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Abstract

We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis:

• The Blum-Shub-Smale model of computation over the reals.

• A problem we call the “Generic Task of Numerical Computation,” which captures an aspect of doing numerical com-
putation in floating point, similar to the “long exponent model” that has been studied in the numerical computing
community.

We show that both of these approaches hinge on the question of understanding the complexity of the following problem, which
we callPosSLP: Given a division-free straight-line program producing an integerN , decide whetherN > 0.

• In the Blum-Shub-Smale model, polynomial time computation over the reals (on discrete inputs) is polynomial-time
equivalent toPosSLP, when there are only algebraic constants. We conjecture that using transcendental constants
provides no additional power, beyondnonuniformreductions toPosSLP, and we present some preliminary results
supporting this conjecture.

• The Generic Task of Numerical Computation is also polynomial-time equivalent toPosSLP.

We prove thatPosSLP lies in the counting hierarchy. Combining this with work of Tiwari, we obtain that the Euclidean
Traveling Salesman Problem lies in the counting hierarchy – the previous best upper bound for this important problem (in
terms of classical complexity classes) beingPSPACE.

In the course of developing the context for our results on arithmetic circuits, we present some new observations on the
complexity ofACIT: the Arithmetic Circuit Identity Testing problem. In particular, we show that ifn! is not ultimately easy,
thenACIT has subexponential complexity.

1 Introduction

The original motivation for this paper comes from a desire to understand the complexity of computation over the reals
in the Blum-Shub-Smale model. In Section 1.1 we give a brief introduction to this model and we introduce the problem
PosSLP and explain its importance in understanding the Blum-Shub-Smale model.
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In Section 1.2 we present yet another reason to be interested inPosSLP. We isolate a computational problem that lies
at the root of the task of designing numerically stable algorithms. We show that this task is computationally equivalent to
PosSLP. The material in Sections 1.1 and 1.2 provides motivation for studyingPosSLP and for attempting to place it within
the framework of traditional complexity classes.

In Section 1.3 we discuss our main technical contributions: proving upper and lower bounds on the complexity ofPosSLP.
In Section 1.4 we present applications of our main result with respect to the Euclidean Traveling Salesman Problem and the
Sum-of-Square-Roots problem.

1.1 Polynomial Time Over the Reals

The Blum-Shub-Smale model of computation over the reals provides a very well-studied complexity-theoretic setting in
which to study the computational problems of numerical analysis. We refer the reader to Blum, Cucker, Shub and Smale
[12] for detailed definitions and background material related to this model; here, we will recall only a few salient facts. In
the Blum-Shub-Smale model, each machine computing over the reals has associated with it a finite setS of real machine
constants. The inputs to a machine are elements of

⋃
n Rn = R∞, and thus each polynomial-time machine overR accepts

a “decision problem”L ⊆ R∞. The set of decision problems accepted by polynomial-time machines overR using only
constants fromS ∪ {0, 1} is denotedPS

R
. The union of the classesPS

R
over allS is calledpolynomial time overR and is

denotedPR. The subclassP∅
R

of “constant-free polynomial time” is commonly denoted byP0
R
, cf. Bürgisser and Cucker [22].

There has been considerable interest in relating computation overR to the classical Boolean complexity classes such as
P, NP, PSPACE, etc. This is accomplished by considering theBoolean partof decision problems over the reals. That is,
given a problemL ⊆ R∞, the Boolean part ofL is defined asBP(L) := L ∩ {0, 1}∞. (Here, we follow the notation
of [12]; {0, 1}∞ =

⋃
n{0, 1}n, which is identical to{0, 1}∗.) The Boolean part ofPR, denotedBP(PR), is defined as

{BP(L) | L ∈ PR}.
By encoding the advice function in a single real constant as in Koiran [40], one can show thatP/poly ⊆ BP(PR). The

best upper bound on the complexity of problems inBP(PR) that is currently known was obtained by Cucker and Grigoriev
[25]:

BP(PR) ⊆ PSPACE/poly. (1)

There has beenno work pointing to lower bounds on the complexity ofBP(PR); nobody has presented any compelling
evidence thatBP(PR) is not equal toP/poly.

There has also been some suggestion that perhapsBP(PR) is equal toPSPACE/poly. For instance, certain variants of the
RAM model that provide for unit-cost arithmetic can simulate all ofPSPACE in polynomial time [9, 35]. Since the Blum-
Shub-Smale model also provides for unit-time multiplication on “large” numbers, Cucker and Grigoriev [25] mention that
researchers have raised the possibility that similar arguments might show that polynomial-time computation overR might
be able to simulatePSPACE. Cucker and Grigoriev also observe that certain na¨ıve approaches to provide such a simulation
must fail.

One of our goals is to provide evidence thatBP(PR) lies properly betweenP/poly andPSPACE/poly. Towards this goal,
it is crucial to understand a certain decision problemPosSLP: The problem of deciding, for a given division-free straight-
line program, whether it represents a positive integer. More generally, for a fixed finite subsetS ⊂ R, PosSLP(S) is the
problem of deciding for a given division-free straight-line program using constants fromS ∪{0, 1}, whether the real number
represented by it is positive. (For precise definitions, see the next section.)

The immediate relationship between the Blum-Shub-Smale model and the problemsPosSLP(S) is given by the proposi-
tion below.

Proposition 1.1 We havePPosSLP(S) = BP(PS
R

) for all finite subsetsS ⊂ R. In particular,PPosSLP = BP(P0
R
).

Proof. It is clear thatPosSLP(S) is in BP(PS
R

), since we can implement a standard SLP interpreter in the real Turing
machine framework and evaluate the result in linear time using unit cost instructions. The result is then obtained by one sign
test. To show the other direction, assume we have a polynomial time machine overR using only the constants inS ∪ {0, 1}.
By a usual argument (separate computation of numerator and denominator), we may assume without loss of generality that
the machine does not use divisions. Given a bit string as input, we simulate the computation by storing the straight-line
program representation of the intermediate results instead of their values. Branch instructions can be simulated by using the
oraclePosSLP(S) to determine if the contents of a given register (represented by a straight-line program) is greater than
zero. �
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It was shown by Chapuis and Koiran [23] that algebraic constants do not help. More specifically,P0
R

is equal to the class
of decision problems over the reals decided by polynomial time Blum-Shub-Smale machines using real algebraic numbers as
constants.

As already mentioned, by encoding the advice function in a single real constant, one can show thatP/poly ⊆ BP(PR).
The proof in fact shows evenPPosSLP/poly ⊆ BP(PR). The real constant encoding the advice function, will, of course, in
general be transcendental. Thus, there is a strong relationship between non-uniformity in the classical model of computation
and the use of transcendental constants in the Blum-Shub-Smale model. We conjecture that this relationship can be further
strengthened:

Conjecture 1.2 PPosSLP/poly = BP(PR).

In Section 3 we present some preliminary results toward proving this conjecture. For instance we prove thatBP(P{α}
R

) ⊆
PPosSLP/poly for almost allα ∈ R, in the sense of Lebesgue measure. We also show thatBP(P{α}

R
) ⊆ PPosSLP/1 (one bit

of advice) ifα is the value of an elementary function on a rational number. For instance this is the case for the well-known
transcendental numberse or π.

1.2 The Task of a Numerical Analyst

The Blum-Shub-Smale model is a very elegant one, but it does not take into account the fact that actual numerical com-
putations have to deal withfinitely represented values. We next observe that even if we take this into account, thePosSLP
problem still captures the complexity of numerical computation.

Let u 6= 0 be a dyadic rational number. Thefloating pointrepresentation ofu is obtained by writingu = v2m where
m is an integer and12 ≤ |v| < 1. The floating point representation is then given by the sign ofv, and the usual binary
representations of the numbers|v| andm. The floating point representation of0 is the string0 itself. We shall abuse notation
and identify the floating point representation of a number with the number itself, using the term “floating point number” for
the number as well as its representation.

Let u 6= 0 be a real number. We may writeu asu = u′2m where1
2 ≤ |u′| < 1 andm is an integer. Then, we define a

floating point approximation ofu with k significant bitsto be a floating point numberv2m so that|v − u′| ≤ 2−(k+1).
We will focus on one part of the job that is done by numerical analysts: the design of numerically-stable algorithms. In

our scenario, the numerical analyst starts out with a known functionf , and the task is to design a “good” algorithm for it.
When we say that the functionf is “known”, we mean that the analyst starts out with some method of computing (or at
least approximating)f ; we restrict attention to the “easy” case where the method for computingf uses only the arithmetic
operations+,−, ∗,÷, and thus the description off that the analyst is given can be presented as an arithmetic circuit with
operations+,−, ∗,÷. Usually, the analyst also has to worry about the problems that are caused by the fact that the inputs
to f are not known precisely, but are only given as floating point numbers that are approximations to the “true” inputs – but
again we will focus on the “easy” case where the analyst will merely try to compute a good approximation forf(x1, . . . , xn)
on the exact floating point numbersx1, . . . , xn that are presented as input:

The generic task of numerical computation(GTNC):Given an integerk in unary and a straight-line program (with÷)
taking as inputs floating point numbers, with a promise that it neither evaluates to zero nor does division by zero, compute a
floating point approximation of the value of the output withk significant bits.

The traditional approach that numerical analysts have followed in trying to solve problems of this sort is to study the
numerical stability of the algorithm represented by the circuit, and in case of instability, to attempt to devise an equivalent
computation that is numerically stable. Although stable algorithms have been found for a great many important functions, the
task of devising such algorithms frequently involves some highly nontrivial mathematics and algorithmic ingenuity. There
seems to be no expectation that there will ever by a purely automatic way to solve this problem, and indeed there seems
to be no expectation that a numerically stable algorithm will exist in general. To summarize, there is substantial empirical
evidence that the generic task of numerical computation is intractable. It would be of significant practical interest if, contrary
to expectation, it should turn out to be very easy to solve (say, solvable in linear time).

We show that the generic task of numerical computation is equivalent in power toPosSLP.

Proposition 1.3 The generic task of numerical computation (GTNC) is polynomial time Turing equivalent toPosSLP.

Proof. We first reducePosSLP to the generic task of numerical computation. Given a division-free straight-line program
representing the numberN , we construct a straight-line program computing the valuev = 2N − 1. The only inputs0, 1 of
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this program can be considered to be floating point numbers and this circuit clearly satisfies the promise of the generic task of
numerical computation. ThenN > 0 if v ≥ 1 andN ≤ 0 if v ≤ −1. Determining an approximation ofv to one significant
bit is enough to distinguish between these cases.

Conversely, suppose we have an oracle solvingPosSLP. Given a straight-line program with inputs being floating point
numbers, we first convert it to a straight-line program having only input1; it is easy to see that this can be done in polynomial
time. By standard techniques we move all÷ gates to the top, so that the program computes a valuev = v1/v2, wherev1, v2

are given by division-free straight-line programs. We can use the oracle to determine the signs ofv1 andv2. Without loss
of generality assume thatv is positive. Next we use the oracle to determine ifv1 ≥ v2. Suppose this is indeed the case (the
opposite case is handled similarly).

We then find the leastr, so that2r−1 ≤ v < 2r, by first comparingv1 with v222i

for i = 0, 1, 2, 3, ..., using the oracle,
thus finding the minimumi so thatv < 22i

and afterwards doing a binary search, again using the oracle to comparev1 to
v22r for various values ofr. This takes polynomial time.

The desired output is a floating point numberu = u′2r, where|v − u′| ≤ 2−(k+1). To obtainu′ we first want to find the
integerw between2k and2k+1 − 1 so thatw/2k+1 ≤ v/2r < (w + 1)/2k+1. Sincew/2k+1 ≤ v/2r < (w + 1)/2k+1 iff
w2rv2 ≤ v12k+1 < (w + 1)2rv2, we can determine this by another binary search, usingO(k) calls to the oracle. We then
output the sign ofv, the binary representation of the rationalw/2k+1, and the binary representation ofr, together forming
the desired floating point approximation ofv. �

The reader may wonder how GTNC fits into the numerical analysis literature. The Long Exponent Model (LEM) of
Demmel [28, 29] offers the closest parallel. Demmel considers the classic problem of computation of the determinant, and he
identifies three ways of modeling the problem, which he calls the Traditional Model, the Short Exponent Model (SEM), and
the Long Exponent Model (LEM). Computing determinants is easy in the SEM, while in the LEM the problem is equivalent
to a special case of GTNC. Namely, it is equivalent to instances of GTNC where the circuitC that is provided as input is the
polynomial-size SLP for determinants given by Berkowitz [8].

Demmel goes so far as to conjecture that, in the LEM, the problem of deciding if the determinant is zero is NP-hard [28].
Since this problem is actually a special case ofEquSLP and thus lies in BPP, Demmel’s conjecture is almost certainly false.
However, we agree with his underlying intuition, in that we believe that the problem of deciding if the determinant ispositive
in the LEM very likely is intractable (even if we see no evidence that it is NP-hard). That is, this special case ofPosSLP is
recognized as a difficult problem by the numerical analysis community.

1.3 The Complexity ofPosSLP

We consider Proposition 1.3 to be evidence for the computational intractability ofPosSLP. If PosSLP is in P/poly
then there is a polynomial-sized “cookbook” that can be used in place of the creative task of devising numerically stable
computations. This seems unlikely.

We wish to emphasize that the generic task of numerical computation models thediscretecomputational problem that
underlies an important class of computational problems. Thus it differs quite fundamentally from the approach taken in the
Blum-Shub-Smale model.

We also wish to emphasize that, in defining the generic task of numerical computation, we arenotengaging in the debate
over which real functions are “efficiently computable”. There is by now a large literature comparing and contrasting the
relative merits of the Blum-Shub-Smale model with the so-called “bit model” of computing, and there are various competing
approaches to defining what it means for a real-valued function to be feasible to compute; see [10, 15, 16, 62, 63] among
others. Our concerns here are orthogonal to that debate. We are not trying to determine which real-valued functions are
feasible; we are studying a discrete computational problem that is relevant to numerical analysis, with the goal of proving
upper and lower bounds on its complexity.

The generic task of numerical computation is one way of formulating the notion of what is feasible to compute in a
world wherearbitrary precisionarithmetic is available for free. In contrast, the Blum-Shub-Smale model can be interpreted
as formulating the notion of feasibility in a world whereinfinite precisionarithmetic is available for free. According to
Proposition 1.3, both of these approaches areequivalent(and captured byPPosSLP) when only algebraic constants are allowed
in the Blum-Shub-Smale model. Conjecture 1.2 claims that this is also true when allowing arbitrary real constants.

As another demonstration of the computational power ofPosSLP, we show in§2 that the problem of determining the total
degree of a multivariate polynomial over the integers given as a straight-line program reduces toPosSLP.

The above discussion suggests thatPosSLP is not an easy problem. Can more formal evidence of this be given? Although
it would be preferable to show thatPosSLP is hard for some well-studied complexity class, the best that we can do is observe
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that a somewhat stronger problem (BitSLP) is hard for#P. This will be done in§2.
The above discussion also suggests that non-trivial upper bounds forPosSLP are of great interest. Prior to this paper, the

best upper bound wasPSPACE. Our main technical result is an improved upper bound: We show, based on results on the
uniform circuit complexity of integer division and the relationship between constant depth circuits and subclasses ofPSPACE
[5, 37], thatPosSLP lies in the counting hierarchyCH, a well-studied subclass ofPSPACE that bears more or less the same
relationship to#P as the polynomial hierarchy bears toNP [59, 61].

Theorem 1.4 PosSLP is in PPPPPPP

.

Another interesting upper bound forPosSLP was recently discovered by Tarasov and Vyalyi [56], who give a reduc-
tion from PosSLP to theSemidefinite Feasibility Problem(SFDP), i.e. the feasibility version of the optimization problem
Semidefinite Programming. Their result can be seen as a lower bound for SFDP. SFDP is known to reduce to its complement
and to lie inNPR [50]; also it is easy to see that SFDP reduces to the existential theory of the reals (for instance, see the
discussion in [50]), and thus SFPD∈ PSPACE.

We suspect thatPosSLP lies at an even lower level ofCH. We leave as major open problems the question of providing
better upper bounds forPosSLP and the question of providing any sort of hardness theorem, reducing a supposedly intractable
problem toPosSLP.

We also believe that it would be very interesting to verify Conjecture 1.2, as this would give a characterization ofBP(PR) in
terms of classical complexity classes. But in fact, it would be equally interesting to refute it under some plausible complexity
theoretic assumption, as this would give evidence that the power of using transcendental constants in the Blum-Shub-Smale
model goes beyond the power of non-uniformity in classical computation.

1.4 Applications

TheSum-of-square-roots problemis a well-known problem with many applications to computational geometry and else-
where. The input to the problem is a list of integers(d1, . . . , dn) and an integerk, and the problem is to decide if

∑
i

√
di ≥ k.

The complexity of this problem is posed as an open question by Garey, Graham and Johnson [34] in connection with the Eu-
clidean traveling salesman problem, which is not known to be inNP, but which is easily seen to be solvable inNP relative to
the Sum-of-square-roots problem. See also O’Rourke [48, 49] and Etessami and Yannakakis [32] for additional information.
Although it has been conjectured [47] that the problem lies inP, it seems that no classical complexity class smaller than
PSPACE has been known to contain this problem. On the other hand, Tiwari [57] showed that the problem can be decided
in polynomial time on an “algebraic random-access machine”. In fact, it is easy to see that the set of decision problems de-
cided by such machines in polynomial time is exactlyBP(P0

R
). Thus by Proposition 1.1 we see that the Sum-of-square-roots

problem reduces toPosSLP. Theorem 1.4 thus yields the following corollary.

Corollary 1.5 The Sum-of-square-roots problem and the Euclidean Traveling Salesman Problem are inCH.

2 Preliminaries

Our definitions of arithmetic circuits and straight-line programs are standard. Anarithmetic circuitis a directed acyclic
graph with input nodes labeled with the constants0, 1 or with indeterminatesX1, . . . , Xk for somek. Internal nodes are
labeled with one of the operations+,−, ∗,÷. A straight-line programis a sequence of instructions corresponding to a
sequential evaluation of an arithmetic circuit. If it contains no÷ operation it is said to bedivision free. Unless otherwise
stated, all the straight-line programs considered will be division-free. Thus straight-line programs can be seen as a very
compact representation of a polynomial over the integers. In many cases, we will be interested in division-free straight-line
programs using no indeterminates, which thus represent an integer.

By then-bit binary representation of an integerN such that|N | < 2n we understand a bit string of lengthn+1 consisting
of asign bit followed byn bits encoding|N | (padded with leading zeroes, if needed).

We consider the following problems:

EquSLP Given a straight-line program representing an integerN , decide whetherN = 0.

ACIT Given a straight-line program representing a polynomialf ∈ Z[X1, . . . , Xk], decide whetherf = 0.
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DegSLP: Given a straight-line program representing a polynomialf ∈ Z[X1, . . . , Xk], and given a natural numberd in
binary, decide whetherdeg f ≤ d.

PosSLP Given a straight-line program representingN ∈ Z, decide whetherN > 0.

BitSLP Given a straight-line program representingN , and givenn, i ∈ N in binary, decide whether theith bit of then-bit
binary representation ofN is 1.

It is not clear that any of these problems is inP, since straight-line program representations of integers can be exponentially
smaller than ordinary binary representation.

There is an immediate relationship between the Blum-Shub-Smale model over the complex numbersC and the problem
EquSLP. Let P0

C
denote the class of decision problems overC decided by polynomial time Blum-Shub-Smale machines

using only the constants0, 1. Similarly as for Proposition 1.1 one can show thatPEquSLP = BP(P0
C
). On the other hand, it

is known that constants can be eliminated in this setting [11, 41], henceBP(PC) = BP(P0
C
). We therefore have

Proposition 2.1 PEquSLP = BP(PC).

Clearly,EquSLP is a special case ofACIT. Schönhage [53] showed thatEquSLP is in coRP, using computation modulo
a randomly chosen prime. Ibarra and Moran [38], building on DeMillo and Lipton [27], Schwartz [54] and Zippel [64],
extended this to show thatACIT lies in coRP. In the spirit of Adleman’s observation [1], Heintz and Schnorr [36] estab-
lished the existence of nonuniform polynomial time algorithms for an algebraic variant of the ACIT problem (allowing any
field elements as constants). The problemACIT has recently attracted much attention due to the work of Kabanets and
Impagliazzo [39] who showed that a deterministic algorithm forACIT would yield circuit lower bounds. (See [43] for some
progress on finding deterministic algorithms for certain versions of the problem.) As far as we know, it has not been pointed
out before thatACIT is actually polynomial time equivalent toEquSLP. In other words, disallowing indeterminates in the
straight-line program given as input does not makeACIT easier. Or more optimistically: It is enough to find a deterministic
algorithm for this special case in order to have circuit lower bounds.

Proposition 2.2 ACIT is polynomial-time equivalent toEquSLP.

Proof. We are given a straight-line program of sizen with m indeterminatesX1, . . . , Xm, computing the polynomial

p(X1, . . . , Xm). DefineBn,i = 22in2

. Straight-line-programs computing these numbers using iterated squaring can easily
be constructed in polynomial time, so given a straight-line-program forp, we can easily construct a straight-line program for
p(Bn,1, . . . , Bn,m). We shall show that forn ≥ 3, p is identically zero iffp(Bn,1, . . . , Bn,m) evaluates to zero.

To see this, first note that the “only if” part is trivial, so we only have to show the “if” part. Thus, assume that
p(X1, . . . , Xm) is not the zero-polynomial. Letq(X1, . . . , Xm) be the largest monomial occurring inp with respect to
inverse lexicographic order1 and letk be the number of monomials. We can writep = αq+

∑k−1
i=1 αiqi, where(qi)i=1,... ,k−1

are the remaining monomials. An easy induction in the size of the straight line program shows that|αi| ≤ 222n

, k ≤ 22n

and
that the degree of any variable in anyqi is at most2n.

Now, our claim is that the absolute value|αq(Bn,1, . . . , Bn,m)| is strictly bigger than|∑k−1
i=1 αiqi(Bn,1, . . . , Bn,m)|,

and thus we cannot have thatp(Bn,1, . . . , Bn,m) = 0.
Indeed, since the monomialq was the biggest in the inverse lexicographic ordering, we have that for any other monomial

qi there is an indexj so that

q(Bn,1, . . . , Bn,m)
qi(Bn,1, . . . , Bn,m)

≥ 22jn2

∏j−1
l=1 22ln2 ·2n

> 22n2−1
,

so we can bound

|
k−1∑

i=1

αiqi(Bn,1, . . . , Bn,m)| ≤ 22n

222n | k−1
max
i=1

qi(Bn,1, . . . , Bn,m)|

≤ 22n

222n

2−2n2−1 |q(Bn,1, . . . , Bn,m)| < q(Bn,1, . . . , Bn,m) ≤ |αq(Bn,1, . . . , Bn,m)|,
which proves the claim. �

1Xα1
1 · · ·Xαm

m is greater thanXβ1
1 · · ·Xβm

m in this order iff the right-most nonzero component ofα − β is positive, cf. Cox, Little and O’Shea [24,
p. 59].
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We believe that Proposition 2.2 could be a useful tool for devising deterministic algorithms for ACIT. Indeed, in Section
5, we use it to devise a new subexponential algorithm for ACIT based on the assumption that a conjecture of Shub and Smale
is correct.

The problemDegSLP is not known to lie inBPP, even for the special case of univariate polynomials. Here, we show that
it reduces toPosSLP.

Proposition 2.3 DegSLP polynomial time many-one reduces toPosSLP.

Proof. We first show the reduction for the case of univariate polynomials (i.e., straight-line-programs with a single indeter-
minate) and afterwards we reduce the multivariate case to the univariate case.

Let f ∈ Z[X ] be given by a straight-line program of lengthn. To avoid having to deal with the zero polynomial of degree
−∞ and to ensure that the image of the polynomial is a subset of the non-negative integers, we first change the straight-line
program computingf into a straight-line program computingf1(X) = (Xf(X) + 1)2 by adding a few extra lines. We can
check if the degree off is at mostd by checking if the degree off1 is at mostD = 2(d + 1) (except ford = −∞ in which
case we check if the degree off1 is at mostD = 0).

Let Bn be the integer22n2

. As in the proof of Proposition 2.2, we can easily construct a straight-line program computing
Bn and from this a straight-line program computingf1(Bn).

Now, suppose thatdeg f1 ≤ D. Using the same bounds on sizes of the coefficients as in the proof of Proposition 2.2 and
assuming without loss of generality thatn ≥ 3, we then have

f1(Bn) ≤
D∑

i=0

222n

Bi
n < (2n + 1)222n

BD
n ≤ (22n

+ 1)222n−2n2

BD+1
n < BD+1

n /2.

On the other hand suppose thatdeg f1 ≥ D + 1. Then we have

f1(Bn) ≥ (Bn)D+1 −
D∑

i=0

222n

Bi
n ≥ BD+1

n − 22n

222n

2−2n2

BD+1
n > BD+1

n /2.

Thus, to check whetherdeg f1 ≤ D, we just need to construct a straight-line-program for2f1(Bn) − BD+1
n and check

whether it computes a positive integer. This completes the reduction for the univariate case.
We next reduce the multivariate case to the univariate case. Thus, letf ∈ Z[X1, . . . , Xm] be given by a straight-line

program of lengthn. Let f∗ ∈ Z[X1, . . . , Xm, Y ] be defined byf∗(X1, . . . , Xm, Y ) = f(X1Y, . . . , XmY ). We claim

that if we letBn,i = 22in2

as in the proof of Proposition 2.2, then, forn ≥ 3, the degree of the univariate polynomial
f∗(Bn,1, . . . , Bn,m, Y ) is equal to the total degree off . Indeed, we can writef∗ as a polynomial inY with coefficients in
Z[X1, . . . , Xm]:

f∗(X1, . . . , Xm, Y ) =
d∗∑

j=0

gj(X1, . . . , Xm)Y j

whered∗ is the degree of variableY in the polynomialf∗. Note that this is also the total degree of the polynomial
f . Now, the same argument as used in the proof of Proportion 2.2 shows that sincegd∗ is not the zero-polynomial,
gd∗(Bn,1, Bn,2, . . . , Bn,m) is different from0. �

As PosSLP easily reduces toBitSLP, we obtain the chain of reductions

EquSLP ≡ ACIT ≤p
m DegSLP ≤p

m PosSLP ≤p
m BitSLP.

In §4 we will show that all the above problems in fact lie in the counting hierarchyCH.
The complexity ofBitSLP contrasts sharply with that ofEquSLP.

Proposition 2.4 BitSLP is hard for#P.

Proof. A similar result is stated without proof in [28]. The proof that we present is quite similar to that of B¨urgisser [20,
Prop. 5.3], which in turn is based on ideas of Valiant [60]. We show that computing the permanent of matrices with entries
from {0,1} is reducible toBitSLP.
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Given a matrixX with entriesxi,j ∈ {0, 1}, consider the univariate polynomial

fn =
∑

i

fn,iY
i =

n∏

i=1

( n∑

j=1

xi,jY
2j−1)

which can be represented by a straight-line program of sizeO(n2). Thenfn,2n−1 equals the permanent ofX . Let N be the
number that is represented by the straight-line program that results by replacing the indeterminateY with 2n3

. It is easy to
see that the binary representation offn,2n−1 appears as a sequence of consecutive bits in the binary representation ofN . �

3 Transcendental Constants

We present here some first results toward establishing our Conjecture 1.2.
Let S denote a fixed finite subset ofR. By anSLP overS we shall understand a division-free straight-line program using

constants fromS ∪ {0, 1}. Recall the following problem:

PosSLP(S) Given an SLP overS, decide whether the real number represented by it is positive.

Remark 3.1 We could have defined a variant ofPosSLP(S) by allowing divisions in the straight-line programs. However,
this variant is easily seen to be polynomial time equivalent toPosSLP(S). Indeed, by computing separately with numerators
and denominators we can transform an SLP representingα into two division-free SLPs representing numbersA, B such that
α = A/B. Hereby, the length of the SLPs increases at most by a factor of four. Nowα is positive iffAB is positive.

A result by Chapuis and Koiran [23] implies that algebraic constants can be eliminated. It can be stated as follows:

Proposition 3.2 Let S ⊆ R be finite andα ∈ R be algebraic over the fieldQ(S). ThenPPosSLP(S∪{α}) = PPosSLP(S).

Our first goal is to prove that almost all transcendental constants can be eliminated.

Theorem 3.3 For all(α1, α2, ..., αk) ∈ Rk except in a subset of Lebesgue measure zero we havePPosSLP({α1,... ,αk})/poly =
PPosSLP/poly.

The proof will require some lemmas. The idea is to eliminate one by one the elements of such setsS, replacing each
element with appropriate advice of polynomial size.

We denote byRS
n ⊂ R the set of all real numbers that occur as a root of some nonzero univariate polynomial that is

computed by a division-free straight-line program of sizen that uses constants inS. Note thatR\RS
n consists of a collection

of open intervals. Clearly, any univariate polynomial computed fromS by an SLP of sizen has constant sign on each of
these intervals. Forα ∈ R \RS

n , we denote byIS
n (α) the unique interval containingα.

Remark 3.4 A real numberα is transcendental overQ(S) iff α 6∈ RS
n for all n (or equivalently, for infinitely manyn).

Definition 3.5 We call a real numberα approximable with respect toS if either α is algebraic overQ(S) or else ifα is
transcendental overQ(S) and satisfies the following condition: there exists a polynomialp such that for all sufficiently
largen ∈ N the intervalIS

n (α) contains an elementxn that can be represented by an SLP overS of sizep(n), possibly
using divisions. (Note that this interval is well-defined asα 6∈ RS

n , cf. Remark 3.4.) We say thatα is approximable iff it is
approximable with respect to the empty set.

Lemma 3.6 If α ∈ R is approximable with respect toS, thenPPosSLP(S∪{α})/poly = PPosSLP(S)/poly.

Proof. Supposeα ∈ R is approximable with respect toS. By Proposition 3.2 we may assume thatα is transcendental over
Q(S). Then, for all sufficiently largen, there existxn ∈ IS

n (α) computed by an SLPΓn overS (using divisions) of size
polynomial inn.

It is sufficient to show thatPosSLP(S∪{α}) is contained inPPosSLP(S)/poly. LetC be an SLP (of sizen) overS∪{α}.
computingv ∈ R. We want to decide whetherv is positive. If we replace the constantα by the variableX , then this SLP
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computes a polynomialf(X) and we havev = f(α). Since the sign off is constant on the intervalIS
p(n)(α), v has the same

sign asf(xp(n)).
We interpret the SLPΓn overS as an advice of polynomial size. By concatenatingΓn with the SLP forf , we obtain an

SLP overS that computesf(xp(n)). We eliminate the divisions in the concatenated SLP according to Remark 3.1. Then the
sign of this number is obtained by one oracle call toPosSLP(S). �

Lemma 3.7 We have:

1. |RS
n | ≤ (6(n + |S|))n.

2. The minimal distance between two different elements ofR∅
n is at least2−2Nn

with Nn = O(n log n).

Proof. Let Fn be the product of all nonzero univariate polynomialsf that can be computed from the variableX by an
SLP overS of sizen. Note that suchf have degree at most2n. ThenRS

n is the set of roots ofFn. There are at most∏n
i=1 3(|S| + i − 1)2 ≤ (3(|S| + n)2)n many SLPs overS. Therefore,deg Fn ≤ (6(|S| + n)2)n, which shows the first

assertion.
Before showing the second assertion we introduce a notation: let‖g‖1 denote the sum of the absolute values of the

coefficients of a univariate polynomialg. It is easy to see that‖g · h‖1 ≤ ‖g‖1 · ‖h‖1.
Suppose nowS = ∅. If f(X) is computed by an SLP of sizen over∅ from the variableX , then one can show that

log ‖f‖1 ≤ (n + 1)2n, see e.g. [19, Lemma 4.16]. By the submultiplicativity of‖ ‖1 we conclude

log ‖Fn‖1 ≤ (3n2)n (n + 1)2n ≤ 2O(n log n).

Rump [51] has shown that the distance between any two distinct real roots in a univariate polynomialP with integer co-
efficients and degreed is at least2

√
2(d

d
2 +1(‖P‖1 + 1)d)−1. The second assertion follows by applying this bound to the

polynomialFn. �

Lemma 3.8 For any finiteS ⊂ R, the set of real numbers that are not approximable with respect toS has Lebesgue measure
zero.

Proof. Let α ∈ R andxn be the binary approximation ofα with a precision ofn2 digits, i.e.,|α − xn| < 2−n2
. Clearly,

there is an SLP over{1/2} of sizeO(n2) representingxn. Furthermore, suppose thatα has distance at least2−n2
from RS

n

for all sufficiently largen, say forn ≥ m. Thenxn is contained in the intervalIS
n (α) for n ≥ m. Hence, by definition,α is

approximable with respect toS.
These reasonings show that for allm ∈ N:

B := {α ∈ R | α is not approximable wrt.S} ⊆
⋃

n≥m

Un,

whereUn := {x ∈ R | ∃ρ ∈ RS
n |x− ρ| < 2−n2} denotes the2−n2

-neighborhood ofRS
n . Denoting byλ(A) the Lebesgue

measure of a setA ⊆ R, we get from Lemma 3.7

λ(Un) ≤ 2 |RS
n | 2−n2 ≤ 2 (6(n + |S|))n2−n2 ≤ 2−

1
2n2

for sufficiently largen. Therefore, we conclude that for all sufficiently largem

λ(B) ≤
∞∑

n=m

2−
1
2n2

.

Since the series
∑

n 2−
1
2n2

is convergent andm was arbitrary, we conclude thatλ(B) = 0. �
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Proof of Theorem 3.3. We consider forα := (α1, . . . , αk) ∈ Rk and 0 ≤ i ≤ k the complexity classesCi(α) :=
PPosSLP({α1,... ,αi})/poly. Clearly,Ck(α) 6= C0(α) implies thatCs(α) 6= Cs−1(α) for some indexs. By applying Lemma 3.6
to the set of constantsS = {α1, . . . , αs−1} we obtain

{α ∈ Rk | Ck(α) 6= C0(α)} ⊆
k⋃

s=1

{
α ∈ Rk | αs is not approximable wrt.{α1, . . . , αs−1}

}
.

Lemma 3.8 says that, for fixedα1, . . . , αs−1, the set{αs ∈ R | αs is not approximable wrt.{α1, . . . , αs−1}} has Lebesgue
measure zero. It follows from Fubini that the right-hand subset ofRk has measure zero as well, which shows the assertion.�

We can actually prove for many specific real numbers that they are approximable. Indeed, quite surprisingly, for any
elementary functionf(X) there exists a sequence(Rn(X)) of rational functions such that|Rn(x) − f(x)| < 2−n for all
x ∈ [0, 1], and such thatRn(X) can be computed by a straight-line program of polylogarithmic size (using divisions) fromX .
The elementary functions include the algebraic functions, the natural logarithm and the exponential function. For algebraic
functions, such approximating rational functions can be constructed with Newton’s method, see Kung and Traub [42]. For
the natural logarithm, the construction of such approximations relies on the AGM iteration going back to Gauss, Lagrange
and Legendre, which, in particular, gives very good approximations ofπ. The latter algorithms were discovered by Brent [17]
and Salamin [52]. The book by Borwein and Borwein [14] provides a complete and in-depth exposition of this subject.

More precisely, we shall understand by anelementary functiona function built up from rational constants by finitely many
arithmetic operations, applications ofexp, ln, and the operation of taking a solution of a polynomial equation. (For a formal
definition see [18].)

Theorem 3.9 Let α be the value of an elementary function at a rational number. Then:

1. α is approximable. In particular,e = exp(1) andπ are approximable.

2. We havePPosSLP({α}) ⊆ PPosSLP/1, where/1 means one bit of advice.

Proof. 1. By Lemma 3.7 we know thatεn = 2−2Nn
with Nn = O(n log n) is a lower bound on the minimum distance

between two different elements ofR∅
n. Note that there is an SLP over{1/2} of polynomial size computingεn (repeated

squaring).
Let α be as in the statement of the theorem. Without loss of generality we may assume thatα is transcendental. According

to Borwein and Borwein [13, Table 1], for eachn, there is an SLP of sizenO(1) (using divisions) computing an approximation
an of α that satisfies|an − α| < 1

2εn. By checking the proofs (cf. Borwein and Borwein [14]) one sees that these SLPs are
uniform, i.e., they can be constructed in polynomial time inn.

We claim that that there existbn ∈ {0, 1}, such thatxn = an + bn
1
2εn lies in the intervalI∅n(α), and thus satisfies the

requirement in Definition 3.5. Henceα is approximable.
Indeed, let̀ n andrn denote the left and right endpoint of the intervalI∅n(α) and denote bymn := 1

2 (`n+rn) its midpoint.
Consider first the case whereα < mn. If α ≤ an, thenan < α + 1

2εn < mn + 1
2 εn ≤ rn, hencexn := an ∈ I∅n(α). Else if

an < α, thenα < an + 1
2εn < α + 1

2εn ≤ rn, hencexn := an + 1
2εn ∈ I∅n(α) does the job. In the case whereα ≥ mn one

argues similarly.
2. We follow the proof of Lemma 3.6. However, since the SLPs computing the approximationan are polynomial time

uniform, only one bit of advice (corresponding tobn) is in fact needed to emulate the computation withα. �
We have not been able to find a specific number that isprovablynon-approximable. It is quite possible that there are no

non-approximable numbers at all.

4 PosSLP lies in CH

The counting hierarchyCH was defined by Wagner [61] and was studied further by Toran [59]; see also [7, 5]. A problem
lies inCH if it lies in one of the classes in the sequencePP, PPPP, etc.

Theorem 4.1 BitSLP is in CH.
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Proof. It was shown by Hesse et al. [37] that there are Dlogtime-uniform threshold circuits of polynomial size and constant
depth that compute the following function:

Input A numberX in Chinese Remainder Representation. That is, a sequence of values indexed(p, j) giving thej-th bit of
X modp, for each primep < n2, where0 ≤ X ≤ 2n (thus we viewn as an appropriate “size” measure of the input).

Output The binary representation of the unique natural numberX <
∏

p prime,p<n2 p whose value modulo each small prime
is encoded in the input.

Let this circuit family be denoted{Dn}.
Now, as in the proof of [5, Lemma 5], we consider the following exponentially-big circuit family{En}, that computes

BitSLP.
Given as input an encoding of a straight-line program representing integerW , we first build a new program computing

the positive integerX = W + 22n

. Note that the bits of the binary representation ofW (including the sign bit) can easily be
obtained from the bits ofX .

Level 1 of the circuitEn consists of gates labeled(p, j) for each primep such thatp < 22n and for eachj : 1 ≤ j ≤
dlog pe. The output of this gate records thejth bit of X mod p. (Observe that there are exponentially many gates on level 1,
and also note that the output of each gate(p, j) can be computed in time polynomial in the size of the binary encoding ofp
and the size of the given straight-line program representingX . Note also that the gates on Level 1 correspond to the gates on
the input level of the circuitD22n .

The higher levels of the circuit are simply the gates ofD22n .
Now, similar to the proof of [5, Lemma 5], we claim that for each constantd, the following language is in the counting

hierarchy:Ld = {(F, P, b) : F is the name of a gate on leveld of En andF evaluates tob when given straight-line program
P as input}.

We have already observed that this is true whend = 1. For the inductive step, assume thatLd ∈ CH. Here is an algorithm
to solveLd+1 using oracle access toLd. On input(F, P, b), we need to determine if the gateF is a gate ofEn, and if so,
we need to determine if it evaluates tob on inputP . F is a gate ofEn iff it is connected to some gateG such that, for some
b′, (G, P, b′) ∈ Ld. This can be determined inNPLd ⊆ PPLd , sinceDn is Dlogtime-uniform. That is, we can guess a gate
G, check thatG is connected toF (this takes only linear time because of the uniformity condition) and then use our oracle
for Ld. If F is a gate ofEn, we need to determine if the majority of the gates that feed into it evaluate to 1. (Note that all of
the gates inDn are MAJORITY gates.) That is, we need to determine if it is the case that for most bit stringsG such thatG
is the name of a gate that is connected toF , (G, P, 1) is in Ld. This is clearly computable inPPLd .

Thus in order to computeBitSLP, given programP and indexi, compute the nameF of the output bit ofEn that produces
the ith bit of N (which is easy because of the uniformity of the circuitsD22n ) and determine if(F, P, 1) ∈ Ld, whered is
determined by the depth of the constant-depth family of circuits presented in [37]. �

Theorem 4.1 shows thatBP(P0
R
) lies inCH. A similar argument can be applied to an analogous restriction of “digital”NPR

(i.e., where nondeterministic machines over the reals can guess “bits” but cannot guess arbitrary real numbers). B¨urgisser
and Cucker [22] present some problems inPSPACE that are related tocountingproblems overR. It would be interesting to
know if these problems lie inCH.

Although Theorem 4.1 shows thatBitSLP andPosSLP both lie in CH, some additional effort is required in order to
determine the level ofCH where these problems reside. We present a more detailed analysis forPosSLP, since it is our main

concern in this paper. (A similar analysis can be carried out forBitSLP, showing that it lies inPHPPPPPPPP

[6].)

The following result implies Theorem 1.4, since Toda’s Theorem [58] shows thatPPPHA ⊆ PPPA

for every oracleA.

Theorem 4.2 PosSLP ∈ PHPPPP

.

Proof. We will use the Chinese remaindering algorithm of [37] to obtain our upper bound onPosSLP. (Related algorithms,
which do not lead directly to the bound reported here, have been used on several occasions [2, 26, 31, 44, 45].) Let us
introduce some notation relating to Chinese remaindering.

For n ∈ N let Mn be the product of all odd primesp less than2n2
. By the prime number theorem,22n

< Mn < 22n2+1

for n sufficiently large. For such primesp let hp,n denote the inverse ofMn/p mod p.
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Any integer0 ≤ X < Mn can be represented uniquely as a list(xp), wherep runs over the odd primesp < 2n2

andxp = X mod p. Moreover,X is congruent to
∑

p xphp,nMn/p moduloMn. HenceX/Mn is the fractional part of∑
p xphp,n/p.
Define the family of approximation functionsappn(X) to be

∑
p Bp, whereBp = xphp,nσp,n andσp,n is the result of

truncating the binary expansion of1/p after2n4
bits. Note that forn sufficiently large andX < Mn, appn(X) is within

2−2n3

of X/Mn.
Let the input toPosSLP be a programP of sizen representing the integerW and putYn = 22n

. Since|W | ≤ Yn, the
numberX := W + Yn is nonnegative and we can easily transformP into a program of size2n + 2 representingX . Clearly,

W > 0 iff X > Yn. Note that ifX > Yn, thenX/Mn andYn/Mn differ by at least1/Mn > 2−2n2+1
, which implies that

it is enough to compare the binary expansions ofappn(X) andappn(Yn). (Interestingly, this seems to be somewhat easier
than computing the bits ofX directly.)

We can determine ifX > Yn in PH relative to the following oracle:A = {(P, j, b, 1n) : the j-th bit of the binary
expansion ofappn(X) is b, whereX is the number represented by straight-line programP andj is given in binary}. Lemma

4.3 completes the proof by showing thatA ∈ PHPPPP

. �

Lemma 4.3 A ∈ PHPPPP

.

Proof. Assume for the moment that we can show thatB ∈ PHPP, whereB := {(P, j, b, p, 1n) : thej-th bit of the binary
expansion ofBp (= xphp,nσp,n) is b, wherep < 2n2

is an odd prime,xp = X mod p, X is the number represented by the
straight-line programP , andj is given in binary}. In order to recognize the setA, it clearly suffices to compute2n4

bits of
the binary representation of the sum of the numbersBp. A uniform circuit family for iterated sum is presented by Maciel
and Thérien in [46, Corollary 3.4.2] consisting of MAJORITY gates on the bottom (input) level, with three levels of AND

and OR gates above. As in the proof of Theorem 4.1, the construction of Maciel and Th´erien immediately yields aPHPPB

algorithm forA, by simulating the MAJORITY gates byPPB computation, simulating the OR gates above the MAJORITY

gates byNPPPB

computation, etc. The claim follows, since by Toda’s Theorem [58]PHPPB ⊆ PHPPPHPP

= PHPPPP

. It
remains only to show thatB ∈ PHPP. �

Lemma 4.4 B ∈ PHPP.

Proof. Observe that given(P, j, b, p) we can determine in polynomial time ifp is prime [3], and we can computexp.
In PH ⊆ PPP we can find the least generatorgp of the multiplicative group of the integers modp. The setC = {(q, gp, i, p)

: p 6= q are primes andi is the least number for whichgi
p ≡ q mod p} is easily seen to lie inPH. We can compute the

discrete log basegp of the numberMn/p mod p in #PC ⊆ PPP, by the algorithm that nondeterministically guessesq andi,
verifies that(q, gp, i, p) ∈ C, and if so generatesi accepting paths. Thus we can compute the numberMn/p mod p itself in
PPP by first computing its discrete log, and then computinggp to that power, modp. The inversehp,n is now easy to compute
in PPP, by finding the inverse ofMn/p modp.

Our goal is to compute thej-th bit of the binary expansion ofxphp,nσp,n. We have already computedxp andhp,n in PPP,
so it is easy to computexphp,n. Thejth bit of 1/p is 1 iff 2j mod p is odd, so bits ofσp,n are easy to compute in polynomial
time. (Note thatj is exponentially large.)

Thus our task is to obtain thej-th bit of the product ofxphp,n andσp,n, or (equivalently) addingσp,n to itself xphp,n

times. The problem of addinglogO(1) n manyn-bit numbers lies in uniformAC0 [30]. Simulating theseAC0 circuits leads
to the desiredPHPP algorithm forB. �

5 An Observation on DerandomizingACIT

The connections between algebraic complexity and the counting hierarchy in the preceding section were first introduced
in an earlier version of this paper [4]. Recently, these connections have led to further developments. B¨urgisser shows in [21]
that the counting hierarchy provides a useful tool for showing implications among several hypotheses in algebraic complexity
theory that were not previously known to be related. In that same paper, he also improves a theorem of Koiran, relating the
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arithmetic circuit complexity of the permanent to a frequently-studied question about the complexity of expressingn!. We
have some new observations to present on this topic, and start by recalling some background and definitions.

We will follow the terminology of Shub and Smale [55], and say thatn! is “easy” if there is a sequence of SLPsCn of
sizelogO(1) n, whereCn represents the numbern!. Following the same convention, we say thatn! is “ultimately easy” if
there is a sequence of SLPsCn of size logO(1) n, whereCn represents a nonzero multiple of the numbern!. (It does not
matter which multiple is represented.) Shub and Smale conjectured thatn! is not ultimately easy, and they showed that this
condition implies thatPC 6= NPC. It is also pointed out in [12] that if factoring is sufficiently hard to to compute, it implies
thatn! is not easy.

Note that ifn! is not ultimately easy, it says merely that there areinfinitely manyn for which multiples ofn! require large
circuits. It may be useful also to consider the hypothesis that this condition holds forall largen: that is, for allk there is an
m such that for alln > m, there is no SLP of sizelogk n representing a nonzero multiple ofn! Let us call this condition “n!
is ultimately hard”.

The following implications are known to hold:

n! is ultimately hard⇒ n! is not ultimately easy⇒ n! is not easy
⇒ the permanent requires arithmetic circuits of superpolynomial size⇒ AFIT ∈ ⋂

ε>0io-[DTIME(2nε

)],

where AFIT denotes Arithmetic Formula Identity Testing: a special case of ACIT. The third implication is from [21], the
fourth is from [39, Theorem 7.7]. Derandomization results such as those of [39] usually come in two flavors. If one assumes
that a particular function (such as the permanent) is hard on infinitely many input lengths, then one obtains only algorithms
that work correctly on infinitely many input lengths. One can also obtain an algorithm that works correctly on all input
lengths, if one starts with a stronger assumption, such as that the permanent requires large circuits on all input lengths.

It has not been known whether any of these hypotheses are sufficiently strong to derandomizeACIT itself, although it is
known that ifACIT is in

⋂
ε>0DTIME(2nε

) (or even in
⋂

ε>0NTIME(2nε

)), then either the permanent requires arithmetic
circuits of superpolynomial size, orNEXP 6⊆ P/poly [39]. We observe now that the following implication holds.

Theorem 5.1 We have the following:

1. If n! is ultimately hard, thenACIT ∈ ⋂
ε>0DTIME(2nε

).

2. If n! is not ultimately easy, thenACIT ∈ ⋂
ε>0io-[DTIME(2nε

)].

Proof. We prove only the second claim. The first is easier, and follows by the same method.
First note that by Proposition 2.2, it is sufficient to prove the implication forEquSLP instead ofACIT. Assume thatn!

is not ultimately easy. Then for everyk, there is an infinite setI(k) of numbers such that for allm ∈ I(k) no SLP of size at
mostlogk m can produce a nonzero multiple ofm!.

Givenε > 0, pick anyγ such that0 < γ < ε. Choosek to be the least integer larger than1/γ. For anym ∈ I(k) put
n = blogk mc.

Suppose we are given as input an SLPC of sizen. Note that the binary encoding ofm has length at mostn1/k – but we
do not know whatm is. Thus we try all numbersz having binary encoding of length at mostn1/k (one of which will bem).
We then compute the binary representation ofz! with the obvious algorithm, which takes time at mostz2 logO(1) z, which is
less than2nγ

for sufficiently largen. Then we evaluate the SLPC moduloz!; we accept iff the result is zero for all of the
numbersz. This algorithm works correctly, since by our assumption, the SLPC cannot produce a nonzero multiple ofm!.
The running time is2O(nγ)2O(nγ), which is less than2nε

for all largen. �

6 Closing Remarks

NP-hardness is firmly established as a useful tool for providing evidence of intractibility. We believe thatPosSLP can
become a useful tool for providing evidence of intractibility for problems that do not appear to beNP-hard, and for providing
evidence that certain problems do not lie inNP. Indeed, results of this flavor have already started to appear: Etessami and
Yannakakis have recently shown thatPosSLP reduces to the problem of computing Nash equilibria for three-person games
[33].

There are several directions for further research suggested by the results that we have presented. We would very much like
to see a resolution of our Conjecture 1.2, and we think that it is likely that thatPosSLP lies at a lower level of the counting
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hierarchy than is proved in Theorem 1.4. Perhaps better upper bounds can be presented at least for the sum-of-square-roots
problem. Can better evidence be presented for the intractibility ofPosSLP? Can some important problems inNPR (such as
the existential theory of the reals) be shown to lie in the counting hierarchy?
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