as foreign key, the “Student_PK” column which references

the primary key of the “Student” r2d:TableMap.

r2d:MultiValuedComplexLiteralBlankNode (MVCLBN): This construct maps

duplicate complex literal blank nodes and the processing of the predicates is identical to

the (SingleValued) CLBN case except in the event the predicates leading to the blank

nodes are distinct, in which case an r2d:MultiValuedPredicate (MVP) is created and a

“TYPE” column corresponding to the MVP is included in the r2d:TableMap. Example:

Consider a scenario where the “Phone” predicate in Figure 2 is replaced with two

similar predicates, “PastPhNums” and “CurrentPhNums”, each of which are CLBNs.

The objects of these two predicates together form an MVCLBN.

r2d:SimpleResourceBlankNode (SRBN): This construct helps map blank nodes that

have multiple predicates leading to resource objects belonging to the same object class.

SRBNs typically identify N:1 or N:M relationships between the subject resource and the

object resource classes. RDF containers that represent collections of similar resource

objects are represented using the SRBN construct. Example: The object of the “Courses”

predicate in Figure 2 is an example of a SRBN that has multiple resource objects that are

instances of the “Course” class/r2d:TableMap.

r2d:ComplexResourceBlankNode (CRBN): CRBNs represent blank nodes that have

distinct or non-distinct predicates leading to objects belonging to different object classes.

This construct also identifies N:1 or N:M relationships between the subject resource class

and each of the object classes and typically result in the creation of as many join tables as

the number of distinct object classes leading off of the CRBN. RDF containers that

represent collections of different types of object resources are represented using CRBNs.

Example: The object of the “OtherActivities” predicate is an example of a CRBN that

has multiple resource objects each of which is an instance of a different (one “Sports”

and one “Training”) class.

r2d:MultiValued{Simple/Complex}ResourceBlankNode (MVSRBN and

MVCRBN): Duplicate simple/complex resource blank nodes are represented using the

MVSRBN and MVCRBN constructs respectively. Like other MultiValued constructs, the

processing for these is also identical to their SingleValued counterparts except in the

event the predicates leading to the blank nodes are distinct, in which case an

r2d:MultiValuedPredicate (MVP) is created and a “TYPE” column corresponding to the

MVP is included in the r2d:TableMap. Example: Consider a scenario where the

“Courses” predicate in Figure 2 is replaced with multiple predicates each representing

the courses taken in a particular year, such as “2007Courses, “2008Courses”, and

“2009Courses”, each of which are SRBNs. The objects of these predicates together form

an MVSRBN.

r2d:MixedBlankNode: Blank Nodes consisting of a mixture of literal, resource, and

other blank node objects are mapped using the r2d:MixedBlankNode construct. This

construct results in the creation of a r2d:TableMap which contains as fields every literal

or resource leaf node object that is an element of the tree rooted at the

r2d:MixedBlankNode.

The mapping constructs specific to single-valued and multi-valued column bridges

and blank nodes are described below.

r2d:belongsToTableMap(BTTM): This construct connects a r2d:ColumnBridge or

MVCB to an r2d:TableMap. Every r2d:ColumnBridge must specify a value for

either this construct or the r2d:belongsToBlankNode construct. Example: The

“Nickname” predicate in Figure 2 is associated with the resource “URI/StudentA”,

an instance of the “Student” r2d:TableMap. Hence, the BTTM construct

corresponding to “Nickname” r2d:ColumnBridge is set to a value of “Student”,

thereby connecting the ColumnBridge to a table.

r2d:belongsToBlankNode (BTBN): This construct ties a r2d:ColumnBridge or

MVCB to an SVBN or an MVBN. Example: The “FirstName” r2d:ColumnBridge

corresponding to the “First” predicate in Figure 2 is associated with the “Name”

SVBN. Hence, for the “FirstName” r2d:ColumnBridge the BTBN construct is used

to associate it to the “Name” blank node.

r2d:refersToTableMap (RTTM): This construct is optional for column bridges and

is only used for those triples that contain a resource object for a predicate. This

construct is used to generate primary key-foreign key relationships within the virtual

relational schema. Example: The object of the “Member Of” predicate in Figure 2 is

a resource that translates to another r2d:TableMap called “Department”. Hence the

“MemberOf” r2d:ColumnBridge includes the RTTM construct with a value of

“Department”.

r2d:predicate: The r2d:predicate construct is used to store the fully qualified

property name of the predicate which corresponds to the column bridge. This

information is used during the SQL-to-SPARQL translation to generate the SPARQL

WHERE clauses required to obtain the value of the r2d:ColumnBridge

r2d:MultiValuedPredicate (MVP): The MVP construct is used in scenarios where

there are multiple predicate names that refer to the same overall object type despite

each individual object having a different value. r2d:MultiValuedPredicates are also

used to keep track of the predicates associated with RDF containers and RDF

collections. MVPs typically result in the creation of a “TYPE” column in the

r2d:TableMap corresponding to the resource associated with the MVP. Example:

The predicates off of the “Phone” CLBN in Figure 2 are examples of a MVP called

“Phone_Type” that represents the fact that multiple predicates (<Cell>, <Work>)

refer to the same overall object type (i.e., a string representing phone number).

r2d:datatype: This construct specifies the datatype of its column bridge and is

derived from the rdfs:range predicate or, in its absence, by examination of the object

values of the predicate.

The virtual relational schema generated by R2D for the sample scenario in Figure 2 is

illustrated in Figure 3 and the schema generation details are elaborated on in Section 4.

Figure 3: Equivalent Virtual Relational Schema generated by R2D for Figure 2

3.2. Types of Relationships Addressed

The predicates and various types of blank nodes in Figure 2 and the relationships they

represent in the corresponding virtual relational schemata are discussed below. The

simple predicates typically map to a column in a relational schema. Blank nodes with

multiple distinct or non-distinct predicates such as “Courses”, “Phone”, and “Other

Activities” typically highlight 1:N or N:M relationships, while blank nodes such as

“Name”, with literal predicates, are typically equivalent to columns.

(a) r2d:ColumnBridge Relationships (1:1 Relationships without Blank Nodes)

In this kind of a relationship, most often one side of the relationship translates into a

column/attribute in the table represented by the other side of the relationship. An

example of a 1:1 relationship without blank nodes in Figure 2 is the triple

(<URI/StudentA> <Nickname> <Nickname>) referring to the relationship between

an instance (<URI/StudentA>) of the Student class and his/her Nickname.

(b) r2d:SimpleLiteralBlankNode Relationships (1:1 Relationships with Blank Nodes)

These kinds of relationships are processed, for the purposes of transformation into a

relational schema equivalent, by ignoring the blank node and treating the predicates

of the blank nodes as multiple 1:1 relationships-without-blank-nodes to the subject of

the blank node. Each predicate of the blank node essentially becomes an attribute of

the table representing the subject instance. An example of a 1:1 relationship with

blank nodes in Figure 2 is the triple (<URI/StudentA> <Name> <blankNode>).

(c) r2d:ColumnBridge Relationships with r2d:refersToTableMap construct (N:1

Relationships without Blank Nodes)

In N:1 relationships without Blank Nodes, the primary key of the table representing

the instance on the “1” side of the relationship is included as a foreign key in the

table representing the instance on the “N” side of the relationship. An example of a

N:1 relationship without blank nodes in Figure 2 is the triple (<URI/StudentA>

<MemberOf> <Link to DepartmentID>) referring to the relationship between an

instance (<URI/StudentA>) of the Student class and an instance of the Department

class.

(d) r2d:MultiValuedColumnBridge (MVCB) Relationships with/without

r2d:refersToTableMap construct (N:1 or N:M Relationships without Blank Nodes)

r2d:MultiValuedColumnBridges with literal objects (i.e., without

r2d:refersToTableMap construct) are equivalent to multi-valued attributes in

relational terminology and, hence, result are considered to represent 1:N relationship

between the subject and the object of the predicate corresponding to the MVCB.

Thus, for MVCBs, a new table is generated with a foreign key that references the

table corresponding to the class to which the subject belongs. MVCBs with resource

objects (i.e. with r2d:referstoTableMap construct) typically represent N:M

relationships and hence, the processing of such MVCBs is similar to the processing

discussed in category (f) below. An example of an MVCB with resource objects in

Figure 2 is the triple (<URI/StudentA> <WorksOn> <Link to Research>) referring to

the relationship between an instance (<URI/StudentA>) of the Student class and

instances of the Research class.

(e) r2d:ComplexLiteralBlankNodes and r2d:MultiValuedSimpleLiteralBlankNodes (N:1

Relationships with Blank Nodes)

These relationships typically result in the generation of a separate table with a

foreign key that references the table corresponding to the class to which the subject

of this blank node object belongs. An example of a r2d:ComplexLiteralBlankNode in

Figure 2 is (<URI/StudentA <Phone> <blankNode>) and an example of an

r2d:MultiValuedSimpleLiteralBlankNode is (<URI/StudentA> <Home/Work

Address> <blankNode>). Both these examples result in the generation of

r2d:MultiValuedPredicates due to the presence of distinct predicates for the phone

number and address nodes.

(f) r2d:SimpleResourceBlankNodes and r2d:ComplexResourceBlankNodes (N:M

Relationships with Blank Nodes)

N:M relationships with or without blank nodes result in the generation of a new join

table that has, as foreign keys, the primary keys of the tables corresponding to the

classes to which the subject and the resource object belong. An example of an N:M

relationship with a blank node leading to similar object resources (i.e., a blank node

of type r2d:SimpleResourceBlankNode) in the scenario in Figure 2 is the triple

(<URI/StudentA> <Projects> <blankNode>) and an example of one with different

object resources (r2d:ComplexResourceBlankNode) is the triple (<URI/StudentA>

<OtherActivities> <blankNode>).

This background on R2D fundamentals provides the foundation behind R2D

functionalities, the details of which, along with the details of the algorithms that comprise

the R2D framework, are presented in a comprehensive manner in the next section.

4. R2D: A PROTOTYPE DESIGN

In keeping with the objectives of this research, several RDF-to-RDBMS bridging

algorithms were designed and developed in addition to the design of the RDF-to-

Relational mapping language discussed in the previous section. These include A) an

algorithm that would, given an RDF Data Store, derive the mapping file automatically, B)

an algorithm to parse the generated mapping file and generate, for the RDF Store, a list of

relational tables, columns, and the relationships between them, and C) an algorithm to

transparently transform any SQL statements issued against the virtual relational schema

into its SPARQL equivalent, and return the results from the RDF Store in a

relational/tabular format. The various modules highlighted in Figure 1 and the

corresponding algorithms are described at length in the following subsections.

4.1. RDFMapFileGenerator

The first step in the R2D Framework is the map file generator process accomplished

using the RDFMapFileGenerator algorithm that takes an RDF store as input and

automatically generates an RDF-to-Relational mapping file as output. Notional mappings

between some key OWL/RDFS Ontology terminologies and R2D constructs to relational

concepts can be found in [8].

However, the transformation process is not always as straightforward and as well-

defined as the notional mappings suggest. As mentioned earlier, there are currently many

RDF Graphs in existence that either do not have any, or have incomplete structural

information included along with the data. RDFMapFileGenerator works on RDF Stores

with or without such structural information and the details are listed below.

Algorithm 1 RDFMapFileGenerator (RDF)

Input: RDF: The RDF Store of Interest

Output: RDF-to-Relational Schema Mapping File

1: Get sampling type, get/calculate sample size, calculate sample period (if systematic sampling)

2: If exists(RDFSchema Information) then

3: For every resource that is an instance of rdfs:class

4: TableMaps ← resource_name //add

5: End For

6: For every resource that is an instance of rdf:property

7: Get/Create TableMap, tblMap, corresponding to rdf:domain value of resource

8: tblMap.ColumnBridges ← PropertyResource_name //add

9: tblMap.ColumnBridges.datatype ← PropertyResource’s rdf:range value

10: End For

11: End if

12: For every unprocessed (data) resource in the RDF store

13: Create a TableMap, tblMap, for this resource

14: For every predicate of the resource

15: If object of predicate is literal then

16: literalColumns += ProcessLiteralPredicate(resource, tblMap, predicate)

17: If Object of predicate is a blank node then

18: Call ProcessBlankNodePredicate(resource, tblMap, predicate)

19: If Object of predicate is a resource then

20: resourceColumns += ProcessResourcePredicate(resource, tblMap, predicate)

21: ConsolidateResourcePredicates(resourceColumns)

22: tblMap.setColumns(literalColumns); tblMap.setColumns(resourceColumns)

23: End if

24: End For

25: If NOT(similarTableExists(tblMap)) then

26: TableMaps += tblMap; otherwise discard tblMap

27: End if

28: If sampleSize reached

29: Exit

30: End if

31: End For

The RDFMapFileGenerator algorithm generates mappings for RDF Stores with and

without ontological information in the form of RDF Schema definitions such as

rdfs:class, rdf:property, etc. This algorithm arrives at an RDF-to-Relational mapping file

through extensive exploration of the triples data in the RDF Store and, consequently, is a

bottleneck in the transformation process in terms of the response times. As a result, a

number of sampling methods have been incorporated in the algorithm as can be seen in

line 1 of the RDFMapFileGenerator Algorithm.

For RDF Stores without ontological information, two types of data sampling have

been implemented, namely, Convenience/Haphazard Sampling, and Systematic sampling.

In the case of stores containing ontological information, two variations of Stratified

Sampling have been implemented; one where the sample size for each class is

proportional to the class size, and the other where the sample size is independent of the

class size, i.e., the sample size is the same for each class. These sampling methods have

resulted in large reductions in response times as can be seen in Section 5.

The data structure discovery process as illustrated in Figure 1 is as follows. When

structural information about the triples database is present, lines 2-11 of

RDFMapFileGenerator discover the schema definitions and create appropriate Table and

Column mappings based on the schema information.

Lines 12-31 process instance data to identify and account for those predicates that

may not have been defined through explicit rdf:property definitions. This is done using

three procedures, ProcessLiteralPredicate (Line 16), ProcessResourcePredicate (Line 20),

and ProcessBlankNodePredicate (Line 18). The ProcessLiteralPredicate procedure, as

the name suggests, is used to process predicates that have literal objects (such as

Nickname predicate). For every literal predicate that does not have a column

corresponding to itself, a new column is added to the TableMap corresponding to the

resource to which the predicate belongs. If the resource contains more than one such

predicate (i.e. the resource contains multiple literal object values for the same predicate),

then the column type of the corresponding column is set to

r2d:MultiValuedColumnBridge, otherwise it is a simple r2d:ColumnBridge.

The ProcessResourcePredicate procedure handles predicates that have resource

objects. A new potential column is added for every resource predicate that belongs to the

subject resource. After all resource predicates are processed the duplicate predicates (i.e.,

predicates that have objects belonging to the same object class) are examined and

eliminated and this is done through the ConsolidateResourcePredicates procedure (Line

21). During the consolidation process, any (duplicate) potential columns that refer to the

same object resource class (such as the WorksOn predicate) are combined and set to

r2d:MultiValuedColumnBridges while columns referring to distinct object resource

classes are set to r2d:ColumnBridge. This consolidation is mandatory in order to arrive at

a normalized and logically sound relational schema. In cases where the objects belong to

the same object class but the predicates have distinct values (such as the predicates off

the Phone blank node), a MultiValuedPredicate object is created which reflects this fact.

These MultiValuedPredicates typically become “TYPE” fields in the corresponding

relational schema.

Predicates leading to blank nodes are handled through the ProcessBlankNode

procedure. In this procedure, for every blank node encountered an object of type

BlankNode is created. If every predicate off of the blank node contains a literal object

(such as the Name and Phone blank nodes) then, for each predicate off of the blank Node,

the ProcessLiteralPredicate procedure is called which works as described above. If every

column generated through the ProcessLiteralPredicate procedure is a simple r2d:

ColumnBridge (such as the Name blank node) then the BlankNode is set to

r2d:SimpleLiteralBlankNode. If any of the columns are r2d:MultiValuedColumnBridges

(such as the Phone blank node) then the BlankNode is set to

r2d:ComplexLiteralBlankNode. If no such blank node has been previously encountered,

this blank node is added to the set of blank nodes. If a similar blank node is already an

element of the set of blank nodes, the blank node type is set to

r2d:MultiValuedSimpleLiteralBlankNode (such as the blank nodes corresponding to the

HomeAddress and WorkAddress predicates) or

r2d:MultiValuedComplexLiteralBlankNode respectively.

In case of blank nodes that contain only resource objects, every predicate off of such

blank nodes is processed using the ProcessResourcePredicate procedure, also discussed

above. As before, the consolidation process is carried out after all predicates off of the

blank nodes are processed. If the number of consolidated columns is equal to 1 (such as

in the case of the Courses blank node), the blank node type is set to

r2d:SimpleResourceBlankNode, otherwise (as in the case of the OtherActivities blank

node) it is set to r2d:ComplexResourceBlankNode. As in the previous case, if a similar

blank node exists, the node type is set to r2d:MultiValuedSimpleResourceBlanknode or

r2d:MultiValuedComplexResourceBlankNode respectively; otherwise, the blank node is

added to the set.

Blank nodes that contain a mixture of literal objects, resource objects, and other blank

nodes, are considered to be of type r2d:MixedBlankNodes and they are processed using

the Depth-First-Search tree algorithm. The topmost blank node is considered the root of

the tree and the procedure is as follows. For every literal or resource predicate off of a

blank node, a column is created and added to the blank node entity. Additionally, for

every blank node predicate off of a blank node, a new Blank Node entity is created and

added to the set of blank nodes and is also added as a column to the original blank node.

This way, the hierarchy of the tree rooted at the topmost blank node is maintained. This

hierarchy is required during the SQL-to-SPARQL conversion to retrieve data associated

with blank nodes appropriately.

Further, every resource object encountered and processed is stored in memory in

order to avoid duplicate processing of the same in the event of multiple triples containing

the same resource object. This information serves to improve the performance of the

algorithm. When these “similar” resources are encountered during instance data

processing, the algorithm skips the potential TableMap creation process and the time-

consuming duplicate-TableMap detection process, thereby resulting in better efficiency.

Handling of Predicates with Object Resources belonging to multiple

r2d:TableMaps (i.e., a Foreign Key that has multiple tables that it needs to reference):

RDF Graphs consists of many examples where the relational transformation creates a

situation where an attribute AFK in Entity EFK could hold values corresponding to

multiple entities, say E1 to EN (Let the set of attributes of each of these Eis be A1, A2, …

AN). This situation is handled as follows.

The attribute list of EFK, AEFK is modified to include fields that reference the key field

attributes of each of the entities, E1 to EN, which AFK references. Thus,

AEFK = AEFK U AReferencingE1PK U AReferencingE2PK ……. U AReferencingENPK – AFK

Lastly, each attribute AReferencingEiPK in Entity EFK is set to reference the key attribute of Ei

(EiPK). For every row in EFK, one or more of the attributes {AReferencingE1PK, AReferencingE2PK,

……. , AReferencingENPK} will have a value while the others will be null. Since the relational

schema corresponding to the given RDF graph generated by R2D is virtual involving no

physical space/resource utilization, having multiple columns, many of which could be

null, to represent the above scenario (foreign key referencing multiple tables) does not

result in any resource wastage and is a simple solution to this requirement. An example of

such a scenario would be the triple

<StudentURI (Subject), Advisor(Predicate), AdvisorURI (Object)>.

The Advisor object of a student resource could contain an instance from any one of the

classes in the set {Full Professor, Associate Professor, Assistant Professor}. Again, the

relational transformation of the above scenario would consist of four tables, namely,

Student, FullProfessor (FP), AssistantProfessor (ASP), and AssociateProfessor (ACP).

The Student table contains an Advisor column which is a foreign key. This foreign key

needs to reference all three professor tables. As described above, this situation is handled

by adding three separate columns to the Student table, Advisor1 referencing the primary

key of FP, namely FP_PK, Advisor2 referencing ASP, and Advisor3 referencing ACP.

Further, for every row in the Student table only one of the three Advisor columns contains

a value while the other two are null.

As another example, let us consider the following triple

<PublicationURI (Subject) Author (Predicate) AuthorURI(Object)>,

The Author object of a publication resource could contain instances from any of the

classes in the set {Full Professor (FP), Associate Professor (ACP), Assistant Professor

(ASP), Graduate Student (GS), Undergraduate Student (UGS)}. Applying the consolidate

method described above (in the Advisor example) results in the addition of five separate

columns to the Publication table, Author1 through Author5, referencing the primary keys

of FP, ACP, ASP, GS, and UGS tables respectively. In this example, the 5 fields are not

mutually exclusive, unlike in the Student-Advisor scenario, and, thus, any or all of the 5

Author fields could contain values for each publication record.

4.2. DBSchemaGenerator

The map file generation process is followed by the actual relational schema generation

process which is the next stage in the R2D process and is achieved using the

DBSchemaGenerator algorithm. This algorithm takes the RDF-to-Relational Schema

mapping file generated by the RDFMapFileGenerator algorithm in Section 4.1 and

returns a virtual, appropriately normalized relational database schema consisting of

entities/tables and the relationships between them.

The DBSchemaGenerator Algorithm is an enhanced version of the algorithm in [7] in

terms of its ability to handle a variety of blank nodes including nested blank nodes. For

each entry of type r2d:TableMap in the map file, a relational table, RelTable, is created

in the virtual relational database schema. Entries of type r2d:ColumnBridge and

r2d:MultiValuedColumnBridge whose r2d:belongsToTableMap value corresponds to the

TableMap, RelTable, are processed as follows. Every entry of r2d:ColumnBridge simply

becomes a column in RelTable. If the r2d:ColumnBridge refers to another resource (as

indicated by the r2d:refersToTableMap construct), a foreign key relationship is

established between RelTable and the referred-to table. For every entry of type

r2d:MultiValuedColumnBridge, which is comparable to multi-valued attributes in

relational database terminology, a new table, NormTable, is created and the

r2d:MultiValuedColumnBridge as well as the primary key of RelTable are added as

columns to NormTable. Further, if the predicate corresponding to the

r2d:MultiValuedColumnBridge is a r2d:MultiValuedPredicate, an additional “TYPE”

column is created and added to NormTable. If the r2d:MultiValuedColumnBridge is a

literal the NormTable type is set to “LiteralMVCBTable”; otherwise it is set to

“ResourceMVCBTable”.

Non-nested blank nodes of various kinds are handled as follows. For

r2d:SimpleLiteralBlankNodes (such as the blank node object of the Name predicate) of

the kind illustrated in Section 3, Figure 2 every r2d:ColumnBridge entry that belongs to

the blank node (as indicated by the r2d:belongsToBlankNode construct) is simply added

as a column to the Table to which the r2d:SimpleLiteralBlankNode belongs (as indicated

by the r2d:belongsToTableMap construct for the blank node). The processing of

r2d:ComplexLiteralBlankNodes (such as the object of the Phone predicate) is very

similar to the processing of r2d:MultiValuedColumnBridges described above with the

difference being the table type of the created table, which is set to “CLBNTable”. Entries

of type r2d:SimpleResourceBlankNode (object of the Courses predicate) and

r2d:ComplexResourceBlankNodes (object of the OtherActivities predicate) result in

creation of join tables, with the primary keys of tables corresponding to the subject

resource and the object resource included as fields in the join table. Further, if the

predicates corresponding to the column bridges belonging to these blank nodes are

MultiValued, an additional “TYPE” column is created and added to the join table.

The processing of r2d:MultiValuedSimpleLiteralBlankNode, results in the creation of

a new table, contrary to the r2d:SimpleResourceBlankNode scenario. This table has as

columns the primary key of the table corresponding to the blank node’s

r2d:belongsToTableMap value, and all the r2d:ColumnBridges that belong to the

r2d:MultiValuedSimpleLiteralBlanknode. The processing of

r2d:MultiValuedComplexLiteralBlanknode, r2d:MultiValuedSimpleResourceBlanknode,

and r2d:MultiValuedComplexResourceBlankNode is very similar to their SingleValued

counterparts with the only difference being the inclusion of an additional field in the

event the predicate corresponding to the blank node is an “MVP”. The table type values

are set according to the type of blank nodes encountered. The reason for having table

types and blank nodes is to maintain knowledge of the RDF graph structure in order to

accurately translate SQL Statements issued against the relational schema into its

appropriate SPARQL equivalent for precise data retrieval.

The final type of blank nodes processed by DBSchemaGenerator is mixed/nested

blank nodes where the predicates off of the blank nodes are any combination of literals,

resources, and other blank nodes. Due to the limitless kinds of such structured

combinations that are possible, it would be impossible to even attempt to arrive at a

corresponding normalized representation of the same. Hence, mixed/nested blank nodes

of type r2d:MixedBlankNode are handled by creating a table, NormTable, which has as

columns the primary key column of the table corresponding to the blank node’s

r2d:belongsToTableMap construct, and the literal and resource objects that are at the leaf

nodes of the tree rooted at the topmost mixed/nested blank node. This is achieved

through a recursive procedure that explores the predicates in a depth-first manner.

4.3. SQL-to-SPARQL Translation

The SQL-to-SPARQL Translation procedure, the last procedure in the deployment

sequence illustrated in Figure 1 (b), corresponds to the final phase of the R2D

transformation process where SQL statements issued against the virtual relational schema

are parsed, translated into equivalent SPARQL queries that are executed against the RDF

Store, and the results are returned in relational format. The SQL-to-SPARQL Translation

algorithm, which takes an SQL Statement as input and returns an appropriate SPARQL

equivalent as output, is an enhancement over the work in [7] with functionalities added to

process queries involving underlying blank nodes, and to provide pattern matching and

data aggregation abilities. The details of the algorithm are listed below.

Algorithm 2 SQL-to-SPARQL Translation (SQL)

Input: SQL: SQL Query

Output: Tabular results from execution of equivalent SPARQL Query

1: Parse the input SQL query

2: listOfFields ← Array containing fields in the SELECT clause

3: listOfTables ← Array containing tables in the FROM clause

4: whereClause ← portion of the SQL Query after the WHERE keyword

5: If exists(GROUP BY clause) then

6: groupByField ← Array containing aggregated fields in SELECT clause

7: groupByFunction ← Array containing aggregation functions on fields in SELECT clause

8: End if

9: SPARQLQuery ← ProcessQuery

10: Execute SPARQLQuery

11: For every row in the result set

12: For every field in the SPARQL SELECT list

13: If isFieldPK(field) then

14: Replace field with the field’s table’s ?subject variable

15: End if

16: ResultRow ← ResultRow U fieldValue of field from line 19’s result set

17: End For

18: If GROUP BY Fields present then

19: For every groupByField and groupByFunction in list

20: Get the groupByField Value from line 19’s result set

21: If (current ResultRow == previous ResultRow) then

22: Perform aggregation per groupByFunction for the groupByField

23: Else

24: ResultRow ← ResultRow U groupByField value

25: End if

26: End For

27: End if

28: QueryResults ← QueryResults U ResultRow

29: End For

Table 1: SQL-to-SPARQL Translation Algorithm - Supporting Procedures

SQL2SPARQL TRANSLATION ALGORITHM – SUPPORTING PROCEDURES

Procedure, its Input, and its Output Short Description

ProcessQuery

Input: List of Fields, Tables, and

Where Clause

Output: Equivalent SPARQL Query.

This procedure takes the list of fields and tables, and the where

clause in the original SQL query as input and generates a SPARQL

equivalent of the same as output. The SPARQL SELECT list is

generated within this procedure and the SPARQL WHERE and

FILTER clauses are generated using the ProcessWhereClause and

ProcessPredicatesForTables procedures called within this procedure.

ProcessWhereClause

Input: SQL WHERE clause

Output: SPARQL FILTER clause

This procedure examines the SQL WHERE clause to identify those

fields that have been used in the WHERE clause but are not a part of

the SELECT list. Resolution/conversion of the LIKE SQL construct

constructs into an equivalent REGEX construct in SPARQL is also performed

here.

ProcessPredicatesForTables

Input: List of Tables and Fields in the

SQL statement

Output: SPARQL WHERE and

FILTER clause constructs

Generation of the SPARQL WHERE clause and additions to the

SPARQL FILTER clause are performed by this procedure. This is

where most of the complexity of the SQL2SPARQL Translation

algorithm lies as predicates corresponding to every

table/column/blank node type are processed and transformed here.

The SQL-to-SPARQL Translation algorithm transforms single or multiple table

queries with or without multiple where clauses (connected by AND, OR, or NOT

operators) and Group By clauses. Within each individual where clause, the algorithm

handles operators in the following set – {>, <, =, <=, >=, !=, LIKE}.

Lines 1-14 of the algorithm essentially perform parsing of the input query to identify

the tables, fields, and the where clause and Group By clause, if present. The

ProcessQuery procedure, called in line 15, transforms the SQL Query into its SPARQL

form while lines 16-29 execute the generated SPARQL query, process the results, and

present the same in a tabular format. Lines 18-27 perform data aggregation as per the

Group By functions specified in the SQL Statement. Aggregation is achieved by

appending an ORDER BY clause to the transformed SPARQL query and the actual group

functions are calculated on the data obtained through the execution of the appended

SPARQL query. Due to space constraints, a detailed description of this algorithm is

omitted from this paper and can instead be found in [8].

5. IMPLEMENTATION SPECIFICS

The hardware used for the Map File creation process and the LUBM queries were

executed was a personal computer running the Windows Vista operating system with

4GB RAM and 2 GHz Intel Dual Core processor. The software platforms and tools used

include Jena 2.5.6 [22] to store the RDF triples data, MySQL 5.0 to house the RDF triples

data persistently, Java 1.5 for development of the algorithms and procedures detailed in

Section 4, DataVision v1.2.0 [23] to visualize and generate reports based on the RDF

data, and GRUFF v1.0.19 [24] to compare the performance of R2D queries against.

5.1. Experimental Dataset

The LUBM dataset [25], which consists of a university domain ontology comprising

resources such as Universities, Departments, Professors, Students, Courses, etc., was

used in the experimentation process. In order to illustrate relationalization of blank nodes,

we made certain modifications that involve additions of blank nodes to the LUBM

Schema. These modifications include the addition of an EmailAddress

r2d:SimpleLiteralBlankNode that involved altering the original simple literal

EmailAddress property of resources into an SLBN consisting of two simple literal

predicates, PrimaryEmail and SecondaryEmail. The second type of blank node added

was an r2d:ComplexLiteralBlankNode called ContactNo which was created by

modifying the original simple literal Phone property belonging to all Professor (and its

subclasses) resources into a blank node with multiple simple literal CellPhone predicates

and one simple literal HomePhone predicate. Query numbers 1, 4, and 8 in the LUBM

test queries include selection of fields corresponding predicates belonging to the SLBN

and CLBN and query performance of the same is illustrated in Figure 9.

5.2. Experimental Results

The relational equivalent of the RDF Graph in Figure 2 was generated using the

RDFMapFileGenerator and DBSchemaGenerator Algorithms detailed in Section 4 and

the open source visualization tool DataVision, which expects a relational schema as

input, was used to view the virtual relational schema generated, query the data using SQL

statements, and generate reports off of the data.

The time taken by the map file generation process without any data sampling

incorporated for RDF stores of various sizes, with and without ontological information,

was compared with time taken for the same process when several sampling methods are

applied and the results are illustrated in Figure 4. The process is especially time-intensive

for large databases without structural information but this is only to be expected since the

RDFMapFileGenerator has to explore every resource to ensure that no property is left

unprocessed.

Figure 4: Map File Generation Times with and without Sampling

The sampling techniques applied improved the performance of the algorithm by a

large factor, as can be seen in Figure 4. The processing times resulting from Convenience

Sampling with sample sizes consisting of a fixed number of records are independent of

the size of the data store and are almost constant since this technique only processes the

first “n” rows regardless of the size of the database. Systematic sampling, on the other

hand, does not yield as flat a line as Convenience sampling in the graphs above as it

involves selecting samples periodically from the entire data store and, hence, is not as

independent of the size of the data store as the former. For a similar reason, the Stratified

Sampling scenario where the sample size is equally divided between the number of

classes (Type B), regardless of the number of resources in each class, yields an almost

constant response time contrary to its counterpart where the sample size for each class is

proportional to the number of resources in each class (Type A).

Sampling techniques are especially useful in scenarios where the structure of similar

resources are quite well defined with only minor variations as, in such situations, the

sampling methods do not run the risk of overlooking structural information that is not

evident in the chosen sample data subset. Further, if a domain expert with knowledge of

the structural information of the RDF store is available, the automatic map file generation

process becomes optional. This step can be bypassed, and the time saved, by providing

the map file manually.

Figure 5 includes an excerpt from the map file generated by the

RDFMapFileGenerator algorithm along with an inset of a part of the database schema as

seen by DataVision.

Figure 5: Map File Excerpt and a portion of the Equivalent Relational Schema as seen by DataVision

This schema is populated through the GetDatabaseMetaData Interface in the

Connection class of the JDBC API within which the two algorithms,

RDFMapFileGenerator and DBSchemaGenerator, are triggered. As can be seen, the

various blank nodes that are part of the dataset are appropriately resolved and normalized

into 1:N or N:M tables, or columns in existing tables using the algorithm described in

Section 4.2. The r2d:SimpleLiteralBlankNode associated with Professor/Student-

EmailAddress is resolved into columns belonging to the Professor/Student tables and the

r2d:ComplexLiteralBlankNode associated with GraduateStudent-ContactNo is resolved

into a 1:N table of the same name.

Note that there are several tables in the virtual relational schema that seem like

duplicates (such as AssistantProfessor_TeacherOf and AssistantProfessor_TeacherOf_9,

FullProfessor_TeacherOf and FullProfessor_TeacherOf_2). These tables are not actually

duplicates. The first table in the pair is a join table for the N:M relationship that exists

between <Assistant/Full>Professor and Course classes while the second table in the pair

is the join table for the N:M relationship that exists between the

<Assistant/Full>Professor and GraduateCourse classes. The join table names in R2D’s

virtual relational schema are derived from the relevant predicate names. Since the

predicate names of the Professor-Course triples and the Professor-GraduateCourse

triples are identical in the LUBM dataset, the RDFMapFileGenerator algorithm appended

a unique identifier (the numbers at the end of the table names) to the second join table in

order to avoid duplicate table names in the virtual relational schema.

Figure 6 is a screenshot of DataVision’s Report Designer which illustrates

DataVision’s query building process for a sample query involving the SQL LIKE

operator and a GROUP BY clause. Based on the fields chosen (in the “Report Designer”

window), the table linkages (i.e., joins, illustrated in the “Table Linker” inset) specified,

and additional record selection and grouping criteria specified (illustrated in the “Record

Selection Criteria” and “Groups” insets respectively), DataVision generates an

appropriate SQL query, as shown in the “SQL Query” inset in Figure 7, to extract the

required data. At this juncture, the Statement Interface, the Prepared Statement Interface,

and the ResultSet Interface that are part of the JDBC interface are invoked. These

interfaces trigger the SQL-to-SPARQL Translation algorithm, which generates a

SPARQL equivalent of the given SQL statement as illustrated in Figure 7, and return the

obtained results to DataVision in the expected tabular format, as illustrated in Figure 8.

While DataVision, like any other relational reporting/visualization tool, has options to

specify aggregation and grouping conditions and functions, the DataVision support group

has, for various reasons that are not applicable to our academic test environment, disabled

the GROUP BY facility. For the purposes of our research, we have enabled the

functionality and the results are as displayed in Figure 8 below.

Figure 6: DataVision Query Processing

Figure 7: SQL-to-SPARQL Conversion

Figure 8: Tabular Results as seen through DataVision

In order to compare the performance of queries executed through the virtual relational

schema offered by R2D against the query performance achieved through RDF

visualization tools, XML files corresponding to the LUBM dataset were generated for

RDF stores of various sizes and a selection of four queries were run using R2D and

Allegrograph’s Gruff. These queries were selected at random from the set of LUBM

Benchmark SPARQL queries and their equivalent SQL versions were executed using

R2D. Figure 9 displays the response times of each of the queries as the sizes of the

databases vary.

As can be observed, R2D’s performance is far superior to the existing direct RDF

visualization. This could be because Gruff persists data on the hard disk in a proprietary

manner, requiring additional time/resources for disk I/O, while R2D utilizes Jena’s in-

memory store to house the RDF data. The time taken for the SQL-to-SPARQL

conversion (SQL-to-SPARQL Translation Algorithm) is negligible and nearly constant.

Thus, R2D does not add any overheads to the SPARQL query performance.

SQL queries issued against relational databases created by physically duplicating

RDF data may possibly exhibit superior performance than their SPARQL equivalents

since refined performance optimization options (such as indexes, mature query

optimizers, etc.) have been at the disposal of relational databases for many decades now.

Further, for each row of the RDBMS with ‘n’ columns, there are ‘n’ triple tuples in

the corresponding RDF Store. Thus, the RDBMS equivalent of the RDF Stores generally

has a fraction of the data in the RDF Stores which could be yet another contributor to

better RDBMS response times than the RDF data store. However, this improved

performance comes at the expense of additional disk space that is required due to

duplication of data into the RDBMS, and additional system resources and human effort

required to ensure that the duplicated data is kept synchronized with the original RDF

store. On the other hand, for possibly a small price in terms of response time, R2D offers

an avenue for users to continue to take advantage of the vast assortment of visualization

tools that are readily available without having to “reinvent the wheel” for RDF stores or

duplicate/synchronize RDF data. With skilled database administrators becoming rarer and

more expensive, the importance of applications such as R2D becomes more pronounced

as they offer a means to bypass the requirement of databases and their management.

Figure 9: Response times for Selected LUBM Queries

6. CONCLUSION and FUTURE WORK

The R2D framework presented in this paper was motivated by a dearth in the number and

variety of data modeling, management, and visualization tools for RDF graph data.

Though there are a several ongoing research efforts that attempt to address these

deficiencies, most of the efforts involve either the painstaking process of creating new

tools or the uneconomical alternative of duplicating data into existing relational stores

raising a fresh crop of concerns such as resource wastage and synchronization issues. The

chief goal of R2D is to bridge the gap between RDF data sources and the relational model

in order to continue to leverage the benefits offered by existing traditional tools without

any customization for RDF. A JDBC interface aimed at accomplishing this goal through

a mapping between RDF Graph constructs and their equivalent relational counterparts

was presented. A detailed description of the mapping constructs, the system architecture,

and the modus operandi of the proposed system was discussed along with in depth

discussion on the algorithms comprising the R2D framework. The feasibility of the

proposed framework was demonstrated through a variety of experimental results in the

form of screenshots and performance graphs.

Future directions for R2D include improvisation of the normalization process for

mixed blank nodes in order to arrive at better and more appropriate tables corresponding

to such blank nodes. Enhancements to the S QL-to-SPARQL translation algorithm that

would enable the handling of nested and correlated sub-queries are other aspects that are

being explored.

7. REFERENCES

[1] Wikipedia http://en.wikipedia.org/wiki/Semantic_Web

[2] RDF Primer. W3C Recommendation. Feb, 2004. http://www.w3.org/TR/rdf-primer/

[3] Tauberer, J. What is RDF. July, 2006. http://www.xml.com/pub/a/2001/01/24/rdf.html

[4] Muys, A.: Building an Enterprise-Scale Database for RDF Data.

http://www.netymon.com/papers/muysa06buildforrdf.pdf (2006)

[5] Teswanich, W., Chittayasothorn, S.: A Transformation of RDF Documents and Schemas to

Relational Databases. In: IEEE PacificRim Conferences on Communications, Computers, and

Signal Processing, pp. 38-41(2007)

[6] Hendler, J.: RDF Due Diligence. http://civicactions.com/blog/rdf_due_diligence. (2006)

[7] Ramanujam, S., Gupta, A., Khan, L., Seida, S., and Thuraisingham, B.: R2D:Extracting

Relational Structure from RDF Stores. In: International Conference on Web Intelligence,

2009, in press.

[8] Ramanujam, S., Gupta, A., Khan, L., Seida, S., and Thuraisingham, B.: R2D:A Bridge

between the Semantic Web and Relational Visualization Tools. In: International Conference

on Semantic Computing, 2009, in press.

[9] Pan, Z., and Heflin, J. DLDB: Extending Relational Databases to Support Semantic Web

Queries. In Practical and Scalable Semantic Systems, 2003.

[10] Bizer, C., Cyganiak, R., Garbers, J., and Maresch, O. The D2RQ Platform.

http://www4.wiwiss.fu-berlin.de/bizer/d2rq/

[11] Erling, O., and Mikhailov, I.: RDF Support in the Virtuoso DBMS, 1
st
 Conference

on Social Semantic Web, 2007 pp.1617-5468.
[12] Han, L., Finin, T., Parr, C., Sachs, J., and Joshi, A. RDF123: From Spreadsheets to RDF.

International Semantic Web Conference, LNCS 5318, 2008, 451-466.
[13] S.Auer, S.Dietzold, J.Lehmann, S.Hellmann, and D.Aumueller, “Triplify – Light-

Weight Linked Data Publication from Relational Databases”, 18
th

 International
World Wide Web Conference, 2009, pp. 621-630.

[14] Perez de Laborda, C., and Conrad, S. Bringing Relational Data into the Semantic Web using

SPARQL and Relational.OWL. 22nd International Conference on Data Engineering

Workshops, 2006.

[15] An, Y., Borgida, A., and Mylopoulos, J. Refining Semantic Mappings from Relational Tables

to Ontologies. Second International Workshop on Semantic Web and Databases, 2004, 84-90.

[16] An, Y., Borgida, A., and Mylopoulos, J. Discovering the Semantics of Relational Tables

through Mappings. Journal on Data Semantics, VII, 2006, 1-32.

[17] Harris, S. SPARQL Query Processing with Conventional Relational Database Systems.

International Workshop on Scalable Semantic Web Knowledge Base Systems, 2005.

[18] Chebotko, A., Lu, S., Jamil, H. M., and Fotouhi, F. Semantics Preserving SPARQL-to-SQL

Query Translation for Optional Graph Patterns. Technical Report TR-DB-052006-CLJF,

2006.

[19] Chen, H., Wu, Z., Wang, H., and Mao, Y. RDF/RDFS-based Relational Database Integration.

22nd International Conference on Data Engineering, 2006.

[20] Chong, E. I., Das, S., Eadon, G., and Srinivasan, J. An Efficient SQL-based RDF Querying

Scheme. VLDB, 2005.

[21] Yan, Y., Wang, C., Zhou, A., Qian, W., Ma, L., and Pan, Y. Efficiently Querying RDF Data

in Triple Stores. 17th International Conference on World Wide Web, 2008, 1053-1054.

[22] Jena – A Semantic Web Framework for Java. http://jena.sourceforge.net/index.html

[23] DataVision. The Open Source Report Writer. http://datavision.sourceforge.net/

[24] GRUFF: A Grapher-Based Triple-Store Browser for Allegrograph.

http://agraph.franz.com/gruff/

[25] Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark for OWL Knowledge Base Systems.

Journal of Web Semantics 3(2), 2005, pp158-182.

Storage and Retrieval of Large RDF Graph
Using Hadoop and MapReduce

Mohammad Farhan Husain, Pankil Doshi, Latifur Khan, and Bhavani
Thuraisingham

University of Texas at Dallas, Dallas TX 75080, USA

Abstract. Handling huge amount of data scalably is a matter of concern
for a long time. Same is true for semantic web data. Current semantic
web frameworks lack this ability. In this paper, we describe a framework
that we built using Hadoop1 to store and retrieve large number of RDF2

triples. We describe our schema to store RDF data in Hadoop Distribute
File System. We also present our algorithms to answer a SPARQL3 query.
We make use of Hadoop’s MapReduce framework to actually answer the
queries. Our results reveal that we can store huge amount of semantic
web data in Hadoop clusters built mostly by cheap commodity class
hardware and still can answer queries fast enough. We conclude that
ours is a scalable framework, able to handle large amount of RDF data
efficiently.

1 Introduction

Scalibility is a major issue in IT world. Basically what it means is that a system
can handle addition of large number of users, data, tasks etc. without affecting its
performance significantly. Designing a scalable system is not a trivial task. This
also applies to systems handling large data sets. Semantic web data repositories
are no exception to that. Storing huge number of RDF triples and the ability to
efficiently query them is a challenging problem which is yet to be solved. Trillions
of triples requiring peta bytes of disk space is not a distant possibility any more.
Researchers are already working on billions of triples[13, 2]. Competitions are
being organized to encourage researchers to build efficient repositories4.

Distributed systems are always good candidates as a solution to scalibility
problems. Distributed databases are widely used to handle large amount of re-
lational data. However, a distributed repository for RDF data is yet to be built.
The challenges and technologies needed to build such a system for semantic
web data are unfolding as researchers move along that path. For building a
distributed repository for RDF data, one option may be to use the readily avail-
able distributed database systems for relational databases and come up with
1 http://hadoop.apache.org
2 http://www.w3.org/RDF
3 http://www.w3.org/TR/rdf-sparql-query
4 http://challenge.semanticweb.org

a relational schema to store RDF data. Researchers are already exploring the
optimal relational schema for that purpose [9]. Another option can be to build
a distributed system from ground up. The advantage of this approach is that
a system optimized to handle only RDF data can be built in this way. The
disadvantage is that in many cases we have to reinvent the wheel. But instead
of building the system from scratch, we can take a generic distributed storage
system and build a sematic web repository on top of that.

Such a system is Hadoop. It is a distributed file system where files can be
saved with replication. It provides high fault tolerance and reliability. Moreover,
it provides an implementation of MapReduce[8] programming model. MapRe-
duce is a functional programming model which is suitable for processing large
amount of data in parallel. In this programming paradigm, MapReduce processes
are run on independant chunks of data making parallelization easier.

Current semantic web frameworks like Jena5 do not scale well. These frame-
works run on single machine and hence cannot handle huge amount of triples.
For example, we could load only 10 million triples in a Jena in-memory model
running in a machine having 2 GB of main memory. In this paper, we describe
our work with RDF data and Hadoop. We devise a schema to store RDF data in
Hadoop. In a preprocessing stage, we process RDF data and put it in text files in
the distributed file system according to our schema. We chose Lehigh University
Benchmark[10] (LUBM) data generator to generate our data. We have a re-
trieval mechanism by MapReduce programming. We find that for many queries,
one MapReduce job is not enough. We need to have an algorithm to determine
how many jobs are needed for a given query. We devise such an algorithm which
not only determines the number of jobs but also their sequence and inputs. We
run all the LUBM benchmark queries. We run them on different sizes of data
sets starting from 100 million triples to 1 billion triples.

In the work we have done, our contributions are as follows: first, a storage
scheme to store RDF data in plain text files in Hadoop distributed file system,
and next a scalable algorithm to determine the details of MapReduce jobs needed
to answer a SPARQL query.

The remainder of this paper is organized as follows: in section 2 we discuss
works done by other researchers and our novelties using MapReduce for large
amount of data. In section 3 we discuss the architecture of our system. We
describe our data storage system in section 4. We discuss how we answer a
SPARQL query in section 5. We present the results of our experiments in section
6. Finally we draw some conclusions and discuss probable areas which we have
identified for improvement in future in section 7.

2 Related Works
MapReduce is an evolving technology now. The technology has been well received
by the community which handles large amount of data. Google uses it for web
indexing, data storage, social networking [4]. It is being used to scale up classifiers
for mining peta-bytes of data [5]. Data mining algorithms are being rewritten in
different forms to take the advantage of MapReduce technology [6]. Other areas

5 http://jena.sourceforge.net

where this technology is successfully being used are simulation [3]. Hadoop is an
Apache project which is an open source implementation of Google’s MapReduce
technology. It is being used to handle large amount of data for quite some time
now. Yahoo is using Hadoop’s scale-out for search and information retrieval [1].

The closest match to what we have done is the BioMANTA6 project. Re-
searchers of that project have done some work regarding large RDF data storage
in Hadoop. They proposed extensions to RDF Molecules[7] and implemented
a MapReduce based Molecule store [2]. They used MapReduce to answer the
queries. They have queried maximum 4 million triples. Our work differs in the
following ways: first, we start with 100 million triples and queried 1 billion triple
at the maximum. Second, we have devised a storage schema using files which is
tailored to improve query execution performace for RDF data. We store RDF
triples in files based on the predicate of the triple and the type of the object.
Third, we have a query rewriting algorithm for SPARQL queries which lever-
ages our storage schema and can convert a query to an equivalent shorter one
under some conditions. Finally, we also have an algorithm to determine the jobs
needed to answer a query. We can determine the input files of a job and the
order in which they should be run. To the best of our knowledge, we are the
first ones to come up with storage schema for RDF data with flat files, a query
rewritting algorithm which takes advantage of the schema and a MapReduce job
determination algorithm to answer a SPARQL query.

3 Proposed Architecture
Our architecture consists of several software components. We make use of Jena
Semantic Web Framework in data preprocessing step and Pellet OWL Reasoner7

in query execution. The architecture is shown in figure 1. The left column of the
figure depicts preprocessing steps for the data and the right column shows the
steps to answer a query.

We have three components for data generation and preprocessing. The LUBM
[10] data generator creates data in RDF/XML serialization format. We take
this data and convert it to N-Triples serialization format using our N-Triple
Converter component. This component uses Jena framework to convert the data.
The Predicate Based File Splitter takes the converted data and splits it into
predicate files. The predicate based files are then fed into the Object-Type Based
File Splitter which split the predicate files to smaller files based of type of objects.
These steps are described in section 4.2. The output of the last component are
then put into HDFS8.

Our MapReduce framework has three sub-components in it. It takes SPARQL
query from the user passes it to Job Decider and Input Selector. This component
decides how many jobs are needed and selects the input files and passes the
information to the Job Handler component which submits corresponding jobs to
Hadoop. It then relays the query answer from Hadoop to the user. To answer
queries that require inferencing, we use Pellet OWL Reasoner.

6 http://www.itee.uq.edu.au/ eresearch/projects/biomanta
7 http://clarkparsia.com/pellet
8 http://hadoop.apache.org/core/docs/r0.18.3/hdfs design.html

Fig. 1. The System Architecture

4 Data Preprocessing
For our experiments, we use LUBM[10] dataset. LUBM is a benchmark data
set designed to enable researchers evaluate their semantic web repository perfo-
mances [11]. The data set has a data generator which generates data about a
user specified number of universities. It has 14 benchmark queries. Researchers
have used LUBM data sets to compare their performances with other semantic
web repositories [14, 13, 12].

4.1 Data Generation and Storage
The LUBM data generator generates data in RDF/XML serialization format.
This format is not suitable for our purpose because we store data in HDFS in flat
files. If the data is in RDF/XML format then to retrieve even one triple we need
to parse the whole file and also it is not suitable as an input for a MapReduce
job. Instead we choose N-Triple to store the data in because we have a complete
triple in one line of a file which is very convenient to use with a MapReduce
job. We convert the data to N-Triple format and apply certain processing steps
on it to get to our intended data format. These steps are described in following
sections.

Hadoop is basically a distributed file system. It breaks large files into small
blocks having default size 64 MB. For improved fault tolerance, Hadoop repli-
cates these blocks. Hadoop does not cache any file for MapReduce jobs. The
replication and no-cache policy warrants us to use optimal storage policy for
storing RDF data.

4.2 File Organization
In HDFS a file takes space replication factor times its size. As RDF is text data,
it takes a lot space in HDFS to store a file. To minimize the amount of space, we
replace the common prefixes in URIs with some much smaller prefix strings. We

keep track of this prefix strings in a separate prefix file. This reduces the space
required by the data by a significant amount.

As there is no caching in Hadoop, each SPARQL query needs reading files
from HDFS. Reading directly from disk always have a high latency. To reduce
the execution time of a SPARQL query, we came up with an organization of files
which provides us with the capability to determine the files needed to search in
for a SPARQL query. The files usually constitute a fraction of the entire data
set and thus making the query execution much faster.

We do not store the data in a single file because in Hadoop file is the smallest
unit of input to a MapReduce job. If we have all the data in one file then the
whole file will be input to MapReduce jobs for each query. Instead we divide the
data in multiple steps. Predicate Split (PS): in the first step, we divide the
data according to the predicates. In real world RDF data sets, the number of
distinct predicates are just more than 10 or 20 [14]. This division immediately
enables us to cut down the search space for any SPARQL query which does not
have a variable9 predicate. For such a query, we can just pick a file for each
predicate and run the query on those files only. For simplicity, we name the
files with predicates e.g. all the triples containing a predicate p1:pred goes to
a file named p1-pred. However, in case we have a variable predicate in a triple
pattern10 and if we cannot determine the type of the object, we have to consider
all files. If we can determine the type of the object then we consider all files
having that type of object. We discuss more on this in section 5.1.

Predicate Object Split (POS): In the next step, we work with the type
information of objects. The rdf type file is first divided into as many files as
the number of distinct objects the rdf:type predicate has. For example, if in the
ontology, the leaves of the class hierarchy are c1, c2, ..., cn then we will create files
for each of these leaves and the file names will be like rdf-type c1, rdf-type c2,
... , rdf-type cn. Please note that the values c1, c2, ..., cn are no longer needed to
be stored inside the file as they can be easily retrieved from the file name. This
further reduces the amount of space needed to store the data. For each distinct
object values of the predicate rdf:type we get a file like this.

We divide other predicate files according to the type of the objects. Not all
the objects are URIs, some are literals. The literals remain in the file named by
the predicate i.e. no further processing is required for them. The objects move
into their respective file named as predicate type. For example, if a triple has the
predicate p and the type of the object is ci, then the subject and object appears
in one line in the file p ci. To do this division we need to join a predicate file with
the rdf-type files. Queries run much faster with POS schema than PS schema. In
one occasion, we could reduce time for query 2 in 1000 universities dataset from
9 hour and 51 minutes to only 10 minutes, a huge improvement.

Table 1 shows the size gain we get at each step for data of 1000 universities.
LUBM generator generates files of total 24 GB size. After splitting the data
according to predicates the size drastically comes down to only 7.1 GB which is

9 http://www.w3.org/TR/rdf-sparql-query/#sparqlQueryVariables
10 http://www.w3.org/TR/rdf-sparql-query/#sparqlTriplePatterns

Step Files Size (GB) Space Gain

N-Triples 20020 24

PS 18 7.1 70.42%

POS 18 6.6 7.04%

Table 1. Data size at various steps for 1000 universities

a 70.42% gain. This happens because of the absence of predicate columns and
also the prefix substitution. In the final step, we again gain 7.04% space as the
splitted rdf-type files no longer has the object column.

Listing 1.1. LUBM Query 1
1SELECT ?X WHERE {
2?X rd f : type ub : GraduateStudent .
3?X ub : takesCourse <http ://www.D0 .U0 . edu/GC0> }

We observed that all the LUBM SPARQL queries use the type information
heavily. We also observed that there are a large number of triples with rdf:type
predicates. These predicates are used in joins in all queries. Hence, the size of
the join output is very large. To reduce the join output size and also the query
execution time, we divided the rdf-type file according to the value of objects in
the triples.

For example, listing 1.1 shows LUBM query 1 which has the rdf:type predicate
in first its first triple patterns in line 4. Without the type split the input files
for this query would be rdf-type and ub-takesCourse. But with the type split, we
could use rdf-type GraduateStudent and ub-takesCourse as the input instead of
rdf-type and ub-takesCourse. The file rdf-type GraduateStudent is significantly
smaller than the file rdf-type. Thus with the type split, we are reducing the input
size, hence reducing the join outputs. This will make the query execution much
faster.

5 MapReduce Framework
Our MapReduce Framework is where we answer queries. The challenges we meet
to answer a SPARQL query are as follows: first to determine the number of jobs
needed to answer a query, second to minimize the size of intermediate files so
that data copying and network data transfer is reduced and finally to determine
number of reducers. We run one or more MapReduce jobs to answer one query.
The following section gives a brief discussion about Hadoop MapReduce.

In Hadoop, the unit of computation is called a job. A user can submit a job to
Hadoop JobTracker which is responsible for running a job. In each MapReduce
job, there are two phases: Map and Reduce. In the Map phase the map method
takes a pair of input key-value pair and may output zero or more key-value pairs.
In the Reduce phase, the values for each key are grouped together in a collection
and a key and iterator to values pair is passed to the reduce method. It can also
output zero or more key-value paires.

When a job is submitted to Hadoop JobTracker, Hadoop creates map pro-
cesses preferrably near the input data in the cluster. These map processes cannot
talk to each other and work independently. Same goes for reduce processes. This

lack of communication has the advantage of speed and simplicity. But the dis-
advantage is in one job we cannot perform all the joins necessary for a SPARQL
query without this communication. To overcome this problem, we must have
more than one joins for the queries where one job cannot do all the joins with-
out communication between map processes. We write the output of a job to an
intermediate file. This intermediate file is used as input to the subsequent job.
The algorithm to determine the joins done in a job is described in section 5.2.
5.1 Input Files Selection
Before determining the jobs, we select the files that need to be inputted to the
jobs. We take a query submitted by the user and iterate over the triple patterns.
In a triple pattern, if the predicate is variable then we select all the files as input
to the jobs and terminate the iteration. If the predicate is a variable but has a
type information associated to it, then we select all predicate files having object
of that file and add them to the input file set. If the predicate is concrete but
has no type information, we add all files for the predicate to the input set. If it
has a type information associated with it, we add the predicate file which has
objects of that type to the input set.

If a type associated with a predicate is not a leaf in the ontology tree, we
add all subclasses which are leaves in the subtree rooted at the type node in the
ontology tree.
5.2 The DetermineJobs Algorithm
To answer a SPARQL query by MapReduce jobs, we may need more than one
job. It is because we cannot handle all the joins in one job because of the way
Hadoop runs its map and reduce processes. Those processes have no inter process
communication and they work on idependent chunks of data. Hence, processing
a piece of data cannot be dependent on the outcome of any other piece of data
which is essential to do joins. This is why we might need more than one job
to answer a query. Each job except the first one depends on the output of its
previous job.

We devised Algorithm 1 which determines the number of jobs needed to
answer a SPARQL query. It determines which joins are handled in which job
and the sequence of the jobs. For a query Q we build a graph G = (V, E) where
V is the set of vertices and E is the set of edges. For each triple pattern in the
query Q we build a vertex v which makes up the set V . Hence |V | is equal to the
number of triple patterns in Q. We put an edge e between vi and vj , where i 6= j,
if and only if their corresponding triple patterns share at least one variable. We
label the edge e with all the variable names that were shared between vi and
vj . These edges make up the set E. Each edge represents as many joins as the
number of variables it has in its label. Hence, total number of joins present in
the graph is the total number of variables mentioned in the labels of all edges.
An example illustrates it better. We have chosen LUBM [10] query 12 for that
purpose. Listing 1.2 shows the query.

Listing 1.2. LUBM Query 12
1SELECT ?X WHERE {
2?X rd f : type ub : Chair .
3?Y rd f : type ub : Department .
4?X ub : worksFor ?Y .
5?Y ub : subOrganizationOf <http ://www. Univer s i ty0 . edu> }

The graph we build at first for the query is shown in figure 2. The nodes are
numbered in the order they appear in the query.

Algorithm 1 DetermineJobs(Query q)
Require: A Query object returned by RewriteQuery algorithm.
Ensure: The number of jobs and their details needed to answer the query.

1: jobs← φ
2: graph← makeGraphFromQuery(q)
3: joins left← calculateJoins(graph)
4: while joins left 6= 0 do
5: variables← getV ariables(graph)
6: job← createNewJob()
7: for i← 1 to |variables| do
8: v ← variables[i]
9: v.nodes← getMaximumV isitableNodes(v, graph)

10: v.joins← getJoins(v.nodes, graph)
11: end for
12: sortV ariablesByNumberOfJoins(variables)
13: for i← 0 to |variables| do
14: if |v.joins| 6= 0 then
15: job.addV ariable(v)
16: jobs left← jobs left− |v.joins]
17: for j ← i + 1 to |variables| do
18: adjustNodesAndJoins(variables[j], v.nodes)
19: end for
20: mergeNodes(graph, v.nodes)
21: end if
22: end for
23: jobs← jobs ∪ job
24: end while

25: return jobs

Fig. 2. Graph for Query 12 in Iteration 1 Fig. 3. Graph for Query 12 in Iteration 2

In figure 2, each node in the figure has a node number in the first line and
variables it has in the following line. Nodes 1 and 3 share the variable X hence
there is an edge between them having the label X. Similarly, nodes 2, 3 and
4 have edges between them because they share the variable Y . The graph has
total 4 joins.

Algorithm 1 is iterative. It takes a Query object as its input, initializes the
jobs set (line 1), builds the graph shown in figure 2 before entering first iteration
(line 2). It also calculates the number of jobs left (line 3). It enters the loop in
line 4 if at least one job is left. At the beginning of the loop it retrieves the set of
variables (line 5) and creates a new empty job (line 6). Then it iterates over the

variable (line 7 and 8), lists the maximum number of nodes it can visit by edges
having the variable in its label (lines 9). It also lists the number of joins that
exist among those nodes (line 10). For example, for variable Y we can visit nodes
2, 3 and 4. The joins these nodes have are 2-3, 3-4 and 4-2. The information it
collects for each variable is shown in table 2.

Variable Nodes Joins ‖Joins‖
Y 2, 3, 4 2-3, 3-4, 4-2 3

X 1, 2 1-2 1
Table 2. Iteration 1 Calculations

Variable Nodes Joins ‖Joins‖√
Y 2, 3, 4 2-3, 3-4, 4-2 3

X 1 0
Table 3. Iteration 1 - After choosing X

Variable Nodes Joins Total Joins

X 1, 2 1-2 1
Table 4. Iteration 2 Calculations

It then sorts the variables in descending order according to the number of
joins they cover (line 12). In this example, the sort output is the same as table
2. Then, in greedy fashion, it iterates over the variables and chooses a variables
if the variable covers at least one join (line 13 and 14). In each iteration, after it
chooses a variable, it eliminates all the nodes it covers from subsequent variable
entries (lines 17 to 19). It then calculates the number of joins still left in the
graph (line 16). For example, once the algorithm chooses the variable Y , the
nodes and joins for X becomes like table 3.

It also merges the nodes visited by the chosen variable in the graph (line 20).
Hence, after choosing Y it will not choose X as it does not cover any join any
more. Here the inner loop terminates. The joins it picked are the joins that will
be done in a job. The algorithm then checks whether any join is not picked (line
4). If such is the case, then more jobs are needed and so the algorithm goes to
the next iteration.

At the beginning of the subsequent iteration it again builds a graph from the
graph of the previous iteration but this time the nodes which took part in joins
by one variable will be collapsed into a single node. For our example, nodes 2,
3 and 4 took part in joins by Y . So they will collapse and form a single node.
For clarity, we name this collapsed node as A and the remaining node 1 of the
graph in figure 2 as B. The new graph we get like this is shown in figure 3. The
graph has total 1 join. We have listed the nodes which were collapsed in braces.

After building the graph, the algorithm moves on to list the maximum num-
ber of nodes, joins and total number of joins each variable covers. This is shown
in table 4. The algorithm chooses X and that covers all the joins of the graph.
The algorithm determines that no more job is needed and returns the job col-
lection.

5.3 Performing Join

In this section, we discuss how we implement joins needed to answer SPARQL
queries using MapReduce framework of Hadoop. Algorithm 1 determines the
number of job required to answer a query. It returns an ordered set of jobs.
Each job has associated input information. The Job Handler component of our
MapReduce framework runs the jobs in the sequence they apprear in the ordered

set. The output file of one job is the input of the next one. The output file of
the last job has the answer to the query.

Listing 1.1 shows LUBM query 1 which we will use to illustrate the way we
do join using map and reduce methods. The query has two triple patterns and
one join between them by the variable X. Our input selection algorithm selects
the file type GraduateStudent for the triple pattern of line 4 and for the triple
pattern of line 5 all files having the prefix takesCourse as the input to the only
job needed to answer the query.

In the map phase, we first tokenize the value which is actually a line of the in-
put file. Then we check the input file name and if input is from type GraduateStudent,
we output a key value pair having the subject URI as the key and a flag string GS
as the value. The value serves as a flag to indicate that the key is of type Graduat-
eStudent. The subject URI is the first token returned by the tokenizer. If the in-
put is not from that file then it must be from a file having the prefix takesCourse.
We then retrieve the subject and object from the input line by the tokenizer and
then check whether the object value is “http://www.D0.U0.edu/GC0”. If that
is the case, we output a key value pair having the subject URI as the key and
the object value as the value.

In the reduce phase, Hadoop groups all the values for a single key and for
each key provides the key and an iterator to the values collection. Using the
iterator we simply count the number of values in the values collection. If the
count is two then we know that the key is a URI to a graduate student who took
the course “http://www.D0.U0.edu/GC0”. It is because only if a URI satisfies
both conditions in the map phase, it can appear as a key in two output key value
pairs in that method.

6 Results

Due to space limitations we choose to report runtimes of six LUBM queries
which we ran in a cluster of 10 nodes with POS schema. Each node had the
same configuration: Pentium IV 2.80 GHz processor, 4 GB main memory and
640 GB disk space. The results we found are shown in table 5.

Universities Triples (million) Query1 Query2 Query4 Query9 Query12 Query13

1000 110 66.313 146.86 197.719 304.87 79.749 198.502

2000 220 87.542 216.127 303.185 532.982 95.633 272.521

3000 330 115.171 307.752 451.147 708.857 100.091 344.535

4000 440 129.696 393.781 608.732 892.727 115.104 422.235

5000 550 159.85 463.344 754.829 1129.543 132.043 503.377

6000 660 177.423 543.677 892.383 1359.536 150.83 544.383

7000 770 198.033 612.511 1067.289 1613.622 178.468 640.486

8000 880 215.356 673.0 1174.018 1855.5127 184.434 736.189

9000 990 229.18 727.596 1488.586 2098.913 214.575 821.459

10000 1100 273.085 850.503 1581.963 2508.93 286.612 864.722

Table 5. Query Runtimes

Table 5 has query answering times in seconds. The number of triples are
rounded down to millions. As expected, as the number of triples increased, the
time to answer a query also increased. Query 1 is simple and requires only one
join. We can see that it took the least amount of time among all the queries.
Query 2 is one of the two queries having most number of triple patterns. We can
observe that even though it has three times more triple patterns it does not take
thrice the time of query 1 answering time because of our storage schema. Query
4 has one less triple pattern than query 2 but it requires inferencing to bind 1
triple pattern. As we determine inferred relations on the fly, queries requiring
inferencing takes longer times in our framework. Query 9 and 12 also require
inferencing and query 13 has an inverse property in one of its triple patterns.

We can see that the ratio between the size of two datasets and the ratio
between the query answering times for any query are not the same. The increase
in time to answer a query is not proportionate to the increase in size of datasets.
In fact, the increase in time is always less. For example, there are ten times
triples in the dataset of universities 10000 than universities 1000 but for query
1 the time only increases by 4.12 times and for query 9 by 8.23 times. The later
one is the highest increase in time which is still less than the increase in the size
of the datasets. Due to space limitations, we do not report query runtimes with
PS schema here. We observed that PS schema is much slower than POS schema.

We also ran few queries in a small cluster of 4 nodes where each node has
the following configuration: Pentium IV 2.80 GHz processor, 1 GB main mem-
ory and 80 GB disk space. We ran queries for 1000 universities. Table 6 shows
the runtimes in seconds where we can see that the bigger cluster with superior
configuration is significantly faster than the smaller one.

Query 4-node cluster runtime 10-node cluster runtime % Improvement

1 83.225 66.313 25.5

2 272.726 146.86 85.7

12 92.485 79.749 15.97

Table 6. Query Runtimes Comparison

We also ran query 1 and 2 by Jena SDB11 model for 1000 universities in
a machine having 8 GB main memory, 2.80 GHz quad core processor and 1
TB disk space. We found that the queries take 4215.017 and 4882.969 seconds
respectively. These are about 63.56 and 33.25 times longer than our runtimes
with the larger cluster.

7 Conclusions And Future Works
We have presented a framework solution for handling large amount of RDF data.
Our system is a distributed one as it is based on Hadoop. Because of Hadoop
our system is highly fault tolerant. It is also readily scalable. To add resource
to our system, all one has to do is to add new nodes to the Hadoop cluster. We
have proposed a schema to store RDF data in plain text files. Finally, we have
proposed an algorithm to determine the jobs necessary to answer a SPARQL

11 http://jena.hpl.hp.com/wiki/SDB

query. The experiment we ran showed that our system is highly scalable. Not
only if we add data we do not decrease performance but also the delay introduced
to answer a query does not increase as much as the increment in data size.

We have identified a few items as future work. We will enable Algorithm 1 to
handle queries with optional triple pattern, devise a new algorithm to determine
the minimum number of jobs, gather and use summary statistics about data and
determine the optimal number of reducers for each job.

References

1. Yahoo Research Team: Content, Metadata, and Behavorial Information: Directions
for Yahoo! Research IEEE Data Eng. Bull. 10-19 2006

2. Beijing, China Newman, A. and Hunter, J. and Li, Y. F. and Bouton, C. and Davis,
M.: A Scale-Out RDF Molecule Store for Distributed Processing of Biomedical Data
Semantic Web for Health Care and Life Sciences Workshop WWW 2008

3. Mcnabb, Andrew W. and Monson, Christopher K. and Seppi, Kevin D.: MRPSO:
MapReduce particle swarm optimization GECCO ’07: Proceedings of the 9th annual
conference on Genetic and evolutionary computation 177 ACM Press 2007

4. Fay Chang and Jeffrey Dean et al.: Bigtable: A Distributed Storage System for
Structured Data OSDI Seventh Symposium on Operating System Design and Imple-
mentation November 2006

5. Christopher Moretti and Karsten Steinhaeuser and Douglas Thain and Nitesh V.
Chawla: Scaling Up Classifiers to Cloud Computers IEEE ICDM 2008

6. C.-T. Chu and S. K. Kim and Y.-A. Lin and Y. Yu and G. Bradski and A. Y. Ng
and K. Olukotun: Map-reduce for machine learning on multicore NIPS 2007

7. Ding, Li and Finin, Tim and Peng, Yun and da Silva, Paulo P. and Mcguinness,
Deborah L.: Tracking RDF Graph Provenance using RDF Molecules Proc. of the 4th
International Semantic Web Conference (Poster) 2005

8. Dean, Jeffrey and Ghemawat, Sanjay: MapReduce: simplified data processing on
large clusters OSDI’04: Proceedings of the 6th conference on Symposium on Operat-
ing Systems Design & Implementation 10-10 2004

9. Abadi, Daniel J. and Marcus, Adam and Madden, Samuel R. and Hollenbach, Kate:
Scalable semantic web data management using vertical partitioning VLDB ’07: Pro-
ceedings of the 33rd international conference on Very large data bases 411–422 2007

10. Y. Guo and Z. Pan and J. Heflin: LUBM: A Benchmark for OWL Knowledge Base
Systems Journal of Web Semantics Volume 3 Number 2 158-182 2005

11. Yuanbo Guo and Zhengxiang Pan and Jeff Heflin: An evaluation of knowledge base
systems for large OWL datasets In International Semantic Web Conference 274-288
2004

12. Haase, Peter and Wang, Yimin: A decentralized infrastructure for query answering
over distributed ontologies SAC ’07: Proceedings of the 2007 ACM symposium on
Applied computing 1351–1356 2007

13. Rohloff, Kurt and Dean, Mike and Emmons, Ian and Ryder, Dorene and Sumner,
John: An Evaluation of Triple-Store Technologies for Large Data Stores On the Move
to Meaningful Internet Systems 2007: OTM 2007 Workshops 1105-1114 2007

14. Stocker, Markus and Seaborne, Andy and Bernstein, Abraham and Kiefer,
Christoph and Reynolds, Dave: SPARQL basic graph pattern optimization using
selectivity estimation WWW ’08: Proceeding of the 17th international conference on
World Wide Web 595-604 2008

Geographically-Typed Semantic Schema Matching

Jeffrey Partyka, Latifur Khan, B. Thuraisingham

Department of Computer Science

University of Texas at Dallas

{jlp072000, lkhan, Bhavani.thuraisingham}@utdallas.edu

ABSTRACT
Resolving semantic heterogeneity across distinct data sources

remains a highly relevant problem in the GIS domain requiring

innovative solutions. Our approach, called GSim, semantically

aligns tables from respective GIS databases by first choosing

attributes for comparison. We then examine their instances and

calculate a similarity value between them called entropy-based

distribution (EBD) by combining two separate methods. Our

primary method discerns the geographic types from instances of

compared attributes. If successful, EBD is calculated using only

this method. GSim further facilitates geographic type matching by

replacing missing instance values in attributes via reverse

geocoding and applying attribute weighting to quantify the

uniqueness of mapped attributes. If geographic type matching is

not possible, we then apply a generic schema matching method,

independent of the knowledge domain, which employs normalized

Google distance. We show the effectiveness of our approach over

the traditional N-gram approach across multi-jurisdictional

datasets by generating impressive results.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation

Formalisms and Methods – semantic networks, representations

(procedural and rule-based)

General Terms
Algorithms, Experimentation, Measurement, Reliability, Human

Factors

Keywords

Schema matching, geographic information systems, gazetteer,

reverse geocoding, type extraction, semantic similarity

1. INTRODUCTION
The problem of information integration has experienced a number

of manifestations over the last few decades, as solutions such as

schema integration[5] and ontology alignment[4] have emerged to

solve this problem for relational databases and ontologies,

respectively. Whatever the form, the crux of this problem has

always been the need to consolidate heterogeneous data sources

with potentially different purposes under a single, unified

representation. The alignment between different entities, such as

tables in different geodatabases and concepts in ontologies, has

emerged as one of the keys to determining the ultimate success of

the Semantic Web. Furthermore, this problem has taken on special

significance in domains such as geographic information systems,

where effective approaches to problems as varied as geo-spatial

tagging and geographic disambiguation are highly prized. As a

result, a tremendous amount of effort has been expended to

discover novel information integration strategies.

Some of the more popular approaches have used instance

similarity to semantically align data between two distinct data

sources[1,2]. Using this approach, we match similarity between

tables by first determining pairs of attributes between the tables

that are to be compared. Next, for each pair, we examine the

respective attributes‟ instance data and compute a semantic

similarity score. Combining the scores from aligned attributes will

determine similarity between the tables as a whole.

In this paper we attempt to compare two pairs of GIS data sources

using their respective table instances; the first pair contains tables

describing similar models of transportation networks over

multiple jurisdictions, while the other pair contains tables

detailing varying geographic features beyond road networks. The

data sources contain large variations in the geographic areas

covered, the number of attributes and the number of instances.

To measure instance similarity between compared attributes, we

apply an algorithm which we will dub as GSim, and it consists of

two distinct approaches. The primary approach determines the

geographic types (GT) over the instances associated with

compared attributes. This is done by leveraging an external data

source known as a gazetteer[12,13]. The gazetteer would be able

to match one or more GTs for as many instances as possible.

Semantic similarity is calculated by considering the collection of

types extracted from instances between the compared attributes. It

is based on a quantity known as entropy-based distribution

(EBD), which is defined as the ratio of the conditional entropy

within each type over a pair of compared attributes with the

entropy taken over all types.

Whenever possible, GSim calculates semantic similarity between

attributes using GTs alone. However, if too many instances within

the compared attributes lack GT information, then GSim resorts to

its secondary approach, which uses a generic schema matching

algorithm based on a semantic distance measure known as

normalized Google distance (NGD)[23]. This method is generic

because it is applicable across knowledge domains.

Despite the utility of NGD, solely relying on it to determine

semantic similarity is unwise, particularly in the GIS domain. The

reason is that a number of situations exist where the instances are

determined to be semantically similar due entirely to their close

geographic proximity. One such situation is depicted in Section

4.3; GSim‟s usage of geographic semantic schema matching is

justified in that case because two attributes, a city attribute and a

county attribute, would match using NGD purely on the basis of

their common geographic origins. The dissimilarity of the types of

the attributes, therefore, could only be captured by using a GT

lookup. On the other hand, the gazetteer does not contain

information on every geographic feature, and so realistically, there

will be many geodatabases which are unable to return a sufficient

amount of GT information. This justifies the GSim‟s usage of

generic semantic schema matching.

The challenges that we will address in this paper are as follows.

First, only in the ideal case does the gazetteer match one specific

GT for each of the instances. In reality, some instance names, such

as “Clinton”, are very common, and as a result, the gazetteer is

likely to return several GTs. In other words, a 1:N mapping often

exists between an instance of an attribute and the GTs which are

assigned to it by a gazetteer. Thus, the challenge of handling

multiple possible GTs for a given instance is addressed. The

second challenge addressed by our research relates to the likely

possibility of encountering missing or erroneous instances in

attributes of geodatabases. Therefore, when attributes containing

these instances are involved in a comparison with another

attribute, then it is possible that a less-nuanced approach would

compute an incorrect semantic similarity value. However, GSim

takes this possibility into account by using the latitude and

longitude values associated with an instance and performing

reverse geocoding to retrieve the correct instance value. The third

challenge addressed by our research is the problem of determining

the most uniquely relevant attributes within a particular table. It is

possible for two tables to share a high semantic similarity score

based on matching attributes which are not relevant to the concept

that the tables represent. GSim applies attribute weighting to

measure table similarity by placing more weight on the most

semantically relevant attributes. This way, the measured EBD

value generated for any given table comparison will be based on

attributes that represent the essence of the compared tables.

The rest of this paper is organized as follows. In section 2, we

discuss an overview of related work. Section 3 states definitions,

the problem to be solved and our proposed solution. Section 4

presents in detail the GSim algorithm, detailing both the

geographic lookup component as well as the more generic NGD

component. In Section 5 we present our results generated with

GSim and compared them against those generated using N-grams.

Finally, in section 6, we outline our future work.

2. RELATED WORK

In this section, we will first present other work related to schema

matching. Second, we present work in the GIS domain making

use of a gazetteer. Third, we present work making use of reverse

geocoding. Finally, we contrast our work with another approach

used to solve the schema matching problem.

The most closely related work in the GIS domain discusses

schema and ontology matching for geodatabases and thesauri.

Leme, Casanova et al[1] perform schema matching over GIS

databases containing data represented by a dialect of OWL.

Brauner, Intrator et al[2] perform instance matching over the

exported schemas of geographical database Web services and

apply their technique over the Geonames and ADL gazetteers.

Brauner, Casanova et al[3] leverage instance mapping between

distinct terms in feature type thesauri used to classify data in

gazetteers, for the facilitation of successful thesaurus migration

from one gazetteer to another. Some techniques involving the
mapping of GIS ontologies also influenced our work. Most

notably, Cruz, Sunna et al[4] describe AgreementMaker, a visual

tool that provides a user with the ability to perform mappings

between ontologies using a multi-faceted strategy involving

automated techniques as well as manual specifications.

A number of schema matching publications [5,6,7,8] tailored to

the database community influenced our work. The survey of

approaches to automated schema matching by Rahm and

Bernstein[5] includes a taxonomy which uses several criteria to

categorize matching approaches such as schema and instance

based methods, element-level and structure-level methods, and

linguistic and constraint-based methods. Dai, Koudas et al. [6]

discuss instance-based schema matching using distributions of N-

grams among compared attributes. Bohannon et al.[7] investigate

contextual schema matching, in which selection conditions and a

framework of matching techniques are used to create higher

quality mapping between attributes of compared schemas. Warren

and Tompa [8] propose an iterative algorithm that deduces the

correct sequence of concatenations of column substrings in order

to translate from one database to another without the use of a set

of training instances.

Within the AI community, a number of works in the schema
matching area applied machine learning and statistical methods to

learn attribute properties from data and examples. Li and Clifton

[9] describe a tool known as SEMINT, which uses neural

networks to determine match candidates by matching attributes

from similar clusters between attributes in a 1:1 match. Berlin and

Motro[10] describe a tool known as Autoplex which uses

supervised machine learning techniques for automating the

discovery of instance for virtual database systems. Embley et al.

[11] explore both 1:1 and m:n schema mapping techniques by

applying knowledge obtained from a domain ontology and data

frames.

Much work in the GIS community making use of a gazetteer for

information lookup influenced also our work. Zhou, Frankowski

et al. [12] apply a deterministic, density-based clustering

algorithm to semi-automatically discover gazetteers from users‟

travel data, as well as disambiguate between uninteresting and

interesting results from the gazetteer using temporal techniques.

Newsam and Yang[13] integrate a gazetteer with high-resolution

remote sensed imagery to automate geographic data management

more completely, and they also demonstrate how gazetteers can

be effectively used as a source of semi-supervised training data for

geospatial object modeling. Pouliquen, Steinberger et al.[14] use a

gazetteer lookup, as opposed to linguistic analysis, to search

through natural language text and produce geographic maps and

animations that represent the area referred to in the text.

Some work in the GIS community involving reverse geocoding is

related to our research. Zhou and Frankowski[15] evaluate the

accuracy of personal place discovery using reverse geocoding and

clustering through a set of evaluation metrics and an interactive

evaluation framework. Joshi and Luo[16] employ reverse

geocoding using location coordinates from image data to obtain

nearby points of interest connecting an image with its geographic

location. Wilde and Kofahl[17] describe the use of reverse

geocoding in retrieving location types as an essential component

for a geo-enabled Web browser.

Our paper presents an innovative instance matching algorithm that

possesses a number of advantages over the N-gram approach

proposed by Dai, Koudas et al., particularly in the GIS domain.

An N-gram is a substring of length N consisting of contiguous

characters. So for example, if N=2, then the word „GSim‟ has N-

grams „GS‟, „Si‟ and „im‟. First, GSim determines GTs for

instances via a gazetteer as part of the process of determining an

overall semantic similarity value. Because GSim uses domain-

specific information to determine the GT for a given instance, it is

better equipped than the N-gram approach to solve the

information integration problem among geodatabases. Second,

GSim can retrieve missing instance values in geodatabases by

using associated latlong values to perform reverse geocoding. This

ability is not available using solely the N-gram approach. Third,

in case the geographic lookup component is unsuccessful, GSim

leverages clustering of types for use on distinct keywords found

between compared attributes via NGD. This approach is better

able to capture the semantics of comparisons between attributes

because words contain more implicit semantic information than

N-grams. Using words, we can reference external data sources

that allow for distance metrics to determine word relatedness. In

general, this cannot be done with N-grams because they are

usually just parts of words. Fourth, our new instance matching

algorithm is flexible enough to allow for different types of

semantic distance measures to be used. Treating the semantic

distance measure as a pluggable component allows for a wider

variety of experiments to be performed on a given instance set,

which in turn leads to a better understanding of the kinds of

semantic distance measures that best suits a particular type of

data. Finally, the use of N-grams for instance similarity between

data sources sometimes generates misleading results, especially in

cases where data of different languages but similar semantics is

being compared, or where there is a lack of shared instances

between the compared attributes.

3. PROBLEM STATEMENT AND

PROPOSAL

3.1 Definitions

First, we will provide definitions that will assist in defining the

problem and describing GSim.

Definition 1 (attribute) An attribute of a table T, denoted as

att(T), is defined as a property of T that further describes it.

Definition 2 (instance) An instance x of an attribute att(T) is

defined as a data value associated with att(T).

Definition 3 (keyword) A keyword k of an instance x associated

with attribute att(T) is defined as a semantically relevant word

representing a portion of the instance.

In figure 1 below, the two attributes for the given table are

roadName and City, two instances from the roadName attribute

are “Johnson Rd.” and “School Dr.”, and the two keywords

associated with the instance “School Dr.” are “School” and “Dr.”.

 Figure 1. Sample table containing two attributes and six

 instances

Definition 4 (type) A type t associated with attribute att(T) is

defined as a class of related entities grouped together.

We define two kinds of types:

Definition 4a (geographic type (GT)) A geographic type GT

associated with attribute att(T) is defined as a class of instances

of att(T) that represent the same geographic feature.

Definition 4b (non-geographic type (NGT)) A non-geographic

type NGT associated with attribute att(T) is defined as a class of

keywords from instances of att(T) that are semantically related to

each other.

Definition 5 (geographic type (GT) vector) A geographic type

vector Tx ={GT1, GT2,….GTm} associated with an instance x of

attribute att(T) is defined as a set of GTs.

Definition 6 (geographic weight (GW) vector) A geographic

weight vector Wx = {w1,w2,…wm} associated with a GT vector Tx

={GT1,GT2,….GTm} for an instance x of attribute att(T) is defined

as a list of real numbers between 0 and 1 representing the

influence of a GT on the instance.

Note that for all i, GTi є Tx of any instance x has weight wi є Wx.

Definition 7 (geographic type (GT) set of attribute) A

geographic type set of attribute att(T), denoted Tatt , is the set of

GTs derived from the union of the types from all GT vectors for

the instances of att(T).

Definition 8 (non-geographic type (NGT) set of attribute) A

non-geographic type set of attribute att(T), denoted NTatt, is the

set of NGTs associated with keywords from instances of att(T).

Definition 9 (geographic type (GT) weight list) A geographic

type weight list Watt associated with attribute att(T) is the total

type weights for each type in Tatt.

In figure 2 below, the instances are “Victoria”, “Anacortes”,

“Clinton” and “Edmonds”. The GT „City‟ contains the instances

“Victoria” and “Clinton”, The GT vector for “Victoria” = {City,

State, Feature} and for “Anacortes”, it is = {County}. The GW

vector for “Victoria” is {1/3,1/3,1/3}, and for “Anacortes” it is

{1}. If these four instances make up the entirety of attribute att,

then Tatt is {City, State, Feature, County}, and the GT weight list

Watt is {5/6, 1/3, 5/6, 2}. The details of the computation of Watt

for figure 2 is shown in section 4.1.2.

Figure 2. Sample instances of attribute att and their respective

 sets of GTs

Figure 3. Sample keywords from an instance of attribute att

 and their respective NGTs

In figure 3 above, given an instance with a value of “Pacific Coast

Highway”, there are two NGTs named generic type 1 and generic

type 2. The NGT set NTatt of attribute att that contains this

instance would have {generic type 1, generic type 2}, as well as

other types from other instances of this attribute.

3.2 Problem Statement

Given two data sources, S1 and S2, each of which is composed of

a set of tables/relations where {T11, T12, T13… T1M} є S1 and {T21,

T22, T23… T2N} є S2, the goal is to determine the semantic

similarity between S1 and S2. This is done by comparing the

respective attribute names and instances between the tables from

S1 and those from S2. S1 and S2 may be derived from any domain.

Additionally, S1 and S2 may vary in regards to the number of

constituent tables, the number of attributes and instances within a

given table. With this in mind, an effective data source similarity

procedure would be expected to match up tables which describe

semantically similar data. Our goal is to quantify this semantic

similarity given the instance data for each schema.

3.3 Proposed solution

We present GSim, an instance matching algorithm that generates

semantic similarity values between compared attributes in

different tables of a geodatabase based on two separate

approaches. The primary approach assigns GTs to instances

involved in compared attributes within two tables of the

geodatabase with the help of a gazetteer. This results in a pair of

GT sets, one for each attribute. The semantic similarity between

the compared attributes is then computed using EBD over their

respective GT sets. However, since gazetteers do not contain

information for all geographic features, it is possible that attribute

matching via geographic-type extraction will be ineffective, due to

lack of information. In this case, we apply a generic schema

matching method, applicable over any knowledge domain, that is

based on the extraction and clustering of semantically relevant

keywords as types based on NGD. Further details describing the

GSim in its entirety are described in Section 4.1. It is our

intention to clearly show that the use of GSim is better able to

capture the true semantics that exist between compared attributes

contained within GIS tables as opposed to using N-grams.

It is assumed that we perform 1:1 comparisons between attributes

from distinct tables and data sources. After calculating a semantic

similarity value between compared attributes, we will repeat the

process for all compared attributes between the tables. Next, a

final similarity value between the tables is calculated using EBD.

EBD is based on a comparison of the conditional entropy of the

attributes, given a particular type, with the entropy of the

attributes over all types:

In this equation, A is the attribute, coming from either one table or

another (since all table comparisons are 1-1), and T stands for the

type of the attribute. For geographic matching, T would indicate a

GT, such as „City‟ or „County‟, while for non-geographic

matching, T would indicate a given generic type. For more details

regarding the usage of EBD and its mathematical derivation,

please see our previous work[19].

4. DETAILS OF ALGORITHM

This section describes GSim, our instance similarity algorithm,

and its two components. The first, detailed in section 4.1, involves

the use of a geographic lookup to determine whether the instances

of compared attributes between two tables share similar GTs. If

so, then an exact match for those instances is made using only

GTs. If not, then section 4.2 describes the second component of

GSim, which exclusively relies on a non-geographic measure of

semantic similarity between instances of compared attributes. For

our purposes, we use NGD as our non-geographic similarity

measure. Despite the generalized utility of NGD, there are

situations when this approach produces inaccurate results. One

example such example is described in section 4.3, and we use this

to justify our preference to match instances of compared attributes

through GTs alone.

4.1 Overview of GSim

4.1.1 GSim Algorithm

For Algorithm 1 below, the input consists of the attributes A1 є T

in S1 and A2 є T‟ in S2 and gazetteer G. Line 1 initializes Tgaz, the

set of all GTs recognized by gazetteer G, TA1UA2, the GT vector

list for A1 U A2, NTA1UA2, the NGT vector list for A1 U A2, and

WA1UA2, the GW vector list for A1 U A2. Lines 2 and 3 extract the

distinct instances from A1 and A2. Line 4 determines whether

semantic similarity can be performed strictly by relying on GTs,

or if NGD similarity will be necessary. GT similarity is only

possible if a gazetteer is available, and if it contains sufficient GT

information about enough of the instances. For our purposes, we

established a threshold, tmin, which represents the minimum

number of instances that contain GT information in G. If GT

information can be found for a number of instances greater than or

equal to tmin, then EBD is calculated using only GTs. This process

is initiated in lines 5-9, where line 5 retrieves all available GTs,

Tgaz, recognized by gazetteer G, lines 6-7 derives a GT vector list

EBD = H(A | T)

 H(A)
(1)

TA1 and its associated GW vector list WA1, consisting of GT

vectors for each instance of A1 and A2. Lines 8-9 combine the GT

vector lists and GW vector lists, respectively, for A1 and A2. If

however, in line 4 if geotypingIsPossible() returns false, then we

need to rely on a more generic measure like NGD to compute

semantic similarity between the compared instances. This is done

in line 11. The NGD component of GSim will be described in

section 4.2. Line 13 calculates the final EBD value between A1

and A2 given the combined type vector lists and weight vector

lists of A1 and A2, and line 14 returns that EBD value.

4.1.2 Assigning GTs to Instances

We leverage a gazetteer as a way to help determine the GT of an

instance. The gazetteer used for our purposes is Geonames [18],

containing information on over 8 million geographic names. The

gazetteer classifies locations into different categories, or types.

Some examples of GTs include city, county, state and a general

feature with several sub-classifications, such as lake, port, school,

etc. Instances with more commonplace names are likely to be

listed under multiple types in the gazetteer. As a result, a single

instance may be associated with a list of GTs = {GT1,

GT2…GTn}, where n is the number of GTs recognized by the

gazetteer. However, as will be described in Algorithm 2, because

an instance may have multiple GTs, the weight of that instance for

each of those types is divided proportionately. Finally, an EBD

calculation over the different GTs is performed.

Algorithm 2 describes the process by which GTs and weights are

assigned to instances. The input to the algorithm is the list of

available GTs that are recognized by gazetteer G, along with IL,

the list of instances associated with a given attribute, while the

output is an ordered pair consisting of the GT vector list and GW

vector list for the given attribute. Line 2 begins a loop that

considers all instances in IL. Line 3 retrieves the set of GTs from

Tgaz that instance x is associated with. Lines 4-5 assign the weight

of each feature from Tx associated with the current instance. Line

6 assigns to Wx the individual weight values calculated in lines 4-

5. Lines 7-8 aggregate the GT and weight vectors computed for

instance x to Tatt and Watt, respectively. Finally, these vectors are

returned as an ordered pair to GSim, which facilitates the EBD

calculation between two compared attributes.

Formally, let Tgaz = {GT1, GT2,……,GTm} be a set of GTs

recognized by gazetteer G, with GTi, 0 <= i <= m, representing

one of these types. For example, GTi may be a county, city, state,

etc. An arbitrary instance x associated with attribute att(T) will be

associated with a GT vector Tx = {GT‟1,

GT‟2,…GT‟n}, n <= m and n > 0. Let W = (w1, w2,….wn) be a GW

vector, where each wj is associated with each GT‟j in Tx for

instance x, where |W| > 0 and all wk in W for x have a value of 1 /

|W|. For example, if x was associated with three GTs, then the

weight wj of each type tj‟ for x would be 1/3.

As an example of illustrating the weighting of GTs, taking all

instances from Figure 2 into account, the total weighting for the

types listed are as follows: “City” = (1/3 + 0 + 1/2 + 0) = 5/6,

“State” = (1/3 + 0 + 0 + 0) = 1/3, “Feature” = (1/3 + 0 + 1/2 + 0)

= 5/6, and “County” = (0 + 1 + 0 + 1) = 2.

4.1.3 Handling Incomplete Data

GSim also possesses the ability to retrieve the appropriate

instance information for a compared attribute if it is missing or

incomplete. This is accomplished by leveraging the latitude and

longitude value associated with that instance and performing

reverse geocoding to retrieve the relevant instance

information[22]. Specifically, this was accomplished using

Google Maps reverse geocoding service [20]. Retrieving this

missing information is important because it can affect the final

EBD value calculated between two compared attributes despite

many of the instance values missing. This can be useful, for

example, in situations where tables containing attributes with

sparse instances need to be compared.

4.1.4 Attribute Weighting

GSim also provides attribute weighting capabilities to penalize

strong semantic correspondences between tables resulting from

attribute mappings where the attributes in the mapped pair

commonly-occur across all of the tables in their respective

databases. Doing this allows us to refine the semantic similarity

score generated between tables by focusing on the compared

attributes that are unique relative to attributes found throughout

all tables. Let S1 = (T11, T12…..T1M) be the set of tables belonging

to data source S1, and let S2 = (T21, T22….T2N) be the set of tables

belonging to data source S2, and suppose T1J and T2K are being

compared for semantic similarity. Further suppose for the sake of

simplicity that pairings between attributes of T1J and T2K have

been set such that for all i, attribute i of T1J is matched with

attribute i of T2K, and T1J and T2K have the same number of

attributes. Before attribute weighting is applied, semantic

similarity calculations between attribute i of T1J and attribute i of

T2K occur. At this point, the EBD values of each attribute pair

have equal weight. Recall that attribute-level EBD tells us which

attributes are similar between compared tables. We will designate

one such value between two attributes as EBDorig (att(T1J),

att(T2K)). Realistically, however, some attribute pairs should be

weighted higher than others. For example, given two tables, one

called Road and another called Street, if the attribute „roadType‟

in the Road table (let us call it Road.roadType) was mapped to an

attribute „streetType‟ in the Street table (let us call it

Street.streetType), then this pair should contribute more

substantially to the table similarity between Road and Street than

a mapped attribute pair consisting of Road.roadName and

Street.streetName. While Road.roadType and Street.streetType

are two attributes that are not likely to be found in many other

GIS tables, Road.roadName and Street.streetName are indeed

likely to appear in other GIS tables, if, for example, these tables

describe geographic objects that have some kind of street address

such as a school, port or business.

The key to attribute weighting in GSim is determining the

uniqueness of a given attribute. This is accomplished by

calculating the frequency of any attribute participating in a match

throughout the tables of its database. Equation 2 below, which is

based on inverse document frequency, computes this uniqueness:

In equation 2, AUatt, the attribute uniqueness of att, is computed.

Satt indicates the data source which contains attribute att (in one or

more of its tables), and thus, |Satt| indicates the number of tables in

this data source. The variable t represents an arbitrary table in Satt

which contains attribute att. A high AUatt value is achieved when

attribute att appears infrequently across the tables of Satt, while a

low value of AUatt occurs for an attribute that is commonly-

occurring across the tables of Satt. The lowest possible value of

AUatt is 0, which occurs when an attribute is found in every table

of its database. Recall that a single EBD value is between two

attributes, and thus, to measure pairwise uniqueness, we need a

measure that accounts for the AUatt value for both attributes in a

pair. This measure, called pair uniqueness and designated as

PUatt1,att2, may be calculated by taking the arithmetic of the AUatt

values for each attribute in a pair, the minimum AUatt value out of

the pair, the maximum AUatt value out of the pair, and in a

number of other ways. For our purposes, we achieved the most

promising results when calculating PUatt1,att2 as the average of

AUatt1 and AUatt2. An important property of PUatt1,att2 is that it

must be greater than or equal to 0, since the lowest value AUatt

can have is 0.

Pair uniqueness is then multiplied by the EBDorig value produced

by the pair to give a corrected value called EBDcorr:

The difference between EBDcorr(att1,att2) and EBDorig(att1,att2) , called

pairwise semantic disparity (PSDatt1,att2), is then found between

att1 and att2, and for all pairs of matching attribute pairs between

T1J and T2K:

Next, the arithmetic mean of the PSD values, dubbed PSDavg,

amongst all of the attribute pairs for a table comparison is found.

An attribute pair with a PSD value above PSDavg indicates that a

greater discrepancy exists between EBDorig and EBDcorr relative to

other attribute pairs. As a result, this pair should have the weight

of its EBDorig value reduced in regards to table similarity. In

contrast, an attribute pair with a PSD value below PSDavg

indicates that relative to other pairs, its EBD discrepancy was less,

and because of this, its attributes are more unique. Thus its

EBDorig value should contribute more substantially to semantic

similarity between the tables. The new weight assigned to the

attribute pair depends upon how far above or below the PSD

value is relative to PSDavg and relative to the PSD value of other

attribute pairs.

As an example, let four attribute mappings exist between two

tables, designated att1a – att1b, att2a – att2b, att3a – att3b and

att4a –att4b. The pair att1a – att1b has an PSD of .174, att2a –

att2b has a PSD value of .113, att3a – att3b has a PSD value of

.088 and att4a-att4b has a PSD value of .119.Then PSDavg would

be .1235, the weight of the EBDorig between the attribute pairs

would be changed as follows: att1a – att1b drops to 12.5%, att2a

– att2b increases to 27.6%, att3a – att3b increases to 26.1%, and

att4a – att4b increases to 33.8%.

= EBDorig(att1, att2) x PUatt1,att2
(3)

EBDcorr (att1, att2)

PSDatt1, att2 = EBDorig(att1,att2) - EBDcorr(att1,att2) (4)

(2) = log
 |Satt |

 |{t: att є t } |
AUatt >= 0

Attribute weighting, as described above for a single table

comparison, is illustrated in Algorithm 3.

4.2 Non-Geographic Matching

If GT matching between compared attributes is not possible, then

a non-geographic semantic similarity measure is applied by GSim.

The distance metric used for NGT matching is known as the

normalized Google distance. The EBD is then calculated by

extracting the keywords making up compared instances and

assigning them generalized semantic types. These types are

represented as clusters of keywords, whose semantic distance

from each other is given by NGD.

Section 4.2.1 below first gives an overview of NGT matching

using NGD. Section 4.2.2 provides further details on the K-

medoid clustering process, which is instrumental to the success of

NGT matching.

4.2.1 Overview of NGT Matching

The algorithm for calculating the EBD between two compared

attributes of tables in different data sources using NGT matching

is as follows. The input is two compared attributes, with each one

originating from a separate table, while the output is an EBD

value indicating the semantic similarity between the input

attributes. First, the respective keyword lists for each input

attribute are extracted. Second, the keyword lists are combined

into a single list for the comparison. This list is dubbed as

Lkeywords. Third, all pairwise distances between the keywords are

computed with the help of an external NGD repository, resulting

in a pairwise NGD dictionary. Fourth, the K-medoid() algorithm,

which is described in Section 4.2.2., is executed, yielding a set of

clusters, or NGTs, that represent generic semantic types. Finally,

the calculation of EBD proceeds given the NGTs produced by K-

medoid().

4.2.2 K-Medoid Clustering

The algorithm begins by determining the number of clusters K

based on the size of Lkeywords for each pair of compared attributes.

Second, exactly one keyword from Lkeywords is assigned to each of

the K clusters in a process called initial seeding. Each of these

keywords is then considered a medoid for its particular clustering.

Third, we continuously assign each remaining keyword in Lkeywords

that is not a medoid to the cluster to which it is most semantically

related, while subsequently determining if any cluster medoids

need to be recomputed. To do this, we need to use the NGD

values between the keyword to be assigned to a cluster and all

keywords already assigned to that same cluster. A given keyword,

knew is assigned to the cluster associated with the smallest

summation of the NGD values between knew and the cluster‟s

constituent keywords. After all keywords have been assigned to

clusters, finally, we determine if the medoid for any cluster needs

to be recomputed. This is accomplished by examining each of the

keywords in a particular cluster and computing an NGD

summation between a single keyword in that cluster and all other

words in that cluster. The keyword in that cluster that produces

the lowest NGD summation will be assigned as the new medoid

for that cluster. If no medoids have changed in any cluster, then

the K-medoid algorithm is finished, and control proceeds to the

calculation of the EBD between the compared attributes.

However, if at least one medoid has changed in a particular

cluster, then we begin a new clustering iteration.

4.3 Justification of GT Matching in GSim

Despite the utility of NGD over a number of domains, it tends to

produce inaccurate results with regards to the GIS domain when

the compared instances are geographically proximate, despite

being completely different types. Figure 4 describes one particular

example of this phenomenon.

Figure 4. Example of how NGD can produce an inaccurate

semantic similarity computation in geodata if the instances

 being compared are geographically proximate

The attribute “City”, associated with table RoadS1 is compared

against the attribute “County” from table RoadS2. Although the

instances are of different types, they are geographically proximate,

as both the cities from “City” and the counties from “County”

both describe the Dallas-Fort Worth area. As a result, even though

the types are totally different, the exclusive usage of NGD will

deem that the “City” attribute is semantically similar to the

“County” attribute. This happens because NGD, by definition, is

computed based on the probability of the co-occurrence of search

terms x and y on a given web page indexed by the Google search

engine. In many situations, a high probability of co-occurrence

between x and y indicates that the terms are likely to be

semantically similar to one another. However, as figure 4 shows,

co-occurrence does not always imply similarity. Therefore, in

order to correctly determine whether attribute pairs such as this

one match, geographic type extraction is essential.

5. EXPERIMENTS

We now present three separate experiments that we conducted

regarding matching between distinct data sources in the GIS

domain. The first experiment measured GSim‟s ability to compute

semantic similarity between two pairs of GIS databases. The

second experiment tested GSim‟s ability to perform semantic

similarity between tables containing a significant amount of

missing geographic information. The third experiment illustrated

GSim‟s attribute weighting feature, which gives it the ability to

penalize table matches involving commonly-occurring attributes

found through the GIS database and reward table matches

containing attribute pairs that were unique to their respective

tables.

5.1 Semantic Similarity Experiment

5.1.1 Dataset Details

In the first experiment, two datasets from the GIS domain were

used to evaluate the performance of GSim. The first dataset was

created from instance data of the Road and Ferries package of a

GIS data model known as GDF (Geographic Data Files)[21]. The

second dataset details a wider assortment of GIS location features

across the United States and their associated data beyond merely

transportation networks. Some of the location features in this

dataset include flight schools, piers, navigable waterways and

Indian lands. For both sets of data, the number of attributes and

instances vary widely; for example, in the GIS location dataset,

the Flight Schools table has the fewest number of attributes (27)

and the Piers table has the most (76). Because data from several

different areas of the United States were employed in our

experiments, we effectively created a disjoint, multi-jurisdictional

environment. Table 1 below displays a summary of the relevant

information regarding the data involved in our experiments with

both datasets.

 Table 1. Description of transportation

 dataset(top) & GIS Location Dataset (below)

 Table 2a and 2b. Precision + recall values between

 tables of S1 and S2 using N-grams and GSim relative to a

 ground truth for (a: transportation dataset (b: GIS

 location dataset

5.1.2 Measurements and Parameters

The results of the alignment of S1 and S2 of the compared tables

for both the transportation dataset and the GIS location dataset

using GSim and the N-gram method are shown in Tables 2a and

2b, respectively. For each table comparison, there are four values.

From left to right, the first two are the precision and recall

(denoted as P and R, respectively) produced using N-grams

between an attribute from a table in data source S1 and an attribute

from a table in data source S2. The last two values are the

precision and recall values produced by GSim between an

attribute from a table in data source S1 and an attribute from a

table in data source S2. As an example, for the comparison of

Road from S1 and Ferry from S2 in table 2a, the precision and

recall generated using N-grams are 0 and 0, respectively, while

the precision and recall generated for GSim is .50 and 1.00,

respectively. Next to each value is a ratio enclosed in parentheses;

the numerator indicates the number of attribute mapping “hits” for

a given table comparison and matching method, while the

denominator indicates the total number of attribute mappings to

be “hit” for that table comparison. The values produced by both

methods exist relative to a reference alignment, or ground truth,

which contains the attribute pairs that are supposed to be

semantically similar. The ground truth for both datasets was

created by human experts knowledgeable in the area of GIS. For

our experiments, we set two standards that affected the results.

First, we decided that whenever an attribute pair produced a

similarity value (an EBD value) measured to be greater than or

equal to .6, then the method determined that pair to be a match.

Second, we set N-grams to be of size 2, since any size greater than

2 would increase the number of possible N-grams by a margin

significant enough such that the precision and recall values would
almost always be too low to meet the match threshold for any

dataset, thus rendering this method virtually useless as a semantic

similarity measure for our experiments. Overall, the ground truth

for the transportation dataset contained 29 correct mappings

across all table comparisons, while the ground truth for the GIS

location dataset contained 52 correct mappings across all table

comparisons.

5.1.3 Analysis of Results

Table 2a shows the comparison of precision and recall values

using both GSim and the N-gram method for the transportation

dataset. Note that the precision and recall values generated by

GSim are never lower than those produced by N-grams for any

table comparison. In total, the average precision produced by

GSim was .70, and its average recall was .72. In contrast, the

average precision of N-grams was .38, and its average recall was

.52. GSim achieved an 32% improvement over N-grams in

precision, and a 20% improvement in recall. In fact, the only

reason why N-grams even performed somewhat competently in

this dataset was because of the large number of identical instances

between many attribute pairs that happened to be semantically

similar. Table 2b depicts even more dramatic improvements made

by GSim. The precision and recall values for GSim are always

higher than those produced by the N-gram method for any table

comparison. In total, the average precision produced by GSim was

.80, and its average recall was .61. In contrast, while the average

precision of N-grams is .80, the average recall is a staggeringly

low value of .06. In fact, the reason why N-grams‟ precision was

able to match GSim‟s precision was due to the extremely low

recall. The reason for the low recall value was primarily due to the

lack of identical instances between the compared attributes. As a

result, most of the comparisons using the N-gram method were

not able to reach the .60 threshold in semantic similarity. We did

not lower the match threshold below .6 because we felt that a

match threshold of a value that was lower, such as .5, would not

be a realistic match threshold for determining whether two

schemas were similar or not. As a result, GSim‟s intrinsic

semantic capabilities, largely resulting from GT extraction, allow

it to achieve a 55% improvement on recall versus a syntactic

method such as N-grams.

Table 3. EBD values generated between selected tables of S1

and S2 of GIS location dataset when incomplete values in data

are filled in by gazetteer (number left of slash) and when the

complete data is available (number

 right of slash)

5.2 Reverse Geocoding Experiment

5.2.1 Measurements and Parameters

The results in Table 3 above were produced by our second

experiment. There are two values in each cell. The value to the

right of the slash indicates the final EBD value computed between

compared tables (found by averaging all of the EBD values

between the attribute pairs of the tables) where no instance data

was missing. The value to the left is the EBD value computed

when incomplete data existed in the compared attributes of both

tables. In this experiment, we randomly removed 50% of the

instance values from the “roadName” attribute common to all of

the tables listed in Table 3, and from other attributes that

participated in matches whose instance values represented

geographic information. The idea was to determine the extent to

which reverse geocoding, using latlong values for each instance

and using our gazetteer, GeoNames, could approximate the

correct semantic correspondence between tables.

5.2.2 Analysis of Results

As table 3 shows, although reverse geocoding does not return

every instance value of an attribute involved in a comparison, at

worst, the EBD value computed with 50% of the instance values

missing for at least one attributes is 25% less than the actual EBD

value (Schools-Flight Schools), and on average, the decrease in

EBD value across all table comparisons is 14.6%.

5.3 Attribute Weighting Experiment

5.3.1 Measurements and Parameters

To better illustrate the benefits of attribute weighting on matching

tables, we preprocessed the attributes in a subset of the tables of

the GIS location dataset from both databases to optimize GSim‟s

ability to distinguish between commonly-occurring attributes and

attributes that are more unique. The results of applying GSim‟s

semantic weighting algorithm to a subset of the tables from the

GIS location dataset are shown in Table 4 below. As can be seen,

each cell contains two separate values; the value right of the slash

represents the semantic similarity, measured as EBD, between the

tables where all attribute mappings share equal weight, while the

value left of the slash is the EBD produced when attribute

weighting was used to distribute the weights among mappings

according to uniqueness. The table names along the vertical axis

of the table belong to S1, while the tables across the horizontal

axis of the table belong to S2.

Table 4. Two separate EBD values computed between a table

from S1 and a table from S2. The value in a given cell right of

the slash indicates the EBD value produced with equal

attribute weighting, while the value left of the slash is the EBD

produced from attribute weighting

5.3.2 Analysis of Results

The results of table 4 show that in most cases, using attribute

weighting causes the EBD between corresponding tables to be

strengthened and the EBD between dissimilar tables to be

weakened. The only exception to this trend was the drop in EBD

measured between the Piers and Ports tables. This might indicate

that the fairly strong semantic similarity between the tables was

due to the contributions of commonly occurring attributes that

were mapped to each other. Otherwise, the use of attribute

weighting increase the EBD between pairs of corresponding tables

(Flight Schools – Flight Schools and Schools-Schools) by 8.5%

and 11.3%, respectively. Additionally, attribute weighting was

used to reduce the semantic similarity between dissimilar table

pairs (not including Piers-Ports) by an average of 19.1%.

6. CONCLUSION AND FUTURE WORK

In this paper, we described GSim, an algorithm that computes the

semantic similarity of two tables belonging to distinct GIS data

sources. It computes semantic similarity using two separate

approaches. The first uses a gazetteer to extract GTs for all

possible instances within the compared attributes. The weights of

the GTs taken over all instances results in GT sets and GT weight

lists, where each attribute features its own GT set and GT weight

list. The similarity of these distributions determines the semantic

similarity between the attributes, and the average over all attribute

pairs determines the table similarity. GSim also compensates for

situations when a lack of GT information for the instances is

available by executing a domain independent semantic similarity

algorithm leveraging normalized google distance. This results in

the extraction of NGTs from the instances of the attributes, and

semantic similarity is subsequently computed. GSim also uses

reverse geocoding to make table comparisons possible, even with

incomplete data. Additionally, GSim provides attribute weighting

capabilities across tables in a GIS database that penalizes the

similarity between table matches involving a high number of

commonly occurring attributes found throughout the database,

while enhancing table matches containing unique attribute

mappings. Future efforts to improve GSim will focus on refining

our GT extraction techniques so that we can leverage multiple

gazetteers making use of heterogeneous feature type thesauri

while enhancing our recall of the correct type information. Also,

we plan to take into account geo-tagged information associated

with images in order to enhance the accuracy of our matching

scores.

7. REFERENCES

[1] Luiz André P. Paes Leme, Marco A. Casanova, Karin Koogan

 Breitman, Antonio L. Furtado: Instance-Based OWL Schema

 Matching. ICEIS 2009: 14-26.

[2] Daniela F. Brauner, Chantal Intrator, João Carlos Freitas,

 Marco A. Casanova: An Instance-based Approach for

 Matching Export Schemas of Geographical Database Web

 Services. GeoInfo 2007: 109-120.

[3] Daniela F. Brauner, Marco A. Casanova, Ruy Luiz Milidiú:

 Towards Gazetteer Integration Through an Instance-based

 Thesauri Mapping Approach. GeoInfo 2006: 189-198.

[4] Isabel F. Cruz, William Sunna, Nalin Makar, Sujan Bathala:

 A visual tool for ontology alignment to enable geospatial

 interoperability. J. Vis. Lang. Comput. 18(3): 230-254

 (2007).

[5] E.Ralun and P. A. Bernstein, “A survey of approaches to

 automatic schema matching”, VLDB Journal, vol. V10, pp.

 334-350, 2001.

[6] Bing Tian Dai, Nick Koudas, Divesh Srivastava, Anthony K.

 H. Tung, and Suresh Venkatasubramanian, "Validating

 Multi-column Schema Matchings by Type," 24th

 International Conference on Data Engineering (ICDE),

 2008.

[7] P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster, “Putting

 context into schema matching.” in VLDB, 2006, pp. 307–

 318.

[8] R. H. Warren and F. W. Tompa, “Multi-column substring

 matching for database schema translation.” in Proc. VLDB,

 2006, pp. 331–342.

[9] W.S. Li and C. Clifon, “Semint: a tool for identifying

 attribute correspondence in heterogeneous databases using

 neural networks,” Data Knowl. Eng., vol. 33, no. 1,pp.49-84,

 2000.

[10] J. Berlin and A. Motro, “Autoplex: Automated discovery of

 instance for virtual databases,” in Proc. CoopIS, 2001, pp.

 108-122.

[11] D.W. Embley, L. Xu, and Y. Ding, “Automatic direct and

 indirect schema mapping: experiences and lessons learned,”

 SIGMOD Rec., vol. 33, no. 4, pp. 14–19, 2004.

[12] Changqing Zhou, Dan Frankowski, Pamela J. Ludford,

 Shashi Shekhar, Loren G. Terveen: Discovering personal

 gazetteers: an interactive clustering approach. GIS 2004:

 266-273.

[13] Shawn Newsam, Yi Yang: Integrating gazetteers and remote

 sensed imagery. GIS 2008: 26.

[14] Bruno Pouliquen, Ralf Steinberger, Camelia Ignat, Tom De

 Groeve: Geographical information recognition and

 visualization in texts written in various languages. SAC

 2004: 1051-1058.

[15] Changqing Zhou, Dan Frankowski, Pamela J. Ludford,

 Shashi Shekhar, Loren G. Terveen: Discovering personally

 meaningful places: An interactive clustering approach. ACM

 Trans. Inf. Syst. 25(3): (2007).

[16] Dhiraj Joshi, Jiebo Luo: Inferring generic activities and

 events from image content and bags of geo-tags. CIVR

 2008: 37-46.

[17] Erik Wilde, Martin Kofahl: The locative web. LocWeb 2008:

. 1-8.

[18] www.geonames.org

[19] Jeffrey Partyka, Neda Alipanah Latifur Khan, Bhavani

 Thuraisingham and Shashi Shekhar, “Content-based

 Ontology Matching for GIS Datasets”, University of Texas

 at Dallas (UTD Technical Report # UTDCS-22-08).

[20] http://code.google.com/apis/maps/documentation/

 services.html#ReverseGeocoding

[21] http://www.ertico.com/en/about_ertico/links/gdf_-

 _geographic_data_files.htm

[22] Michael D. Lieberman, Hanan Samet, Jagan

 Sankaranarayanan, and Jon Sperling: STEWARD:

 architecture of a spatio-textual search engine. In

 Proceedings of the 15th International Symposium on

 Advances in Geographic Information Systems. (ACM GIS

 2007).

[23] Rudi Cilibrasi, Paul M. B. Vitányi: The Google Similarity

 Distance CoRR abs/cs/0412098:(2004)

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhou:Changqing.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Frankowski:Dan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Ludford:Pamela_J=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Terveen:Loren_G=.html
http://www.informatik.uni-trier.de/~ley/db/conf/gis/gis2004.html#ZhouFLST04
http://dblp.uni-trier.de/db/indices/a-tree/n/Newsam:Shawn.html
http://dblp.uni-trier.de/db/conf/gis/gis2008.html#NewsamY08
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Pouliquen:Bruno.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Ignat:Camelia.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Groeve:Tom_De.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Groeve:Tom_De.html
http://www.informatik.uni-trier.de/~ley/db/conf/sac/sac2004.html#PouliquenSIG04
http://www.informatik.uni-trier.de/~ley/db/conf/sac/sac2004.html#PouliquenSIG04
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhou:Changqing.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Frankowski:Dan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Ludford:Pamela_J=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Terveen:Loren_G=.html
http://www.informatik.uni-trier.de/~ley/db/journals/tois/tois25.html#ZhouFLST07
http://www.informatik.uni-trier.de/~ley/db/journals/tois/tois25.html#ZhouFLST07
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Luo:Jiebo.html
http://www.informatik.uni-trier.de/~ley/db/conf/civr/civr2008.html#JoshiL08
http://www.informatik.uni-trier.de/~ley/db/conf/civr/civr2008.html#JoshiL08
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kofahl:Martin.html
http://www.informatik.uni-trier.de/~ley/db/conf/www/locweb2008.html#WildeK08
http://www.ertico.com/en/about_ertico/links/gdf_-
http://dblp.uni-trier.de/db/indices/a-tree/v/Vit=aacute=nyi:Paul_M=_B=.html
http://dblp.uni-trier.de/db/journals/corr/corr0412.html#abs-cs-0412098

Smarter Searches using Location Driven Knowledge Discovery and Mining
Satyen Abrol Tahseen Al-khateeb

 Department of Computer Science
 University of Texas at Dallas
{sxa079300, tahseen, lkhan}@utdallas.edu

Latifur Khan

ABSTRACT

In the present world scenario, everybody is on the lookout for
suitable housing options, each having different needs (e.g. elderly
are looking for safe, quiet neighborhood, while students are
looking for affordable apartments close to the university/school).
For e.g. Craigslist currently does not have a map version, making
the process of apartment searching a very long and laborious
process. This creates a need for software that is significantly
superior to current web search tools. We demonstrate the
development of such a tool which takes the craigslist apartment
listings as the input, and provides the user with the output on
Google maps. We then integrate this functionality with the
information collected from location based extraction of various
web sources such as the city police blotter which makes apartment
searching simpler and faster, helping the user to make a better
decision. We also discuss the challenges that are faced in the
development process, the raw and unstructured nature of the
documents, the existence of Geo-Non Geo & Geo-Geo
disambiguities and our approach in identifying the location of the
apartment from informal text (geo-parsing and geo-tagging of
content) to ensure maximum coverage of the listings. In this
prototype we also show integration of point of interests such as
locations of grocery stores, religious places, hospitals etc. along
with the advertisement on the maps.

Categories and Subject Descriptors
D.3.3 [Information Search and Retrieval]

General Terms
Design, Algorithm, Experimentation, Verification

Keywords
Information retrieval, Text mining, Natural language processing,
Gazetteer, Geo-parsing, Disambiguation

INTRODUCTION
The task of identifying the correct location of documents such as
emails, news, web pages etc. has always been greatly beneficial
for the purposes of data mining and information retrieval. The
identification of location can be used for location based services
e.g. to find the nearest ATM machine to your house. The internet,
now days, is filled with locally targeted advertisement. So, if an
end user says that he is right now in Dallas, the website displays
ads for restaurants in and around Dallas. And similarly the search
engines, after determining the user’s location give a higher weight
to search results which refer to his geographic area.

Geo-parsing is the process of determining geographic coordinates
of textual words and phrases that occur in unstructured content,
such as "six miles east of Paris". You can also geo-parse location
references from other forms of media, e.g. audio content in which

a speaker mentions a place. With geographic coordinates the
features can be mapped and entered into Geographic Information
Systems. Once the coordinates are identified the applications plot
the geo-parsed text on to a map.

Geo-parsing goes beyond geo-tagging (or geo-coding) as it deals
with ambiguous and unstructured text. There are two types of
ambiguities that exist: Geo/Non-Geo and Geo/Geo ambiguities.
Geo/non-geo ambiguity is the case of a place name having
another, non geographic meaning, e.g. Paris might be the capital
of France or might refer the socialite, actress Paris Hilton. Geo-
geo ambiguity arises from the two having the same name but
different geographic locations, e.g. Paris is the capital of France
and is also a city in Texas. Smith et al. report that 92% of all
names occurring in their corpus are ambiguous [7].

Researchers have used a variety of methods to tackle the problem
of correctly geo-parsing the documents. In the domain of NLP, the
techniques of machine learning are employed to identify the
location from their structure and context. We take the Craigslist
advertisements consisting of raw unstructured text, and identify
locations from them. However, the extracted locations are
ambiguous and we use our weight based algorithm to identify one
single correct location.

In our work, we have made several contributions. First, a tool is
developed that facilitates to display Craigslist advertisement onto
Google maps along with other relevant information. This
integrated information is obtained from aggregation and analysis
of data from POI databases and police blotters in an efficient and
timely manner. Second, we devise an efficient algorithm to
identify and disambiguate the correct location from the
unstructured text of the Craigslist advertisement. Third, we
describe various scenarios that our algorithm exploits to devise
heuristics and strategies that increase the coverage and accuracy
on the map. Finally, we have developed a fully functional
prototype and tested on real dataset collected from the Craigslist
website.

The research paper is organized as follows. Section 2 analyzes
craigslist and its problems as a source of geo-information. Section
3 describes the types of ads and the technical challenges faced
involved in each of them. Section 4 discusses the disambiguation
algorithm, and describes how it identifies and disambiguates the
location in the text. Section 5 and 6 show how we associate a
confidence value with the location and the integration of web
sources respectively. Section 7 surveys and compares the related
work in this domain. Section 8 and 9 discusses the results and
concludes with some pointers for the future work.

CRAGSLIST AND ITS PROBLEMS
Craigslist is a centralized network of online communities,
featuring free online classified advertisements – with sections

devoted to jobs, housing, personals, for-sale,
services, community, gigs, résumés, and discussion forums [1].

Fig 1: Architecture of the Craigslist-Google Maps system

The site serves over twenty billion page views per month, putting
it in 22nd place overall among web sites worldwide, eighth place
overall among web sites in the United States (according
to Alexa.com on June 19, 2009).

Currently Craigslist does not support a map version. So, even if
someone is looking for an apartment near a particular location, he/
she has to browse through hundreds of listings manually before
one can come across a good potential apartment. This makes the
process of apartment searching a long and unpleasant process. In
addition to this, the user has to separately look on the internet for
the other things like crime, median family income, and point of
interests like grocery stores, religious places, hospitals etc. This
creates a need for a tool that displays the Craigslist ads on the
Google Maps, integrated along with crime statistics, school
information, and other points of interest (POIs), so that it becomes
easier for the user to make a decision.

The content of the craigslist ads consists of text that is
unstructured and consists of a lot of grammatical and spelling
errors. Therefore, it becomes more difficult to identify and
disambiguate the location of the apartment/house.

Figure 1 illustrates the architecture of our system. Left most entry
of the architecture shows the processing and storing of essential
information from an advertisement. The middle and right
databases store the crime information and the location based
Points of Interests (POIs).

TECHNICAL CHALLENGES
As mentioned earlier, the Craigslist ads consist of unstructured
data, usually having a location embedded in the text. Here, we
describe six scenarios into which all of the Craigslist ads can be

broadly categorized. We then describe how we deal with each of
them so as to identify and disambiguate the location.

3.1 Ads with Physical Address (APA)
APA contains ads which has a complete physical address
mentioned with house number, street name and zip. The ads with
Google/Yahoo map links also fall in this category. For such ads
the location extraction is done through Regular Expression
matching and these ads usually have a CAF value (see section 5).

3.2 Ads with just One Street name (ASN)
ASN consists of the ads that have a street name or a location
embedded in the usual unstructured text. It is for this case that we
use the disambiguation algorithm, to identify the potential
location of the apartment. The ads in this category in the absence
of a block number fall in the medium or low confidence level
category.

3.3 Ads with Intersections (AwI)

Fig. 2: A typical craigslist ad having the location as an intersection

Sometimes, the ad publisher describes the location of the
apartment as “near A and B” or “A at B”, where ‘A’ and ‘B’ are
the street names. If the disambiguation algorithm returns two
different street names with comparable weights and close
proximity to each other, we check for the streets in the
intersection database, for the possibility of an intersection and its
coordinates.

3.4 Ads with just Phone Numbers (APN)
Ads with just a phone number and no mention of the street name
or intersection are located using the White Pages reverse lookup.
We get the location of the person to whom the phone is registered.
Such ads associated with very low values of confidence since we
have no proof whether the address is of the realtor or the actual
apartment location. The same strategy is used to boost up the
confidence level for ASN and AwI ads (see Disambiguation
Algorithm for details)

3.5 Ads having just Neighborhood (AwN)
There is a major portion of the ads that has just the name of the
neighborhood such as Uptown, Downtown, Turtle Creek etc. This
can help us in narrowing down the area and we can increase the
accuracy of the location. We search only the ads where the
algorithm returns no address. We maintain a table of all popular
neighborhoods for each city, created from information extracted
from Wikipedia listings. We search the ads for the neighborhoods
obtained from this table and on a match allocate the location of
the apartment as the neighborhood. This also means a low CAF
value (see Section 5) as compared to a physical address. This is
especially helpful to users who are looking for an apartment in a
particular area or neighborhood.

3.6 Ads with No Information (ANI)
This section is formed by ads where there is no mention of any
street name or potential address, does not have a phone number or
it is a mobile or unpublished number. For such ads, the
identification of an accurate location is not possible and we just
specify the city as the location.

Fig. 3: Diagram showing the process of identification and
disambiguation of locations

DISAMBIGUATION ALGORITHM
The algorithm LocationFinder(Ads) is divided into several steps.
In this section we describe the each of the steps that go into the
process of identification and disambiguation of the apartment
location.

Algorithm 1 LocationFinder (Ads)

Input: Set of Ads for determining location

Output: location of the each of the ads

 1: For each ad A ε Ads

 2: (S, W) Street_Disambiguation (A)

 3: RS Street [Reverse_Phone (A)]

 4: for each Si ε S do

 5: NW Find Preceeding_Word (Si)

 6: Wi Wi + Wt_func(NW)

 7: If (Si==RS) then Wi Wi + WRS // If street from
reverse lookup matches Si , then boost score

8: (S1, S2, R) Intersect (S, W) /* Pick two intersecting streets
with highest weights with close mutual weights */

 9: If (R==true) then

10: location LatLong(S1, S2)

11: else location Smax-weight (S, W)

In line 2, for each ad, we call the method, Street_Disambiguation
that helps to identify and partly disambiguate the locations. The
method returns the vector containing all possible street names
with their weights. In line 3, we get search the text for a 10-digit
number and use the White pages to do a reverse phone number
lookup and extract the street name from the address. Next, for
each street in the vector, we identify the words preceding and
succeeding it. In line 6, on the basis of this we then boost up the
weights of the street concepts. Then we boost up the scores of all
those street concepts where the street names match from those
obtained from the reverse phone lookup. After this iteration, we
first check for the possibility of an intersection. For this we pass

the whole vector to a method Intersect which returns true with the
street names, S1 and S2; false otherwise. In case of an absence of
an intersection, we choose the street with the maximum weight to
be the location.

We now describe the Street_Disambiguation method in detail.
The first step of the method involves removal of all those words
from the craigslist text that are not references to geographic
locations. For this, we use the CRF Tagger, which is an open
source tagger for English with an accuracy of close to 97% and a
tagging speed of 500 sentences per second [2]. The CRF tagger
identifies all the proper nouns from the text and term them as
keywords {K1, K2,…,Kn}. In the next step, the TIGER
(Topologically Integrated Geographic Encoding and Referencing
system) [3] dataset is searched for identifying the street and city
names from amongst them. The TIGER dataset is an open source
gazetteer consisting of topological records and shape files with
coordinates for counties, zip codes, street segments, etc. for the
entire US.

Algorithm 2 Street_Disambiguation (A)

Input: A: Craigslist Ad

Output: Vector (S, W): Streets and weights vector

 // Phase 1

 1: for each keyword, Ki

 2: for each Sj ∈ Ki //Sj - Street Concept

 3: for each Tf ∈ Sj

 4: type Type (Tf)

 5: If (Tf occurs in A) then WSj WSj + Wtype

 // Phase 2

 6: for each Ki

 7: for each Sj ∈ Ki

 8: for Tf ∈ Sj , Ts ∈ SL

 9: If (Tf = Ts) and (Sj ≠ SL) then

10: type Type (Tf)

11: WeightSj WeightSj + Wtype

 12: return (S, W)

We search the TIGER gazetteer for the concepts {C1, C2….Cn}
pertaining to each keyword. Now our goal for each keyword
would be to pick out the right concept amongst the list, in other
words disambiguate the location. For this, we use a weight based
disambiguation method. In the phase 1, we assign the weight to
each concept based on the occurrence of its terms in the text.
Specific concepts are assigned a greater weight as compared to the
more general ones. In phase 2, we check for correlation between
concepts, in which one concept subsumes the other. In that case
the more specific concept gets the boosting from the more general
concept. If a more specific concept Ci is part of another Cj then the
weight of Cj is added to that of Ci.

4.1 Creating the Intersection Database

The intersection database is created from the TIGER shape files.
TIGER dataset contains the streets divided into segments, each
uniquely identified by the starting and the ending Nodes IDs. If
two streets intersect, they will have at least one of the two nodes
common to both as shown in Fig 4 and Fig 5.

Fig 4: showing the creation of intersection database

Fig 5 : showing two streets (Thackery St. and Stefani Dr.) intersecting
and hence having a common Node ID

We perform this pre-processing, check the database for two
different named streets having one node in common. We also
store the geometric coordinates of the intersection to be able to
identify an intersection. Algorithm 3 describes the algorithm to
find the intersection from the street-weight vector.

Algorithm 3 Intersect (S, W)

Input: (S, W): Streets and weights vector

Output: (S1, S2, R): Two intersecting streets and R is true for
intersection; false otherwise

 1: S1 Streetmax-weight (S, W)

 2: for each S0 ε S

 3: S2 { S0 : S0 ε S, S0 ≠ S1 and |W (S0) – W (S1)|<Wmin-diff }

 4: if TIGER_INTERSECT (S1, S2) == true then

 return (S1, S2, true)

 5: return (null, null, false)

In the first step, select the street with the maximum weight as S1.
Then, among the remaining street concepts it looks for a street-
concept, S2 that is different from S1, but has similar weight and is
in close proximity to it. It then checks the intersection database for

an intersection. If there is an intersection, it returns true along
with the names of the two streets; false otherwise.

E.g. City carries 10 points, state 5 and a street name carries 15
points. For the keyword “Campbell”, consider the concept of
{Street} Campbell St. / {City} Dallas/ {County} Dallas/ {State}
Texas/ {Country} USA. The concept gets 15 points because
Campbell is a street name, and it gets an additional 10 points if
Dallas is also mentioned in the text. In phase 2, we consider the
relation between two keywords. Considering the previous
example, if {Campbell St., Dallas} are the keywords appearing in
the text, then amongst the various concepts listed for “Campbell”
would be {Street} Campbell St./{City} Dallas/{County} Dallas/
{State} Texas/{Country} USA and one of the concepts for
“Dallas” would be {City} Dallas/{County} Dallas/{State} Texas/
{Country} USA. Now, in phase 2 we check for such correlated
concepts, in which one concept subsumes the other. In that case
the more specific concept gets the boosting from the more general
concept. Here, the above mentioned Dallas concept boosts up the
more specific Campbell concept. After the two phases our
complete we re-order the concepts in descending order of their
weights.

Next, we prune out the concepts where the county in the domain.
E.g. the domain of Dallas-Fort Worth area would comprise of 12
counties. If we have a concept having the county to be not
amongst those twelve, we remove it. The next step involves
boosting of a concept based on what occurs just before the
keyword in the original ad. E.g. if it is a sequence of digits, or
words like “at”, “near”, “close to”, “around”, it increases the
possibility of the keyword being a street name we boost up the
weight accordingly. Another heuristic technique we use is the
reverse phone number lookup. If the ad has a phone number, we
do a reverse phone number lookup using White pages and for
published numbers get the address. If the address also mentions
Campbell, we further boost up the weight of the street-concepts
having Campbell as the street name. Now, we send the vector
having all the streets and their weights to the Intersect (S, W) and
check for an intersection. If the street-weight vector has Campbell
Rd. with the highest weight and Coit Rd. with comparable weight
and the intersection database has an entry with Coit and Campbell,
the intersection is returned as location.

CONFIDENCE-ACCURACY FACTOR
After we have identified and disambiguated the highest weighing
concept from the text, which refers to the street name or city
name, we calculate its Confidence-Accuracy Factor (CAF). CAF,
a number between 0 and 1, is a measure of the accuracy and the
confidence of the apartment’s location. Accuracy defines the
exactness, or correctness we have of the location. e.g. a street
name will have a lower accuracy as compared to street-
intersection which will have a lower accuracy as compared to an
address with a house number and street name. The confidence part
of CAF describes the source of the location. It ascertains the belief
in correctness of the source. Hence, an address obtained from the
reverse phone number lookup will have a low confidence as
compared to a Google/Yahoo maps link. Depending on the CAF
value, we map the apartment either as a cloud for low, a dart for
medium and a house for high confidence-accuracy factor.

CAF = CAFconfidence + CAFaccuracy

CAFconfidence = ∑ αi / (2 * Wmax)

Where, αi is the confidence factor of the source and Wmax

is the maximum confidence (e.g. a google/yahoo link
with a phone no. which verifies it). αgoogle/yahoo >
αdisambiguation-algo > αreverse-phone

CAFaccuracy = βi / (2 * βmax)

Where βi is the accuracy factor and βmax is the accuracy
value for a location with block number, street and city
(most accurate). βblock-street-city > βintersection-city > βstreet-city > βcity

Fig. 6: Flowchart showing the working of the Mash up

INTEGRATION OF DATA SOURCES
While looking for an apartment, apart from the basic things like
rent, location etc., the user is also interested in other facts like the
safety of the neighborhood, the nearby public amenities like
parks, schools etc. Fig4. shows the flowchart describing this
integration. From the ad we extract the information like rent,
location, number of bedrooms and bathrooms and store it in a
relational database. We also have location based information like
crime, point of interests stored. In this we describe how we
collect, analyze and integrate this information and show it on the
map in a way that makes more meaning to the user.

6.1 Points of Interest (POI)
Points of Interest refer to the various specific point locations that
someone may find useful or interesting. We had a comprehensive
database of the over 300 POIs, provided by Homeland Security
Information Program (HSIP). Amongst them, we selected 10 that
pertained to the interests of someone looking for an apartment.
These included grocery stores, places of worship, parks, gas
stations, schools etc. So when a user is looking an apartment apart
from the basic things like rent, no. of bedrooms he also can see
the nearest POIs on the same map.

To search the database for the nearest POIs to the potential
apartment we use the R-tree indexing. R-trees are typically the
preferred method for indexing spatial data. Objects (shapes, lines
and points) are grouped using the minimum bounding
rectangle (MBR). Objects are added to an MBR within the index
that will lead to the smallest increase in its size. We create a
minimum bounding rectangle for each city which allows for
efficient and effective query processing, which is one of the key
aspects of the application.

6.2 Crime Statistics and other Information

Safety of the neighborhood is a key considering while someone is
looking for an apartment. For this reason, we try to provide
certain pointers for the type of neighborhood such as the crime
rating, median family income and the percentage of high school
graduates. For the crime rating, we periodically scan the police
blotter, aggregate the information, and present it in a scale from 0
to 10 so that it makes more sense to the user. Similarly we
integrate the median family income and percentage of high school
graduates and display it along with other details of the apartment.

Fig 9 shows a potential apartment with nearest gas stations and
hospitals. Clicking on the apartment icon gives other information
about it including location, rent, bedrooms, crime rating, median
family income, high school graduates and the link to the ad on
Craigslist.

Fig 7: Screenshot #1 shows the front page of the application

Fig 8: Screenshot #2 shows all apartments for the Dallas-Fort Worth
area

Fig 9: Screenshot #3 showing a potential apartment with information
and nearby hospitals and gas-stations.

RELATED WORK
The problem of geographic location identification and
disambiguation has been dealt with mostly two approaches. One
involving the concepts of machine learning and NLP and the other
using data mining approach with the help of gazetteers.

In NLP and machine learning a lot of previous work is done on
the more general topic of Named Entity Recognition (NER). Most
of the work makes use of structured and well-edited text from
news articles or sample data from the conferences.

Most research work relies on NLP algorithms and less on machine
learning techniques. The reason for this is that machine learning
algorithms require training data that is not easy to obtain. Also,
their complexity makes them less efficient as compared to the
algorithms using the gazetteers.

Other researchers use a 5-step algorithm, where the first two steps
of the algorithm are reversed. First, only terms appearing in the
gazetteer are short listed. Next, they use NLP techniques to
remove the non-geo terms. Li et al [6] report a 93.8% precision on
news and travel guide data.

McCurley [8] analyzes the various aspects of a web page that
could have a geographic association, from its URL, the language
in the text, phone numbers, zip codes etc. Names appearing the
text may be looked up in White Pages to determine the location of
the person. His approach is heavily dependent on information like
zip codes etc. and is hence successful in USA, where it is
available free but is hard to obtain for other countries. Their
techniques rely on heuristics and do not consider the relationship
between geo-locations appearing in text.

The gazetteer based approach relies on the completeness of the
source and hence cannot identify terms that are not present in the
gazetteer. But on the other hand they are less complex than NLP,
machine learning techniques are hence faster.

Amitay et al. [7] present a way of determining the page focus of
web pages using the gazetteer approach and after using techniques
to prune the data. They are able to correctly tag individual name
place occurrences 80% of the time and are able to recognize the
correct focus of the pages 91% of the time. But they have a low
accuracy for the geo/non geo disambiguation.

Lieberman et al. [9] describe the construction of a spatio-textual
search engine using the gazetteer and NLP tools, a system for
extracting, querying and visualizing textual references to

geographic locations in unstructured text documents. They use an
elaborate technique for removing the stop words, using a hybrid
model of Part-of-Speech (POS) and Named-Entity Recognition
tagger. POS helps to identify the nouns and NER tagger annotates
them as person, organization, and location. They consider the
proper nouns tagged as locations. But this system doesn’t work
well for text where name of a person is ambiguous with a
location. E.g. Jordan might mean Michael Jordan, the basketball
player or it might mean the location. In that case the NER tagger
might remove Jordan considering it to be name of a person. For
removing geo-geo ambiguity they use the pair strength algorithm.
Pairs of feature records are compared to determine whether or not
they give evidence to each other, based on the familiarity of each
location, frequency of each location, as well as their document
and geodesic distances. They do not report any results for
accuracy of the algorithm so comparison and review is not
possible.

Craigslist acts as a medium for realtors and owners/renters for free
and easy interaction. Existing apartment lookup sites are not
dynamic and will not show an apartment or house that has been
vacated very recently and is for rent/sale. Nor will it show any
special deals that the realtor is offering. Previous attempts to
mash Craigslist and Google maps [10, 11, and 12], focus only on
the graphical interface and functionality, and lack a sophisticated
location extraction and hence are not able to display it or fail to do
so accurately. These sites only display the listings having the
Google/Yahoo maps link in it and use no geo-tagging technique.
Other sites such as http://www.allurstuff.com [13] do a good job
of giving a measure of accuracy but pick only the address that
comes after the term “Location” in the advertisement. In addition
to these there is no site that integrates data sources to provide
useful other meaningful information like crime, points of interest
etc.

RESULTS
We used a dataset comprising of 2500 randomly chosen ads from
the Craigslist website for one day for the Dallas Fort Worth
Listings. We then removed the HTML content and cleaned the
data of text that was recurring in each ad but was irrelevant for all
purposes. We then geo-tagged these first by looking for
Google/Yahoo maps link, a direct physical address or reverse
phone lookup in them. This portion of the results guarantees
100% accuracy. Fig 8 shows the internal distribution of output.

Fig 10: The internal distribution of ads with physical address

 More than half of these had a map link; rest was almost equally
divided between the exact physical address and the reverse phone
number lookup. Then, for the remaining we applied our

Disambiguation algorithm and then manually checked the geo-
tags for correctness. The algorithm either returned a location or in
the absence of a high weight street returned “null” indicating the
absence of a street name. For those ads for which the algorithm
returned “null”, we tried to find the neighborhood from the list of
neighborhoods gathered from crawling Wikipedia.

Fig 11: Results of the Craigslist-Google Maps System

Fig 9 shows the results of our approach. For 518 (20.72%)
documents we were able to either get an address from
Google/Yahoo map link or physical address from regular
expression matching or White pages reverse phone lookup. Next,
on this set of 1982 we used the algorithm, for which, the
algorithm returned street names for 861 (34.44%) and returned
“null” for the remaining 1121. Finally, we applied our
“neighborhood determining” technique to successfully identify
neighborhoods for 20.40% ads. For the remaining 24.44% we still
do not have an address and hence we cannot plot on the map.

We then tested the correctness of our algorithm by manually
annotating the entire set of documents and comparing it with the
results. Fig 10 shows the Precision, Recall and F-measure values
for the dataset using different approaches.

Fig 12: shows the Precision and Recall values of our system compared
to just Google/Yahoo Maps-link approach.

Using our approach we get a precision of 0.577, recall of 0.776
and an F-measure of 0.662. Obviously, precision value for the
Google/Yahoo maps is 1, but clearly the recall value for out
approach is much higher as compared to the simple
Google/Yahoo links approach showing a 3 times more coverage.
The coverage is even lesser for other known websites which
create a Craigslist-Google Maps mash-up.

http://www.allurstuff.com/

CONCLUSION AND FUTURE WORK
We developed an apartment searching tool, which takes the
Craigslist ads as the source and shows them on Google Maps,
integrated with other services such as crime ratings, points of
interest etc making it easier for the user to come to a decision. We
also make use of a disambiguation algorithm to correctly identify
the location of the apartment and to increase the coverage. With
each apartment we also associate a CAF value to give the user an
idea the confidence and accuracy we have in the correct
positioning of the location.

The results show a significant increase in the coverage as
compared to other sites. Since the data is so unstructured and the
annotation of street names is a difficult task, there is a still a
segment of ads for which we still couldn’t find a location. In
future we would like to extend our system to increase the
coverage by improving the algorithm. Other future work includes
improving the GUI, making the system more user oriented by
giving him preferences to narrow down the search, and include
user reviews.

REFERENCES
[1] Hover’s Craigslist - Company Overview.

[2]CRF Tagger: http://sourceforge.net/projects/crftagger/

[3] TIGER gazetteer : http://www.census.gov/geo/www/tiger/

[4] ZIP code statistics by U.S. Census Bureau :
http://www.census.gov/epcd/www/zipstats.html

[5] E. Amitay, N. Har’El, R. Sivan, and A. Soffer. Web-a-
Where:geo-tagging web content. In Proceedings of the 27th

Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 273-280, Sheffield,
UK, July 2004.

[6] H. Li, R. K. Srihari, C. Niu, and W. Li. Location
normalization for information extraction. In Proceedings of the
19th International Conference on Computational Linguistics,
pages 1{7, Taipei, Taiwan, Aug. 2002.

[7] D. A. Smith and G. Crane. Disambiguating geographic names
in a historical digital library. In Proceedings of the 5th European
Conference on Research and Advanced Technology for Digital
Libraries (ECDL’01), Lecture Notes in Computer Science, pages
127–136, Darmstadt, September 2001. Springer.

[8] K. S. McCurley. Geospatial mapping and navigation of the
web. In Proceedings of the 10th int. conference on World Wide
Web, pages 221–229. ACM Press, 2001.

[9] Michael D. Lieberman, Hanan Samet, Jagan
Sankaranarayanan, and Jon Sperling: STEWARD: architecture of
a spatio-textual search engine. In Proceedingsof the 15th

International Symposium on Advances in Geographic Information
Systems. (ACM GIS 2007).

[10]Padmapper : http://www.padmapper.com

[11] Housingmaps : http://www.housingmaps.com

[12] MapsKreig : http://www.apskreig.com

[13]Allurstuff : http://www.allurstuff.com

[14] J. L. Leidner, G. Sinclair, and B. Webber. Grounding spatial
named entities for information extraction and question answering.
In Proceedings of the HLT-NAACL 2003 Workshop on Analysis of
Geographic References.

[15] D. Wu, G. Ngai, M. Carpuat, J. Larsen, and Y. Yang :
Boosting for named entity recognition. In Proceedings of the 6th
Conference on Natural Language Learning.

http://www.allurstuff.com/
http://www.apskreig.com/
http://www.housingmaps.com/
http://www.padmapper.com/
http://www.census.gov/epcd/www/zipstats.html
http://www.census.gov/geo/www/tiger/
http://sourceforge.net/projects/crftagger/
http://www.hoovers.com/craigslist/--ID__129617--/free-co-factsheet.xhtml

